1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author:
7  *	Peter Pan <[email protected]>
8  *	Boris Brezillon <[email protected]>
9  */
10 
11 #ifndef __LINUX_SPI_MEM_H
12 #define __LINUX_SPI_MEM_H
13 
14 #include <linux/spi/spi.h>
15 
16 #define SPI_MEM_OP_CMD(__opcode, __buswidth)			\
17 	{							\
18 		.nbytes = 1,					\
19 		.buswidth = __buswidth,				\
20 		.opcode = __opcode,				\
21 	}
22 
23 #define SPI_MEM_DTR_OP_CMD(__opcode, __buswidth)		\
24 	{							\
25 		.nbytes = 1,					\
26 		.opcode = __opcode,				\
27 		.buswidth = __buswidth,				\
28 		.dtr = true,					\
29 	}
30 
31 #define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth)		\
32 	{							\
33 		.nbytes = __nbytes,				\
34 		.buswidth = __buswidth,				\
35 		.val = __val,					\
36 	}
37 
38 #define SPI_MEM_DTR_OP_ADDR(__nbytes, __val, __buswidth)	\
39 	{							\
40 		.nbytes = __nbytes,				\
41 		.val = __val,					\
42 		.buswidth = __buswidth,				\
43 		.dtr = true,					\
44 	}
45 
46 #define SPI_MEM_OP_NO_ADDR	{ }
47 
48 #define SPI_MEM_OP_DUMMY(__nbytes, __buswidth)			\
49 	{							\
50 		.nbytes = __nbytes,				\
51 		.buswidth = __buswidth,				\
52 	}
53 
54 #define SPI_MEM_DTR_OP_DUMMY(__nbytes, __buswidth)		\
55 	{							\
56 		.nbytes = __nbytes,				\
57 		.buswidth = __buswidth,				\
58 		.dtr = true,					\
59 	}
60 
61 #define SPI_MEM_OP_NO_DUMMY	{ }
62 
63 #define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth)		\
64 	{							\
65 		.buswidth = __buswidth,				\
66 		.dir = SPI_MEM_DATA_IN,				\
67 		.nbytes = __nbytes,				\
68 		.buf.in = __buf,				\
69 	}
70 
71 #define SPI_MEM_DTR_OP_DATA_IN(__nbytes, __buf, __buswidth)	\
72 	{							\
73 		.dir = SPI_MEM_DATA_IN,				\
74 		.nbytes = __nbytes,				\
75 		.buf.in = __buf,				\
76 		.buswidth = __buswidth,				\
77 		.dtr = true,					\
78 	}
79 
80 #define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth)	\
81 	{							\
82 		.buswidth = __buswidth,				\
83 		.dir = SPI_MEM_DATA_OUT,			\
84 		.nbytes = __nbytes,				\
85 		.buf.out = __buf,				\
86 	}
87 
88 #define SPI_MEM_DTR_OP_DATA_OUT(__nbytes, __buf, __buswidth)	\
89 	{							\
90 		.dir = SPI_MEM_DATA_OUT,			\
91 		.nbytes = __nbytes,				\
92 		.buf.out = __buf,				\
93 		.buswidth = __buswidth,				\
94 		.dtr = true,					\
95 	}
96 
97 #define SPI_MEM_OP_NO_DATA	{ }
98 
99 /**
100  * enum spi_mem_data_dir - describes the direction of a SPI memory data
101  *			   transfer from the controller perspective
102  * @SPI_MEM_NO_DATA: no data transferred
103  * @SPI_MEM_DATA_IN: data coming from the SPI memory
104  * @SPI_MEM_DATA_OUT: data sent to the SPI memory
105  */
106 enum spi_mem_data_dir {
107 	SPI_MEM_NO_DATA,
108 	SPI_MEM_DATA_IN,
109 	SPI_MEM_DATA_OUT,
110 };
111 
112 #define SPI_MEM_OP_MAX_FREQ(__freq)				\
113 	.max_freq = __freq
114 
115 /**
116  * struct spi_mem_op - describes a SPI memory operation
117  * @cmd.nbytes: number of opcode bytes (only 1 or 2 are valid). The opcode is
118  *		sent MSB-first.
119  * @cmd.buswidth: number of IO lines used to transmit the command
120  * @cmd.opcode: operation opcode
121  * @cmd.dtr: whether the command opcode should be sent in DTR mode or not
122  * @addr.nbytes: number of address bytes to send. Can be zero if the operation
123  *		 does not need to send an address
124  * @addr.buswidth: number of IO lines used to transmit the address cycles
125  * @addr.dtr: whether the address should be sent in DTR mode or not
126  * @addr.val: address value. This value is always sent MSB first on the bus.
127  *	      Note that only @addr.nbytes are taken into account in this
128  *	      address value, so users should make sure the value fits in the
129  *	      assigned number of bytes.
130  * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
131  *		  be zero if the operation does not require dummy bytes
132  * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
133  * @dummy.dtr: whether the dummy bytes should be sent in DTR mode or not
134  * @data.buswidth: number of IO lanes used to send/receive the data
135  * @data.dtr: whether the data should be sent in DTR mode or not
136  * @data.ecc: whether error correction is required or not
137  * @data.swap16: whether the byte order of 16-bit words is swapped when read
138  *		 or written in Octal DTR mode compared to STR mode.
139  * @data.dir: direction of the transfer
140  * @data.nbytes: number of data bytes to send/receive. Can be zero if the
141  *		 operation does not involve transferring data
142  * @data.buf.in: input buffer (must be DMA-able)
143  * @data.buf.out: output buffer (must be DMA-able)
144  * @max_freq: frequency limitation wrt this operation. 0 means there is no
145  *	      specific constraint and the highest achievable frequency can be
146  *	      attempted.
147  */
148 struct spi_mem_op {
149 	struct {
150 		u8 nbytes;
151 		u8 buswidth;
152 		u8 dtr : 1;
153 		u8 __pad : 7;
154 		u16 opcode;
155 	} cmd;
156 
157 	struct {
158 		u8 nbytes;
159 		u8 buswidth;
160 		u8 dtr : 1;
161 		u8 __pad : 7;
162 		u64 val;
163 	} addr;
164 
165 	struct {
166 		u8 nbytes;
167 		u8 buswidth;
168 		u8 dtr : 1;
169 		u8 __pad : 7;
170 	} dummy;
171 
172 	struct {
173 		u8 buswidth;
174 		u8 dtr : 1;
175 		u8 ecc : 1;
176 		u8 swap16 : 1;
177 		u8 __pad : 5;
178 		enum spi_mem_data_dir dir;
179 		unsigned int nbytes;
180 		union {
181 			void *in;
182 			const void *out;
183 		} buf;
184 	} data;
185 
186 	unsigned int max_freq;
187 };
188 
189 #define SPI_MEM_OP(__cmd, __addr, __dummy, __data, ...)		\
190 	{							\
191 		.cmd = __cmd,					\
192 		.addr = __addr,					\
193 		.dummy = __dummy,				\
194 		.data = __data,					\
195 		__VA_ARGS__					\
196 	}
197 
198 /**
199  * struct spi_mem_dirmap_info - Direct mapping information
200  * @op_tmpl: operation template that should be used by the direct mapping when
201  *	     the memory device is accessed
202  * @offset: absolute offset this direct mapping is pointing to
203  * @length: length in byte of this direct mapping
204  *
205  * These information are used by the controller specific implementation to know
206  * the portion of memory that is directly mapped and the spi_mem_op that should
207  * be used to access the device.
208  * A direct mapping is only valid for one direction (read or write) and this
209  * direction is directly encoded in the ->op_tmpl.data.dir field.
210  */
211 struct spi_mem_dirmap_info {
212 	struct spi_mem_op op_tmpl;
213 	u64 offset;
214 	u64 length;
215 };
216 
217 /**
218  * struct spi_mem_dirmap_desc - Direct mapping descriptor
219  * @mem: the SPI memory device this direct mapping is attached to
220  * @info: information passed at direct mapping creation time
221  * @nodirmap: set to 1 if the SPI controller does not implement
222  *	      ->mem_ops->dirmap_create() or when this function returned an
223  *	      error. If @nodirmap is true, all spi_mem_dirmap_{read,write}()
224  *	      calls will use spi_mem_exec_op() to access the memory. This is a
225  *	      degraded mode that allows spi_mem drivers to use the same code
226  *	      no matter whether the controller supports direct mapping or not
227  * @priv: field pointing to controller specific data
228  *
229  * Common part of a direct mapping descriptor. This object is created by
230  * spi_mem_dirmap_create() and controller implementation of ->create_dirmap()
231  * can create/attach direct mapping resources to the descriptor in the ->priv
232  * field.
233  */
234 struct spi_mem_dirmap_desc {
235 	struct spi_mem *mem;
236 	struct spi_mem_dirmap_info info;
237 	unsigned int nodirmap;
238 	void *priv;
239 };
240 
241 /**
242  * struct spi_mem - describes a SPI memory device
243  * @spi: the underlying SPI device
244  * @drvpriv: spi_mem_driver private data
245  * @name: name of the SPI memory device
246  *
247  * Extra information that describe the SPI memory device and may be needed by
248  * the controller to properly handle this device should be placed here.
249  *
250  * One example would be the device size since some controller expose their SPI
251  * mem devices through a io-mapped region.
252  */
253 struct spi_mem {
254 	struct spi_device *spi;
255 	void *drvpriv;
256 	const char *name;
257 };
258 
259 /**
260  * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
261  *				  device
262  * @mem: memory device
263  * @data: data to attach to the memory device
264  */
spi_mem_set_drvdata(struct spi_mem * mem,void * data)265 static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
266 {
267 	mem->drvpriv = data;
268 }
269 
270 /**
271  * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
272  *				  device
273  * @mem: memory device
274  *
275  * Return: the data attached to the mem device.
276  */
spi_mem_get_drvdata(struct spi_mem * mem)277 static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
278 {
279 	return mem->drvpriv;
280 }
281 
282 /**
283  * struct spi_controller_mem_ops - SPI memory operations
284  * @adjust_op_size: shrink the data xfer of an operation to match controller's
285  *		    limitations (can be alignment or max RX/TX size
286  *		    limitations)
287  * @supports_op: check if an operation is supported by the controller
288  * @exec_op: execute a SPI memory operation
289  *           not all driver provides supports_op(), so it can return -EOPNOTSUPP
290  *           if the op is not supported by the driver/controller
291  * @get_name: get a custom name for the SPI mem device from the controller.
292  *	      This might be needed if the controller driver has been ported
293  *	      to use the SPI mem layer and a custom name is used to keep
294  *	      mtdparts compatible.
295  *	      Note that if the implementation of this function allocates memory
296  *	      dynamically, then it should do so with devm_xxx(), as we don't
297  *	      have a ->free_name() function.
298  * @dirmap_create: create a direct mapping descriptor that can later be used to
299  *		   access the memory device. This method is optional
300  * @dirmap_destroy: destroy a memory descriptor previous created by
301  *		    ->dirmap_create()
302  * @dirmap_read: read data from the memory device using the direct mapping
303  *		 created by ->dirmap_create(). The function can return less
304  *		 data than requested (for example when the request is crossing
305  *		 the currently mapped area), and the caller of
306  *		 spi_mem_dirmap_read() is responsible for calling it again in
307  *		 this case.
308  * @dirmap_write: write data to the memory device using the direct mapping
309  *		  created by ->dirmap_create(). The function can return less
310  *		  data than requested (for example when the request is crossing
311  *		  the currently mapped area), and the caller of
312  *		  spi_mem_dirmap_write() is responsible for calling it again in
313  *		  this case.
314  * @poll_status: poll memory device status until (status & mask) == match or
315  *               when the timeout has expired. It fills the data buffer with
316  *               the last status value.
317  *
318  * This interface should be implemented by SPI controllers providing an
319  * high-level interface to execute SPI memory operation, which is usually the
320  * case for QSPI controllers.
321  *
322  * Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct
323  * mapping from the CPU because doing that can stall the CPU waiting for the
324  * SPI mem transaction to finish, and this will make real-time maintainers
325  * unhappy and might make your system less reactive. Instead, drivers should
326  * use DMA to access this direct mapping.
327  */
328 struct spi_controller_mem_ops {
329 	int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op);
330 	bool (*supports_op)(struct spi_mem *mem,
331 			    const struct spi_mem_op *op);
332 	int (*exec_op)(struct spi_mem *mem,
333 		       const struct spi_mem_op *op);
334 	const char *(*get_name)(struct spi_mem *mem);
335 	int (*dirmap_create)(struct spi_mem_dirmap_desc *desc);
336 	void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc);
337 	ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc,
338 			       u64 offs, size_t len, void *buf);
339 	ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc,
340 				u64 offs, size_t len, const void *buf);
341 	int (*poll_status)(struct spi_mem *mem,
342 			   const struct spi_mem_op *op,
343 			   u16 mask, u16 match,
344 			   unsigned long initial_delay_us,
345 			   unsigned long polling_rate_us,
346 			   unsigned long timeout_ms);
347 };
348 
349 /**
350  * struct spi_controller_mem_caps - SPI memory controller capabilities
351  * @dtr: Supports DTR operations
352  * @ecc: Supports operations with error correction
353  * @swap16: Supports swapping bytes on a 16 bit boundary when configured in
354  *	    Octal DTR
355  * @per_op_freq: Supports per operation frequency switching
356  */
357 struct spi_controller_mem_caps {
358 	bool dtr;
359 	bool ecc;
360 	bool swap16;
361 	bool per_op_freq;
362 };
363 
364 #define spi_mem_controller_is_capable(ctlr, cap)	\
365 	((ctlr)->mem_caps && (ctlr)->mem_caps->cap)
366 
367 /**
368  * struct spi_mem_driver - SPI memory driver
369  * @spidrv: inherit from a SPI driver
370  * @probe: probe a SPI memory. Usually where detection/initialization takes
371  *	   place
372  * @remove: remove a SPI memory
373  * @shutdown: take appropriate action when the system is shutdown
374  *
375  * This is just a thin wrapper around a spi_driver. The core takes care of
376  * allocating the spi_mem object and forwarding the probe/remove/shutdown
377  * request to the spi_mem_driver. The reason we use this wrapper is because
378  * we might have to stuff more information into the spi_mem struct to let
379  * SPI controllers know more about the SPI memory they interact with, and
380  * having this intermediate layer allows us to do that without adding more
381  * useless fields to the spi_device object.
382  */
383 struct spi_mem_driver {
384 	struct spi_driver spidrv;
385 	int (*probe)(struct spi_mem *mem);
386 	int (*remove)(struct spi_mem *mem);
387 	void (*shutdown)(struct spi_mem *mem);
388 };
389 
390 #if IS_ENABLED(CONFIG_SPI_MEM)
391 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
392 				       const struct spi_mem_op *op,
393 				       struct sg_table *sg);
394 
395 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
396 					  const struct spi_mem_op *op,
397 					  struct sg_table *sg);
398 
399 bool spi_mem_default_supports_op(struct spi_mem *mem,
400 				 const struct spi_mem_op *op);
401 #else
402 static inline int
spi_controller_dma_map_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sg)403 spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
404 				   const struct spi_mem_op *op,
405 				   struct sg_table *sg)
406 {
407 	return -ENOTSUPP;
408 }
409 
410 static inline void
spi_controller_dma_unmap_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sg)411 spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
412 				     const struct spi_mem_op *op,
413 				     struct sg_table *sg)
414 {
415 }
416 
417 static inline
spi_mem_default_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)418 bool spi_mem_default_supports_op(struct spi_mem *mem,
419 				 const struct spi_mem_op *op)
420 {
421 	return false;
422 }
423 #endif /* CONFIG_SPI_MEM */
424 
425 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op);
426 void spi_mem_adjust_op_freq(struct spi_mem *mem, struct spi_mem_op *op);
427 u64 spi_mem_calc_op_duration(struct spi_mem_op *op);
428 
429 bool spi_mem_supports_op(struct spi_mem *mem,
430 			 const struct spi_mem_op *op);
431 
432 int spi_mem_exec_op(struct spi_mem *mem,
433 		    const struct spi_mem_op *op);
434 
435 const char *spi_mem_get_name(struct spi_mem *mem);
436 
437 struct spi_mem_dirmap_desc *
438 spi_mem_dirmap_create(struct spi_mem *mem,
439 		      const struct spi_mem_dirmap_info *info);
440 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc);
441 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
442 			    u64 offs, size_t len, void *buf);
443 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
444 			     u64 offs, size_t len, const void *buf);
445 struct spi_mem_dirmap_desc *
446 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
447 			   const struct spi_mem_dirmap_info *info);
448 void devm_spi_mem_dirmap_destroy(struct device *dev,
449 				 struct spi_mem_dirmap_desc *desc);
450 
451 int spi_mem_poll_status(struct spi_mem *mem,
452 			const struct spi_mem_op *op,
453 			u16 mask, u16 match,
454 			unsigned long initial_delay_us,
455 			unsigned long polling_delay_us,
456 			u16 timeout_ms);
457 
458 int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
459 				       struct module *owner);
460 
461 void spi_mem_driver_unregister(struct spi_mem_driver *drv);
462 
463 #define spi_mem_driver_register(__drv)                                  \
464 	spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
465 
466 #define module_spi_mem_driver(__drv)                                    \
467 	module_driver(__drv, spi_mem_driver_register,                   \
468 		      spi_mem_driver_unregister)
469 
470 #endif /* __LINUX_SPI_MEM_H */
471