1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40 
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
44 
45 #include "smpboot.h"
46 
47 /**
48  * struct cpuhp_cpu_state - Per cpu hotplug state storage
49  * @state:	The current cpu state
50  * @target:	The target state
51  * @fail:	Current CPU hotplug callback state
52  * @thread:	Pointer to the hotplug thread
53  * @should_run:	Thread should execute
54  * @rollback:	Perform a rollback
55  * @single:	Single callback invocation
56  * @bringup:	Single callback bringup or teardown selector
57  * @node:	Remote CPU node; for multi-instance, do a
58  *		single entry callback for install/remove
59  * @last:	For multi-instance rollback, remember how far we got
60  * @cb_state:	The state for a single callback (install/uninstall)
61  * @result:	Result of the operation
62  * @ap_sync_state:	State for AP synchronization
63  * @done_up:	Signal completion to the issuer of the task for cpu-up
64  * @done_down:	Signal completion to the issuer of the task for cpu-down
65  */
66 struct cpuhp_cpu_state {
67 	enum cpuhp_state	state;
68 	enum cpuhp_state	target;
69 	enum cpuhp_state	fail;
70 #ifdef CONFIG_SMP
71 	struct task_struct	*thread;
72 	bool			should_run;
73 	bool			rollback;
74 	bool			single;
75 	bool			bringup;
76 	struct hlist_node	*node;
77 	struct hlist_node	*last;
78 	enum cpuhp_state	cb_state;
79 	int			result;
80 	atomic_t		ap_sync_state;
81 	struct completion	done_up;
82 	struct completion	done_down;
83 #endif
84 };
85 
86 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
87 	.fail = CPUHP_INVALID,
88 };
89 
90 #ifdef CONFIG_SMP
91 cpumask_t cpus_booted_once_mask;
92 #endif
93 
94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
95 static struct lockdep_map cpuhp_state_up_map =
96 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
97 static struct lockdep_map cpuhp_state_down_map =
98 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
99 
100 
cpuhp_lock_acquire(bool bringup)101 static inline void cpuhp_lock_acquire(bool bringup)
102 {
103 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
104 }
105 
cpuhp_lock_release(bool bringup)106 static inline void cpuhp_lock_release(bool bringup)
107 {
108 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
109 }
110 #else
111 
cpuhp_lock_acquire(bool bringup)112 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)113 static inline void cpuhp_lock_release(bool bringup) { }
114 
115 #endif
116 
117 /**
118  * struct cpuhp_step - Hotplug state machine step
119  * @name:	Name of the step
120  * @startup:	Startup function of the step
121  * @teardown:	Teardown function of the step
122  * @cant_stop:	Bringup/teardown can't be stopped at this step
123  * @multi_instance:	State has multiple instances which get added afterwards
124  */
125 struct cpuhp_step {
126 	const char		*name;
127 	union {
128 		int		(*single)(unsigned int cpu);
129 		int		(*multi)(unsigned int cpu,
130 					 struct hlist_node *node);
131 	} startup;
132 	union {
133 		int		(*single)(unsigned int cpu);
134 		int		(*multi)(unsigned int cpu,
135 					 struct hlist_node *node);
136 	} teardown;
137 	/* private: */
138 	struct hlist_head	list;
139 	/* public: */
140 	bool			cant_stop;
141 	bool			multi_instance;
142 };
143 
144 static DEFINE_MUTEX(cpuhp_state_mutex);
145 static struct cpuhp_step cpuhp_hp_states[];
146 
cpuhp_get_step(enum cpuhp_state state)147 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
148 {
149 	return cpuhp_hp_states + state;
150 }
151 
cpuhp_step_empty(bool bringup,struct cpuhp_step * step)152 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
153 {
154 	return bringup ? !step->startup.single : !step->teardown.single;
155 }
156 
157 /**
158  * cpuhp_invoke_callback - Invoke the callbacks for a given state
159  * @cpu:	The cpu for which the callback should be invoked
160  * @state:	The state to do callbacks for
161  * @bringup:	True if the bringup callback should be invoked
162  * @node:	For multi-instance, do a single entry callback for install/remove
163  * @lastp:	For multi-instance rollback, remember how far we got
164  *
165  * Called from cpu hotplug and from the state register machinery.
166  *
167  * Return: %0 on success or a negative errno code
168  */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)169 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
170 				 bool bringup, struct hlist_node *node,
171 				 struct hlist_node **lastp)
172 {
173 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
174 	struct cpuhp_step *step = cpuhp_get_step(state);
175 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
176 	int (*cb)(unsigned int cpu);
177 	int ret, cnt;
178 
179 	if (st->fail == state) {
180 		st->fail = CPUHP_INVALID;
181 		return -EAGAIN;
182 	}
183 
184 	if (cpuhp_step_empty(bringup, step)) {
185 		WARN_ON_ONCE(1);
186 		return 0;
187 	}
188 
189 	if (!step->multi_instance) {
190 		WARN_ON_ONCE(lastp && *lastp);
191 		cb = bringup ? step->startup.single : step->teardown.single;
192 
193 		trace_cpuhp_enter(cpu, st->target, state, cb);
194 		ret = cb(cpu);
195 		trace_cpuhp_exit(cpu, st->state, state, ret);
196 		return ret;
197 	}
198 	cbm = bringup ? step->startup.multi : step->teardown.multi;
199 
200 	/* Single invocation for instance add/remove */
201 	if (node) {
202 		WARN_ON_ONCE(lastp && *lastp);
203 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
204 		ret = cbm(cpu, node);
205 		trace_cpuhp_exit(cpu, st->state, state, ret);
206 		return ret;
207 	}
208 
209 	/* State transition. Invoke on all instances */
210 	cnt = 0;
211 	hlist_for_each(node, &step->list) {
212 		if (lastp && node == *lastp)
213 			break;
214 
215 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
216 		ret = cbm(cpu, node);
217 		trace_cpuhp_exit(cpu, st->state, state, ret);
218 		if (ret) {
219 			if (!lastp)
220 				goto err;
221 
222 			*lastp = node;
223 			return ret;
224 		}
225 		cnt++;
226 	}
227 	if (lastp)
228 		*lastp = NULL;
229 	return 0;
230 err:
231 	/* Rollback the instances if one failed */
232 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
233 	if (!cbm)
234 		return ret;
235 
236 	hlist_for_each(node, &step->list) {
237 		if (!cnt--)
238 			break;
239 
240 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
241 		ret = cbm(cpu, node);
242 		trace_cpuhp_exit(cpu, st->state, state, ret);
243 		/*
244 		 * Rollback must not fail,
245 		 */
246 		WARN_ON_ONCE(ret);
247 	}
248 	return ret;
249 }
250 
251 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)252 static bool cpuhp_is_ap_state(enum cpuhp_state state)
253 {
254 	/*
255 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
256 	 * purposes as that state is handled explicitly in cpu_down.
257 	 */
258 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
259 }
260 
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)261 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
262 {
263 	struct completion *done = bringup ? &st->done_up : &st->done_down;
264 	wait_for_completion(done);
265 }
266 
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)267 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
268 {
269 	struct completion *done = bringup ? &st->done_up : &st->done_down;
270 	complete(done);
271 }
272 
273 /*
274  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
275  */
cpuhp_is_atomic_state(enum cpuhp_state state)276 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
277 {
278 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
279 }
280 
281 /* Synchronization state management */
282 enum cpuhp_sync_state {
283 	SYNC_STATE_DEAD,
284 	SYNC_STATE_KICKED,
285 	SYNC_STATE_SHOULD_DIE,
286 	SYNC_STATE_ALIVE,
287 	SYNC_STATE_SHOULD_ONLINE,
288 	SYNC_STATE_ONLINE,
289 };
290 
291 #ifdef CONFIG_HOTPLUG_CORE_SYNC
292 /**
293  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
294  * @state:	The synchronization state to set
295  *
296  * No synchronization point. Just update of the synchronization state, but implies
297  * a full barrier so that the AP changes are visible before the control CPU proceeds.
298  */
cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)299 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
300 {
301 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
302 
303 	(void)atomic_xchg(st, state);
304 }
305 
arch_cpuhp_sync_state_poll(void)306 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
307 
cpuhp_wait_for_sync_state(unsigned int cpu,enum cpuhp_sync_state state,enum cpuhp_sync_state next_state)308 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
309 				      enum cpuhp_sync_state next_state)
310 {
311 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
312 	ktime_t now, end, start = ktime_get();
313 	int sync;
314 
315 	end = start + 10ULL * NSEC_PER_SEC;
316 
317 	sync = atomic_read(st);
318 	while (1) {
319 		if (sync == state) {
320 			if (!atomic_try_cmpxchg(st, &sync, next_state))
321 				continue;
322 			return true;
323 		}
324 
325 		now = ktime_get();
326 		if (now > end) {
327 			/* Timeout. Leave the state unchanged */
328 			return false;
329 		} else if (now - start < NSEC_PER_MSEC) {
330 			/* Poll for one millisecond */
331 			arch_cpuhp_sync_state_poll();
332 		} else {
333 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
334 		}
335 		sync = atomic_read(st);
336 	}
337 	return true;
338 }
339 #else  /* CONFIG_HOTPLUG_CORE_SYNC */
cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)340 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
342 
343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
344 /**
345  * cpuhp_ap_report_dead - Update synchronization state to DEAD
346  *
347  * No synchronization point. Just update of the synchronization state.
348  */
cpuhp_ap_report_dead(void)349 void cpuhp_ap_report_dead(void)
350 {
351 	cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
352 }
353 
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)354 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
355 
356 /*
357  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
358  * because the AP cannot issue complete() at this stage.
359  */
cpuhp_bp_sync_dead(unsigned int cpu)360 static void cpuhp_bp_sync_dead(unsigned int cpu)
361 {
362 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
363 	int sync = atomic_read(st);
364 
365 	do {
366 		/* CPU can have reported dead already. Don't overwrite that! */
367 		if (sync == SYNC_STATE_DEAD)
368 			break;
369 	} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
370 
371 	if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
372 		/* CPU reached dead state. Invoke the cleanup function */
373 		arch_cpuhp_cleanup_dead_cpu(cpu);
374 		return;
375 	}
376 
377 	/* No further action possible. Emit message and give up. */
378 	pr_err("CPU%u failed to report dead state\n", cpu);
379 }
380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
cpuhp_bp_sync_dead(unsigned int cpu)381 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
383 
384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
385 /**
386  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
387  *
388  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
389  * for the BP to release it.
390  */
cpuhp_ap_sync_alive(void)391 void cpuhp_ap_sync_alive(void)
392 {
393 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
394 
395 	cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
396 
397 	/* Wait for the control CPU to release it. */
398 	while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
399 		cpu_relax();
400 }
401 
cpuhp_can_boot_ap(unsigned int cpu)402 static bool cpuhp_can_boot_ap(unsigned int cpu)
403 {
404 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
405 	int sync = atomic_read(st);
406 
407 again:
408 	switch (sync) {
409 	case SYNC_STATE_DEAD:
410 		/* CPU is properly dead */
411 		break;
412 	case SYNC_STATE_KICKED:
413 		/* CPU did not come up in previous attempt */
414 		break;
415 	case SYNC_STATE_ALIVE:
416 		/* CPU is stuck cpuhp_ap_sync_alive(). */
417 		break;
418 	default:
419 		/* CPU failed to report online or dead and is in limbo state. */
420 		return false;
421 	}
422 
423 	/* Prepare for booting */
424 	if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
425 		goto again;
426 
427 	return true;
428 }
429 
arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)430 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
431 
432 /*
433  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
434  * because the AP cannot issue complete() so early in the bringup.
435  */
cpuhp_bp_sync_alive(unsigned int cpu)436 static int cpuhp_bp_sync_alive(unsigned int cpu)
437 {
438 	int ret = 0;
439 
440 	if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
441 		return 0;
442 
443 	if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
444 		pr_err("CPU%u failed to report alive state\n", cpu);
445 		ret = -EIO;
446 	}
447 
448 	/* Let the architecture cleanup the kick alive mechanics. */
449 	arch_cpuhp_cleanup_kick_cpu(cpu);
450 	return ret;
451 }
452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
cpuhp_bp_sync_alive(unsigned int cpu)453 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
cpuhp_can_boot_ap(unsigned int cpu)454 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
456 
457 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
458 static DEFINE_MUTEX(cpu_add_remove_lock);
459 bool cpuhp_tasks_frozen;
460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
461 
462 /*
463  * The following two APIs (cpu_maps_update_begin/done) must be used when
464  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
465  */
cpu_maps_update_begin(void)466 void cpu_maps_update_begin(void)
467 {
468 	mutex_lock(&cpu_add_remove_lock);
469 }
470 
cpu_maps_update_done(void)471 void cpu_maps_update_done(void)
472 {
473 	mutex_unlock(&cpu_add_remove_lock);
474 }
475 
476 /*
477  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
478  * Should always be manipulated under cpu_add_remove_lock
479  */
480 static int cpu_hotplug_disabled;
481 
482 #ifdef CONFIG_HOTPLUG_CPU
483 
484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
485 
486 static bool cpu_hotplug_offline_disabled __ro_after_init;
487 
cpus_read_lock(void)488 void cpus_read_lock(void)
489 {
490 	percpu_down_read(&cpu_hotplug_lock);
491 }
492 EXPORT_SYMBOL_GPL(cpus_read_lock);
493 
cpus_read_trylock(void)494 int cpus_read_trylock(void)
495 {
496 	return percpu_down_read_trylock(&cpu_hotplug_lock);
497 }
498 EXPORT_SYMBOL_GPL(cpus_read_trylock);
499 
cpus_read_unlock(void)500 void cpus_read_unlock(void)
501 {
502 	percpu_up_read(&cpu_hotplug_lock);
503 }
504 EXPORT_SYMBOL_GPL(cpus_read_unlock);
505 
cpus_write_lock(void)506 void cpus_write_lock(void)
507 {
508 	percpu_down_write(&cpu_hotplug_lock);
509 }
510 
cpus_write_unlock(void)511 void cpus_write_unlock(void)
512 {
513 	percpu_up_write(&cpu_hotplug_lock);
514 }
515 
lockdep_assert_cpus_held(void)516 void lockdep_assert_cpus_held(void)
517 {
518 	/*
519 	 * We can't have hotplug operations before userspace starts running,
520 	 * and some init codepaths will knowingly not take the hotplug lock.
521 	 * This is all valid, so mute lockdep until it makes sense to report
522 	 * unheld locks.
523 	 */
524 	if (system_state < SYSTEM_RUNNING)
525 		return;
526 
527 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
528 }
529 
530 #ifdef CONFIG_LOCKDEP
lockdep_is_cpus_held(void)531 int lockdep_is_cpus_held(void)
532 {
533 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
534 }
535 #endif
536 
lockdep_acquire_cpus_lock(void)537 static void lockdep_acquire_cpus_lock(void)
538 {
539 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
540 }
541 
lockdep_release_cpus_lock(void)542 static void lockdep_release_cpus_lock(void)
543 {
544 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
545 }
546 
547 /* Declare CPU offlining not supported */
cpu_hotplug_disable_offlining(void)548 void cpu_hotplug_disable_offlining(void)
549 {
550 	cpu_maps_update_begin();
551 	cpu_hotplug_offline_disabled = true;
552 	cpu_maps_update_done();
553 }
554 
555 /*
556  * Wait for currently running CPU hotplug operations to complete (if any) and
557  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
558  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
559  * hotplug path before performing hotplug operations. So acquiring that lock
560  * guarantees mutual exclusion from any currently running hotplug operations.
561  */
cpu_hotplug_disable(void)562 void cpu_hotplug_disable(void)
563 {
564 	cpu_maps_update_begin();
565 	cpu_hotplug_disabled++;
566 	cpu_maps_update_done();
567 }
568 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
569 
__cpu_hotplug_enable(void)570 static void __cpu_hotplug_enable(void)
571 {
572 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
573 		return;
574 	cpu_hotplug_disabled--;
575 }
576 
cpu_hotplug_enable(void)577 void cpu_hotplug_enable(void)
578 {
579 	cpu_maps_update_begin();
580 	__cpu_hotplug_enable();
581 	cpu_maps_update_done();
582 }
583 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
584 
585 #else
586 
lockdep_acquire_cpus_lock(void)587 static void lockdep_acquire_cpus_lock(void)
588 {
589 }
590 
lockdep_release_cpus_lock(void)591 static void lockdep_release_cpus_lock(void)
592 {
593 }
594 
595 #endif	/* CONFIG_HOTPLUG_CPU */
596 
597 /*
598  * Architectures that need SMT-specific errata handling during SMT hotplug
599  * should override this.
600  */
arch_smt_update(void)601 void __weak arch_smt_update(void) { }
602 
603 #ifdef CONFIG_HOTPLUG_SMT
604 
605 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
606 static unsigned int cpu_smt_max_threads __ro_after_init;
607 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
608 
cpu_smt_disable(bool force)609 void __init cpu_smt_disable(bool force)
610 {
611 	if (!cpu_smt_possible())
612 		return;
613 
614 	if (force) {
615 		pr_info("SMT: Force disabled\n");
616 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
617 	} else {
618 		pr_info("SMT: disabled\n");
619 		cpu_smt_control = CPU_SMT_DISABLED;
620 	}
621 	cpu_smt_num_threads = 1;
622 }
623 
624 /*
625  * The decision whether SMT is supported can only be done after the full
626  * CPU identification. Called from architecture code.
627  */
cpu_smt_set_num_threads(unsigned int num_threads,unsigned int max_threads)628 void __init cpu_smt_set_num_threads(unsigned int num_threads,
629 				    unsigned int max_threads)
630 {
631 	WARN_ON(!num_threads || (num_threads > max_threads));
632 
633 	if (max_threads == 1)
634 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
635 
636 	cpu_smt_max_threads = max_threads;
637 
638 	/*
639 	 * If SMT has been disabled via the kernel command line or SMT is
640 	 * not supported, set cpu_smt_num_threads to 1 for consistency.
641 	 * If enabled, take the architecture requested number of threads
642 	 * to bring up into account.
643 	 */
644 	if (cpu_smt_control != CPU_SMT_ENABLED)
645 		cpu_smt_num_threads = 1;
646 	else if (num_threads < cpu_smt_num_threads)
647 		cpu_smt_num_threads = num_threads;
648 }
649 
smt_cmdline_disable(char * str)650 static int __init smt_cmdline_disable(char *str)
651 {
652 	cpu_smt_disable(str && !strcmp(str, "force"));
653 	return 0;
654 }
655 early_param("nosmt", smt_cmdline_disable);
656 
657 /*
658  * For Archicture supporting partial SMT states check if the thread is allowed.
659  * Otherwise this has already been checked through cpu_smt_max_threads when
660  * setting the SMT level.
661  */
cpu_smt_thread_allowed(unsigned int cpu)662 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
663 {
664 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
665 	return topology_smt_thread_allowed(cpu);
666 #else
667 	return true;
668 #endif
669 }
670 
cpu_bootable(unsigned int cpu)671 static inline bool cpu_bootable(unsigned int cpu)
672 {
673 	if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
674 		return true;
675 
676 	/* All CPUs are bootable if controls are not configured */
677 	if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
678 		return true;
679 
680 	/* All CPUs are bootable if CPU is not SMT capable */
681 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
682 		return true;
683 
684 	if (topology_is_primary_thread(cpu))
685 		return true;
686 
687 	/*
688 	 * On x86 it's required to boot all logical CPUs at least once so
689 	 * that the init code can get a chance to set CR4.MCE on each
690 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
691 	 * core will shutdown the machine.
692 	 */
693 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
694 }
695 
696 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
cpu_smt_possible(void)697 bool cpu_smt_possible(void)
698 {
699 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
700 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
701 }
702 EXPORT_SYMBOL_GPL(cpu_smt_possible);
703 
704 #else
cpu_bootable(unsigned int cpu)705 static inline bool cpu_bootable(unsigned int cpu) { return true; }
706 #endif
707 
708 static inline enum cpuhp_state
cpuhp_set_state(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)709 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
710 {
711 	enum cpuhp_state prev_state = st->state;
712 	bool bringup = st->state < target;
713 
714 	st->rollback = false;
715 	st->last = NULL;
716 
717 	st->target = target;
718 	st->single = false;
719 	st->bringup = bringup;
720 	if (cpu_dying(cpu) != !bringup)
721 		set_cpu_dying(cpu, !bringup);
722 
723 	return prev_state;
724 }
725 
726 static inline void
cpuhp_reset_state(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)727 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
728 		  enum cpuhp_state prev_state)
729 {
730 	bool bringup = !st->bringup;
731 
732 	st->target = prev_state;
733 
734 	/*
735 	 * Already rolling back. No need invert the bringup value or to change
736 	 * the current state.
737 	 */
738 	if (st->rollback)
739 		return;
740 
741 	st->rollback = true;
742 
743 	/*
744 	 * If we have st->last we need to undo partial multi_instance of this
745 	 * state first. Otherwise start undo at the previous state.
746 	 */
747 	if (!st->last) {
748 		if (st->bringup)
749 			st->state--;
750 		else
751 			st->state++;
752 	}
753 
754 	st->bringup = bringup;
755 	if (cpu_dying(cpu) != !bringup)
756 		set_cpu_dying(cpu, !bringup);
757 }
758 
759 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)760 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
761 {
762 	if (!st->single && st->state == st->target)
763 		return;
764 
765 	st->result = 0;
766 	/*
767 	 * Make sure the above stores are visible before should_run becomes
768 	 * true. Paired with the mb() above in cpuhp_thread_fun()
769 	 */
770 	smp_mb();
771 	st->should_run = true;
772 	wake_up_process(st->thread);
773 	wait_for_ap_thread(st, st->bringup);
774 }
775 
cpuhp_kick_ap(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)776 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
777 			 enum cpuhp_state target)
778 {
779 	enum cpuhp_state prev_state;
780 	int ret;
781 
782 	prev_state = cpuhp_set_state(cpu, st, target);
783 	__cpuhp_kick_ap(st);
784 	if ((ret = st->result)) {
785 		cpuhp_reset_state(cpu, st, prev_state);
786 		__cpuhp_kick_ap(st);
787 	}
788 
789 	return ret;
790 }
791 
bringup_wait_for_ap_online(unsigned int cpu)792 static int bringup_wait_for_ap_online(unsigned int cpu)
793 {
794 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
795 
796 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
797 	wait_for_ap_thread(st, true);
798 	if (WARN_ON_ONCE((!cpu_online(cpu))))
799 		return -ECANCELED;
800 
801 	/* Unpark the hotplug thread of the target cpu */
802 	kthread_unpark(st->thread);
803 
804 	/*
805 	 * SMT soft disabling on X86 requires to bring the CPU out of the
806 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
807 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
808 	 * cpu_bootable() check will now return false if this is not the
809 	 * primary sibling.
810 	 */
811 	if (!cpu_bootable(cpu))
812 		return -ECANCELED;
813 	return 0;
814 }
815 
816 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
cpuhp_kick_ap_alive(unsigned int cpu)817 static int cpuhp_kick_ap_alive(unsigned int cpu)
818 {
819 	if (!cpuhp_can_boot_ap(cpu))
820 		return -EAGAIN;
821 
822 	return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
823 }
824 
cpuhp_bringup_ap(unsigned int cpu)825 static int cpuhp_bringup_ap(unsigned int cpu)
826 {
827 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
828 	int ret;
829 
830 	/*
831 	 * Some architectures have to walk the irq descriptors to
832 	 * setup the vector space for the cpu which comes online.
833 	 * Prevent irq alloc/free across the bringup.
834 	 */
835 	irq_lock_sparse();
836 
837 	ret = cpuhp_bp_sync_alive(cpu);
838 	if (ret)
839 		goto out_unlock;
840 
841 	ret = bringup_wait_for_ap_online(cpu);
842 	if (ret)
843 		goto out_unlock;
844 
845 	irq_unlock_sparse();
846 
847 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
848 		return 0;
849 
850 	return cpuhp_kick_ap(cpu, st, st->target);
851 
852 out_unlock:
853 	irq_unlock_sparse();
854 	return ret;
855 }
856 #else
bringup_cpu(unsigned int cpu)857 static int bringup_cpu(unsigned int cpu)
858 {
859 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
860 	struct task_struct *idle = idle_thread_get(cpu);
861 	int ret;
862 
863 	if (!cpuhp_can_boot_ap(cpu))
864 		return -EAGAIN;
865 
866 	/*
867 	 * Some architectures have to walk the irq descriptors to
868 	 * setup the vector space for the cpu which comes online.
869 	 *
870 	 * Prevent irq alloc/free across the bringup by acquiring the
871 	 * sparse irq lock. Hold it until the upcoming CPU completes the
872 	 * startup in cpuhp_online_idle() which allows to avoid
873 	 * intermediate synchronization points in the architecture code.
874 	 */
875 	irq_lock_sparse();
876 
877 	ret = __cpu_up(cpu, idle);
878 	if (ret)
879 		goto out_unlock;
880 
881 	ret = cpuhp_bp_sync_alive(cpu);
882 	if (ret)
883 		goto out_unlock;
884 
885 	ret = bringup_wait_for_ap_online(cpu);
886 	if (ret)
887 		goto out_unlock;
888 
889 	irq_unlock_sparse();
890 
891 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
892 		return 0;
893 
894 	return cpuhp_kick_ap(cpu, st, st->target);
895 
896 out_unlock:
897 	irq_unlock_sparse();
898 	return ret;
899 }
900 #endif
901 
finish_cpu(unsigned int cpu)902 static int finish_cpu(unsigned int cpu)
903 {
904 	struct task_struct *idle = idle_thread_get(cpu);
905 	struct mm_struct *mm = idle->active_mm;
906 
907 	/*
908 	 * sched_force_init_mm() ensured the use of &init_mm,
909 	 * drop that refcount now that the CPU has stopped.
910 	 */
911 	WARN_ON(mm != &init_mm);
912 	idle->active_mm = NULL;
913 	mmdrop_lazy_tlb(mm);
914 
915 	return 0;
916 }
917 
918 /*
919  * Hotplug state machine related functions
920  */
921 
922 /*
923  * Get the next state to run. Empty ones will be skipped. Returns true if a
924  * state must be run.
925  *
926  * st->state will be modified ahead of time, to match state_to_run, as if it
927  * has already ran.
928  */
cpuhp_next_state(bool bringup,enum cpuhp_state * state_to_run,struct cpuhp_cpu_state * st,enum cpuhp_state target)929 static bool cpuhp_next_state(bool bringup,
930 			     enum cpuhp_state *state_to_run,
931 			     struct cpuhp_cpu_state *st,
932 			     enum cpuhp_state target)
933 {
934 	do {
935 		if (bringup) {
936 			if (st->state >= target)
937 				return false;
938 
939 			*state_to_run = ++st->state;
940 		} else {
941 			if (st->state <= target)
942 				return false;
943 
944 			*state_to_run = st->state--;
945 		}
946 
947 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
948 			break;
949 	} while (true);
950 
951 	return true;
952 }
953 
__cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target,bool nofail)954 static int __cpuhp_invoke_callback_range(bool bringup,
955 					 unsigned int cpu,
956 					 struct cpuhp_cpu_state *st,
957 					 enum cpuhp_state target,
958 					 bool nofail)
959 {
960 	enum cpuhp_state state;
961 	int ret = 0;
962 
963 	while (cpuhp_next_state(bringup, &state, st, target)) {
964 		int err;
965 
966 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
967 		if (!err)
968 			continue;
969 
970 		if (nofail) {
971 			pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
972 				cpu, bringup ? "UP" : "DOWN",
973 				cpuhp_get_step(st->state)->name,
974 				st->state, err);
975 			ret = -1;
976 		} else {
977 			ret = err;
978 			break;
979 		}
980 	}
981 
982 	return ret;
983 }
984 
cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)985 static inline int cpuhp_invoke_callback_range(bool bringup,
986 					      unsigned int cpu,
987 					      struct cpuhp_cpu_state *st,
988 					      enum cpuhp_state target)
989 {
990 	return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
991 }
992 
cpuhp_invoke_callback_range_nofail(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)993 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
994 						      unsigned int cpu,
995 						      struct cpuhp_cpu_state *st,
996 						      enum cpuhp_state target)
997 {
998 	__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
999 }
1000 
can_rollback_cpu(struct cpuhp_cpu_state * st)1001 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
1002 {
1003 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
1004 		return true;
1005 	/*
1006 	 * When CPU hotplug is disabled, then taking the CPU down is not
1007 	 * possible because takedown_cpu() and the architecture and
1008 	 * subsystem specific mechanisms are not available. So the CPU
1009 	 * which would be completely unplugged again needs to stay around
1010 	 * in the current state.
1011 	 */
1012 	return st->state <= CPUHP_BRINGUP_CPU;
1013 }
1014 
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1015 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1016 			      enum cpuhp_state target)
1017 {
1018 	enum cpuhp_state prev_state = st->state;
1019 	int ret = 0;
1020 
1021 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1022 	if (ret) {
1023 		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1024 			 ret, cpu, cpuhp_get_step(st->state)->name,
1025 			 st->state);
1026 
1027 		cpuhp_reset_state(cpu, st, prev_state);
1028 		if (can_rollback_cpu(st))
1029 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1030 							    prev_state));
1031 	}
1032 	return ret;
1033 }
1034 
1035 /*
1036  * The cpu hotplug threads manage the bringup and teardown of the cpus
1037  */
cpuhp_should_run(unsigned int cpu)1038 static int cpuhp_should_run(unsigned int cpu)
1039 {
1040 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1041 
1042 	return st->should_run;
1043 }
1044 
1045 /*
1046  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1047  * callbacks when a state gets [un]installed at runtime.
1048  *
1049  * Each invocation of this function by the smpboot thread does a single AP
1050  * state callback.
1051  *
1052  * It has 3 modes of operation:
1053  *  - single: runs st->cb_state
1054  *  - up:     runs ++st->state, while st->state < st->target
1055  *  - down:   runs st->state--, while st->state > st->target
1056  *
1057  * When complete or on error, should_run is cleared and the completion is fired.
1058  */
cpuhp_thread_fun(unsigned int cpu)1059 static void cpuhp_thread_fun(unsigned int cpu)
1060 {
1061 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1062 	bool bringup = st->bringup;
1063 	enum cpuhp_state state;
1064 
1065 	if (WARN_ON_ONCE(!st->should_run))
1066 		return;
1067 
1068 	/*
1069 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1070 	 * that if we see ->should_run we also see the rest of the state.
1071 	 */
1072 	smp_mb();
1073 
1074 	/*
1075 	 * The BP holds the hotplug lock, but we're now running on the AP,
1076 	 * ensure that anybody asserting the lock is held, will actually find
1077 	 * it so.
1078 	 */
1079 	lockdep_acquire_cpus_lock();
1080 	cpuhp_lock_acquire(bringup);
1081 
1082 	if (st->single) {
1083 		state = st->cb_state;
1084 		st->should_run = false;
1085 	} else {
1086 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1087 		if (!st->should_run)
1088 			goto end;
1089 	}
1090 
1091 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1092 
1093 	if (cpuhp_is_atomic_state(state)) {
1094 		local_irq_disable();
1095 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1096 		local_irq_enable();
1097 
1098 		/*
1099 		 * STARTING/DYING must not fail!
1100 		 */
1101 		WARN_ON_ONCE(st->result);
1102 	} else {
1103 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1104 	}
1105 
1106 	if (st->result) {
1107 		/*
1108 		 * If we fail on a rollback, we're up a creek without no
1109 		 * paddle, no way forward, no way back. We loose, thanks for
1110 		 * playing.
1111 		 */
1112 		WARN_ON_ONCE(st->rollback);
1113 		st->should_run = false;
1114 	}
1115 
1116 end:
1117 	cpuhp_lock_release(bringup);
1118 	lockdep_release_cpus_lock();
1119 
1120 	if (!st->should_run)
1121 		complete_ap_thread(st, bringup);
1122 }
1123 
1124 /* Invoke a single callback on a remote cpu */
1125 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1126 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1127 			 struct hlist_node *node)
1128 {
1129 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1130 	int ret;
1131 
1132 	if (!cpu_online(cpu))
1133 		return 0;
1134 
1135 	cpuhp_lock_acquire(false);
1136 	cpuhp_lock_release(false);
1137 
1138 	cpuhp_lock_acquire(true);
1139 	cpuhp_lock_release(true);
1140 
1141 	/*
1142 	 * If we are up and running, use the hotplug thread. For early calls
1143 	 * we invoke the thread function directly.
1144 	 */
1145 	if (!st->thread)
1146 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1147 
1148 	st->rollback = false;
1149 	st->last = NULL;
1150 
1151 	st->node = node;
1152 	st->bringup = bringup;
1153 	st->cb_state = state;
1154 	st->single = true;
1155 
1156 	__cpuhp_kick_ap(st);
1157 
1158 	/*
1159 	 * If we failed and did a partial, do a rollback.
1160 	 */
1161 	if ((ret = st->result) && st->last) {
1162 		st->rollback = true;
1163 		st->bringup = !bringup;
1164 
1165 		__cpuhp_kick_ap(st);
1166 	}
1167 
1168 	/*
1169 	 * Clean up the leftovers so the next hotplug operation wont use stale
1170 	 * data.
1171 	 */
1172 	st->node = st->last = NULL;
1173 	return ret;
1174 }
1175 
cpuhp_kick_ap_work(unsigned int cpu)1176 static int cpuhp_kick_ap_work(unsigned int cpu)
1177 {
1178 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1179 	enum cpuhp_state prev_state = st->state;
1180 	int ret;
1181 
1182 	cpuhp_lock_acquire(false);
1183 	cpuhp_lock_release(false);
1184 
1185 	cpuhp_lock_acquire(true);
1186 	cpuhp_lock_release(true);
1187 
1188 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1189 	ret = cpuhp_kick_ap(cpu, st, st->target);
1190 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1191 
1192 	return ret;
1193 }
1194 
1195 static struct smp_hotplug_thread cpuhp_threads = {
1196 	.store			= &cpuhp_state.thread,
1197 	.thread_should_run	= cpuhp_should_run,
1198 	.thread_fn		= cpuhp_thread_fun,
1199 	.thread_comm		= "cpuhp/%u",
1200 	.selfparking		= true,
1201 };
1202 
cpuhp_init_state(void)1203 static __init void cpuhp_init_state(void)
1204 {
1205 	struct cpuhp_cpu_state *st;
1206 	int cpu;
1207 
1208 	for_each_possible_cpu(cpu) {
1209 		st = per_cpu_ptr(&cpuhp_state, cpu);
1210 		init_completion(&st->done_up);
1211 		init_completion(&st->done_down);
1212 	}
1213 }
1214 
cpuhp_threads_init(void)1215 void __init cpuhp_threads_init(void)
1216 {
1217 	cpuhp_init_state();
1218 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1219 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
1220 }
1221 
1222 #ifdef CONFIG_HOTPLUG_CPU
1223 #ifndef arch_clear_mm_cpumask_cpu
1224 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1225 #endif
1226 
1227 /**
1228  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1229  * @cpu: a CPU id
1230  *
1231  * This function walks all processes, finds a valid mm struct for each one and
1232  * then clears a corresponding bit in mm's cpumask.  While this all sounds
1233  * trivial, there are various non-obvious corner cases, which this function
1234  * tries to solve in a safe manner.
1235  *
1236  * Also note that the function uses a somewhat relaxed locking scheme, so it may
1237  * be called only for an already offlined CPU.
1238  */
clear_tasks_mm_cpumask(int cpu)1239 void clear_tasks_mm_cpumask(int cpu)
1240 {
1241 	struct task_struct *p;
1242 
1243 	/*
1244 	 * This function is called after the cpu is taken down and marked
1245 	 * offline, so its not like new tasks will ever get this cpu set in
1246 	 * their mm mask. -- Peter Zijlstra
1247 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
1248 	 * full-fledged tasklist_lock.
1249 	 */
1250 	WARN_ON(cpu_online(cpu));
1251 	rcu_read_lock();
1252 	for_each_process(p) {
1253 		struct task_struct *t;
1254 
1255 		/*
1256 		 * Main thread might exit, but other threads may still have
1257 		 * a valid mm. Find one.
1258 		 */
1259 		t = find_lock_task_mm(p);
1260 		if (!t)
1261 			continue;
1262 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
1263 		task_unlock(t);
1264 	}
1265 	rcu_read_unlock();
1266 }
1267 
1268 /* Take this CPU down. */
take_cpu_down(void * _param)1269 static int take_cpu_down(void *_param)
1270 {
1271 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1272 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1273 	int err, cpu = smp_processor_id();
1274 
1275 	/* Ensure this CPU doesn't handle any more interrupts. */
1276 	err = __cpu_disable();
1277 	if (err < 0)
1278 		return err;
1279 
1280 	/*
1281 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1282 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1283 	 */
1284 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1285 
1286 	/*
1287 	 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1288 	 */
1289 	cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1290 
1291 	/* Park the stopper thread */
1292 	stop_machine_park(cpu);
1293 	return 0;
1294 }
1295 
takedown_cpu(unsigned int cpu)1296 static int takedown_cpu(unsigned int cpu)
1297 {
1298 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1299 	int err;
1300 
1301 	/* Park the smpboot threads */
1302 	kthread_park(st->thread);
1303 
1304 	/*
1305 	 * Prevent irq alloc/free while the dying cpu reorganizes the
1306 	 * interrupt affinities.
1307 	 */
1308 	irq_lock_sparse();
1309 
1310 	/*
1311 	 * So now all preempt/rcu users must observe !cpu_active().
1312 	 */
1313 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1314 	if (err) {
1315 		/* CPU refused to die */
1316 		irq_unlock_sparse();
1317 		/* Unpark the hotplug thread so we can rollback there */
1318 		kthread_unpark(st->thread);
1319 		return err;
1320 	}
1321 	BUG_ON(cpu_online(cpu));
1322 
1323 	/*
1324 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1325 	 * all runnable tasks from the CPU, there's only the idle task left now
1326 	 * that the migration thread is done doing the stop_machine thing.
1327 	 *
1328 	 * Wait for the stop thread to go away.
1329 	 */
1330 	wait_for_ap_thread(st, false);
1331 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1332 
1333 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1334 	irq_unlock_sparse();
1335 
1336 	hotplug_cpu__broadcast_tick_pull(cpu);
1337 	/* This actually kills the CPU. */
1338 	__cpu_die(cpu);
1339 
1340 	cpuhp_bp_sync_dead(cpu);
1341 
1342 	lockdep_cleanup_dead_cpu(cpu, idle_thread_get(cpu));
1343 
1344 	/*
1345 	 * Callbacks must be re-integrated right away to the RCU state machine.
1346 	 * Otherwise an RCU callback could block a further teardown function
1347 	 * waiting for its completion.
1348 	 */
1349 	rcutree_migrate_callbacks(cpu);
1350 
1351 	return 0;
1352 }
1353 
cpuhp_complete_idle_dead(void * arg)1354 static void cpuhp_complete_idle_dead(void *arg)
1355 {
1356 	struct cpuhp_cpu_state *st = arg;
1357 
1358 	complete_ap_thread(st, false);
1359 }
1360 
cpuhp_report_idle_dead(void)1361 void cpuhp_report_idle_dead(void)
1362 {
1363 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1364 
1365 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1366 	tick_assert_timekeeping_handover();
1367 	rcutree_report_cpu_dead();
1368 	st->state = CPUHP_AP_IDLE_DEAD;
1369 	/*
1370 	 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1371 	 * to an online cpu.
1372 	 */
1373 	smp_call_function_single(cpumask_first(cpu_online_mask),
1374 				 cpuhp_complete_idle_dead, st, 0);
1375 }
1376 
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1377 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1378 				enum cpuhp_state target)
1379 {
1380 	enum cpuhp_state prev_state = st->state;
1381 	int ret = 0;
1382 
1383 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1384 	if (ret) {
1385 		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1386 			 ret, cpu, cpuhp_get_step(st->state)->name,
1387 			 st->state);
1388 
1389 		cpuhp_reset_state(cpu, st, prev_state);
1390 
1391 		if (st->state < prev_state)
1392 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1393 							    prev_state));
1394 	}
1395 
1396 	return ret;
1397 }
1398 
1399 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1400 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1401 			   enum cpuhp_state target)
1402 {
1403 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1404 	int prev_state, ret = 0;
1405 
1406 	if (num_online_cpus() == 1)
1407 		return -EBUSY;
1408 
1409 	if (!cpu_present(cpu))
1410 		return -EINVAL;
1411 
1412 	cpus_write_lock();
1413 
1414 	cpuhp_tasks_frozen = tasks_frozen;
1415 
1416 	prev_state = cpuhp_set_state(cpu, st, target);
1417 	/*
1418 	 * If the current CPU state is in the range of the AP hotplug thread,
1419 	 * then we need to kick the thread.
1420 	 */
1421 	if (st->state > CPUHP_TEARDOWN_CPU) {
1422 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1423 		ret = cpuhp_kick_ap_work(cpu);
1424 		/*
1425 		 * The AP side has done the error rollback already. Just
1426 		 * return the error code..
1427 		 */
1428 		if (ret)
1429 			goto out;
1430 
1431 		/*
1432 		 * We might have stopped still in the range of the AP hotplug
1433 		 * thread. Nothing to do anymore.
1434 		 */
1435 		if (st->state > CPUHP_TEARDOWN_CPU)
1436 			goto out;
1437 
1438 		st->target = target;
1439 	}
1440 	/*
1441 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1442 	 * to do the further cleanups.
1443 	 */
1444 	ret = cpuhp_down_callbacks(cpu, st, target);
1445 	if (ret && st->state < prev_state) {
1446 		if (st->state == CPUHP_TEARDOWN_CPU) {
1447 			cpuhp_reset_state(cpu, st, prev_state);
1448 			__cpuhp_kick_ap(st);
1449 		} else {
1450 			WARN(1, "DEAD callback error for CPU%d", cpu);
1451 		}
1452 	}
1453 
1454 out:
1455 	cpus_write_unlock();
1456 	arch_smt_update();
1457 	return ret;
1458 }
1459 
1460 struct cpu_down_work {
1461 	unsigned int		cpu;
1462 	enum cpuhp_state	target;
1463 };
1464 
__cpu_down_maps_locked(void * arg)1465 static long __cpu_down_maps_locked(void *arg)
1466 {
1467 	struct cpu_down_work *work = arg;
1468 
1469 	return _cpu_down(work->cpu, 0, work->target);
1470 }
1471 
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1472 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1473 {
1474 	struct cpu_down_work work = { .cpu = cpu, .target = target, };
1475 
1476 	/*
1477 	 * If the platform does not support hotplug, report it explicitly to
1478 	 * differentiate it from a transient offlining failure.
1479 	 */
1480 	if (cpu_hotplug_offline_disabled)
1481 		return -EOPNOTSUPP;
1482 	if (cpu_hotplug_disabled)
1483 		return -EBUSY;
1484 
1485 	/*
1486 	 * Ensure that the control task does not run on the to be offlined
1487 	 * CPU to prevent a deadlock against cfs_b->period_timer.
1488 	 * Also keep at least one housekeeping cpu onlined to avoid generating
1489 	 * an empty sched_domain span.
1490 	 */
1491 	for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1492 		if (cpu != work.cpu)
1493 			return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1494 	}
1495 	return -EBUSY;
1496 }
1497 
cpu_down(unsigned int cpu,enum cpuhp_state target)1498 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1499 {
1500 	int err;
1501 
1502 	cpu_maps_update_begin();
1503 	err = cpu_down_maps_locked(cpu, target);
1504 	cpu_maps_update_done();
1505 	return err;
1506 }
1507 
1508 /**
1509  * cpu_device_down - Bring down a cpu device
1510  * @dev: Pointer to the cpu device to offline
1511  *
1512  * This function is meant to be used by device core cpu subsystem only.
1513  *
1514  * Other subsystems should use remove_cpu() instead.
1515  *
1516  * Return: %0 on success or a negative errno code
1517  */
cpu_device_down(struct device * dev)1518 int cpu_device_down(struct device *dev)
1519 {
1520 	return cpu_down(dev->id, CPUHP_OFFLINE);
1521 }
1522 
remove_cpu(unsigned int cpu)1523 int remove_cpu(unsigned int cpu)
1524 {
1525 	int ret;
1526 
1527 	lock_device_hotplug();
1528 	ret = device_offline(get_cpu_device(cpu));
1529 	unlock_device_hotplug();
1530 
1531 	return ret;
1532 }
1533 EXPORT_SYMBOL_GPL(remove_cpu);
1534 
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1535 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1536 {
1537 	unsigned int cpu;
1538 	int error;
1539 
1540 	cpu_maps_update_begin();
1541 
1542 	/*
1543 	 * Make certain the cpu I'm about to reboot on is online.
1544 	 *
1545 	 * This is inline to what migrate_to_reboot_cpu() already do.
1546 	 */
1547 	if (!cpu_online(primary_cpu))
1548 		primary_cpu = cpumask_first(cpu_online_mask);
1549 
1550 	for_each_online_cpu(cpu) {
1551 		if (cpu == primary_cpu)
1552 			continue;
1553 
1554 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1555 		if (error) {
1556 			pr_err("Failed to offline CPU%d - error=%d",
1557 				cpu, error);
1558 			break;
1559 		}
1560 	}
1561 
1562 	/*
1563 	 * Ensure all but the reboot CPU are offline.
1564 	 */
1565 	BUG_ON(num_online_cpus() > 1);
1566 
1567 	/*
1568 	 * Make sure the CPUs won't be enabled by someone else after this
1569 	 * point. Kexec will reboot to a new kernel shortly resetting
1570 	 * everything along the way.
1571 	 */
1572 	cpu_hotplug_disabled++;
1573 
1574 	cpu_maps_update_done();
1575 }
1576 
1577 #else
1578 #define takedown_cpu		NULL
1579 #endif /*CONFIG_HOTPLUG_CPU*/
1580 
1581 /**
1582  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1583  * @cpu: cpu that just started
1584  *
1585  * It must be called by the arch code on the new cpu, before the new cpu
1586  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1587  */
notify_cpu_starting(unsigned int cpu)1588 void notify_cpu_starting(unsigned int cpu)
1589 {
1590 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1591 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1592 
1593 	rcutree_report_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1594 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1595 
1596 	/*
1597 	 * STARTING must not fail!
1598 	 */
1599 	cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1600 }
1601 
1602 /*
1603  * Called from the idle task. Wake up the controlling task which brings the
1604  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1605  * online bringup to the hotplug thread.
1606  */
cpuhp_online_idle(enum cpuhp_state state)1607 void cpuhp_online_idle(enum cpuhp_state state)
1608 {
1609 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1610 
1611 	/* Happens for the boot cpu */
1612 	if (state != CPUHP_AP_ONLINE_IDLE)
1613 		return;
1614 
1615 	cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1616 
1617 	/*
1618 	 * Unpark the stopper thread before we start the idle loop (and start
1619 	 * scheduling); this ensures the stopper task is always available.
1620 	 */
1621 	stop_machine_unpark(smp_processor_id());
1622 
1623 	st->state = CPUHP_AP_ONLINE_IDLE;
1624 	complete_ap_thread(st, true);
1625 }
1626 
1627 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1628 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1629 {
1630 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1631 	struct task_struct *idle;
1632 	int ret = 0;
1633 
1634 	cpus_write_lock();
1635 
1636 	if (!cpu_present(cpu)) {
1637 		ret = -EINVAL;
1638 		goto out;
1639 	}
1640 
1641 	/*
1642 	 * The caller of cpu_up() might have raced with another
1643 	 * caller. Nothing to do.
1644 	 */
1645 	if (st->state >= target)
1646 		goto out;
1647 
1648 	if (st->state == CPUHP_OFFLINE) {
1649 		/* Let it fail before we try to bring the cpu up */
1650 		idle = idle_thread_get(cpu);
1651 		if (IS_ERR(idle)) {
1652 			ret = PTR_ERR(idle);
1653 			goto out;
1654 		}
1655 
1656 		/*
1657 		 * Reset stale stack state from the last time this CPU was online.
1658 		 */
1659 		scs_task_reset(idle);
1660 		kasan_unpoison_task_stack(idle);
1661 	}
1662 
1663 	cpuhp_tasks_frozen = tasks_frozen;
1664 
1665 	cpuhp_set_state(cpu, st, target);
1666 	/*
1667 	 * If the current CPU state is in the range of the AP hotplug thread,
1668 	 * then we need to kick the thread once more.
1669 	 */
1670 	if (st->state > CPUHP_BRINGUP_CPU) {
1671 		ret = cpuhp_kick_ap_work(cpu);
1672 		/*
1673 		 * The AP side has done the error rollback already. Just
1674 		 * return the error code..
1675 		 */
1676 		if (ret)
1677 			goto out;
1678 	}
1679 
1680 	/*
1681 	 * Try to reach the target state. We max out on the BP at
1682 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1683 	 * responsible for bringing it up to the target state.
1684 	 */
1685 	target = min((int)target, CPUHP_BRINGUP_CPU);
1686 	ret = cpuhp_up_callbacks(cpu, st, target);
1687 out:
1688 	cpus_write_unlock();
1689 	arch_smt_update();
1690 	return ret;
1691 }
1692 
cpu_up(unsigned int cpu,enum cpuhp_state target)1693 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1694 {
1695 	int err = 0;
1696 
1697 	if (!cpu_possible(cpu)) {
1698 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1699 		       cpu);
1700 		return -EINVAL;
1701 	}
1702 
1703 	err = try_online_node(cpu_to_node(cpu));
1704 	if (err)
1705 		return err;
1706 
1707 	cpu_maps_update_begin();
1708 
1709 	if (cpu_hotplug_disabled) {
1710 		err = -EBUSY;
1711 		goto out;
1712 	}
1713 	if (!cpu_bootable(cpu)) {
1714 		err = -EPERM;
1715 		goto out;
1716 	}
1717 
1718 	err = _cpu_up(cpu, 0, target);
1719 out:
1720 	cpu_maps_update_done();
1721 	return err;
1722 }
1723 
1724 /**
1725  * cpu_device_up - Bring up a cpu device
1726  * @dev: Pointer to the cpu device to online
1727  *
1728  * This function is meant to be used by device core cpu subsystem only.
1729  *
1730  * Other subsystems should use add_cpu() instead.
1731  *
1732  * Return: %0 on success or a negative errno code
1733  */
cpu_device_up(struct device * dev)1734 int cpu_device_up(struct device *dev)
1735 {
1736 	return cpu_up(dev->id, CPUHP_ONLINE);
1737 }
1738 
add_cpu(unsigned int cpu)1739 int add_cpu(unsigned int cpu)
1740 {
1741 	int ret;
1742 
1743 	lock_device_hotplug();
1744 	ret = device_online(get_cpu_device(cpu));
1745 	unlock_device_hotplug();
1746 
1747 	return ret;
1748 }
1749 EXPORT_SYMBOL_GPL(add_cpu);
1750 
1751 /**
1752  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1753  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1754  *
1755  * On some architectures like arm64, we can hibernate on any CPU, but on
1756  * wake up the CPU we hibernated on might be offline as a side effect of
1757  * using maxcpus= for example.
1758  *
1759  * Return: %0 on success or a negative errno code
1760  */
bringup_hibernate_cpu(unsigned int sleep_cpu)1761 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1762 {
1763 	int ret;
1764 
1765 	if (!cpu_online(sleep_cpu)) {
1766 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1767 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1768 		if (ret) {
1769 			pr_err("Failed to bring hibernate-CPU up!\n");
1770 			return ret;
1771 		}
1772 	}
1773 	return 0;
1774 }
1775 
cpuhp_bringup_mask(const struct cpumask * mask,unsigned int ncpus,enum cpuhp_state target)1776 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1777 				      enum cpuhp_state target)
1778 {
1779 	unsigned int cpu;
1780 
1781 	for_each_cpu(cpu, mask) {
1782 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1783 
1784 		if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1785 			/*
1786 			 * If this failed then cpu_up() might have only
1787 			 * rolled back to CPUHP_BP_KICK_AP for the final
1788 			 * online. Clean it up. NOOP if already rolled back.
1789 			 */
1790 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1791 		}
1792 
1793 		if (!--ncpus)
1794 			break;
1795 	}
1796 }
1797 
1798 #ifdef CONFIG_HOTPLUG_PARALLEL
1799 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1800 
parallel_bringup_parse_param(char * arg)1801 static int __init parallel_bringup_parse_param(char *arg)
1802 {
1803 	return kstrtobool(arg, &__cpuhp_parallel_bringup);
1804 }
1805 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1806 
1807 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_smt_aware(void)1808 static inline bool cpuhp_smt_aware(void)
1809 {
1810 	return cpu_smt_max_threads > 1;
1811 }
1812 
cpuhp_get_primary_thread_mask(void)1813 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1814 {
1815 	return cpu_primary_thread_mask;
1816 }
1817 #else
cpuhp_smt_aware(void)1818 static inline bool cpuhp_smt_aware(void)
1819 {
1820 	return false;
1821 }
cpuhp_get_primary_thread_mask(void)1822 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1823 {
1824 	return cpu_none_mask;
1825 }
1826 #endif
1827 
arch_cpuhp_init_parallel_bringup(void)1828 bool __weak arch_cpuhp_init_parallel_bringup(void)
1829 {
1830 	return true;
1831 }
1832 
1833 /*
1834  * On architectures which have enabled parallel bringup this invokes all BP
1835  * prepare states for each of the to be onlined APs first. The last state
1836  * sends the startup IPI to the APs. The APs proceed through the low level
1837  * bringup code in parallel and then wait for the control CPU to release
1838  * them one by one for the final onlining procedure.
1839  *
1840  * This avoids waiting for each AP to respond to the startup IPI in
1841  * CPUHP_BRINGUP_CPU.
1842  */
cpuhp_bringup_cpus_parallel(unsigned int ncpus)1843 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1844 {
1845 	const struct cpumask *mask = cpu_present_mask;
1846 
1847 	if (__cpuhp_parallel_bringup)
1848 		__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1849 	if (!__cpuhp_parallel_bringup)
1850 		return false;
1851 
1852 	if (cpuhp_smt_aware()) {
1853 		const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1854 		static struct cpumask tmp_mask __initdata;
1855 
1856 		/*
1857 		 * X86 requires to prevent that SMT siblings stopped while
1858 		 * the primary thread does a microcode update for various
1859 		 * reasons. Bring the primary threads up first.
1860 		 */
1861 		cpumask_and(&tmp_mask, mask, pmask);
1862 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1863 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1864 		/* Account for the online CPUs */
1865 		ncpus -= num_online_cpus();
1866 		if (!ncpus)
1867 			return true;
1868 		/* Create the mask for secondary CPUs */
1869 		cpumask_andnot(&tmp_mask, mask, pmask);
1870 		mask = &tmp_mask;
1871 	}
1872 
1873 	/* Bring the not-yet started CPUs up */
1874 	cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1875 	cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1876 	return true;
1877 }
1878 #else
cpuhp_bringup_cpus_parallel(unsigned int ncpus)1879 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1880 #endif /* CONFIG_HOTPLUG_PARALLEL */
1881 
bringup_nonboot_cpus(unsigned int max_cpus)1882 void __init bringup_nonboot_cpus(unsigned int max_cpus)
1883 {
1884 	if (!max_cpus)
1885 		return;
1886 
1887 	/* Try parallel bringup optimization if enabled */
1888 	if (cpuhp_bringup_cpus_parallel(max_cpus))
1889 		return;
1890 
1891 	/* Full per CPU serialized bringup */
1892 	cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE);
1893 }
1894 
1895 #ifdef CONFIG_PM_SLEEP_SMP
1896 static cpumask_var_t frozen_cpus;
1897 
freeze_secondary_cpus(int primary)1898 int freeze_secondary_cpus(int primary)
1899 {
1900 	int cpu, error = 0;
1901 
1902 	cpu_maps_update_begin();
1903 	if (primary == -1) {
1904 		primary = cpumask_first(cpu_online_mask);
1905 		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1906 			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1907 	} else {
1908 		if (!cpu_online(primary))
1909 			primary = cpumask_first(cpu_online_mask);
1910 	}
1911 
1912 	/*
1913 	 * We take down all of the non-boot CPUs in one shot to avoid races
1914 	 * with the userspace trying to use the CPU hotplug at the same time
1915 	 */
1916 	cpumask_clear(frozen_cpus);
1917 
1918 	pr_info("Disabling non-boot CPUs ...\n");
1919 	for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) {
1920 		if (!cpu_online(cpu) || cpu == primary)
1921 			continue;
1922 
1923 		if (pm_wakeup_pending()) {
1924 			pr_info("Wakeup pending. Abort CPU freeze\n");
1925 			error = -EBUSY;
1926 			break;
1927 		}
1928 
1929 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1930 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1931 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1932 		if (!error)
1933 			cpumask_set_cpu(cpu, frozen_cpus);
1934 		else {
1935 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1936 			break;
1937 		}
1938 	}
1939 
1940 	if (!error)
1941 		BUG_ON(num_online_cpus() > 1);
1942 	else
1943 		pr_err("Non-boot CPUs are not disabled\n");
1944 
1945 	/*
1946 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1947 	 * this even in case of failure as all freeze_secondary_cpus() users are
1948 	 * supposed to do thaw_secondary_cpus() on the failure path.
1949 	 */
1950 	cpu_hotplug_disabled++;
1951 
1952 	cpu_maps_update_done();
1953 	return error;
1954 }
1955 
arch_thaw_secondary_cpus_begin(void)1956 void __weak arch_thaw_secondary_cpus_begin(void)
1957 {
1958 }
1959 
arch_thaw_secondary_cpus_end(void)1960 void __weak arch_thaw_secondary_cpus_end(void)
1961 {
1962 }
1963 
thaw_secondary_cpus(void)1964 void thaw_secondary_cpus(void)
1965 {
1966 	int cpu, error;
1967 
1968 	/* Allow everyone to use the CPU hotplug again */
1969 	cpu_maps_update_begin();
1970 	__cpu_hotplug_enable();
1971 	if (cpumask_empty(frozen_cpus))
1972 		goto out;
1973 
1974 	pr_info("Enabling non-boot CPUs ...\n");
1975 
1976 	arch_thaw_secondary_cpus_begin();
1977 
1978 	for_each_cpu(cpu, frozen_cpus) {
1979 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1980 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1981 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1982 		if (!error) {
1983 			pr_info("CPU%d is up\n", cpu);
1984 			continue;
1985 		}
1986 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1987 	}
1988 
1989 	arch_thaw_secondary_cpus_end();
1990 
1991 	cpumask_clear(frozen_cpus);
1992 out:
1993 	cpu_maps_update_done();
1994 }
1995 
alloc_frozen_cpus(void)1996 static int __init alloc_frozen_cpus(void)
1997 {
1998 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1999 		return -ENOMEM;
2000 	return 0;
2001 }
2002 core_initcall(alloc_frozen_cpus);
2003 
2004 /*
2005  * When callbacks for CPU hotplug notifications are being executed, we must
2006  * ensure that the state of the system with respect to the tasks being frozen
2007  * or not, as reported by the notification, remains unchanged *throughout the
2008  * duration* of the execution of the callbacks.
2009  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2010  *
2011  * This synchronization is implemented by mutually excluding regular CPU
2012  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2013  * Hibernate notifications.
2014  */
2015 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)2016 cpu_hotplug_pm_callback(struct notifier_block *nb,
2017 			unsigned long action, void *ptr)
2018 {
2019 	switch (action) {
2020 
2021 	case PM_SUSPEND_PREPARE:
2022 	case PM_HIBERNATION_PREPARE:
2023 		cpu_hotplug_disable();
2024 		break;
2025 
2026 	case PM_POST_SUSPEND:
2027 	case PM_POST_HIBERNATION:
2028 		cpu_hotplug_enable();
2029 		break;
2030 
2031 	default:
2032 		return NOTIFY_DONE;
2033 	}
2034 
2035 	return NOTIFY_OK;
2036 }
2037 
2038 
cpu_hotplug_pm_sync_init(void)2039 static int __init cpu_hotplug_pm_sync_init(void)
2040 {
2041 	/*
2042 	 * cpu_hotplug_pm_callback has higher priority than x86
2043 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2044 	 * to disable cpu hotplug to avoid cpu hotplug race.
2045 	 */
2046 	pm_notifier(cpu_hotplug_pm_callback, 0);
2047 	return 0;
2048 }
2049 core_initcall(cpu_hotplug_pm_sync_init);
2050 
2051 #endif /* CONFIG_PM_SLEEP_SMP */
2052 
2053 int __boot_cpu_id;
2054 
2055 #endif /* CONFIG_SMP */
2056 
2057 /* Boot processor state steps */
2058 static struct cpuhp_step cpuhp_hp_states[] = {
2059 	[CPUHP_OFFLINE] = {
2060 		.name			= "offline",
2061 		.startup.single		= NULL,
2062 		.teardown.single	= NULL,
2063 	},
2064 #ifdef CONFIG_SMP
2065 	[CPUHP_CREATE_THREADS]= {
2066 		.name			= "threads:prepare",
2067 		.startup.single		= smpboot_create_threads,
2068 		.teardown.single	= NULL,
2069 		.cant_stop		= true,
2070 	},
2071 	[CPUHP_PERF_PREPARE] = {
2072 		.name			= "perf:prepare",
2073 		.startup.single		= perf_event_init_cpu,
2074 		.teardown.single	= perf_event_exit_cpu,
2075 	},
2076 	[CPUHP_RANDOM_PREPARE] = {
2077 		.name			= "random:prepare",
2078 		.startup.single		= random_prepare_cpu,
2079 		.teardown.single	= NULL,
2080 	},
2081 	[CPUHP_WORKQUEUE_PREP] = {
2082 		.name			= "workqueue:prepare",
2083 		.startup.single		= workqueue_prepare_cpu,
2084 		.teardown.single	= NULL,
2085 	},
2086 	[CPUHP_HRTIMERS_PREPARE] = {
2087 		.name			= "hrtimers:prepare",
2088 		.startup.single		= hrtimers_prepare_cpu,
2089 		.teardown.single	= NULL,
2090 	},
2091 	[CPUHP_SMPCFD_PREPARE] = {
2092 		.name			= "smpcfd:prepare",
2093 		.startup.single		= smpcfd_prepare_cpu,
2094 		.teardown.single	= smpcfd_dead_cpu,
2095 	},
2096 	[CPUHP_RELAY_PREPARE] = {
2097 		.name			= "relay:prepare",
2098 		.startup.single		= relay_prepare_cpu,
2099 		.teardown.single	= NULL,
2100 	},
2101 	[CPUHP_RCUTREE_PREP] = {
2102 		.name			= "RCU/tree:prepare",
2103 		.startup.single		= rcutree_prepare_cpu,
2104 		.teardown.single	= rcutree_dead_cpu,
2105 	},
2106 	/*
2107 	 * On the tear-down path, timers_dead_cpu() must be invoked
2108 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
2109 	 * otherwise a RCU stall occurs.
2110 	 */
2111 	[CPUHP_TIMERS_PREPARE] = {
2112 		.name			= "timers:prepare",
2113 		.startup.single		= timers_prepare_cpu,
2114 		.teardown.single	= timers_dead_cpu,
2115 	},
2116 
2117 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2118 	/*
2119 	 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2120 	 * the next step will release it.
2121 	 */
2122 	[CPUHP_BP_KICK_AP] = {
2123 		.name			= "cpu:kick_ap",
2124 		.startup.single		= cpuhp_kick_ap_alive,
2125 	},
2126 
2127 	/*
2128 	 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2129 	 * releases it for the complete bringup.
2130 	 */
2131 	[CPUHP_BRINGUP_CPU] = {
2132 		.name			= "cpu:bringup",
2133 		.startup.single		= cpuhp_bringup_ap,
2134 		.teardown.single	= finish_cpu,
2135 		.cant_stop		= true,
2136 	},
2137 #else
2138 	/*
2139 	 * All-in-one CPU bringup state which includes the kick alive.
2140 	 */
2141 	[CPUHP_BRINGUP_CPU] = {
2142 		.name			= "cpu:bringup",
2143 		.startup.single		= bringup_cpu,
2144 		.teardown.single	= finish_cpu,
2145 		.cant_stop		= true,
2146 	},
2147 #endif
2148 	/* Final state before CPU kills itself */
2149 	[CPUHP_AP_IDLE_DEAD] = {
2150 		.name			= "idle:dead",
2151 	},
2152 	/*
2153 	 * Last state before CPU enters the idle loop to die. Transient state
2154 	 * for synchronization.
2155 	 */
2156 	[CPUHP_AP_OFFLINE] = {
2157 		.name			= "ap:offline",
2158 		.cant_stop		= true,
2159 	},
2160 	/* First state is scheduler control. Interrupts are disabled */
2161 	[CPUHP_AP_SCHED_STARTING] = {
2162 		.name			= "sched:starting",
2163 		.startup.single		= sched_cpu_starting,
2164 		.teardown.single	= sched_cpu_dying,
2165 	},
2166 	[CPUHP_AP_RCUTREE_DYING] = {
2167 		.name			= "RCU/tree:dying",
2168 		.startup.single		= NULL,
2169 		.teardown.single	= rcutree_dying_cpu,
2170 	},
2171 	[CPUHP_AP_SMPCFD_DYING] = {
2172 		.name			= "smpcfd:dying",
2173 		.startup.single		= NULL,
2174 		.teardown.single	= smpcfd_dying_cpu,
2175 	},
2176 	[CPUHP_AP_HRTIMERS_DYING] = {
2177 		.name			= "hrtimers:dying",
2178 		.startup.single		= hrtimers_cpu_starting,
2179 		.teardown.single	= hrtimers_cpu_dying,
2180 	},
2181 	[CPUHP_AP_TICK_DYING] = {
2182 		.name			= "tick:dying",
2183 		.startup.single		= NULL,
2184 		.teardown.single	= tick_cpu_dying,
2185 	},
2186 	/* Entry state on starting. Interrupts enabled from here on. Transient
2187 	 * state for synchronsization */
2188 	[CPUHP_AP_ONLINE] = {
2189 		.name			= "ap:online",
2190 	},
2191 	/*
2192 	 * Handled on control processor until the plugged processor manages
2193 	 * this itself.
2194 	 */
2195 	[CPUHP_TEARDOWN_CPU] = {
2196 		.name			= "cpu:teardown",
2197 		.startup.single		= NULL,
2198 		.teardown.single	= takedown_cpu,
2199 		.cant_stop		= true,
2200 	},
2201 
2202 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
2203 		.name			= "sched:waitempty",
2204 		.startup.single		= NULL,
2205 		.teardown.single	= sched_cpu_wait_empty,
2206 	},
2207 
2208 	/* Handle smpboot threads park/unpark */
2209 	[CPUHP_AP_SMPBOOT_THREADS] = {
2210 		.name			= "smpboot/threads:online",
2211 		.startup.single		= smpboot_unpark_threads,
2212 		.teardown.single	= smpboot_park_threads,
2213 	},
2214 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2215 		.name			= "irq/affinity:online",
2216 		.startup.single		= irq_affinity_online_cpu,
2217 		.teardown.single	= NULL,
2218 	},
2219 	[CPUHP_AP_PERF_ONLINE] = {
2220 		.name			= "perf:online",
2221 		.startup.single		= perf_event_init_cpu,
2222 		.teardown.single	= perf_event_exit_cpu,
2223 	},
2224 	[CPUHP_AP_WATCHDOG_ONLINE] = {
2225 		.name			= "lockup_detector:online",
2226 		.startup.single		= lockup_detector_online_cpu,
2227 		.teardown.single	= lockup_detector_offline_cpu,
2228 	},
2229 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
2230 		.name			= "workqueue:online",
2231 		.startup.single		= workqueue_online_cpu,
2232 		.teardown.single	= workqueue_offline_cpu,
2233 	},
2234 	[CPUHP_AP_RANDOM_ONLINE] = {
2235 		.name			= "random:online",
2236 		.startup.single		= random_online_cpu,
2237 		.teardown.single	= NULL,
2238 	},
2239 	[CPUHP_AP_RCUTREE_ONLINE] = {
2240 		.name			= "RCU/tree:online",
2241 		.startup.single		= rcutree_online_cpu,
2242 		.teardown.single	= rcutree_offline_cpu,
2243 	},
2244 #endif
2245 	/*
2246 	 * The dynamically registered state space is here
2247 	 */
2248 
2249 #ifdef CONFIG_SMP
2250 	/* Last state is scheduler control setting the cpu active */
2251 	[CPUHP_AP_ACTIVE] = {
2252 		.name			= "sched:active",
2253 		.startup.single		= sched_cpu_activate,
2254 		.teardown.single	= sched_cpu_deactivate,
2255 	},
2256 #endif
2257 
2258 	/* CPU is fully up and running. */
2259 	[CPUHP_ONLINE] = {
2260 		.name			= "online",
2261 		.startup.single		= NULL,
2262 		.teardown.single	= NULL,
2263 	},
2264 };
2265 
2266 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)2267 static int cpuhp_cb_check(enum cpuhp_state state)
2268 {
2269 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2270 		return -EINVAL;
2271 	return 0;
2272 }
2273 
2274 /*
2275  * Returns a free for dynamic slot assignment of the Online state. The states
2276  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2277  * by having no name assigned.
2278  */
cpuhp_reserve_state(enum cpuhp_state state)2279 static int cpuhp_reserve_state(enum cpuhp_state state)
2280 {
2281 	enum cpuhp_state i, end;
2282 	struct cpuhp_step *step;
2283 
2284 	switch (state) {
2285 	case CPUHP_AP_ONLINE_DYN:
2286 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2287 		end = CPUHP_AP_ONLINE_DYN_END;
2288 		break;
2289 	case CPUHP_BP_PREPARE_DYN:
2290 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2291 		end = CPUHP_BP_PREPARE_DYN_END;
2292 		break;
2293 	default:
2294 		return -EINVAL;
2295 	}
2296 
2297 	for (i = state; i <= end; i++, step++) {
2298 		if (!step->name)
2299 			return i;
2300 	}
2301 	WARN(1, "No more dynamic states available for CPU hotplug\n");
2302 	return -ENOSPC;
2303 }
2304 
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2305 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2306 				 int (*startup)(unsigned int cpu),
2307 				 int (*teardown)(unsigned int cpu),
2308 				 bool multi_instance)
2309 {
2310 	/* (Un)Install the callbacks for further cpu hotplug operations */
2311 	struct cpuhp_step *sp;
2312 	int ret = 0;
2313 
2314 	/*
2315 	 * If name is NULL, then the state gets removed.
2316 	 *
2317 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2318 	 * the first allocation from these dynamic ranges, so the removal
2319 	 * would trigger a new allocation and clear the wrong (already
2320 	 * empty) state, leaving the callbacks of the to be cleared state
2321 	 * dangling, which causes wreckage on the next hotplug operation.
2322 	 */
2323 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
2324 		     state == CPUHP_BP_PREPARE_DYN)) {
2325 		ret = cpuhp_reserve_state(state);
2326 		if (ret < 0)
2327 			return ret;
2328 		state = ret;
2329 	}
2330 	sp = cpuhp_get_step(state);
2331 	if (name && sp->name)
2332 		return -EBUSY;
2333 
2334 	sp->startup.single = startup;
2335 	sp->teardown.single = teardown;
2336 	sp->name = name;
2337 	sp->multi_instance = multi_instance;
2338 	INIT_HLIST_HEAD(&sp->list);
2339 	return ret;
2340 }
2341 
cpuhp_get_teardown_cb(enum cpuhp_state state)2342 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2343 {
2344 	return cpuhp_get_step(state)->teardown.single;
2345 }
2346 
2347 /*
2348  * Call the startup/teardown function for a step either on the AP or
2349  * on the current CPU.
2350  */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)2351 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2352 			    struct hlist_node *node)
2353 {
2354 	struct cpuhp_step *sp = cpuhp_get_step(state);
2355 	int ret;
2356 
2357 	/*
2358 	 * If there's nothing to do, we done.
2359 	 * Relies on the union for multi_instance.
2360 	 */
2361 	if (cpuhp_step_empty(bringup, sp))
2362 		return 0;
2363 	/*
2364 	 * The non AP bound callbacks can fail on bringup. On teardown
2365 	 * e.g. module removal we crash for now.
2366 	 */
2367 #ifdef CONFIG_SMP
2368 	if (cpuhp_is_ap_state(state))
2369 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2370 	else
2371 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2372 #else
2373 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2374 #endif
2375 	BUG_ON(ret && !bringup);
2376 	return ret;
2377 }
2378 
2379 /*
2380  * Called from __cpuhp_setup_state on a recoverable failure.
2381  *
2382  * Note: The teardown callbacks for rollback are not allowed to fail!
2383  */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)2384 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2385 				   struct hlist_node *node)
2386 {
2387 	int cpu;
2388 
2389 	/* Roll back the already executed steps on the other cpus */
2390 	for_each_present_cpu(cpu) {
2391 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2392 		int cpustate = st->state;
2393 
2394 		if (cpu >= failedcpu)
2395 			break;
2396 
2397 		/* Did we invoke the startup call on that cpu ? */
2398 		if (cpustate >= state)
2399 			cpuhp_issue_call(cpu, state, false, node);
2400 	}
2401 }
2402 
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)2403 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2404 					  struct hlist_node *node,
2405 					  bool invoke)
2406 {
2407 	struct cpuhp_step *sp;
2408 	int cpu;
2409 	int ret;
2410 
2411 	lockdep_assert_cpus_held();
2412 
2413 	sp = cpuhp_get_step(state);
2414 	if (sp->multi_instance == false)
2415 		return -EINVAL;
2416 
2417 	mutex_lock(&cpuhp_state_mutex);
2418 
2419 	if (!invoke || !sp->startup.multi)
2420 		goto add_node;
2421 
2422 	/*
2423 	 * Try to call the startup callback for each present cpu
2424 	 * depending on the hotplug state of the cpu.
2425 	 */
2426 	for_each_present_cpu(cpu) {
2427 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2428 		int cpustate = st->state;
2429 
2430 		if (cpustate < state)
2431 			continue;
2432 
2433 		ret = cpuhp_issue_call(cpu, state, true, node);
2434 		if (ret) {
2435 			if (sp->teardown.multi)
2436 				cpuhp_rollback_install(cpu, state, node);
2437 			goto unlock;
2438 		}
2439 	}
2440 add_node:
2441 	ret = 0;
2442 	hlist_add_head(node, &sp->list);
2443 unlock:
2444 	mutex_unlock(&cpuhp_state_mutex);
2445 	return ret;
2446 }
2447 
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2448 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2449 			       bool invoke)
2450 {
2451 	int ret;
2452 
2453 	cpus_read_lock();
2454 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2455 	cpus_read_unlock();
2456 	return ret;
2457 }
2458 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2459 
2460 /**
2461  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2462  * @state:		The state to setup
2463  * @name:		Name of the step
2464  * @invoke:		If true, the startup function is invoked for cpus where
2465  *			cpu state >= @state
2466  * @startup:		startup callback function
2467  * @teardown:		teardown callback function
2468  * @multi_instance:	State is set up for multiple instances which get
2469  *			added afterwards.
2470  *
2471  * The caller needs to hold cpus read locked while calling this function.
2472  * Return:
2473  *   On success:
2474  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN;
2475  *      0 for all other states
2476  *   On failure: proper (negative) error code
2477  */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2478 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2479 				   const char *name, bool invoke,
2480 				   int (*startup)(unsigned int cpu),
2481 				   int (*teardown)(unsigned int cpu),
2482 				   bool multi_instance)
2483 {
2484 	int cpu, ret = 0;
2485 	bool dynstate;
2486 
2487 	lockdep_assert_cpus_held();
2488 
2489 	if (cpuhp_cb_check(state) || !name)
2490 		return -EINVAL;
2491 
2492 	mutex_lock(&cpuhp_state_mutex);
2493 
2494 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2495 				    multi_instance);
2496 
2497 	dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN;
2498 	if (ret > 0 && dynstate) {
2499 		state = ret;
2500 		ret = 0;
2501 	}
2502 
2503 	if (ret || !invoke || !startup)
2504 		goto out;
2505 
2506 	/*
2507 	 * Try to call the startup callback for each present cpu
2508 	 * depending on the hotplug state of the cpu.
2509 	 */
2510 	for_each_present_cpu(cpu) {
2511 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2512 		int cpustate = st->state;
2513 
2514 		if (cpustate < state)
2515 			continue;
2516 
2517 		ret = cpuhp_issue_call(cpu, state, true, NULL);
2518 		if (ret) {
2519 			if (teardown)
2520 				cpuhp_rollback_install(cpu, state, NULL);
2521 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2522 			goto out;
2523 		}
2524 	}
2525 out:
2526 	mutex_unlock(&cpuhp_state_mutex);
2527 	/*
2528 	 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN,
2529 	 * return the dynamically allocated state in case of success.
2530 	 */
2531 	if (!ret && dynstate)
2532 		return state;
2533 	return ret;
2534 }
2535 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2536 
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2537 int __cpuhp_setup_state(enum cpuhp_state state,
2538 			const char *name, bool invoke,
2539 			int (*startup)(unsigned int cpu),
2540 			int (*teardown)(unsigned int cpu),
2541 			bool multi_instance)
2542 {
2543 	int ret;
2544 
2545 	cpus_read_lock();
2546 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2547 					     teardown, multi_instance);
2548 	cpus_read_unlock();
2549 	return ret;
2550 }
2551 EXPORT_SYMBOL(__cpuhp_setup_state);
2552 
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2553 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2554 				  struct hlist_node *node, bool invoke)
2555 {
2556 	struct cpuhp_step *sp = cpuhp_get_step(state);
2557 	int cpu;
2558 
2559 	BUG_ON(cpuhp_cb_check(state));
2560 
2561 	if (!sp->multi_instance)
2562 		return -EINVAL;
2563 
2564 	cpus_read_lock();
2565 	mutex_lock(&cpuhp_state_mutex);
2566 
2567 	if (!invoke || !cpuhp_get_teardown_cb(state))
2568 		goto remove;
2569 	/*
2570 	 * Call the teardown callback for each present cpu depending
2571 	 * on the hotplug state of the cpu. This function is not
2572 	 * allowed to fail currently!
2573 	 */
2574 	for_each_present_cpu(cpu) {
2575 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2576 		int cpustate = st->state;
2577 
2578 		if (cpustate >= state)
2579 			cpuhp_issue_call(cpu, state, false, node);
2580 	}
2581 
2582 remove:
2583 	hlist_del(node);
2584 	mutex_unlock(&cpuhp_state_mutex);
2585 	cpus_read_unlock();
2586 
2587 	return 0;
2588 }
2589 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2590 
2591 /**
2592  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2593  * @state:	The state to remove
2594  * @invoke:	If true, the teardown function is invoked for cpus where
2595  *		cpu state >= @state
2596  *
2597  * The caller needs to hold cpus read locked while calling this function.
2598  * The teardown callback is currently not allowed to fail. Think
2599  * about module removal!
2600  */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2601 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2602 {
2603 	struct cpuhp_step *sp = cpuhp_get_step(state);
2604 	int cpu;
2605 
2606 	BUG_ON(cpuhp_cb_check(state));
2607 
2608 	lockdep_assert_cpus_held();
2609 
2610 	mutex_lock(&cpuhp_state_mutex);
2611 	if (sp->multi_instance) {
2612 		WARN(!hlist_empty(&sp->list),
2613 		     "Error: Removing state %d which has instances left.\n",
2614 		     state);
2615 		goto remove;
2616 	}
2617 
2618 	if (!invoke || !cpuhp_get_teardown_cb(state))
2619 		goto remove;
2620 
2621 	/*
2622 	 * Call the teardown callback for each present cpu depending
2623 	 * on the hotplug state of the cpu. This function is not
2624 	 * allowed to fail currently!
2625 	 */
2626 	for_each_present_cpu(cpu) {
2627 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2628 		int cpustate = st->state;
2629 
2630 		if (cpustate >= state)
2631 			cpuhp_issue_call(cpu, state, false, NULL);
2632 	}
2633 remove:
2634 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2635 	mutex_unlock(&cpuhp_state_mutex);
2636 }
2637 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2638 
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2639 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2640 {
2641 	cpus_read_lock();
2642 	__cpuhp_remove_state_cpuslocked(state, invoke);
2643 	cpus_read_unlock();
2644 }
2645 EXPORT_SYMBOL(__cpuhp_remove_state);
2646 
2647 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2648 static void cpuhp_offline_cpu_device(unsigned int cpu)
2649 {
2650 	struct device *dev = get_cpu_device(cpu);
2651 
2652 	dev->offline = true;
2653 	/* Tell user space about the state change */
2654 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2655 }
2656 
cpuhp_online_cpu_device(unsigned int cpu)2657 static void cpuhp_online_cpu_device(unsigned int cpu)
2658 {
2659 	struct device *dev = get_cpu_device(cpu);
2660 
2661 	dev->offline = false;
2662 	/* Tell user space about the state change */
2663 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2664 }
2665 
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2666 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2667 {
2668 	int cpu, ret = 0;
2669 
2670 	cpu_maps_update_begin();
2671 	for_each_online_cpu(cpu) {
2672 		if (topology_is_primary_thread(cpu))
2673 			continue;
2674 		/*
2675 		 * Disable can be called with CPU_SMT_ENABLED when changing
2676 		 * from a higher to lower number of SMT threads per core.
2677 		 */
2678 		if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2679 			continue;
2680 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2681 		if (ret)
2682 			break;
2683 		/*
2684 		 * As this needs to hold the cpu maps lock it's impossible
2685 		 * to call device_offline() because that ends up calling
2686 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2687 		 * needs to be held as this might race against in kernel
2688 		 * abusers of the hotplug machinery (thermal management).
2689 		 *
2690 		 * So nothing would update device:offline state. That would
2691 		 * leave the sysfs entry stale and prevent onlining after
2692 		 * smt control has been changed to 'off' again. This is
2693 		 * called under the sysfs hotplug lock, so it is properly
2694 		 * serialized against the regular offline usage.
2695 		 */
2696 		cpuhp_offline_cpu_device(cpu);
2697 	}
2698 	if (!ret)
2699 		cpu_smt_control = ctrlval;
2700 	cpu_maps_update_done();
2701 	return ret;
2702 }
2703 
2704 /* Check if the core a CPU belongs to is online */
2705 #if !defined(topology_is_core_online)
topology_is_core_online(unsigned int cpu)2706 static inline bool topology_is_core_online(unsigned int cpu)
2707 {
2708 	return true;
2709 }
2710 #endif
2711 
cpuhp_smt_enable(void)2712 int cpuhp_smt_enable(void)
2713 {
2714 	int cpu, ret = 0;
2715 
2716 	cpu_maps_update_begin();
2717 	cpu_smt_control = CPU_SMT_ENABLED;
2718 	for_each_present_cpu(cpu) {
2719 		/* Skip online CPUs and CPUs on offline nodes */
2720 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2721 			continue;
2722 		if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu))
2723 			continue;
2724 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2725 		if (ret)
2726 			break;
2727 		/* See comment in cpuhp_smt_disable() */
2728 		cpuhp_online_cpu_device(cpu);
2729 	}
2730 	cpu_maps_update_done();
2731 	return ret;
2732 }
2733 #endif
2734 
2735 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
state_show(struct device * dev,struct device_attribute * attr,char * buf)2736 static ssize_t state_show(struct device *dev,
2737 			  struct device_attribute *attr, char *buf)
2738 {
2739 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2740 
2741 	return sprintf(buf, "%d\n", st->state);
2742 }
2743 static DEVICE_ATTR_RO(state);
2744 
target_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2745 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2746 			    const char *buf, size_t count)
2747 {
2748 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2749 	struct cpuhp_step *sp;
2750 	int target, ret;
2751 
2752 	ret = kstrtoint(buf, 10, &target);
2753 	if (ret)
2754 		return ret;
2755 
2756 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2757 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2758 		return -EINVAL;
2759 #else
2760 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2761 		return -EINVAL;
2762 #endif
2763 
2764 	ret = lock_device_hotplug_sysfs();
2765 	if (ret)
2766 		return ret;
2767 
2768 	mutex_lock(&cpuhp_state_mutex);
2769 	sp = cpuhp_get_step(target);
2770 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2771 	mutex_unlock(&cpuhp_state_mutex);
2772 	if (ret)
2773 		goto out;
2774 
2775 	if (st->state < target)
2776 		ret = cpu_up(dev->id, target);
2777 	else if (st->state > target)
2778 		ret = cpu_down(dev->id, target);
2779 	else if (WARN_ON(st->target != target))
2780 		st->target = target;
2781 out:
2782 	unlock_device_hotplug();
2783 	return ret ? ret : count;
2784 }
2785 
target_show(struct device * dev,struct device_attribute * attr,char * buf)2786 static ssize_t target_show(struct device *dev,
2787 			   struct device_attribute *attr, char *buf)
2788 {
2789 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2790 
2791 	return sprintf(buf, "%d\n", st->target);
2792 }
2793 static DEVICE_ATTR_RW(target);
2794 
fail_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2795 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2796 			  const char *buf, size_t count)
2797 {
2798 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2799 	struct cpuhp_step *sp;
2800 	int fail, ret;
2801 
2802 	ret = kstrtoint(buf, 10, &fail);
2803 	if (ret)
2804 		return ret;
2805 
2806 	if (fail == CPUHP_INVALID) {
2807 		st->fail = fail;
2808 		return count;
2809 	}
2810 
2811 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2812 		return -EINVAL;
2813 
2814 	/*
2815 	 * Cannot fail STARTING/DYING callbacks.
2816 	 */
2817 	if (cpuhp_is_atomic_state(fail))
2818 		return -EINVAL;
2819 
2820 	/*
2821 	 * DEAD callbacks cannot fail...
2822 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2823 	 * triggering STARTING callbacks, a failure in this state would
2824 	 * hinder rollback.
2825 	 */
2826 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2827 		return -EINVAL;
2828 
2829 	/*
2830 	 * Cannot fail anything that doesn't have callbacks.
2831 	 */
2832 	mutex_lock(&cpuhp_state_mutex);
2833 	sp = cpuhp_get_step(fail);
2834 	if (!sp->startup.single && !sp->teardown.single)
2835 		ret = -EINVAL;
2836 	mutex_unlock(&cpuhp_state_mutex);
2837 	if (ret)
2838 		return ret;
2839 
2840 	st->fail = fail;
2841 
2842 	return count;
2843 }
2844 
fail_show(struct device * dev,struct device_attribute * attr,char * buf)2845 static ssize_t fail_show(struct device *dev,
2846 			 struct device_attribute *attr, char *buf)
2847 {
2848 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2849 
2850 	return sprintf(buf, "%d\n", st->fail);
2851 }
2852 
2853 static DEVICE_ATTR_RW(fail);
2854 
2855 static struct attribute *cpuhp_cpu_attrs[] = {
2856 	&dev_attr_state.attr,
2857 	&dev_attr_target.attr,
2858 	&dev_attr_fail.attr,
2859 	NULL
2860 };
2861 
2862 static const struct attribute_group cpuhp_cpu_attr_group = {
2863 	.attrs = cpuhp_cpu_attrs,
2864 	.name = "hotplug",
2865 };
2866 
states_show(struct device * dev,struct device_attribute * attr,char * buf)2867 static ssize_t states_show(struct device *dev,
2868 				 struct device_attribute *attr, char *buf)
2869 {
2870 	ssize_t cur, res = 0;
2871 	int i;
2872 
2873 	mutex_lock(&cpuhp_state_mutex);
2874 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2875 		struct cpuhp_step *sp = cpuhp_get_step(i);
2876 
2877 		if (sp->name) {
2878 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2879 			buf += cur;
2880 			res += cur;
2881 		}
2882 	}
2883 	mutex_unlock(&cpuhp_state_mutex);
2884 	return res;
2885 }
2886 static DEVICE_ATTR_RO(states);
2887 
2888 static struct attribute *cpuhp_cpu_root_attrs[] = {
2889 	&dev_attr_states.attr,
2890 	NULL
2891 };
2892 
2893 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2894 	.attrs = cpuhp_cpu_root_attrs,
2895 	.name = "hotplug",
2896 };
2897 
2898 #ifdef CONFIG_HOTPLUG_SMT
2899 
cpu_smt_num_threads_valid(unsigned int threads)2900 static bool cpu_smt_num_threads_valid(unsigned int threads)
2901 {
2902 	if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2903 		return threads >= 1 && threads <= cpu_smt_max_threads;
2904 	return threads == 1 || threads == cpu_smt_max_threads;
2905 }
2906 
2907 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2908 __store_smt_control(struct device *dev, struct device_attribute *attr,
2909 		    const char *buf, size_t count)
2910 {
2911 	int ctrlval, ret, num_threads, orig_threads;
2912 	bool force_off;
2913 
2914 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2915 		return -EPERM;
2916 
2917 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2918 		return -ENODEV;
2919 
2920 	if (sysfs_streq(buf, "on")) {
2921 		ctrlval = CPU_SMT_ENABLED;
2922 		num_threads = cpu_smt_max_threads;
2923 	} else if (sysfs_streq(buf, "off")) {
2924 		ctrlval = CPU_SMT_DISABLED;
2925 		num_threads = 1;
2926 	} else if (sysfs_streq(buf, "forceoff")) {
2927 		ctrlval = CPU_SMT_FORCE_DISABLED;
2928 		num_threads = 1;
2929 	} else if (kstrtoint(buf, 10, &num_threads) == 0) {
2930 		if (num_threads == 1)
2931 			ctrlval = CPU_SMT_DISABLED;
2932 		else if (cpu_smt_num_threads_valid(num_threads))
2933 			ctrlval = CPU_SMT_ENABLED;
2934 		else
2935 			return -EINVAL;
2936 	} else {
2937 		return -EINVAL;
2938 	}
2939 
2940 	ret = lock_device_hotplug_sysfs();
2941 	if (ret)
2942 		return ret;
2943 
2944 	orig_threads = cpu_smt_num_threads;
2945 	cpu_smt_num_threads = num_threads;
2946 
2947 	force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2948 
2949 	if (num_threads > orig_threads)
2950 		ret = cpuhp_smt_enable();
2951 	else if (num_threads < orig_threads || force_off)
2952 		ret = cpuhp_smt_disable(ctrlval);
2953 
2954 	unlock_device_hotplug();
2955 	return ret ? ret : count;
2956 }
2957 
2958 #else /* !CONFIG_HOTPLUG_SMT */
2959 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2960 __store_smt_control(struct device *dev, struct device_attribute *attr,
2961 		    const char *buf, size_t count)
2962 {
2963 	return -ENODEV;
2964 }
2965 #endif /* CONFIG_HOTPLUG_SMT */
2966 
2967 static const char *smt_states[] = {
2968 	[CPU_SMT_ENABLED]		= "on",
2969 	[CPU_SMT_DISABLED]		= "off",
2970 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2971 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2972 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2973 };
2974 
control_show(struct device * dev,struct device_attribute * attr,char * buf)2975 static ssize_t control_show(struct device *dev,
2976 			    struct device_attribute *attr, char *buf)
2977 {
2978 	const char *state = smt_states[cpu_smt_control];
2979 
2980 #ifdef CONFIG_HOTPLUG_SMT
2981 	/*
2982 	 * If SMT is enabled but not all threads are enabled then show the
2983 	 * number of threads. If all threads are enabled show "on". Otherwise
2984 	 * show the state name.
2985 	 */
2986 	if (cpu_smt_control == CPU_SMT_ENABLED &&
2987 	    cpu_smt_num_threads != cpu_smt_max_threads)
2988 		return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2989 #endif
2990 
2991 	return sysfs_emit(buf, "%s\n", state);
2992 }
2993 
control_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2994 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2995 			     const char *buf, size_t count)
2996 {
2997 	return __store_smt_control(dev, attr, buf, count);
2998 }
2999 static DEVICE_ATTR_RW(control);
3000 
active_show(struct device * dev,struct device_attribute * attr,char * buf)3001 static ssize_t active_show(struct device *dev,
3002 			   struct device_attribute *attr, char *buf)
3003 {
3004 	return sysfs_emit(buf, "%d\n", sched_smt_active());
3005 }
3006 static DEVICE_ATTR_RO(active);
3007 
3008 static struct attribute *cpuhp_smt_attrs[] = {
3009 	&dev_attr_control.attr,
3010 	&dev_attr_active.attr,
3011 	NULL
3012 };
3013 
3014 static const struct attribute_group cpuhp_smt_attr_group = {
3015 	.attrs = cpuhp_smt_attrs,
3016 	.name = "smt",
3017 };
3018 
cpu_smt_sysfs_init(void)3019 static int __init cpu_smt_sysfs_init(void)
3020 {
3021 	struct device *dev_root;
3022 	int ret = -ENODEV;
3023 
3024 	dev_root = bus_get_dev_root(&cpu_subsys);
3025 	if (dev_root) {
3026 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3027 		put_device(dev_root);
3028 	}
3029 	return ret;
3030 }
3031 
cpuhp_sysfs_init(void)3032 static int __init cpuhp_sysfs_init(void)
3033 {
3034 	struct device *dev_root;
3035 	int cpu, ret;
3036 
3037 	ret = cpu_smt_sysfs_init();
3038 	if (ret)
3039 		return ret;
3040 
3041 	dev_root = bus_get_dev_root(&cpu_subsys);
3042 	if (dev_root) {
3043 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3044 		put_device(dev_root);
3045 		if (ret)
3046 			return ret;
3047 	}
3048 
3049 	for_each_possible_cpu(cpu) {
3050 		struct device *dev = get_cpu_device(cpu);
3051 
3052 		if (!dev)
3053 			continue;
3054 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3055 		if (ret)
3056 			return ret;
3057 	}
3058 	return 0;
3059 }
3060 device_initcall(cpuhp_sysfs_init);
3061 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3062 
3063 /*
3064  * cpu_bit_bitmap[] is a special, "compressed" data structure that
3065  * represents all NR_CPUS bits binary values of 1<<nr.
3066  *
3067  * It is used by cpumask_of() to get a constant address to a CPU
3068  * mask value that has a single bit set only.
3069  */
3070 
3071 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3072 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
3073 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3074 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3075 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3076 
3077 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3078 
3079 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
3080 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
3081 #if BITS_PER_LONG > 32
3082 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
3083 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
3084 #endif
3085 };
3086 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3087 
3088 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3089 EXPORT_SYMBOL(cpu_all_bits);
3090 
3091 #ifdef CONFIG_INIT_ALL_POSSIBLE
3092 struct cpumask __cpu_possible_mask __ro_after_init
3093 	= {CPU_BITS_ALL};
3094 #else
3095 struct cpumask __cpu_possible_mask __ro_after_init;
3096 #endif
3097 EXPORT_SYMBOL(__cpu_possible_mask);
3098 
3099 struct cpumask __cpu_online_mask __read_mostly;
3100 EXPORT_SYMBOL(__cpu_online_mask);
3101 
3102 struct cpumask __cpu_enabled_mask __read_mostly;
3103 EXPORT_SYMBOL(__cpu_enabled_mask);
3104 
3105 struct cpumask __cpu_present_mask __read_mostly;
3106 EXPORT_SYMBOL(__cpu_present_mask);
3107 
3108 struct cpumask __cpu_active_mask __read_mostly;
3109 EXPORT_SYMBOL(__cpu_active_mask);
3110 
3111 struct cpumask __cpu_dying_mask __read_mostly;
3112 EXPORT_SYMBOL(__cpu_dying_mask);
3113 
3114 atomic_t __num_online_cpus __read_mostly;
3115 EXPORT_SYMBOL(__num_online_cpus);
3116 
init_cpu_present(const struct cpumask * src)3117 void init_cpu_present(const struct cpumask *src)
3118 {
3119 	cpumask_copy(&__cpu_present_mask, src);
3120 }
3121 
init_cpu_possible(const struct cpumask * src)3122 void init_cpu_possible(const struct cpumask *src)
3123 {
3124 	cpumask_copy(&__cpu_possible_mask, src);
3125 }
3126 
set_cpu_online(unsigned int cpu,bool online)3127 void set_cpu_online(unsigned int cpu, bool online)
3128 {
3129 	/*
3130 	 * atomic_inc/dec() is required to handle the horrid abuse of this
3131 	 * function by the reboot and kexec code which invoke it from
3132 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3133 	 * regular CPU hotplug is properly serialized.
3134 	 *
3135 	 * Note, that the fact that __num_online_cpus is of type atomic_t
3136 	 * does not protect readers which are not serialized against
3137 	 * concurrent hotplug operations.
3138 	 */
3139 	if (online) {
3140 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3141 			atomic_inc(&__num_online_cpus);
3142 	} else {
3143 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3144 			atomic_dec(&__num_online_cpus);
3145 	}
3146 }
3147 
3148 /*
3149  * Activate the first processor.
3150  */
boot_cpu_init(void)3151 void __init boot_cpu_init(void)
3152 {
3153 	int cpu = smp_processor_id();
3154 
3155 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
3156 	set_cpu_online(cpu, true);
3157 	set_cpu_active(cpu, true);
3158 	set_cpu_present(cpu, true);
3159 	set_cpu_possible(cpu, true);
3160 
3161 #ifdef CONFIG_SMP
3162 	__boot_cpu_id = cpu;
3163 #endif
3164 }
3165 
3166 /*
3167  * Must be called _AFTER_ setting up the per_cpu areas
3168  */
boot_cpu_hotplug_init(void)3169 void __init boot_cpu_hotplug_init(void)
3170 {
3171 #ifdef CONFIG_SMP
3172 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3173 	atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3174 #endif
3175 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3176 	this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3177 }
3178 
3179 #ifdef CONFIG_CPU_MITIGATIONS
3180 /*
3181  * These are used for a global "mitigations=" cmdline option for toggling
3182  * optional CPU mitigations.
3183  */
3184 enum cpu_mitigations {
3185 	CPU_MITIGATIONS_OFF,
3186 	CPU_MITIGATIONS_AUTO,
3187 	CPU_MITIGATIONS_AUTO_NOSMT,
3188 };
3189 
3190 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
3191 
mitigations_parse_cmdline(char * arg)3192 static int __init mitigations_parse_cmdline(char *arg)
3193 {
3194 	if (!strcmp(arg, "off"))
3195 		cpu_mitigations = CPU_MITIGATIONS_OFF;
3196 	else if (!strcmp(arg, "auto"))
3197 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
3198 	else if (!strcmp(arg, "auto,nosmt"))
3199 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3200 	else
3201 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3202 			arg);
3203 
3204 	return 0;
3205 }
3206 
3207 /* mitigations=off */
cpu_mitigations_off(void)3208 bool cpu_mitigations_off(void)
3209 {
3210 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
3211 }
3212 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3213 
3214 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)3215 bool cpu_mitigations_auto_nosmt(void)
3216 {
3217 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3218 }
3219 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3220 #else
mitigations_parse_cmdline(char * arg)3221 static int __init mitigations_parse_cmdline(char *arg)
3222 {
3223 	pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n");
3224 	return 0;
3225 }
3226 #endif
3227 early_param("mitigations", mitigations_parse_cmdline);
3228