1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events ring-buffer code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <[email protected]>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <[email protected]>
9 */
10
11 #include <linux/perf_event.h>
12 #include <linux/vmalloc.h>
13 #include <linux/slab.h>
14 #include <linux/circ_buf.h>
15 #include <linux/poll.h>
16 #include <linux/nospec.h>
17
18 #include "internal.h"
19
perf_output_wakeup(struct perf_output_handle * handle)20 static void perf_output_wakeup(struct perf_output_handle *handle)
21 {
22 atomic_set(&handle->rb->poll, EPOLLIN | EPOLLRDNORM);
23
24 handle->event->pending_wakeup = 1;
25
26 if (*perf_event_fasync(handle->event) && !handle->event->pending_kill)
27 handle->event->pending_kill = POLL_IN;
28
29 irq_work_queue(&handle->event->pending_irq);
30 }
31
32 /*
33 * We need to ensure a later event_id doesn't publish a head when a former
34 * event isn't done writing. However since we need to deal with NMIs we
35 * cannot fully serialize things.
36 *
37 * We only publish the head (and generate a wakeup) when the outer-most
38 * event completes.
39 */
perf_output_get_handle(struct perf_output_handle * handle)40 static void perf_output_get_handle(struct perf_output_handle *handle)
41 {
42 struct perf_buffer *rb = handle->rb;
43
44 preempt_disable();
45
46 /*
47 * Avoid an explicit LOAD/STORE such that architectures with memops
48 * can use them.
49 */
50 (*(volatile unsigned int *)&rb->nest)++;
51 handle->wakeup = local_read(&rb->wakeup);
52 }
53
perf_output_put_handle(struct perf_output_handle * handle)54 static void perf_output_put_handle(struct perf_output_handle *handle)
55 {
56 struct perf_buffer *rb = handle->rb;
57 unsigned long head;
58 unsigned int nest;
59
60 /*
61 * If this isn't the outermost nesting, we don't have to update
62 * @rb->user_page->data_head.
63 */
64 nest = READ_ONCE(rb->nest);
65 if (nest > 1) {
66 WRITE_ONCE(rb->nest, nest - 1);
67 goto out;
68 }
69
70 again:
71 /*
72 * In order to avoid publishing a head value that goes backwards,
73 * we must ensure the load of @rb->head happens after we've
74 * incremented @rb->nest.
75 *
76 * Otherwise we can observe a @rb->head value before one published
77 * by an IRQ/NMI happening between the load and the increment.
78 */
79 barrier();
80 head = local_read(&rb->head);
81
82 /*
83 * IRQ/NMI can happen here and advance @rb->head, causing our
84 * load above to be stale.
85 */
86
87 /*
88 * Since the mmap() consumer (userspace) can run on a different CPU:
89 *
90 * kernel user
91 *
92 * if (LOAD ->data_tail) { LOAD ->data_head
93 * (A) smp_rmb() (C)
94 * STORE $data LOAD $data
95 * smp_wmb() (B) smp_mb() (D)
96 * STORE ->data_head STORE ->data_tail
97 * }
98 *
99 * Where A pairs with D, and B pairs with C.
100 *
101 * In our case (A) is a control dependency that separates the load of
102 * the ->data_tail and the stores of $data. In case ->data_tail
103 * indicates there is no room in the buffer to store $data we do not.
104 *
105 * D needs to be a full barrier since it separates the data READ
106 * from the tail WRITE.
107 *
108 * For B a WMB is sufficient since it separates two WRITEs, and for C
109 * an RMB is sufficient since it separates two READs.
110 *
111 * See perf_output_begin().
112 */
113 smp_wmb(); /* B, matches C */
114 WRITE_ONCE(rb->user_page->data_head, head);
115
116 /*
117 * We must publish the head before decrementing the nest count,
118 * otherwise an IRQ/NMI can publish a more recent head value and our
119 * write will (temporarily) publish a stale value.
120 */
121 barrier();
122 WRITE_ONCE(rb->nest, 0);
123
124 /*
125 * Ensure we decrement @rb->nest before we validate the @rb->head.
126 * Otherwise we cannot be sure we caught the 'last' nested update.
127 */
128 barrier();
129 if (unlikely(head != local_read(&rb->head))) {
130 WRITE_ONCE(rb->nest, 1);
131 goto again;
132 }
133
134 if (handle->wakeup != local_read(&rb->wakeup))
135 perf_output_wakeup(handle);
136
137 out:
138 preempt_enable();
139 }
140
141 static __always_inline bool
ring_buffer_has_space(unsigned long head,unsigned long tail,unsigned long data_size,unsigned int size,bool backward)142 ring_buffer_has_space(unsigned long head, unsigned long tail,
143 unsigned long data_size, unsigned int size,
144 bool backward)
145 {
146 if (!backward)
147 return CIRC_SPACE(head, tail, data_size) >= size;
148 else
149 return CIRC_SPACE(tail, head, data_size) >= size;
150 }
151
152 static __always_inline int
__perf_output_begin(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size,bool backward)153 __perf_output_begin(struct perf_output_handle *handle,
154 struct perf_sample_data *data,
155 struct perf_event *event, unsigned int size,
156 bool backward)
157 {
158 struct perf_buffer *rb;
159 unsigned long tail, offset, head;
160 int have_lost, page_shift;
161 struct {
162 struct perf_event_header header;
163 u64 id;
164 u64 lost;
165 } lost_event;
166
167 rcu_read_lock();
168 /*
169 * For inherited events we send all the output towards the parent.
170 */
171 if (event->parent)
172 event = event->parent;
173
174 rb = rcu_dereference(event->rb);
175 if (unlikely(!rb))
176 goto out;
177
178 if (unlikely(rb->paused)) {
179 if (rb->nr_pages) {
180 local_inc(&rb->lost);
181 atomic64_inc(&event->lost_samples);
182 }
183 goto out;
184 }
185
186 handle->rb = rb;
187 handle->event = event;
188
189 have_lost = local_read(&rb->lost);
190 if (unlikely(have_lost)) {
191 size += sizeof(lost_event);
192 if (event->attr.sample_id_all)
193 size += event->id_header_size;
194 }
195
196 perf_output_get_handle(handle);
197
198 offset = local_read(&rb->head);
199 do {
200 head = offset;
201 tail = READ_ONCE(rb->user_page->data_tail);
202 if (!rb->overwrite) {
203 if (unlikely(!ring_buffer_has_space(head, tail,
204 perf_data_size(rb),
205 size, backward)))
206 goto fail;
207 }
208
209 /*
210 * The above forms a control dependency barrier separating the
211 * @tail load above from the data stores below. Since the @tail
212 * load is required to compute the branch to fail below.
213 *
214 * A, matches D; the full memory barrier userspace SHOULD issue
215 * after reading the data and before storing the new tail
216 * position.
217 *
218 * See perf_output_put_handle().
219 */
220
221 if (!backward)
222 head += size;
223 else
224 head -= size;
225 } while (!local_try_cmpxchg(&rb->head, &offset, head));
226
227 if (backward) {
228 offset = head;
229 head = (u64)(-head);
230 }
231
232 /*
233 * We rely on the implied barrier() by local_cmpxchg() to ensure
234 * none of the data stores below can be lifted up by the compiler.
235 */
236
237 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
238 local_add(rb->watermark, &rb->wakeup);
239
240 page_shift = PAGE_SHIFT + page_order(rb);
241
242 handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
243 offset &= (1UL << page_shift) - 1;
244 handle->addr = rb->data_pages[handle->page] + offset;
245 handle->size = (1UL << page_shift) - offset;
246
247 if (unlikely(have_lost)) {
248 lost_event.header.size = sizeof(lost_event);
249 lost_event.header.type = PERF_RECORD_LOST;
250 lost_event.header.misc = 0;
251 lost_event.id = event->id;
252 lost_event.lost = local_xchg(&rb->lost, 0);
253
254 /* XXX mostly redundant; @data is already fully initializes */
255 perf_event_header__init_id(&lost_event.header, data, event);
256 perf_output_put(handle, lost_event);
257 perf_event__output_id_sample(event, handle, data);
258 }
259
260 return 0;
261
262 fail:
263 local_inc(&rb->lost);
264 atomic64_inc(&event->lost_samples);
265 perf_output_put_handle(handle);
266 out:
267 rcu_read_unlock();
268
269 return -ENOSPC;
270 }
271
perf_output_begin_forward(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)272 int perf_output_begin_forward(struct perf_output_handle *handle,
273 struct perf_sample_data *data,
274 struct perf_event *event, unsigned int size)
275 {
276 return __perf_output_begin(handle, data, event, size, false);
277 }
278
perf_output_begin_backward(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)279 int perf_output_begin_backward(struct perf_output_handle *handle,
280 struct perf_sample_data *data,
281 struct perf_event *event, unsigned int size)
282 {
283 return __perf_output_begin(handle, data, event, size, true);
284 }
285
perf_output_begin(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)286 int perf_output_begin(struct perf_output_handle *handle,
287 struct perf_sample_data *data,
288 struct perf_event *event, unsigned int size)
289 {
290
291 return __perf_output_begin(handle, data, event, size,
292 unlikely(is_write_backward(event)));
293 }
294
perf_output_copy(struct perf_output_handle * handle,const void * buf,unsigned int len)295 unsigned int perf_output_copy(struct perf_output_handle *handle,
296 const void *buf, unsigned int len)
297 {
298 return __output_copy(handle, buf, len);
299 }
300
perf_output_skip(struct perf_output_handle * handle,unsigned int len)301 unsigned int perf_output_skip(struct perf_output_handle *handle,
302 unsigned int len)
303 {
304 return __output_skip(handle, NULL, len);
305 }
306
perf_output_end(struct perf_output_handle * handle)307 void perf_output_end(struct perf_output_handle *handle)
308 {
309 perf_output_put_handle(handle);
310 rcu_read_unlock();
311 }
312
313 static void
ring_buffer_init(struct perf_buffer * rb,long watermark,int flags)314 ring_buffer_init(struct perf_buffer *rb, long watermark, int flags)
315 {
316 long max_size = perf_data_size(rb);
317
318 if (watermark)
319 rb->watermark = min(max_size, watermark);
320
321 if (!rb->watermark)
322 rb->watermark = max_size / 2;
323
324 if (flags & RING_BUFFER_WRITABLE)
325 rb->overwrite = 0;
326 else
327 rb->overwrite = 1;
328
329 refcount_set(&rb->refcount, 1);
330
331 INIT_LIST_HEAD(&rb->event_list);
332 spin_lock_init(&rb->event_lock);
333
334 /*
335 * perf_output_begin() only checks rb->paused, therefore
336 * rb->paused must be true if we have no pages for output.
337 */
338 if (!rb->nr_pages)
339 rb->paused = 1;
340
341 mutex_init(&rb->aux_mutex);
342 }
343
perf_aux_output_flag(struct perf_output_handle * handle,u64 flags)344 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
345 {
346 /*
347 * OVERWRITE is determined by perf_aux_output_end() and can't
348 * be passed in directly.
349 */
350 if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
351 return;
352
353 handle->aux_flags |= flags;
354 }
355 EXPORT_SYMBOL_GPL(perf_aux_output_flag);
356
357 /*
358 * This is called before hardware starts writing to the AUX area to
359 * obtain an output handle and make sure there's room in the buffer.
360 * When the capture completes, call perf_aux_output_end() to commit
361 * the recorded data to the buffer.
362 *
363 * The ordering is similar to that of perf_output_{begin,end}, with
364 * the exception of (B), which should be taken care of by the pmu
365 * driver, since ordering rules will differ depending on hardware.
366 *
367 * Call this from pmu::start(); see the comment in perf_aux_output_end()
368 * about its use in pmu callbacks. Both can also be called from the PMI
369 * handler if needed.
370 */
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)371 void *perf_aux_output_begin(struct perf_output_handle *handle,
372 struct perf_event *event)
373 {
374 struct perf_event *output_event = event;
375 unsigned long aux_head, aux_tail;
376 struct perf_buffer *rb;
377 unsigned int nest;
378
379 if (output_event->parent)
380 output_event = output_event->parent;
381
382 /*
383 * Since this will typically be open across pmu::add/pmu::del, we
384 * grab ring_buffer's refcount instead of holding rcu read lock
385 * to make sure it doesn't disappear under us.
386 */
387 rb = ring_buffer_get(output_event);
388 if (!rb)
389 return NULL;
390
391 if (!rb_has_aux(rb))
392 goto err;
393
394 /*
395 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
396 * about to get freed, so we leave immediately.
397 *
398 * Checking rb::aux_mmap_count and rb::refcount has to be done in
399 * the same order, see perf_mmap_close. Otherwise we end up freeing
400 * aux pages in this path, which is a bug, because in_atomic().
401 */
402 if (!atomic_read(&rb->aux_mmap_count))
403 goto err;
404
405 if (!refcount_inc_not_zero(&rb->aux_refcount))
406 goto err;
407
408 nest = READ_ONCE(rb->aux_nest);
409 /*
410 * Nesting is not supported for AUX area, make sure nested
411 * writers are caught early
412 */
413 if (WARN_ON_ONCE(nest))
414 goto err_put;
415
416 WRITE_ONCE(rb->aux_nest, nest + 1);
417
418 aux_head = rb->aux_head;
419
420 handle->rb = rb;
421 handle->event = event;
422 handle->head = aux_head;
423 handle->size = 0;
424 handle->aux_flags = 0;
425
426 /*
427 * In overwrite mode, AUX data stores do not depend on aux_tail,
428 * therefore (A) control dependency barrier does not exist. The
429 * (B) <-> (C) ordering is still observed by the pmu driver.
430 */
431 if (!rb->aux_overwrite) {
432 aux_tail = READ_ONCE(rb->user_page->aux_tail);
433 handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
434 if (aux_head - aux_tail < perf_aux_size(rb))
435 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
436
437 /*
438 * handle->size computation depends on aux_tail load; this forms a
439 * control dependency barrier separating aux_tail load from aux data
440 * store that will be enabled on successful return
441 */
442 if (!handle->size) { /* A, matches D */
443 event->pending_disable = smp_processor_id();
444 perf_output_wakeup(handle);
445 WRITE_ONCE(rb->aux_nest, 0);
446 goto err_put;
447 }
448 }
449
450 return handle->rb->aux_priv;
451
452 err_put:
453 /* can't be last */
454 rb_free_aux(rb);
455
456 err:
457 ring_buffer_put(rb);
458 handle->event = NULL;
459
460 return NULL;
461 }
462 EXPORT_SYMBOL_GPL(perf_aux_output_begin);
463
rb_need_aux_wakeup(struct perf_buffer * rb)464 static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb)
465 {
466 if (rb->aux_overwrite)
467 return false;
468
469 if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
470 rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
471 return true;
472 }
473
474 return false;
475 }
476
477 /*
478 * Commit the data written by hardware into the ring buffer by adjusting
479 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
480 * pmu driver's responsibility to observe ordering rules of the hardware,
481 * so that all the data is externally visible before this is called.
482 *
483 * Note: this has to be called from pmu::stop() callback, as the assumption
484 * of the AUX buffer management code is that after pmu::stop(), the AUX
485 * transaction must be stopped and therefore drop the AUX reference count.
486 */
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)487 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
488 {
489 bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
490 struct perf_buffer *rb = handle->rb;
491 unsigned long aux_head;
492
493 /* in overwrite mode, driver provides aux_head via handle */
494 if (rb->aux_overwrite) {
495 handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
496
497 aux_head = handle->head;
498 rb->aux_head = aux_head;
499 } else {
500 handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
501
502 aux_head = rb->aux_head;
503 rb->aux_head += size;
504 }
505
506 /*
507 * Only send RECORD_AUX if we have something useful to communicate
508 *
509 * Note: the OVERWRITE records by themselves are not considered
510 * useful, as they don't communicate any *new* information,
511 * aside from the short-lived offset, that becomes history at
512 * the next event sched-in and therefore isn't useful.
513 * The userspace that needs to copy out AUX data in overwrite
514 * mode should know to use user_page::aux_head for the actual
515 * offset. So, from now on we don't output AUX records that
516 * have *only* OVERWRITE flag set.
517 */
518 if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE))
519 perf_event_aux_event(handle->event, aux_head, size,
520 handle->aux_flags);
521
522 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
523 if (rb_need_aux_wakeup(rb))
524 wakeup = true;
525
526 if (wakeup) {
527 if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
528 handle->event->pending_disable = smp_processor_id();
529 perf_output_wakeup(handle);
530 }
531
532 handle->event = NULL;
533
534 WRITE_ONCE(rb->aux_nest, 0);
535 /* can't be last */
536 rb_free_aux(rb);
537 ring_buffer_put(rb);
538 }
539 EXPORT_SYMBOL_GPL(perf_aux_output_end);
540
541 /*
542 * Skip over a given number of bytes in the AUX buffer, due to, for example,
543 * hardware's alignment constraints.
544 */
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)545 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
546 {
547 struct perf_buffer *rb = handle->rb;
548
549 if (size > handle->size)
550 return -ENOSPC;
551
552 rb->aux_head += size;
553
554 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
555 if (rb_need_aux_wakeup(rb)) {
556 perf_output_wakeup(handle);
557 handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
558 }
559
560 handle->head = rb->aux_head;
561 handle->size -= size;
562
563 return 0;
564 }
565 EXPORT_SYMBOL_GPL(perf_aux_output_skip);
566
perf_get_aux(struct perf_output_handle * handle)567 void *perf_get_aux(struct perf_output_handle *handle)
568 {
569 /* this is only valid between perf_aux_output_begin and *_end */
570 if (!handle->event)
571 return NULL;
572
573 return handle->rb->aux_priv;
574 }
575 EXPORT_SYMBOL_GPL(perf_get_aux);
576
577 /*
578 * Copy out AUX data from an AUX handle.
579 */
perf_output_copy_aux(struct perf_output_handle * aux_handle,struct perf_output_handle * handle,unsigned long from,unsigned long to)580 long perf_output_copy_aux(struct perf_output_handle *aux_handle,
581 struct perf_output_handle *handle,
582 unsigned long from, unsigned long to)
583 {
584 struct perf_buffer *rb = aux_handle->rb;
585 unsigned long tocopy, remainder, len = 0;
586 void *addr;
587
588 from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
589 to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
590
591 do {
592 tocopy = PAGE_SIZE - offset_in_page(from);
593 if (to > from)
594 tocopy = min(tocopy, to - from);
595 if (!tocopy)
596 break;
597
598 addr = rb->aux_pages[from >> PAGE_SHIFT];
599 addr += offset_in_page(from);
600
601 remainder = perf_output_copy(handle, addr, tocopy);
602 if (remainder)
603 return -EFAULT;
604
605 len += tocopy;
606 from += tocopy;
607 from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
608 } while (to != from);
609
610 return len;
611 }
612
613 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
614
rb_alloc_aux_page(int node,int order)615 static struct page *rb_alloc_aux_page(int node, int order)
616 {
617 struct page *page;
618
619 if (order > MAX_PAGE_ORDER)
620 order = MAX_PAGE_ORDER;
621
622 do {
623 page = alloc_pages_node(node, PERF_AUX_GFP, order);
624 } while (!page && order--);
625
626 if (page && order) {
627 /*
628 * Communicate the allocation size to the driver:
629 * if we managed to secure a high-order allocation,
630 * set its first page's private to this order;
631 * !PagePrivate(page) means it's just a normal page.
632 */
633 split_page(page, order);
634 SetPagePrivate(page);
635 set_page_private(page, order);
636 }
637
638 return page;
639 }
640
rb_free_aux_page(struct perf_buffer * rb,int idx)641 static void rb_free_aux_page(struct perf_buffer *rb, int idx)
642 {
643 struct page *page = virt_to_page(rb->aux_pages[idx]);
644
645 ClearPagePrivate(page);
646 __free_page(page);
647 }
648
__rb_free_aux(struct perf_buffer * rb)649 static void __rb_free_aux(struct perf_buffer *rb)
650 {
651 int pg;
652
653 /*
654 * Should never happen, the last reference should be dropped from
655 * perf_mmap_close() path, which first stops aux transactions (which
656 * in turn are the atomic holders of aux_refcount) and then does the
657 * last rb_free_aux().
658 */
659 WARN_ON_ONCE(in_atomic());
660
661 if (rb->aux_priv) {
662 rb->free_aux(rb->aux_priv);
663 rb->free_aux = NULL;
664 rb->aux_priv = NULL;
665 }
666
667 if (rb->aux_nr_pages) {
668 for (pg = 0; pg < rb->aux_nr_pages; pg++)
669 rb_free_aux_page(rb, pg);
670
671 kfree(rb->aux_pages);
672 rb->aux_nr_pages = 0;
673 }
674 }
675
rb_alloc_aux(struct perf_buffer * rb,struct perf_event * event,pgoff_t pgoff,int nr_pages,long watermark,int flags)676 int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event,
677 pgoff_t pgoff, int nr_pages, long watermark, int flags)
678 {
679 bool overwrite = !(flags & RING_BUFFER_WRITABLE);
680 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
681 int ret = -ENOMEM, max_order;
682
683 if (!has_aux(event))
684 return -EOPNOTSUPP;
685
686 if (nr_pages <= 0)
687 return -EINVAL;
688
689 if (!overwrite) {
690 /*
691 * Watermark defaults to half the buffer, and so does the
692 * max_order, to aid PMU drivers in double buffering.
693 */
694 if (!watermark)
695 watermark = min_t(unsigned long,
696 U32_MAX,
697 (unsigned long)nr_pages << (PAGE_SHIFT - 1));
698
699 /*
700 * Use aux_watermark as the basis for chunking to
701 * help PMU drivers honor the watermark.
702 */
703 max_order = get_order(watermark);
704 } else {
705 /*
706 * We need to start with the max_order that fits in nr_pages,
707 * not the other way around, hence ilog2() and not get_order.
708 */
709 max_order = ilog2(nr_pages);
710 watermark = 0;
711 }
712
713 /*
714 * kcalloc_node() is unable to allocate buffer if the size is larger
715 * than: PAGE_SIZE << MAX_PAGE_ORDER; directly bail out in this case.
716 */
717 if (get_order((unsigned long)nr_pages * sizeof(void *)) > MAX_PAGE_ORDER)
718 return -ENOMEM;
719 rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
720 node);
721 if (!rb->aux_pages)
722 return -ENOMEM;
723
724 rb->free_aux = event->pmu->free_aux;
725 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
726 struct page *page;
727 int last, order;
728
729 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
730 page = rb_alloc_aux_page(node, order);
731 if (!page)
732 goto out;
733
734 for (last = rb->aux_nr_pages + (1 << page_private(page));
735 last > rb->aux_nr_pages; rb->aux_nr_pages++)
736 rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
737 }
738
739 /*
740 * In overwrite mode, PMUs that don't support SG may not handle more
741 * than one contiguous allocation, since they rely on PMI to do double
742 * buffering. In this case, the entire buffer has to be one contiguous
743 * chunk.
744 */
745 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
746 overwrite) {
747 struct page *page = virt_to_page(rb->aux_pages[0]);
748
749 if (page_private(page) != max_order)
750 goto out;
751 }
752
753 rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages,
754 overwrite);
755 if (!rb->aux_priv)
756 goto out;
757
758 ret = 0;
759
760 /*
761 * aux_pages (and pmu driver's private data, aux_priv) will be
762 * referenced in both producer's and consumer's contexts, thus
763 * we keep a refcount here to make sure either of the two can
764 * reference them safely.
765 */
766 refcount_set(&rb->aux_refcount, 1);
767
768 rb->aux_overwrite = overwrite;
769 rb->aux_watermark = watermark;
770
771 out:
772 if (!ret)
773 rb->aux_pgoff = pgoff;
774 else
775 __rb_free_aux(rb);
776
777 return ret;
778 }
779
rb_free_aux(struct perf_buffer * rb)780 void rb_free_aux(struct perf_buffer *rb)
781 {
782 if (refcount_dec_and_test(&rb->aux_refcount))
783 __rb_free_aux(rb);
784 }
785
786 #ifndef CONFIG_PERF_USE_VMALLOC
787
788 /*
789 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
790 */
791
792 static struct page *
__perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)793 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
794 {
795 if (pgoff > rb->nr_pages)
796 return NULL;
797
798 if (pgoff == 0)
799 return virt_to_page(rb->user_page);
800
801 return virt_to_page(rb->data_pages[pgoff - 1]);
802 }
803
perf_mmap_alloc_page(int cpu)804 static void *perf_mmap_alloc_page(int cpu)
805 {
806 struct page *page;
807 int node;
808
809 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
810 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
811 if (!page)
812 return NULL;
813
814 return page_address(page);
815 }
816
perf_mmap_free_page(void * addr)817 static void perf_mmap_free_page(void *addr)
818 {
819 struct page *page = virt_to_page(addr);
820
821 __free_page(page);
822 }
823
rb_alloc(int nr_pages,long watermark,int cpu,int flags)824 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
825 {
826 struct perf_buffer *rb;
827 unsigned long size;
828 int i, node;
829
830 size = sizeof(struct perf_buffer);
831 size += nr_pages * sizeof(void *);
832
833 if (order_base_2(size) > PAGE_SHIFT+MAX_PAGE_ORDER)
834 goto fail;
835
836 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
837 rb = kzalloc_node(size, GFP_KERNEL, node);
838 if (!rb)
839 goto fail;
840
841 rb->user_page = perf_mmap_alloc_page(cpu);
842 if (!rb->user_page)
843 goto fail_user_page;
844
845 for (i = 0; i < nr_pages; i++) {
846 rb->data_pages[i] = perf_mmap_alloc_page(cpu);
847 if (!rb->data_pages[i])
848 goto fail_data_pages;
849 }
850
851 rb->nr_pages = nr_pages;
852
853 ring_buffer_init(rb, watermark, flags);
854
855 return rb;
856
857 fail_data_pages:
858 for (i--; i >= 0; i--)
859 perf_mmap_free_page(rb->data_pages[i]);
860
861 perf_mmap_free_page(rb->user_page);
862
863 fail_user_page:
864 kfree(rb);
865
866 fail:
867 return NULL;
868 }
869
rb_free(struct perf_buffer * rb)870 void rb_free(struct perf_buffer *rb)
871 {
872 int i;
873
874 perf_mmap_free_page(rb->user_page);
875 for (i = 0; i < rb->nr_pages; i++)
876 perf_mmap_free_page(rb->data_pages[i]);
877 kfree(rb);
878 }
879
880 #else
881 static struct page *
__perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)882 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
883 {
884 /* The '>' counts in the user page. */
885 if (pgoff > data_page_nr(rb))
886 return NULL;
887
888 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
889 }
890
rb_free_work(struct work_struct * work)891 static void rb_free_work(struct work_struct *work)
892 {
893 struct perf_buffer *rb;
894
895 rb = container_of(work, struct perf_buffer, work);
896
897 vfree(rb->user_page);
898 kfree(rb);
899 }
900
rb_free(struct perf_buffer * rb)901 void rb_free(struct perf_buffer *rb)
902 {
903 schedule_work(&rb->work);
904 }
905
rb_alloc(int nr_pages,long watermark,int cpu,int flags)906 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
907 {
908 struct perf_buffer *rb;
909 unsigned long size;
910 void *all_buf;
911 int node;
912
913 size = sizeof(struct perf_buffer);
914 size += sizeof(void *);
915
916 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
917 rb = kzalloc_node(size, GFP_KERNEL, node);
918 if (!rb)
919 goto fail;
920
921 INIT_WORK(&rb->work, rb_free_work);
922
923 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
924 if (!all_buf)
925 goto fail_all_buf;
926
927 rb->user_page = all_buf;
928 rb->data_pages[0] = all_buf + PAGE_SIZE;
929 if (nr_pages) {
930 rb->nr_pages = 1;
931 rb->page_order = ilog2(nr_pages);
932 }
933
934 ring_buffer_init(rb, watermark, flags);
935
936 return rb;
937
938 fail_all_buf:
939 kfree(rb);
940
941 fail:
942 return NULL;
943 }
944
945 #endif
946
947 struct page *
perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)948 perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
949 {
950 if (rb->aux_nr_pages) {
951 /* above AUX space */
952 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
953 return NULL;
954
955 /* AUX space */
956 if (pgoff >= rb->aux_pgoff) {
957 int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
958 return virt_to_page(rb->aux_pages[aux_pgoff]);
959 }
960 }
961
962 return __perf_mmap_to_page(rb, pgoff);
963 }
964