1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2016-2017 Micron Technology, Inc.
4  *
5  *  Authors:
6  *	Peter Pan <[email protected]>
7  */
8 #ifndef __LINUX_MTD_SPINAND_H
9 #define __LINUX_MTD_SPINAND_H
10 
11 #include <linux/mutex.h>
12 #include <linux/bitops.h>
13 #include <linux/device.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/mtd/nand.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18 
19 /**
20  * Standard SPI NAND flash operations
21  */
22 
23 #define SPINAND_RESET_OP						\
24 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1),				\
25 		   SPI_MEM_OP_NO_ADDR,					\
26 		   SPI_MEM_OP_NO_DUMMY,					\
27 		   SPI_MEM_OP_NO_DATA)
28 
29 #define SPINAND_WR_EN_DIS_OP(enable)					\
30 	SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1),		\
31 		   SPI_MEM_OP_NO_ADDR,					\
32 		   SPI_MEM_OP_NO_DUMMY,					\
33 		   SPI_MEM_OP_NO_DATA)
34 
35 #define SPINAND_READID_OP(naddr, ndummy, buf, len)			\
36 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1),				\
37 		   SPI_MEM_OP_ADDR(naddr, 0, 1),			\
38 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
39 		   SPI_MEM_OP_DATA_IN(len, buf, 1))
40 
41 #define SPINAND_SET_FEATURE_OP(reg, valptr)				\
42 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1),				\
43 		   SPI_MEM_OP_ADDR(1, reg, 1),				\
44 		   SPI_MEM_OP_NO_DUMMY,					\
45 		   SPI_MEM_OP_DATA_OUT(1, valptr, 1))
46 
47 #define SPINAND_GET_FEATURE_OP(reg, valptr)				\
48 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1),				\
49 		   SPI_MEM_OP_ADDR(1, reg, 1),				\
50 		   SPI_MEM_OP_NO_DUMMY,					\
51 		   SPI_MEM_OP_DATA_IN(1, valptr, 1))
52 
53 #define SPINAND_BLK_ERASE_OP(addr)					\
54 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1),				\
55 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
56 		   SPI_MEM_OP_NO_DUMMY,					\
57 		   SPI_MEM_OP_NO_DATA)
58 
59 #define SPINAND_PAGE_READ_OP(addr)					\
60 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1),				\
61 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
62 		   SPI_MEM_OP_NO_DUMMY,					\
63 		   SPI_MEM_OP_NO_DATA)
64 
65 #define SPINAND_PAGE_READ_FROM_CACHE_OP(addr, ndummy, buf, len, ...) \
66 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x03, 1),				\
67 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
68 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
69 		   SPI_MEM_OP_DATA_IN(len, buf, 1),			\
70 		   SPI_MEM_OP_MAX_FREQ(__VA_ARGS__ + 0))
71 
72 #define SPINAND_PAGE_READ_FROM_CACHE_FAST_OP(addr, ndummy, buf, len) \
73 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x0b, 1),			\
74 			 SPI_MEM_OP_ADDR(2, addr, 1),			\
75 			 SPI_MEM_OP_DUMMY(ndummy, 1),			\
76 			 SPI_MEM_OP_DATA_IN(len, buf, 1))
77 
78 #define SPINAND_PAGE_READ_FROM_CACHE_OP_3A(addr, ndummy, buf, len) \
79 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x03, 1),				\
80 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
81 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
82 		   SPI_MEM_OP_DATA_IN(len, buf, 1))
83 
84 #define SPINAND_PAGE_READ_FROM_CACHE_FAST_OP_3A(addr, ndummy, buf, len) \
85 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x0b, 1),				\
86 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
87 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
88 		   SPI_MEM_OP_DATA_IN(len, buf, 1))
89 
90 #define SPINAND_PAGE_READ_FROM_CACHE_DTR_OP(addr, ndummy, buf, len, freq) \
91 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x0d, 1),				\
92 		   SPI_MEM_DTR_OP_ADDR(2, addr, 1),			\
93 		   SPI_MEM_DTR_OP_DUMMY(ndummy, 1),			\
94 		   SPI_MEM_DTR_OP_DATA_IN(len, buf, 1),			\
95 		   SPI_MEM_OP_MAX_FREQ(freq))
96 
97 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len)	\
98 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1),				\
99 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
100 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
101 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
102 
103 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(addr, ndummy, buf, len)	\
104 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1),				\
105 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
106 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
107 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
108 
109 #define SPINAND_PAGE_READ_FROM_CACHE_X2_DTR_OP(addr, ndummy, buf, len, freq) \
110 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x3d, 1),				\
111 		   SPI_MEM_DTR_OP_ADDR(2, addr, 1),			\
112 		   SPI_MEM_DTR_OP_DUMMY(ndummy, 1),			\
113 		   SPI_MEM_DTR_OP_DATA_IN(len, buf, 2),			\
114 		   SPI_MEM_OP_MAX_FREQ(freq))
115 
116 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len)	\
117 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1),				\
118 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
119 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
120 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
121 
122 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(addr, ndummy, buf, len)	\
123 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1),				\
124 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
125 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
126 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
127 
128 #define SPINAND_PAGE_READ_FROM_CACHE_X4_DTR_OP(addr, ndummy, buf, len, freq) \
129 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x6d, 1),				\
130 		   SPI_MEM_DTR_OP_ADDR(2, addr, 1),			\
131 		   SPI_MEM_DTR_OP_DUMMY(ndummy, 1),			\
132 		   SPI_MEM_DTR_OP_DATA_IN(len, buf, 4),			\
133 		   SPI_MEM_OP_MAX_FREQ(freq))
134 
135 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len)	\
136 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1),				\
137 		   SPI_MEM_OP_ADDR(2, addr, 2),				\
138 		   SPI_MEM_OP_DUMMY(ndummy, 2),				\
139 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
140 
141 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP_3A(addr, ndummy, buf, len) \
142 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1),				\
143 		   SPI_MEM_OP_ADDR(3, addr, 2),				\
144 		   SPI_MEM_OP_DUMMY(ndummy, 2),				\
145 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
146 
147 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_DTR_OP(addr, ndummy, buf, len, freq) \
148 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xbd, 1),				\
149 		   SPI_MEM_DTR_OP_ADDR(2, addr, 2),			\
150 		   SPI_MEM_DTR_OP_DUMMY(ndummy, 2),			\
151 		   SPI_MEM_DTR_OP_DATA_IN(len, buf, 2),			\
152 		   SPI_MEM_OP_MAX_FREQ(freq))
153 
154 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len)	\
155 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1),				\
156 		   SPI_MEM_OP_ADDR(2, addr, 4),				\
157 		   SPI_MEM_OP_DUMMY(ndummy, 4),				\
158 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
159 
160 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP_3A(addr, ndummy, buf, len) \
161 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1),				\
162 		   SPI_MEM_OP_ADDR(3, addr, 4),				\
163 		   SPI_MEM_OP_DUMMY(ndummy, 4),				\
164 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
165 
166 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_DTR_OP(addr, ndummy, buf, len, freq) \
167 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xed, 1),				\
168 		   SPI_MEM_DTR_OP_ADDR(2, addr, 4),			\
169 		   SPI_MEM_DTR_OP_DUMMY(ndummy, 4),			\
170 		   SPI_MEM_DTR_OP_DATA_IN(len, buf, 4),			\
171 		   SPI_MEM_OP_MAX_FREQ(freq))
172 
173 #define SPINAND_PROG_EXEC_OP(addr)					\
174 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1),				\
175 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
176 		   SPI_MEM_OP_NO_DUMMY,					\
177 		   SPI_MEM_OP_NO_DATA)
178 
179 #define SPINAND_PROG_LOAD(reset, addr, buf, len)			\
180 	SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1),		\
181 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
182 		   SPI_MEM_OP_NO_DUMMY,					\
183 		   SPI_MEM_OP_DATA_OUT(len, buf, 1))
184 
185 #define SPINAND_PROG_LOAD_X4(reset, addr, buf, len)			\
186 	SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1),		\
187 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
188 		   SPI_MEM_OP_NO_DUMMY,					\
189 		   SPI_MEM_OP_DATA_OUT(len, buf, 4))
190 
191 /**
192  * Standard SPI NAND flash commands
193  */
194 #define SPINAND_CMD_PROG_LOAD_X4		0x32
195 #define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4	0x34
196 
197 /* feature register */
198 #define REG_BLOCK_LOCK		0xa0
199 #define BL_ALL_UNLOCKED		0x00
200 
201 /* configuration register */
202 #define REG_CFG			0xb0
203 #define CFG_OTP_ENABLE		BIT(6)
204 #define CFG_ECC_ENABLE		BIT(4)
205 #define CFG_QUAD_ENABLE		BIT(0)
206 
207 /* status register */
208 #define REG_STATUS		0xc0
209 #define STATUS_BUSY		BIT(0)
210 #define STATUS_ERASE_FAILED	BIT(2)
211 #define STATUS_PROG_FAILED	BIT(3)
212 #define STATUS_ECC_MASK		GENMASK(5, 4)
213 #define STATUS_ECC_NO_BITFLIPS	(0 << 4)
214 #define STATUS_ECC_HAS_BITFLIPS	(1 << 4)
215 #define STATUS_ECC_UNCOR_ERROR	(2 << 4)
216 
217 struct spinand_op;
218 struct spinand_device;
219 
220 #define SPINAND_MAX_ID_LEN	5
221 /*
222  * For erase, write and read operation, we got the following timings :
223  * tBERS (erase) 1ms to 4ms
224  * tPROG 300us to 400us
225  * tREAD 25us to 100us
226  * In order to minimize latency, the min value is divided by 4 for the
227  * initial delay, and dividing by 20 for the poll delay.
228  * For reset, 5us/10us/500us if the device is respectively
229  * reading/programming/erasing when the RESET occurs. Since we always
230  * issue a RESET when the device is IDLE, 5us is selected for both initial
231  * and poll delay.
232  */
233 #define SPINAND_READ_INITIAL_DELAY_US	6
234 #define SPINAND_READ_POLL_DELAY_US	5
235 #define SPINAND_RESET_INITIAL_DELAY_US	5
236 #define SPINAND_RESET_POLL_DELAY_US	5
237 #define SPINAND_WRITE_INITIAL_DELAY_US	75
238 #define SPINAND_WRITE_POLL_DELAY_US	15
239 #define SPINAND_ERASE_INITIAL_DELAY_US	250
240 #define SPINAND_ERASE_POLL_DELAY_US	50
241 
242 #define SPINAND_WAITRDY_TIMEOUT_MS	400
243 
244 /**
245  * struct spinand_id - SPI NAND id structure
246  * @data: buffer containing the id bytes. Currently 4 bytes large, but can
247  *	  be extended if required
248  * @len: ID length
249  */
250 struct spinand_id {
251 	u8 data[SPINAND_MAX_ID_LEN];
252 	int len;
253 };
254 
255 enum spinand_readid_method {
256 	SPINAND_READID_METHOD_OPCODE,
257 	SPINAND_READID_METHOD_OPCODE_ADDR,
258 	SPINAND_READID_METHOD_OPCODE_DUMMY,
259 };
260 
261 /**
262  * struct spinand_devid - SPI NAND device id structure
263  * @id: device id of current chip
264  * @len: number of bytes in device id
265  * @method: method to read chip id
266  *	    There are 3 possible variants:
267  *	    SPINAND_READID_METHOD_OPCODE: chip id is returned immediately
268  *	    after read_id opcode.
269  *	    SPINAND_READID_METHOD_OPCODE_ADDR: chip id is returned after
270  *	    read_id opcode + 1-byte address.
271  *	    SPINAND_READID_METHOD_OPCODE_DUMMY: chip id is returned after
272  *	    read_id opcode + 1 dummy byte.
273  */
274 struct spinand_devid {
275 	const u8 *id;
276 	const u8 len;
277 	const enum spinand_readid_method method;
278 };
279 
280 /**
281  * struct manufacurer_ops - SPI NAND manufacturer specific operations
282  * @init: initialize a SPI NAND device
283  * @cleanup: cleanup a SPI NAND device
284  *
285  * Each SPI NAND manufacturer driver should implement this interface so that
286  * NAND chips coming from this vendor can be initialized properly.
287  */
288 struct spinand_manufacturer_ops {
289 	int (*init)(struct spinand_device *spinand);
290 	void (*cleanup)(struct spinand_device *spinand);
291 };
292 
293 /**
294  * struct spinand_manufacturer - SPI NAND manufacturer instance
295  * @id: manufacturer ID
296  * @name: manufacturer name
297  * @devid_len: number of bytes in device ID
298  * @chips: supported SPI NANDs under current manufacturer
299  * @nchips: number of SPI NANDs available in chips array
300  * @ops: manufacturer operations
301  */
302 struct spinand_manufacturer {
303 	u8 id;
304 	char *name;
305 	const struct spinand_info *chips;
306 	const size_t nchips;
307 	const struct spinand_manufacturer_ops *ops;
308 };
309 
310 /* SPI NAND manufacturers */
311 extern const struct spinand_manufacturer alliancememory_spinand_manufacturer;
312 extern const struct spinand_manufacturer ato_spinand_manufacturer;
313 extern const struct spinand_manufacturer esmt_c8_spinand_manufacturer;
314 extern const struct spinand_manufacturer foresee_spinand_manufacturer;
315 extern const struct spinand_manufacturer gigadevice_spinand_manufacturer;
316 extern const struct spinand_manufacturer macronix_spinand_manufacturer;
317 extern const struct spinand_manufacturer micron_spinand_manufacturer;
318 extern const struct spinand_manufacturer paragon_spinand_manufacturer;
319 extern const struct spinand_manufacturer skyhigh_spinand_manufacturer;
320 extern const struct spinand_manufacturer toshiba_spinand_manufacturer;
321 extern const struct spinand_manufacturer winbond_spinand_manufacturer;
322 extern const struct spinand_manufacturer xtx_spinand_manufacturer;
323 
324 /**
325  * struct spinand_op_variants - SPI NAND operation variants
326  * @ops: the list of variants for a given operation
327  * @nops: the number of variants
328  *
329  * Some operations like read-from-cache/write-to-cache have several variants
330  * depending on the number of IO lines you use to transfer data or address
331  * cycles. This structure is a way to describe the different variants supported
332  * by a chip and let the core pick the best one based on the SPI mem controller
333  * capabilities.
334  */
335 struct spinand_op_variants {
336 	const struct spi_mem_op *ops;
337 	unsigned int nops;
338 };
339 
340 #define SPINAND_OP_VARIANTS(name, ...)					\
341 	const struct spinand_op_variants name = {			\
342 		.ops = (struct spi_mem_op[]) { __VA_ARGS__ },		\
343 		.nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) /	\
344 			sizeof(struct spi_mem_op),			\
345 	}
346 
347 /**
348  * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND
349  *		      chip
350  * @get_status: get the ECC status. Should return a positive number encoding
351  *		the number of corrected bitflips if correction was possible or
352  *		-EBADMSG if there are uncorrectable errors. I can also return
353  *		other negative error codes if the error is not caused by
354  *		uncorrectable bitflips
355  * @ooblayout: the OOB layout used by the on-die ECC implementation
356  */
357 struct spinand_ecc_info {
358 	int (*get_status)(struct spinand_device *spinand, u8 status);
359 	const struct mtd_ooblayout_ops *ooblayout;
360 };
361 
362 #define SPINAND_HAS_QE_BIT		BIT(0)
363 #define SPINAND_HAS_CR_FEAT_BIT		BIT(1)
364 #define SPINAND_HAS_PROG_PLANE_SELECT_BIT		BIT(2)
365 #define SPINAND_HAS_READ_PLANE_SELECT_BIT		BIT(3)
366 #define SPINAND_NO_RAW_ACCESS				BIT(4)
367 
368 /**
369  * struct spinand_ondie_ecc_conf - private SPI-NAND on-die ECC engine structure
370  * @status: status of the last wait operation that will be used in case
371  *          ->get_status() is not populated by the spinand device.
372  */
373 struct spinand_ondie_ecc_conf {
374 	u8 status;
375 };
376 
377 /**
378  * struct spinand_info - Structure used to describe SPI NAND chips
379  * @model: model name
380  * @devid: device ID
381  * @flags: OR-ing of the SPINAND_XXX flags
382  * @memorg: memory organization
383  * @eccreq: ECC requirements
384  * @eccinfo: on-die ECC info
385  * @op_variants: operations variants
386  * @op_variants.read_cache: variants of the read-cache operation
387  * @op_variants.write_cache: variants of the write-cache operation
388  * @op_variants.update_cache: variants of the update-cache operation
389  * @select_target: function used to select a target/die. Required only for
390  *		   multi-die chips
391  * @set_cont_read: enable/disable continuous cached reads
392  *
393  * Each SPI NAND manufacturer driver should have a spinand_info table
394  * describing all the chips supported by the driver.
395  */
396 struct spinand_info {
397 	const char *model;
398 	struct spinand_devid devid;
399 	u32 flags;
400 	struct nand_memory_organization memorg;
401 	struct nand_ecc_props eccreq;
402 	struct spinand_ecc_info eccinfo;
403 	struct {
404 		const struct spinand_op_variants *read_cache;
405 		const struct spinand_op_variants *write_cache;
406 		const struct spinand_op_variants *update_cache;
407 	} op_variants;
408 	int (*select_target)(struct spinand_device *spinand,
409 			     unsigned int target);
410 	int (*set_cont_read)(struct spinand_device *spinand,
411 			     bool enable);
412 };
413 
414 #define SPINAND_ID(__method, ...)					\
415 	{								\
416 		.id = (const u8[]){ __VA_ARGS__ },			\
417 		.len = sizeof((u8[]){ __VA_ARGS__ }),			\
418 		.method = __method,					\
419 	}
420 
421 #define SPINAND_INFO_OP_VARIANTS(__read, __write, __update)		\
422 	{								\
423 		.read_cache = __read,					\
424 		.write_cache = __write,					\
425 		.update_cache = __update,				\
426 	}
427 
428 #define SPINAND_ECCINFO(__ooblayout, __get_status)			\
429 	.eccinfo = {							\
430 		.ooblayout = __ooblayout,				\
431 		.get_status = __get_status,				\
432 	}
433 
434 #define SPINAND_SELECT_TARGET(__func)					\
435 	.select_target = __func,
436 
437 #define SPINAND_CONT_READ(__set_cont_read)				\
438 	.set_cont_read = __set_cont_read,
439 
440 #define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants,	\
441 		     __flags, ...)					\
442 	{								\
443 		.model = __model,					\
444 		.devid = __id,						\
445 		.memorg = __memorg,					\
446 		.eccreq = __eccreq,					\
447 		.op_variants = __op_variants,				\
448 		.flags = __flags,					\
449 		__VA_ARGS__						\
450 	}
451 
452 struct spinand_dirmap {
453 	struct spi_mem_dirmap_desc *wdesc;
454 	struct spi_mem_dirmap_desc *rdesc;
455 	struct spi_mem_dirmap_desc *wdesc_ecc;
456 	struct spi_mem_dirmap_desc *rdesc_ecc;
457 };
458 
459 /**
460  * struct spinand_device - SPI NAND device instance
461  * @base: NAND device instance
462  * @spimem: pointer to the SPI mem object
463  * @lock: lock used to serialize accesses to the NAND
464  * @id: NAND ID as returned by READ_ID
465  * @flags: NAND flags
466  * @op_templates: various SPI mem op templates
467  * @op_templates.read_cache: read cache op template
468  * @op_templates.write_cache: write cache op template
469  * @op_templates.update_cache: update cache op template
470  * @select_target: select a specific target/die. Usually called before sending
471  *		   a command addressing a page or an eraseblock embedded in
472  *		   this die. Only required if your chip exposes several dies
473  * @cur_target: currently selected target/die
474  * @eccinfo: on-die ECC information
475  * @cfg_cache: config register cache. One entry per die
476  * @databuf: bounce buffer for data
477  * @oobbuf: bounce buffer for OOB data
478  * @scratchbuf: buffer used for everything but page accesses. This is needed
479  *		because the spi-mem interface explicitly requests that buffers
480  *		passed in spi_mem_op be DMA-able, so we can't based the bufs on
481  *		the stack
482  * @manufacturer: SPI NAND manufacturer information
483  * @cont_read_possible: Field filled by the core once the whole system
484  *		configuration is known to tell whether continuous reads are
485  *		suitable to use or not in general with this chip/configuration.
486  *		A per-transfer check must of course be done to ensure it is
487  *		actually relevant to enable this feature.
488  * @set_cont_read: Enable/disable the continuous read feature
489  * @priv: manufacturer private data
490  */
491 struct spinand_device {
492 	struct nand_device base;
493 	struct spi_mem *spimem;
494 	struct mutex lock;
495 	struct spinand_id id;
496 	u32 flags;
497 
498 	struct {
499 		const struct spi_mem_op *read_cache;
500 		const struct spi_mem_op *write_cache;
501 		const struct spi_mem_op *update_cache;
502 	} op_templates;
503 
504 	struct spinand_dirmap *dirmaps;
505 
506 	int (*select_target)(struct spinand_device *spinand,
507 			     unsigned int target);
508 	unsigned int cur_target;
509 
510 	struct spinand_ecc_info eccinfo;
511 
512 	u8 *cfg_cache;
513 	u8 *databuf;
514 	u8 *oobbuf;
515 	u8 *scratchbuf;
516 	const struct spinand_manufacturer *manufacturer;
517 	void *priv;
518 
519 	bool cont_read_possible;
520 	int (*set_cont_read)(struct spinand_device *spinand,
521 			     bool enable);
522 };
523 
524 /**
525  * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance
526  * @mtd: MTD instance
527  *
528  * Return: the SPI NAND device attached to @mtd.
529  */
mtd_to_spinand(struct mtd_info * mtd)530 static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd)
531 {
532 	return container_of(mtd_to_nanddev(mtd), struct spinand_device, base);
533 }
534 
535 /**
536  * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device
537  * @spinand: SPI NAND device
538  *
539  * Return: the MTD device embedded in @spinand.
540  */
spinand_to_mtd(struct spinand_device * spinand)541 static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand)
542 {
543 	return nanddev_to_mtd(&spinand->base);
544 }
545 
546 /**
547  * nand_to_spinand() - Get the SPI NAND device embedding an NAND object
548  * @nand: NAND object
549  *
550  * Return: the SPI NAND device embedding @nand.
551  */
nand_to_spinand(struct nand_device * nand)552 static inline struct spinand_device *nand_to_spinand(struct nand_device *nand)
553 {
554 	return container_of(nand, struct spinand_device, base);
555 }
556 
557 /**
558  * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object
559  * @spinand: SPI NAND device
560  *
561  * Return: the NAND device embedded in @spinand.
562  */
563 static inline struct nand_device *
spinand_to_nand(struct spinand_device * spinand)564 spinand_to_nand(struct spinand_device *spinand)
565 {
566 	return &spinand->base;
567 }
568 
569 /**
570  * spinand_set_of_node - Attach a DT node to a SPI NAND device
571  * @spinand: SPI NAND device
572  * @np: DT node
573  *
574  * Attach a DT node to a SPI NAND device.
575  */
spinand_set_of_node(struct spinand_device * spinand,struct device_node * np)576 static inline void spinand_set_of_node(struct spinand_device *spinand,
577 				       struct device_node *np)
578 {
579 	nanddev_set_of_node(&spinand->base, np);
580 }
581 
582 int spinand_match_and_init(struct spinand_device *spinand,
583 			   const struct spinand_info *table,
584 			   unsigned int table_size,
585 			   enum spinand_readid_method rdid_method);
586 
587 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
588 int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val);
589 int spinand_select_target(struct spinand_device *spinand, unsigned int target);
590 
591 #endif /* __LINUX_MTD_SPINAND_H */
592