1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/pidfs.h>
36 
37 #include "pnode.h"
38 #include "internal.h"
39 
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
42 
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
47 
48 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)49 static int __init set_mhash_entries(char *str)
50 {
51 	if (!str)
52 		return 0;
53 	mhash_entries = simple_strtoul(str, &str, 0);
54 	return 1;
55 }
56 __setup("mhash_entries=", set_mhash_entries);
57 
58 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)59 static int __init set_mphash_entries(char *str)
60 {
61 	if (!str)
62 		return 0;
63 	mphash_entries = simple_strtoul(str, &str, 0);
64 	return 1;
65 }
66 __setup("mphash_entries=", set_mphash_entries);
67 
68 static u64 event;
69 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
70 static DEFINE_IDA(mnt_group_ida);
71 
72 /* Don't allow confusion with old 32bit mount ID */
73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
74 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
75 
76 static struct hlist_head *mount_hashtable __ro_after_init;
77 static struct hlist_head *mountpoint_hashtable __ro_after_init;
78 static struct kmem_cache *mnt_cache __ro_after_init;
79 static DECLARE_RWSEM(namespace_sem);
80 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
82 static DEFINE_SEQLOCK(mnt_ns_tree_lock);
83 
84 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
85 static LIST_HEAD(mnt_ns_list); /* protected by mnt_ns_tree_lock */
86 
87 struct mount_kattr {
88 	unsigned int attr_set;
89 	unsigned int attr_clr;
90 	unsigned int propagation;
91 	unsigned int lookup_flags;
92 	bool recurse;
93 	struct user_namespace *mnt_userns;
94 	struct mnt_idmap *mnt_idmap;
95 };
96 
97 /* /sys/fs */
98 struct kobject *fs_kobj __ro_after_init;
99 EXPORT_SYMBOL_GPL(fs_kobj);
100 
101 /*
102  * vfsmount lock may be taken for read to prevent changes to the
103  * vfsmount hash, ie. during mountpoint lookups or walking back
104  * up the tree.
105  *
106  * It should be taken for write in all cases where the vfsmount
107  * tree or hash is modified or when a vfsmount structure is modified.
108  */
109 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
110 
node_to_mnt_ns(const struct rb_node * node)111 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
112 {
113 	if (!node)
114 		return NULL;
115 	return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
116 }
117 
mnt_ns_cmp(struct rb_node * a,const struct rb_node * b)118 static int mnt_ns_cmp(struct rb_node *a, const struct rb_node *b)
119 {
120 	struct mnt_namespace *ns_a = node_to_mnt_ns(a);
121 	struct mnt_namespace *ns_b = node_to_mnt_ns(b);
122 	u64 seq_a = ns_a->seq;
123 	u64 seq_b = ns_b->seq;
124 
125 	if (seq_a < seq_b)
126 		return -1;
127 	if (seq_a > seq_b)
128 		return 1;
129 	return 0;
130 }
131 
mnt_ns_tree_write_lock(void)132 static inline void mnt_ns_tree_write_lock(void)
133 {
134 	write_seqlock(&mnt_ns_tree_lock);
135 }
136 
mnt_ns_tree_write_unlock(void)137 static inline void mnt_ns_tree_write_unlock(void)
138 {
139 	write_sequnlock(&mnt_ns_tree_lock);
140 }
141 
mnt_ns_tree_add(struct mnt_namespace * ns)142 static void mnt_ns_tree_add(struct mnt_namespace *ns)
143 {
144 	struct rb_node *node, *prev;
145 
146 	mnt_ns_tree_write_lock();
147 	node = rb_find_add_rcu(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_cmp);
148 	/*
149 	 * If there's no previous entry simply add it after the
150 	 * head and if there is add it after the previous entry.
151 	 */
152 	prev = rb_prev(&ns->mnt_ns_tree_node);
153 	if (!prev)
154 		list_add_rcu(&ns->mnt_ns_list, &mnt_ns_list);
155 	else
156 		list_add_rcu(&ns->mnt_ns_list, &node_to_mnt_ns(prev)->mnt_ns_list);
157 	mnt_ns_tree_write_unlock();
158 
159 	WARN_ON_ONCE(node);
160 }
161 
mnt_ns_release(struct mnt_namespace * ns)162 static void mnt_ns_release(struct mnt_namespace *ns)
163 {
164 	/* keep alive for {list,stat}mount() */
165 	if (refcount_dec_and_test(&ns->passive)) {
166 		put_user_ns(ns->user_ns);
167 		kfree(ns);
168 	}
169 }
DEFINE_FREE(mnt_ns_release,struct mnt_namespace *,if (_T)mnt_ns_release (_T))170 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
171 
172 static void mnt_ns_release_rcu(struct rcu_head *rcu)
173 {
174 	mnt_ns_release(container_of(rcu, struct mnt_namespace, mnt_ns_rcu));
175 }
176 
mnt_ns_tree_remove(struct mnt_namespace * ns)177 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
178 {
179 	/* remove from global mount namespace list */
180 	if (!is_anon_ns(ns)) {
181 		mnt_ns_tree_write_lock();
182 		rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
183 		list_bidir_del_rcu(&ns->mnt_ns_list);
184 		mnt_ns_tree_write_unlock();
185 	}
186 
187 	call_rcu(&ns->mnt_ns_rcu, mnt_ns_release_rcu);
188 }
189 
mnt_ns_find(const void * key,const struct rb_node * node)190 static int mnt_ns_find(const void *key, const struct rb_node *node)
191 {
192 	const u64 mnt_ns_id = *(u64 *)key;
193 	const struct mnt_namespace *ns = node_to_mnt_ns(node);
194 
195 	if (mnt_ns_id < ns->seq)
196 		return -1;
197 	if (mnt_ns_id > ns->seq)
198 		return 1;
199 	return 0;
200 }
201 
202 /*
203  * Lookup a mount namespace by id and take a passive reference count. Taking a
204  * passive reference means the mount namespace can be emptied if e.g., the last
205  * task holding an active reference exits. To access the mounts of the
206  * namespace the @namespace_sem must first be acquired. If the namespace has
207  * already shut down before acquiring @namespace_sem, {list,stat}mount() will
208  * see that the mount rbtree of the namespace is empty.
209  *
210  * Note the lookup is lockless protected by a sequence counter. We only
211  * need to guard against false negatives as false positives aren't
212  * possible. So if we didn't find a mount namespace and the sequence
213  * counter has changed we need to retry. If the sequence counter is
214  * still the same we know the search actually failed.
215  */
lookup_mnt_ns(u64 mnt_ns_id)216 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
217 {
218 	struct mnt_namespace *ns;
219 	struct rb_node *node;
220 	unsigned int seq;
221 
222 	guard(rcu)();
223 	do {
224 		seq = read_seqbegin(&mnt_ns_tree_lock);
225 		node = rb_find_rcu(&mnt_ns_id, &mnt_ns_tree, mnt_ns_find);
226 		if (node)
227 			break;
228 	} while (read_seqretry(&mnt_ns_tree_lock, seq));
229 
230 	if (!node)
231 		return NULL;
232 
233 	/*
234 	 * The last reference count is put with RCU delay so we can
235 	 * unconditonally acquire a reference here.
236 	 */
237 	ns = node_to_mnt_ns(node);
238 	refcount_inc(&ns->passive);
239 	return ns;
240 }
241 
lock_mount_hash(void)242 static inline void lock_mount_hash(void)
243 {
244 	write_seqlock(&mount_lock);
245 }
246 
unlock_mount_hash(void)247 static inline void unlock_mount_hash(void)
248 {
249 	write_sequnlock(&mount_lock);
250 }
251 
m_hash(struct vfsmount * mnt,struct dentry * dentry)252 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
253 {
254 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
255 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
256 	tmp = tmp + (tmp >> m_hash_shift);
257 	return &mount_hashtable[tmp & m_hash_mask];
258 }
259 
mp_hash(struct dentry * dentry)260 static inline struct hlist_head *mp_hash(struct dentry *dentry)
261 {
262 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
263 	tmp = tmp + (tmp >> mp_hash_shift);
264 	return &mountpoint_hashtable[tmp & mp_hash_mask];
265 }
266 
mnt_alloc_id(struct mount * mnt)267 static int mnt_alloc_id(struct mount *mnt)
268 {
269 	int res;
270 
271 	xa_lock(&mnt_id_xa);
272 	res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
273 	if (!res)
274 		mnt->mnt_id_unique = ++mnt_id_ctr;
275 	xa_unlock(&mnt_id_xa);
276 	return res;
277 }
278 
mnt_free_id(struct mount * mnt)279 static void mnt_free_id(struct mount *mnt)
280 {
281 	xa_erase(&mnt_id_xa, mnt->mnt_id);
282 }
283 
284 /*
285  * Allocate a new peer group ID
286  */
mnt_alloc_group_id(struct mount * mnt)287 static int mnt_alloc_group_id(struct mount *mnt)
288 {
289 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
290 
291 	if (res < 0)
292 		return res;
293 	mnt->mnt_group_id = res;
294 	return 0;
295 }
296 
297 /*
298  * Release a peer group ID
299  */
mnt_release_group_id(struct mount * mnt)300 void mnt_release_group_id(struct mount *mnt)
301 {
302 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
303 	mnt->mnt_group_id = 0;
304 }
305 
306 /*
307  * vfsmount lock must be held for read
308  */
mnt_add_count(struct mount * mnt,int n)309 static inline void mnt_add_count(struct mount *mnt, int n)
310 {
311 #ifdef CONFIG_SMP
312 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
313 #else
314 	preempt_disable();
315 	mnt->mnt_count += n;
316 	preempt_enable();
317 #endif
318 }
319 
320 /*
321  * vfsmount lock must be held for write
322  */
mnt_get_count(struct mount * mnt)323 int mnt_get_count(struct mount *mnt)
324 {
325 #ifdef CONFIG_SMP
326 	int count = 0;
327 	int cpu;
328 
329 	for_each_possible_cpu(cpu) {
330 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
331 	}
332 
333 	return count;
334 #else
335 	return mnt->mnt_count;
336 #endif
337 }
338 
alloc_vfsmnt(const char * name)339 static struct mount *alloc_vfsmnt(const char *name)
340 {
341 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
342 	if (mnt) {
343 		int err;
344 
345 		err = mnt_alloc_id(mnt);
346 		if (err)
347 			goto out_free_cache;
348 
349 		if (name) {
350 			mnt->mnt_devname = kstrdup_const(name,
351 							 GFP_KERNEL_ACCOUNT);
352 			if (!mnt->mnt_devname)
353 				goto out_free_id;
354 		}
355 
356 #ifdef CONFIG_SMP
357 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
358 		if (!mnt->mnt_pcp)
359 			goto out_free_devname;
360 
361 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
362 #else
363 		mnt->mnt_count = 1;
364 		mnt->mnt_writers = 0;
365 #endif
366 
367 		INIT_HLIST_NODE(&mnt->mnt_hash);
368 		INIT_LIST_HEAD(&mnt->mnt_child);
369 		INIT_LIST_HEAD(&mnt->mnt_mounts);
370 		INIT_LIST_HEAD(&mnt->mnt_list);
371 		INIT_LIST_HEAD(&mnt->mnt_expire);
372 		INIT_LIST_HEAD(&mnt->mnt_share);
373 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
374 		INIT_LIST_HEAD(&mnt->mnt_slave);
375 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
376 		INIT_LIST_HEAD(&mnt->mnt_umounting);
377 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
378 		RB_CLEAR_NODE(&mnt->mnt_node);
379 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
380 	}
381 	return mnt;
382 
383 #ifdef CONFIG_SMP
384 out_free_devname:
385 	kfree_const(mnt->mnt_devname);
386 #endif
387 out_free_id:
388 	mnt_free_id(mnt);
389 out_free_cache:
390 	kmem_cache_free(mnt_cache, mnt);
391 	return NULL;
392 }
393 
394 /*
395  * Most r/o checks on a fs are for operations that take
396  * discrete amounts of time, like a write() or unlink().
397  * We must keep track of when those operations start
398  * (for permission checks) and when they end, so that
399  * we can determine when writes are able to occur to
400  * a filesystem.
401  */
402 /*
403  * __mnt_is_readonly: check whether a mount is read-only
404  * @mnt: the mount to check for its write status
405  *
406  * This shouldn't be used directly ouside of the VFS.
407  * It does not guarantee that the filesystem will stay
408  * r/w, just that it is right *now*.  This can not and
409  * should not be used in place of IS_RDONLY(inode).
410  * mnt_want/drop_write() will _keep_ the filesystem
411  * r/w.
412  */
__mnt_is_readonly(struct vfsmount * mnt)413 bool __mnt_is_readonly(struct vfsmount *mnt)
414 {
415 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
416 }
417 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
418 
mnt_inc_writers(struct mount * mnt)419 static inline void mnt_inc_writers(struct mount *mnt)
420 {
421 #ifdef CONFIG_SMP
422 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
423 #else
424 	mnt->mnt_writers++;
425 #endif
426 }
427 
mnt_dec_writers(struct mount * mnt)428 static inline void mnt_dec_writers(struct mount *mnt)
429 {
430 #ifdef CONFIG_SMP
431 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
432 #else
433 	mnt->mnt_writers--;
434 #endif
435 }
436 
mnt_get_writers(struct mount * mnt)437 static unsigned int mnt_get_writers(struct mount *mnt)
438 {
439 #ifdef CONFIG_SMP
440 	unsigned int count = 0;
441 	int cpu;
442 
443 	for_each_possible_cpu(cpu) {
444 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
445 	}
446 
447 	return count;
448 #else
449 	return mnt->mnt_writers;
450 #endif
451 }
452 
mnt_is_readonly(struct vfsmount * mnt)453 static int mnt_is_readonly(struct vfsmount *mnt)
454 {
455 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
456 		return 1;
457 	/*
458 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
459 	 * making sure if we don't see s_readonly_remount set yet, we also will
460 	 * not see any superblock / mount flag changes done by remount.
461 	 * It also pairs with the barrier in sb_end_ro_state_change()
462 	 * assuring that if we see s_readonly_remount already cleared, we will
463 	 * see the values of superblock / mount flags updated by remount.
464 	 */
465 	smp_rmb();
466 	return __mnt_is_readonly(mnt);
467 }
468 
469 /*
470  * Most r/o & frozen checks on a fs are for operations that take discrete
471  * amounts of time, like a write() or unlink().  We must keep track of when
472  * those operations start (for permission checks) and when they end, so that we
473  * can determine when writes are able to occur to a filesystem.
474  */
475 /**
476  * mnt_get_write_access - get write access to a mount without freeze protection
477  * @m: the mount on which to take a write
478  *
479  * This tells the low-level filesystem that a write is about to be performed to
480  * it, and makes sure that writes are allowed (mnt it read-write) before
481  * returning success. This operation does not protect against filesystem being
482  * frozen. When the write operation is finished, mnt_put_write_access() must be
483  * called. This is effectively a refcount.
484  */
mnt_get_write_access(struct vfsmount * m)485 int mnt_get_write_access(struct vfsmount *m)
486 {
487 	struct mount *mnt = real_mount(m);
488 	int ret = 0;
489 
490 	preempt_disable();
491 	mnt_inc_writers(mnt);
492 	/*
493 	 * The store to mnt_inc_writers must be visible before we pass
494 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
495 	 * incremented count after it has set MNT_WRITE_HOLD.
496 	 */
497 	smp_mb();
498 	might_lock(&mount_lock.lock);
499 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
500 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
501 			cpu_relax();
502 		} else {
503 			/*
504 			 * This prevents priority inversion, if the task
505 			 * setting MNT_WRITE_HOLD got preempted on a remote
506 			 * CPU, and it prevents life lock if the task setting
507 			 * MNT_WRITE_HOLD has a lower priority and is bound to
508 			 * the same CPU as the task that is spinning here.
509 			 */
510 			preempt_enable();
511 			lock_mount_hash();
512 			unlock_mount_hash();
513 			preempt_disable();
514 		}
515 	}
516 	/*
517 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
518 	 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
519 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
520 	 * mnt_is_readonly() and bail in case we are racing with remount
521 	 * read-only.
522 	 */
523 	smp_rmb();
524 	if (mnt_is_readonly(m)) {
525 		mnt_dec_writers(mnt);
526 		ret = -EROFS;
527 	}
528 	preempt_enable();
529 
530 	return ret;
531 }
532 EXPORT_SYMBOL_GPL(mnt_get_write_access);
533 
534 /**
535  * mnt_want_write - get write access to a mount
536  * @m: the mount on which to take a write
537  *
538  * This tells the low-level filesystem that a write is about to be performed to
539  * it, and makes sure that writes are allowed (mount is read-write, filesystem
540  * is not frozen) before returning success.  When the write operation is
541  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
542  */
mnt_want_write(struct vfsmount * m)543 int mnt_want_write(struct vfsmount *m)
544 {
545 	int ret;
546 
547 	sb_start_write(m->mnt_sb);
548 	ret = mnt_get_write_access(m);
549 	if (ret)
550 		sb_end_write(m->mnt_sb);
551 	return ret;
552 }
553 EXPORT_SYMBOL_GPL(mnt_want_write);
554 
555 /**
556  * mnt_get_write_access_file - get write access to a file's mount
557  * @file: the file who's mount on which to take a write
558  *
559  * This is like mnt_get_write_access, but if @file is already open for write it
560  * skips incrementing mnt_writers (since the open file already has a reference)
561  * and instead only does the check for emergency r/o remounts.  This must be
562  * paired with mnt_put_write_access_file.
563  */
mnt_get_write_access_file(struct file * file)564 int mnt_get_write_access_file(struct file *file)
565 {
566 	if (file->f_mode & FMODE_WRITER) {
567 		/*
568 		 * Superblock may have become readonly while there are still
569 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
570 		 */
571 		if (__mnt_is_readonly(file->f_path.mnt))
572 			return -EROFS;
573 		return 0;
574 	}
575 	return mnt_get_write_access(file->f_path.mnt);
576 }
577 
578 /**
579  * mnt_want_write_file - get write access to a file's mount
580  * @file: the file who's mount on which to take a write
581  *
582  * This is like mnt_want_write, but if the file is already open for writing it
583  * skips incrementing mnt_writers (since the open file already has a reference)
584  * and instead only does the freeze protection and the check for emergency r/o
585  * remounts.  This must be paired with mnt_drop_write_file.
586  */
mnt_want_write_file(struct file * file)587 int mnt_want_write_file(struct file *file)
588 {
589 	int ret;
590 
591 	sb_start_write(file_inode(file)->i_sb);
592 	ret = mnt_get_write_access_file(file);
593 	if (ret)
594 		sb_end_write(file_inode(file)->i_sb);
595 	return ret;
596 }
597 EXPORT_SYMBOL_GPL(mnt_want_write_file);
598 
599 /**
600  * mnt_put_write_access - give up write access to a mount
601  * @mnt: the mount on which to give up write access
602  *
603  * Tells the low-level filesystem that we are done
604  * performing writes to it.  Must be matched with
605  * mnt_get_write_access() call above.
606  */
mnt_put_write_access(struct vfsmount * mnt)607 void mnt_put_write_access(struct vfsmount *mnt)
608 {
609 	preempt_disable();
610 	mnt_dec_writers(real_mount(mnt));
611 	preempt_enable();
612 }
613 EXPORT_SYMBOL_GPL(mnt_put_write_access);
614 
615 /**
616  * mnt_drop_write - give up write access to a mount
617  * @mnt: the mount on which to give up write access
618  *
619  * Tells the low-level filesystem that we are done performing writes to it and
620  * also allows filesystem to be frozen again.  Must be matched with
621  * mnt_want_write() call above.
622  */
mnt_drop_write(struct vfsmount * mnt)623 void mnt_drop_write(struct vfsmount *mnt)
624 {
625 	mnt_put_write_access(mnt);
626 	sb_end_write(mnt->mnt_sb);
627 }
628 EXPORT_SYMBOL_GPL(mnt_drop_write);
629 
mnt_put_write_access_file(struct file * file)630 void mnt_put_write_access_file(struct file *file)
631 {
632 	if (!(file->f_mode & FMODE_WRITER))
633 		mnt_put_write_access(file->f_path.mnt);
634 }
635 
mnt_drop_write_file(struct file * file)636 void mnt_drop_write_file(struct file *file)
637 {
638 	mnt_put_write_access_file(file);
639 	sb_end_write(file_inode(file)->i_sb);
640 }
641 EXPORT_SYMBOL(mnt_drop_write_file);
642 
643 /**
644  * mnt_hold_writers - prevent write access to the given mount
645  * @mnt: mnt to prevent write access to
646  *
647  * Prevents write access to @mnt if there are no active writers for @mnt.
648  * This function needs to be called and return successfully before changing
649  * properties of @mnt that need to remain stable for callers with write access
650  * to @mnt.
651  *
652  * After this functions has been called successfully callers must pair it with
653  * a call to mnt_unhold_writers() in order to stop preventing write access to
654  * @mnt.
655  *
656  * Context: This function expects lock_mount_hash() to be held serializing
657  *          setting MNT_WRITE_HOLD.
658  * Return: On success 0 is returned.
659  *	   On error, -EBUSY is returned.
660  */
mnt_hold_writers(struct mount * mnt)661 static inline int mnt_hold_writers(struct mount *mnt)
662 {
663 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
664 	/*
665 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
666 	 * should be visible before we do.
667 	 */
668 	smp_mb();
669 
670 	/*
671 	 * With writers on hold, if this value is zero, then there are
672 	 * definitely no active writers (although held writers may subsequently
673 	 * increment the count, they'll have to wait, and decrement it after
674 	 * seeing MNT_READONLY).
675 	 *
676 	 * It is OK to have counter incremented on one CPU and decremented on
677 	 * another: the sum will add up correctly. The danger would be when we
678 	 * sum up each counter, if we read a counter before it is incremented,
679 	 * but then read another CPU's count which it has been subsequently
680 	 * decremented from -- we would see more decrements than we should.
681 	 * MNT_WRITE_HOLD protects against this scenario, because
682 	 * mnt_want_write first increments count, then smp_mb, then spins on
683 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
684 	 * we're counting up here.
685 	 */
686 	if (mnt_get_writers(mnt) > 0)
687 		return -EBUSY;
688 
689 	return 0;
690 }
691 
692 /**
693  * mnt_unhold_writers - stop preventing write access to the given mount
694  * @mnt: mnt to stop preventing write access to
695  *
696  * Stop preventing write access to @mnt allowing callers to gain write access
697  * to @mnt again.
698  *
699  * This function can only be called after a successful call to
700  * mnt_hold_writers().
701  *
702  * Context: This function expects lock_mount_hash() to be held.
703  */
mnt_unhold_writers(struct mount * mnt)704 static inline void mnt_unhold_writers(struct mount *mnt)
705 {
706 	/*
707 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
708 	 * that become unheld will see MNT_READONLY.
709 	 */
710 	smp_wmb();
711 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
712 }
713 
mnt_make_readonly(struct mount * mnt)714 static int mnt_make_readonly(struct mount *mnt)
715 {
716 	int ret;
717 
718 	ret = mnt_hold_writers(mnt);
719 	if (!ret)
720 		mnt->mnt.mnt_flags |= MNT_READONLY;
721 	mnt_unhold_writers(mnt);
722 	return ret;
723 }
724 
sb_prepare_remount_readonly(struct super_block * sb)725 int sb_prepare_remount_readonly(struct super_block *sb)
726 {
727 	struct mount *mnt;
728 	int err = 0;
729 
730 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
731 	if (atomic_long_read(&sb->s_remove_count))
732 		return -EBUSY;
733 
734 	lock_mount_hash();
735 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
736 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
737 			err = mnt_hold_writers(mnt);
738 			if (err)
739 				break;
740 		}
741 	}
742 	if (!err && atomic_long_read(&sb->s_remove_count))
743 		err = -EBUSY;
744 
745 	if (!err)
746 		sb_start_ro_state_change(sb);
747 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
748 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
749 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
750 	}
751 	unlock_mount_hash();
752 
753 	return err;
754 }
755 
free_vfsmnt(struct mount * mnt)756 static void free_vfsmnt(struct mount *mnt)
757 {
758 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
759 	kfree_const(mnt->mnt_devname);
760 #ifdef CONFIG_SMP
761 	free_percpu(mnt->mnt_pcp);
762 #endif
763 	kmem_cache_free(mnt_cache, mnt);
764 }
765 
delayed_free_vfsmnt(struct rcu_head * head)766 static void delayed_free_vfsmnt(struct rcu_head *head)
767 {
768 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
769 }
770 
771 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)772 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
773 {
774 	struct mount *mnt;
775 	if (read_seqretry(&mount_lock, seq))
776 		return 1;
777 	if (bastard == NULL)
778 		return 0;
779 	mnt = real_mount(bastard);
780 	mnt_add_count(mnt, 1);
781 	smp_mb();			// see mntput_no_expire()
782 	if (likely(!read_seqretry(&mount_lock, seq)))
783 		return 0;
784 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
785 		mnt_add_count(mnt, -1);
786 		return 1;
787 	}
788 	lock_mount_hash();
789 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
790 		mnt_add_count(mnt, -1);
791 		unlock_mount_hash();
792 		return 1;
793 	}
794 	unlock_mount_hash();
795 	/* caller will mntput() */
796 	return -1;
797 }
798 
799 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)800 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
801 {
802 	int res = __legitimize_mnt(bastard, seq);
803 	if (likely(!res))
804 		return true;
805 	if (unlikely(res < 0)) {
806 		rcu_read_unlock();
807 		mntput(bastard);
808 		rcu_read_lock();
809 	}
810 	return false;
811 }
812 
813 /**
814  * __lookup_mnt - find first child mount
815  * @mnt:	parent mount
816  * @dentry:	mountpoint
817  *
818  * If @mnt has a child mount @c mounted @dentry find and return it.
819  *
820  * Note that the child mount @c need not be unique. There are cases
821  * where shadow mounts are created. For example, during mount
822  * propagation when a source mount @mnt whose root got overmounted by a
823  * mount @o after path lookup but before @namespace_sem could be
824  * acquired gets copied and propagated. So @mnt gets copied including
825  * @o. When @mnt is propagated to a destination mount @d that already
826  * has another mount @n mounted at the same mountpoint then the source
827  * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
828  * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
829  * on @dentry.
830  *
831  * Return: The first child of @mnt mounted @dentry or NULL.
832  */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)833 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
834 {
835 	struct hlist_head *head = m_hash(mnt, dentry);
836 	struct mount *p;
837 
838 	hlist_for_each_entry_rcu(p, head, mnt_hash)
839 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
840 			return p;
841 	return NULL;
842 }
843 
844 /*
845  * lookup_mnt - Return the first child mount mounted at path
846  *
847  * "First" means first mounted chronologically.  If you create the
848  * following mounts:
849  *
850  * mount /dev/sda1 /mnt
851  * mount /dev/sda2 /mnt
852  * mount /dev/sda3 /mnt
853  *
854  * Then lookup_mnt() on the base /mnt dentry in the root mount will
855  * return successively the root dentry and vfsmount of /dev/sda1, then
856  * /dev/sda2, then /dev/sda3, then NULL.
857  *
858  * lookup_mnt takes a reference to the found vfsmount.
859  */
lookup_mnt(const struct path * path)860 struct vfsmount *lookup_mnt(const struct path *path)
861 {
862 	struct mount *child_mnt;
863 	struct vfsmount *m;
864 	unsigned seq;
865 
866 	rcu_read_lock();
867 	do {
868 		seq = read_seqbegin(&mount_lock);
869 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
870 		m = child_mnt ? &child_mnt->mnt : NULL;
871 	} while (!legitimize_mnt(m, seq));
872 	rcu_read_unlock();
873 	return m;
874 }
875 
876 /*
877  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
878  *                         current mount namespace.
879  *
880  * The common case is dentries are not mountpoints at all and that
881  * test is handled inline.  For the slow case when we are actually
882  * dealing with a mountpoint of some kind, walk through all of the
883  * mounts in the current mount namespace and test to see if the dentry
884  * is a mountpoint.
885  *
886  * The mount_hashtable is not usable in the context because we
887  * need to identify all mounts that may be in the current mount
888  * namespace not just a mount that happens to have some specified
889  * parent mount.
890  */
__is_local_mountpoint(struct dentry * dentry)891 bool __is_local_mountpoint(struct dentry *dentry)
892 {
893 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
894 	struct mount *mnt, *n;
895 	bool is_covered = false;
896 
897 	down_read(&namespace_sem);
898 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
899 		is_covered = (mnt->mnt_mountpoint == dentry);
900 		if (is_covered)
901 			break;
902 	}
903 	up_read(&namespace_sem);
904 
905 	return is_covered;
906 }
907 
lookup_mountpoint(struct dentry * dentry)908 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
909 {
910 	struct hlist_head *chain = mp_hash(dentry);
911 	struct mountpoint *mp;
912 
913 	hlist_for_each_entry(mp, chain, m_hash) {
914 		if (mp->m_dentry == dentry) {
915 			mp->m_count++;
916 			return mp;
917 		}
918 	}
919 	return NULL;
920 }
921 
get_mountpoint(struct dentry * dentry)922 static struct mountpoint *get_mountpoint(struct dentry *dentry)
923 {
924 	struct mountpoint *mp, *new = NULL;
925 	int ret;
926 
927 	if (d_mountpoint(dentry)) {
928 		/* might be worth a WARN_ON() */
929 		if (d_unlinked(dentry))
930 			return ERR_PTR(-ENOENT);
931 mountpoint:
932 		read_seqlock_excl(&mount_lock);
933 		mp = lookup_mountpoint(dentry);
934 		read_sequnlock_excl(&mount_lock);
935 		if (mp)
936 			goto done;
937 	}
938 
939 	if (!new)
940 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
941 	if (!new)
942 		return ERR_PTR(-ENOMEM);
943 
944 
945 	/* Exactly one processes may set d_mounted */
946 	ret = d_set_mounted(dentry);
947 
948 	/* Someone else set d_mounted? */
949 	if (ret == -EBUSY)
950 		goto mountpoint;
951 
952 	/* The dentry is not available as a mountpoint? */
953 	mp = ERR_PTR(ret);
954 	if (ret)
955 		goto done;
956 
957 	/* Add the new mountpoint to the hash table */
958 	read_seqlock_excl(&mount_lock);
959 	new->m_dentry = dget(dentry);
960 	new->m_count = 1;
961 	hlist_add_head(&new->m_hash, mp_hash(dentry));
962 	INIT_HLIST_HEAD(&new->m_list);
963 	read_sequnlock_excl(&mount_lock);
964 
965 	mp = new;
966 	new = NULL;
967 done:
968 	kfree(new);
969 	return mp;
970 }
971 
972 /*
973  * vfsmount lock must be held.  Additionally, the caller is responsible
974  * for serializing calls for given disposal list.
975  */
__put_mountpoint(struct mountpoint * mp,struct list_head * list)976 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
977 {
978 	if (!--mp->m_count) {
979 		struct dentry *dentry = mp->m_dentry;
980 		BUG_ON(!hlist_empty(&mp->m_list));
981 		spin_lock(&dentry->d_lock);
982 		dentry->d_flags &= ~DCACHE_MOUNTED;
983 		spin_unlock(&dentry->d_lock);
984 		dput_to_list(dentry, list);
985 		hlist_del(&mp->m_hash);
986 		kfree(mp);
987 	}
988 }
989 
990 /* called with namespace_lock and vfsmount lock */
put_mountpoint(struct mountpoint * mp)991 static void put_mountpoint(struct mountpoint *mp)
992 {
993 	__put_mountpoint(mp, &ex_mountpoints);
994 }
995 
check_mnt(struct mount * mnt)996 static inline int check_mnt(struct mount *mnt)
997 {
998 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
999 }
1000 
1001 /*
1002  * vfsmount lock must be held for write
1003  */
touch_mnt_namespace(struct mnt_namespace * ns)1004 static void touch_mnt_namespace(struct mnt_namespace *ns)
1005 {
1006 	if (ns) {
1007 		ns->event = ++event;
1008 		wake_up_interruptible(&ns->poll);
1009 	}
1010 }
1011 
1012 /*
1013  * vfsmount lock must be held for write
1014  */
__touch_mnt_namespace(struct mnt_namespace * ns)1015 static void __touch_mnt_namespace(struct mnt_namespace *ns)
1016 {
1017 	if (ns && ns->event != event) {
1018 		ns->event = event;
1019 		wake_up_interruptible(&ns->poll);
1020 	}
1021 }
1022 
1023 /*
1024  * vfsmount lock must be held for write
1025  */
unhash_mnt(struct mount * mnt)1026 static struct mountpoint *unhash_mnt(struct mount *mnt)
1027 {
1028 	struct mountpoint *mp;
1029 	mnt->mnt_parent = mnt;
1030 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1031 	list_del_init(&mnt->mnt_child);
1032 	hlist_del_init_rcu(&mnt->mnt_hash);
1033 	hlist_del_init(&mnt->mnt_mp_list);
1034 	mp = mnt->mnt_mp;
1035 	mnt->mnt_mp = NULL;
1036 	return mp;
1037 }
1038 
1039 /*
1040  * vfsmount lock must be held for write
1041  */
umount_mnt(struct mount * mnt)1042 static void umount_mnt(struct mount *mnt)
1043 {
1044 	put_mountpoint(unhash_mnt(mnt));
1045 }
1046 
1047 /*
1048  * vfsmount lock must be held for write
1049  */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)1050 void mnt_set_mountpoint(struct mount *mnt,
1051 			struct mountpoint *mp,
1052 			struct mount *child_mnt)
1053 {
1054 	mp->m_count++;
1055 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
1056 	child_mnt->mnt_mountpoint = mp->m_dentry;
1057 	child_mnt->mnt_parent = mnt;
1058 	child_mnt->mnt_mp = mp;
1059 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1060 }
1061 
1062 /**
1063  * mnt_set_mountpoint_beneath - mount a mount beneath another one
1064  *
1065  * @new_parent: the source mount
1066  * @top_mnt:    the mount beneath which @new_parent is mounted
1067  * @new_mp:     the new mountpoint of @top_mnt on @new_parent
1068  *
1069  * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
1070  * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
1071  * @new_mp. And mount @new_parent on the old parent and old
1072  * mountpoint of @top_mnt.
1073  *
1074  * Context: This function expects namespace_lock() and lock_mount_hash()
1075  *          to have been acquired in that order.
1076  */
mnt_set_mountpoint_beneath(struct mount * new_parent,struct mount * top_mnt,struct mountpoint * new_mp)1077 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
1078 				       struct mount *top_mnt,
1079 				       struct mountpoint *new_mp)
1080 {
1081 	struct mount *old_top_parent = top_mnt->mnt_parent;
1082 	struct mountpoint *old_top_mp = top_mnt->mnt_mp;
1083 
1084 	mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
1085 	mnt_change_mountpoint(new_parent, new_mp, top_mnt);
1086 }
1087 
1088 
__attach_mnt(struct mount * mnt,struct mount * parent)1089 static void __attach_mnt(struct mount *mnt, struct mount *parent)
1090 {
1091 	hlist_add_head_rcu(&mnt->mnt_hash,
1092 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1093 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1094 }
1095 
1096 /**
1097  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1098  *              list of child mounts
1099  * @parent:  the parent
1100  * @mnt:     the new mount
1101  * @mp:      the new mountpoint
1102  * @beneath: whether to mount @mnt beneath or on top of @parent
1103  *
1104  * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
1105  * to @parent's child mount list and to @mount_hashtable.
1106  *
1107  * If @beneath is true, remove @mnt from its current parent and
1108  * mountpoint and mount it on @mp on @parent, and mount @parent on the
1109  * old parent and old mountpoint of @mnt. Finally, attach @parent to
1110  * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
1111  *
1112  * Note, when __attach_mnt() is called @mnt->mnt_parent already points
1113  * to the correct parent.
1114  *
1115  * Context: This function expects namespace_lock() and lock_mount_hash()
1116  *          to have been acquired in that order.
1117  */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp,bool beneath)1118 static void attach_mnt(struct mount *mnt, struct mount *parent,
1119 		       struct mountpoint *mp, bool beneath)
1120 {
1121 	if (beneath)
1122 		mnt_set_mountpoint_beneath(mnt, parent, mp);
1123 	else
1124 		mnt_set_mountpoint(parent, mp, mnt);
1125 	/*
1126 	 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
1127 	 * beneath @parent then @mnt will need to be attached to
1128 	 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
1129 	 * isn't the same mount as @parent.
1130 	 */
1131 	__attach_mnt(mnt, mnt->mnt_parent);
1132 }
1133 
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)1134 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1135 {
1136 	struct mountpoint *old_mp = mnt->mnt_mp;
1137 	struct mount *old_parent = mnt->mnt_parent;
1138 
1139 	list_del_init(&mnt->mnt_child);
1140 	hlist_del_init(&mnt->mnt_mp_list);
1141 	hlist_del_init_rcu(&mnt->mnt_hash);
1142 
1143 	attach_mnt(mnt, parent, mp, false);
1144 
1145 	put_mountpoint(old_mp);
1146 	mnt_add_count(old_parent, -1);
1147 }
1148 
node_to_mount(struct rb_node * node)1149 static inline struct mount *node_to_mount(struct rb_node *node)
1150 {
1151 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1152 }
1153 
mnt_add_to_ns(struct mnt_namespace * ns,struct mount * mnt)1154 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1155 {
1156 	struct rb_node **link = &ns->mounts.rb_node;
1157 	struct rb_node *parent = NULL;
1158 	bool mnt_first_node = true, mnt_last_node = true;
1159 
1160 	WARN_ON(mnt_ns_attached(mnt));
1161 	mnt->mnt_ns = ns;
1162 	while (*link) {
1163 		parent = *link;
1164 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1165 			link = &parent->rb_left;
1166 			mnt_last_node = false;
1167 		} else {
1168 			link = &parent->rb_right;
1169 			mnt_first_node = false;
1170 		}
1171 	}
1172 
1173 	if (mnt_last_node)
1174 		ns->mnt_last_node = &mnt->mnt_node;
1175 	if (mnt_first_node)
1176 		ns->mnt_first_node = &mnt->mnt_node;
1177 	rb_link_node(&mnt->mnt_node, parent, link);
1178 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1179 }
1180 
1181 /*
1182  * vfsmount lock must be held for write
1183  */
commit_tree(struct mount * mnt)1184 static void commit_tree(struct mount *mnt)
1185 {
1186 	struct mount *parent = mnt->mnt_parent;
1187 	struct mount *m;
1188 	LIST_HEAD(head);
1189 	struct mnt_namespace *n = parent->mnt_ns;
1190 
1191 	BUG_ON(parent == mnt);
1192 
1193 	list_add_tail(&head, &mnt->mnt_list);
1194 	while (!list_empty(&head)) {
1195 		m = list_first_entry(&head, typeof(*m), mnt_list);
1196 		list_del(&m->mnt_list);
1197 
1198 		mnt_add_to_ns(n, m);
1199 	}
1200 	n->nr_mounts += n->pending_mounts;
1201 	n->pending_mounts = 0;
1202 
1203 	__attach_mnt(mnt, parent);
1204 	touch_mnt_namespace(n);
1205 }
1206 
next_mnt(struct mount * p,struct mount * root)1207 static struct mount *next_mnt(struct mount *p, struct mount *root)
1208 {
1209 	struct list_head *next = p->mnt_mounts.next;
1210 	if (next == &p->mnt_mounts) {
1211 		while (1) {
1212 			if (p == root)
1213 				return NULL;
1214 			next = p->mnt_child.next;
1215 			if (next != &p->mnt_parent->mnt_mounts)
1216 				break;
1217 			p = p->mnt_parent;
1218 		}
1219 	}
1220 	return list_entry(next, struct mount, mnt_child);
1221 }
1222 
skip_mnt_tree(struct mount * p)1223 static struct mount *skip_mnt_tree(struct mount *p)
1224 {
1225 	struct list_head *prev = p->mnt_mounts.prev;
1226 	while (prev != &p->mnt_mounts) {
1227 		p = list_entry(prev, struct mount, mnt_child);
1228 		prev = p->mnt_mounts.prev;
1229 	}
1230 	return p;
1231 }
1232 
1233 /**
1234  * vfs_create_mount - Create a mount for a configured superblock
1235  * @fc: The configuration context with the superblock attached
1236  *
1237  * Create a mount to an already configured superblock.  If necessary, the
1238  * caller should invoke vfs_get_tree() before calling this.
1239  *
1240  * Note that this does not attach the mount to anything.
1241  */
vfs_create_mount(struct fs_context * fc)1242 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1243 {
1244 	struct mount *mnt;
1245 
1246 	if (!fc->root)
1247 		return ERR_PTR(-EINVAL);
1248 
1249 	mnt = alloc_vfsmnt(fc->source ?: "none");
1250 	if (!mnt)
1251 		return ERR_PTR(-ENOMEM);
1252 
1253 	if (fc->sb_flags & SB_KERNMOUNT)
1254 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1255 
1256 	atomic_inc(&fc->root->d_sb->s_active);
1257 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1258 	mnt->mnt.mnt_root	= dget(fc->root);
1259 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1260 	mnt->mnt_parent		= mnt;
1261 
1262 	lock_mount_hash();
1263 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1264 	unlock_mount_hash();
1265 	return &mnt->mnt;
1266 }
1267 EXPORT_SYMBOL(vfs_create_mount);
1268 
fc_mount(struct fs_context * fc)1269 struct vfsmount *fc_mount(struct fs_context *fc)
1270 {
1271 	int err = vfs_get_tree(fc);
1272 	if (!err) {
1273 		up_write(&fc->root->d_sb->s_umount);
1274 		return vfs_create_mount(fc);
1275 	}
1276 	return ERR_PTR(err);
1277 }
1278 EXPORT_SYMBOL(fc_mount);
1279 
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1280 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1281 				int flags, const char *name,
1282 				void *data)
1283 {
1284 	struct fs_context *fc;
1285 	struct vfsmount *mnt;
1286 	int ret = 0;
1287 
1288 	if (!type)
1289 		return ERR_PTR(-EINVAL);
1290 
1291 	fc = fs_context_for_mount(type, flags);
1292 	if (IS_ERR(fc))
1293 		return ERR_CAST(fc);
1294 
1295 	if (name)
1296 		ret = vfs_parse_fs_string(fc, "source",
1297 					  name, strlen(name));
1298 	if (!ret)
1299 		ret = parse_monolithic_mount_data(fc, data);
1300 	if (!ret)
1301 		mnt = fc_mount(fc);
1302 	else
1303 		mnt = ERR_PTR(ret);
1304 
1305 	put_fs_context(fc);
1306 	return mnt;
1307 }
1308 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1309 
1310 struct vfsmount *
vfs_submount(const struct dentry * mountpoint,struct file_system_type * type,const char * name,void * data)1311 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1312 	     const char *name, void *data)
1313 {
1314 	/* Until it is worked out how to pass the user namespace
1315 	 * through from the parent mount to the submount don't support
1316 	 * unprivileged mounts with submounts.
1317 	 */
1318 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1319 		return ERR_PTR(-EPERM);
1320 
1321 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1322 }
1323 EXPORT_SYMBOL_GPL(vfs_submount);
1324 
clone_mnt(struct mount * old,struct dentry * root,int flag)1325 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1326 					int flag)
1327 {
1328 	struct super_block *sb = old->mnt.mnt_sb;
1329 	struct mount *mnt;
1330 	int err;
1331 
1332 	mnt = alloc_vfsmnt(old->mnt_devname);
1333 	if (!mnt)
1334 		return ERR_PTR(-ENOMEM);
1335 
1336 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1337 		mnt->mnt_group_id = 0; /* not a peer of original */
1338 	else
1339 		mnt->mnt_group_id = old->mnt_group_id;
1340 
1341 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1342 		err = mnt_alloc_group_id(mnt);
1343 		if (err)
1344 			goto out_free;
1345 	}
1346 
1347 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1348 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1349 
1350 	atomic_inc(&sb->s_active);
1351 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1352 
1353 	mnt->mnt.mnt_sb = sb;
1354 	mnt->mnt.mnt_root = dget(root);
1355 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1356 	mnt->mnt_parent = mnt;
1357 	lock_mount_hash();
1358 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1359 	unlock_mount_hash();
1360 
1361 	if ((flag & CL_SLAVE) ||
1362 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1363 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1364 		mnt->mnt_master = old;
1365 		CLEAR_MNT_SHARED(mnt);
1366 	} else if (!(flag & CL_PRIVATE)) {
1367 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1368 			list_add(&mnt->mnt_share, &old->mnt_share);
1369 		if (IS_MNT_SLAVE(old))
1370 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1371 		mnt->mnt_master = old->mnt_master;
1372 	} else {
1373 		CLEAR_MNT_SHARED(mnt);
1374 	}
1375 	if (flag & CL_MAKE_SHARED)
1376 		set_mnt_shared(mnt);
1377 
1378 	/* stick the duplicate mount on the same expiry list
1379 	 * as the original if that was on one */
1380 	if (flag & CL_EXPIRE) {
1381 		if (!list_empty(&old->mnt_expire))
1382 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1383 	}
1384 
1385 	return mnt;
1386 
1387  out_free:
1388 	mnt_free_id(mnt);
1389 	free_vfsmnt(mnt);
1390 	return ERR_PTR(err);
1391 }
1392 
cleanup_mnt(struct mount * mnt)1393 static void cleanup_mnt(struct mount *mnt)
1394 {
1395 	struct hlist_node *p;
1396 	struct mount *m;
1397 	/*
1398 	 * The warning here probably indicates that somebody messed
1399 	 * up a mnt_want/drop_write() pair.  If this happens, the
1400 	 * filesystem was probably unable to make r/w->r/o transitions.
1401 	 * The locking used to deal with mnt_count decrement provides barriers,
1402 	 * so mnt_get_writers() below is safe.
1403 	 */
1404 	WARN_ON(mnt_get_writers(mnt));
1405 	if (unlikely(mnt->mnt_pins.first))
1406 		mnt_pin_kill(mnt);
1407 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1408 		hlist_del(&m->mnt_umount);
1409 		mntput(&m->mnt);
1410 	}
1411 	fsnotify_vfsmount_delete(&mnt->mnt);
1412 	dput(mnt->mnt.mnt_root);
1413 	deactivate_super(mnt->mnt.mnt_sb);
1414 	mnt_free_id(mnt);
1415 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1416 }
1417 
__cleanup_mnt(struct rcu_head * head)1418 static void __cleanup_mnt(struct rcu_head *head)
1419 {
1420 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1421 }
1422 
1423 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1424 static void delayed_mntput(struct work_struct *unused)
1425 {
1426 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1427 	struct mount *m, *t;
1428 
1429 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1430 		cleanup_mnt(m);
1431 }
1432 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1433 
mntput_no_expire(struct mount * mnt)1434 static void mntput_no_expire(struct mount *mnt)
1435 {
1436 	LIST_HEAD(list);
1437 	int count;
1438 
1439 	rcu_read_lock();
1440 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1441 		/*
1442 		 * Since we don't do lock_mount_hash() here,
1443 		 * ->mnt_ns can change under us.  However, if it's
1444 		 * non-NULL, then there's a reference that won't
1445 		 * be dropped until after an RCU delay done after
1446 		 * turning ->mnt_ns NULL.  So if we observe it
1447 		 * non-NULL under rcu_read_lock(), the reference
1448 		 * we are dropping is not the final one.
1449 		 */
1450 		mnt_add_count(mnt, -1);
1451 		rcu_read_unlock();
1452 		return;
1453 	}
1454 	lock_mount_hash();
1455 	/*
1456 	 * make sure that if __legitimize_mnt() has not seen us grab
1457 	 * mount_lock, we'll see their refcount increment here.
1458 	 */
1459 	smp_mb();
1460 	mnt_add_count(mnt, -1);
1461 	count = mnt_get_count(mnt);
1462 	if (count != 0) {
1463 		WARN_ON(count < 0);
1464 		rcu_read_unlock();
1465 		unlock_mount_hash();
1466 		return;
1467 	}
1468 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1469 		rcu_read_unlock();
1470 		unlock_mount_hash();
1471 		return;
1472 	}
1473 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1474 	rcu_read_unlock();
1475 
1476 	list_del(&mnt->mnt_instance);
1477 
1478 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1479 		struct mount *p, *tmp;
1480 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1481 			__put_mountpoint(unhash_mnt(p), &list);
1482 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1483 		}
1484 	}
1485 	unlock_mount_hash();
1486 	shrink_dentry_list(&list);
1487 
1488 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1489 		struct task_struct *task = current;
1490 		if (likely(!(task->flags & PF_KTHREAD))) {
1491 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1492 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1493 				return;
1494 		}
1495 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1496 			schedule_delayed_work(&delayed_mntput_work, 1);
1497 		return;
1498 	}
1499 	cleanup_mnt(mnt);
1500 }
1501 
mntput(struct vfsmount * mnt)1502 void mntput(struct vfsmount *mnt)
1503 {
1504 	if (mnt) {
1505 		struct mount *m = real_mount(mnt);
1506 		/* avoid cacheline pingpong */
1507 		if (unlikely(m->mnt_expiry_mark))
1508 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1509 		mntput_no_expire(m);
1510 	}
1511 }
1512 EXPORT_SYMBOL(mntput);
1513 
mntget(struct vfsmount * mnt)1514 struct vfsmount *mntget(struct vfsmount *mnt)
1515 {
1516 	if (mnt)
1517 		mnt_add_count(real_mount(mnt), 1);
1518 	return mnt;
1519 }
1520 EXPORT_SYMBOL(mntget);
1521 
1522 /*
1523  * Make a mount point inaccessible to new lookups.
1524  * Because there may still be current users, the caller MUST WAIT
1525  * for an RCU grace period before destroying the mount point.
1526  */
mnt_make_shortterm(struct vfsmount * mnt)1527 void mnt_make_shortterm(struct vfsmount *mnt)
1528 {
1529 	if (mnt)
1530 		real_mount(mnt)->mnt_ns = NULL;
1531 }
1532 
1533 /**
1534  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1535  * @path: path to check
1536  *
1537  *  d_mountpoint() can only be used reliably to establish if a dentry is
1538  *  not mounted in any namespace and that common case is handled inline.
1539  *  d_mountpoint() isn't aware of the possibility there may be multiple
1540  *  mounts using a given dentry in a different namespace. This function
1541  *  checks if the passed in path is a mountpoint rather than the dentry
1542  *  alone.
1543  */
path_is_mountpoint(const struct path * path)1544 bool path_is_mountpoint(const struct path *path)
1545 {
1546 	unsigned seq;
1547 	bool res;
1548 
1549 	if (!d_mountpoint(path->dentry))
1550 		return false;
1551 
1552 	rcu_read_lock();
1553 	do {
1554 		seq = read_seqbegin(&mount_lock);
1555 		res = __path_is_mountpoint(path);
1556 	} while (read_seqretry(&mount_lock, seq));
1557 	rcu_read_unlock();
1558 
1559 	return res;
1560 }
1561 EXPORT_SYMBOL(path_is_mountpoint);
1562 
mnt_clone_internal(const struct path * path)1563 struct vfsmount *mnt_clone_internal(const struct path *path)
1564 {
1565 	struct mount *p;
1566 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1567 	if (IS_ERR(p))
1568 		return ERR_CAST(p);
1569 	p->mnt.mnt_flags |= MNT_INTERNAL;
1570 	return &p->mnt;
1571 }
1572 
1573 /*
1574  * Returns the mount which either has the specified mnt_id, or has the next
1575  * smallest id afer the specified one.
1576  */
mnt_find_id_at(struct mnt_namespace * ns,u64 mnt_id)1577 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1578 {
1579 	struct rb_node *node = ns->mounts.rb_node;
1580 	struct mount *ret = NULL;
1581 
1582 	while (node) {
1583 		struct mount *m = node_to_mount(node);
1584 
1585 		if (mnt_id <= m->mnt_id_unique) {
1586 			ret = node_to_mount(node);
1587 			if (mnt_id == m->mnt_id_unique)
1588 				break;
1589 			node = node->rb_left;
1590 		} else {
1591 			node = node->rb_right;
1592 		}
1593 	}
1594 	return ret;
1595 }
1596 
1597 /*
1598  * Returns the mount which either has the specified mnt_id, or has the next
1599  * greater id before the specified one.
1600  */
mnt_find_id_at_reverse(struct mnt_namespace * ns,u64 mnt_id)1601 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1602 {
1603 	struct rb_node *node = ns->mounts.rb_node;
1604 	struct mount *ret = NULL;
1605 
1606 	while (node) {
1607 		struct mount *m = node_to_mount(node);
1608 
1609 		if (mnt_id >= m->mnt_id_unique) {
1610 			ret = node_to_mount(node);
1611 			if (mnt_id == m->mnt_id_unique)
1612 				break;
1613 			node = node->rb_right;
1614 		} else {
1615 			node = node->rb_left;
1616 		}
1617 	}
1618 	return ret;
1619 }
1620 
1621 #ifdef CONFIG_PROC_FS
1622 
1623 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1624 static void *m_start(struct seq_file *m, loff_t *pos)
1625 {
1626 	struct proc_mounts *p = m->private;
1627 
1628 	down_read(&namespace_sem);
1629 
1630 	return mnt_find_id_at(p->ns, *pos);
1631 }
1632 
m_next(struct seq_file * m,void * v,loff_t * pos)1633 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1634 {
1635 	struct mount *next = NULL, *mnt = v;
1636 	struct rb_node *node = rb_next(&mnt->mnt_node);
1637 
1638 	++*pos;
1639 	if (node) {
1640 		next = node_to_mount(node);
1641 		*pos = next->mnt_id_unique;
1642 	}
1643 	return next;
1644 }
1645 
m_stop(struct seq_file * m,void * v)1646 static void m_stop(struct seq_file *m, void *v)
1647 {
1648 	up_read(&namespace_sem);
1649 }
1650 
m_show(struct seq_file * m,void * v)1651 static int m_show(struct seq_file *m, void *v)
1652 {
1653 	struct proc_mounts *p = m->private;
1654 	struct mount *r = v;
1655 	return p->show(m, &r->mnt);
1656 }
1657 
1658 const struct seq_operations mounts_op = {
1659 	.start	= m_start,
1660 	.next	= m_next,
1661 	.stop	= m_stop,
1662 	.show	= m_show,
1663 };
1664 
1665 #endif  /* CONFIG_PROC_FS */
1666 
1667 /**
1668  * may_umount_tree - check if a mount tree is busy
1669  * @m: root of mount tree
1670  *
1671  * This is called to check if a tree of mounts has any
1672  * open files, pwds, chroots or sub mounts that are
1673  * busy.
1674  */
may_umount_tree(struct vfsmount * m)1675 int may_umount_tree(struct vfsmount *m)
1676 {
1677 	struct mount *mnt = real_mount(m);
1678 	int actual_refs = 0;
1679 	int minimum_refs = 0;
1680 	struct mount *p;
1681 	BUG_ON(!m);
1682 
1683 	/* write lock needed for mnt_get_count */
1684 	lock_mount_hash();
1685 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1686 		actual_refs += mnt_get_count(p);
1687 		minimum_refs += 2;
1688 	}
1689 	unlock_mount_hash();
1690 
1691 	if (actual_refs > minimum_refs)
1692 		return 0;
1693 
1694 	return 1;
1695 }
1696 
1697 EXPORT_SYMBOL(may_umount_tree);
1698 
1699 /**
1700  * may_umount - check if a mount point is busy
1701  * @mnt: root of mount
1702  *
1703  * This is called to check if a mount point has any
1704  * open files, pwds, chroots or sub mounts. If the
1705  * mount has sub mounts this will return busy
1706  * regardless of whether the sub mounts are busy.
1707  *
1708  * Doesn't take quota and stuff into account. IOW, in some cases it will
1709  * give false negatives. The main reason why it's here is that we need
1710  * a non-destructive way to look for easily umountable filesystems.
1711  */
may_umount(struct vfsmount * mnt)1712 int may_umount(struct vfsmount *mnt)
1713 {
1714 	int ret = 1;
1715 	down_read(&namespace_sem);
1716 	lock_mount_hash();
1717 	if (propagate_mount_busy(real_mount(mnt), 2))
1718 		ret = 0;
1719 	unlock_mount_hash();
1720 	up_read(&namespace_sem);
1721 	return ret;
1722 }
1723 
1724 EXPORT_SYMBOL(may_umount);
1725 
namespace_unlock(void)1726 static void namespace_unlock(void)
1727 {
1728 	struct hlist_head head;
1729 	struct hlist_node *p;
1730 	struct mount *m;
1731 	LIST_HEAD(list);
1732 
1733 	hlist_move_list(&unmounted, &head);
1734 	list_splice_init(&ex_mountpoints, &list);
1735 
1736 	up_write(&namespace_sem);
1737 
1738 	shrink_dentry_list(&list);
1739 
1740 	if (likely(hlist_empty(&head)))
1741 		return;
1742 
1743 	synchronize_rcu_expedited();
1744 
1745 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1746 		hlist_del(&m->mnt_umount);
1747 		mntput(&m->mnt);
1748 	}
1749 }
1750 
namespace_lock(void)1751 static inline void namespace_lock(void)
1752 {
1753 	down_write(&namespace_sem);
1754 }
1755 
1756 enum umount_tree_flags {
1757 	UMOUNT_SYNC = 1,
1758 	UMOUNT_PROPAGATE = 2,
1759 	UMOUNT_CONNECTED = 4,
1760 };
1761 
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1762 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1763 {
1764 	/* Leaving mounts connected is only valid for lazy umounts */
1765 	if (how & UMOUNT_SYNC)
1766 		return true;
1767 
1768 	/* A mount without a parent has nothing to be connected to */
1769 	if (!mnt_has_parent(mnt))
1770 		return true;
1771 
1772 	/* Because the reference counting rules change when mounts are
1773 	 * unmounted and connected, umounted mounts may not be
1774 	 * connected to mounted mounts.
1775 	 */
1776 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1777 		return true;
1778 
1779 	/* Has it been requested that the mount remain connected? */
1780 	if (how & UMOUNT_CONNECTED)
1781 		return false;
1782 
1783 	/* Is the mount locked such that it needs to remain connected? */
1784 	if (IS_MNT_LOCKED(mnt))
1785 		return false;
1786 
1787 	/* By default disconnect the mount */
1788 	return true;
1789 }
1790 
1791 /*
1792  * mount_lock must be held
1793  * namespace_sem must be held for write
1794  */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1795 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1796 {
1797 	LIST_HEAD(tmp_list);
1798 	struct mount *p;
1799 
1800 	if (how & UMOUNT_PROPAGATE)
1801 		propagate_mount_unlock(mnt);
1802 
1803 	/* Gather the mounts to umount */
1804 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1805 		p->mnt.mnt_flags |= MNT_UMOUNT;
1806 		if (mnt_ns_attached(p))
1807 			move_from_ns(p, &tmp_list);
1808 		else
1809 			list_move(&p->mnt_list, &tmp_list);
1810 	}
1811 
1812 	/* Hide the mounts from mnt_mounts */
1813 	list_for_each_entry(p, &tmp_list, mnt_list) {
1814 		list_del_init(&p->mnt_child);
1815 	}
1816 
1817 	/* Add propagated mounts to the tmp_list */
1818 	if (how & UMOUNT_PROPAGATE)
1819 		propagate_umount(&tmp_list);
1820 
1821 	while (!list_empty(&tmp_list)) {
1822 		struct mnt_namespace *ns;
1823 		bool disconnect;
1824 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1825 		list_del_init(&p->mnt_expire);
1826 		list_del_init(&p->mnt_list);
1827 		ns = p->mnt_ns;
1828 		if (ns) {
1829 			ns->nr_mounts--;
1830 			__touch_mnt_namespace(ns);
1831 		}
1832 		p->mnt_ns = NULL;
1833 		if (how & UMOUNT_SYNC)
1834 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1835 
1836 		disconnect = disconnect_mount(p, how);
1837 		if (mnt_has_parent(p)) {
1838 			mnt_add_count(p->mnt_parent, -1);
1839 			if (!disconnect) {
1840 				/* Don't forget about p */
1841 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1842 			} else {
1843 				umount_mnt(p);
1844 			}
1845 		}
1846 		change_mnt_propagation(p, MS_PRIVATE);
1847 		if (disconnect)
1848 			hlist_add_head(&p->mnt_umount, &unmounted);
1849 	}
1850 }
1851 
1852 static void shrink_submounts(struct mount *mnt);
1853 
do_umount_root(struct super_block * sb)1854 static int do_umount_root(struct super_block *sb)
1855 {
1856 	int ret = 0;
1857 
1858 	down_write(&sb->s_umount);
1859 	if (!sb_rdonly(sb)) {
1860 		struct fs_context *fc;
1861 
1862 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1863 						SB_RDONLY);
1864 		if (IS_ERR(fc)) {
1865 			ret = PTR_ERR(fc);
1866 		} else {
1867 			ret = parse_monolithic_mount_data(fc, NULL);
1868 			if (!ret)
1869 				ret = reconfigure_super(fc);
1870 			put_fs_context(fc);
1871 		}
1872 	}
1873 	up_write(&sb->s_umount);
1874 	return ret;
1875 }
1876 
do_umount(struct mount * mnt,int flags)1877 static int do_umount(struct mount *mnt, int flags)
1878 {
1879 	struct super_block *sb = mnt->mnt.mnt_sb;
1880 	int retval;
1881 
1882 	retval = security_sb_umount(&mnt->mnt, flags);
1883 	if (retval)
1884 		return retval;
1885 
1886 	/*
1887 	 * Allow userspace to request a mountpoint be expired rather than
1888 	 * unmounting unconditionally. Unmount only happens if:
1889 	 *  (1) the mark is already set (the mark is cleared by mntput())
1890 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1891 	 */
1892 	if (flags & MNT_EXPIRE) {
1893 		if (&mnt->mnt == current->fs->root.mnt ||
1894 		    flags & (MNT_FORCE | MNT_DETACH))
1895 			return -EINVAL;
1896 
1897 		/*
1898 		 * probably don't strictly need the lock here if we examined
1899 		 * all race cases, but it's a slowpath.
1900 		 */
1901 		lock_mount_hash();
1902 		if (mnt_get_count(mnt) != 2) {
1903 			unlock_mount_hash();
1904 			return -EBUSY;
1905 		}
1906 		unlock_mount_hash();
1907 
1908 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1909 			return -EAGAIN;
1910 	}
1911 
1912 	/*
1913 	 * If we may have to abort operations to get out of this
1914 	 * mount, and they will themselves hold resources we must
1915 	 * allow the fs to do things. In the Unix tradition of
1916 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1917 	 * might fail to complete on the first run through as other tasks
1918 	 * must return, and the like. Thats for the mount program to worry
1919 	 * about for the moment.
1920 	 */
1921 
1922 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1923 		sb->s_op->umount_begin(sb);
1924 	}
1925 
1926 	/*
1927 	 * No sense to grab the lock for this test, but test itself looks
1928 	 * somewhat bogus. Suggestions for better replacement?
1929 	 * Ho-hum... In principle, we might treat that as umount + switch
1930 	 * to rootfs. GC would eventually take care of the old vfsmount.
1931 	 * Actually it makes sense, especially if rootfs would contain a
1932 	 * /reboot - static binary that would close all descriptors and
1933 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1934 	 */
1935 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1936 		/*
1937 		 * Special case for "unmounting" root ...
1938 		 * we just try to remount it readonly.
1939 		 */
1940 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1941 			return -EPERM;
1942 		return do_umount_root(sb);
1943 	}
1944 
1945 	namespace_lock();
1946 	lock_mount_hash();
1947 
1948 	/* Recheck MNT_LOCKED with the locks held */
1949 	retval = -EINVAL;
1950 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1951 		goto out;
1952 
1953 	event++;
1954 	if (flags & MNT_DETACH) {
1955 		if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
1956 			umount_tree(mnt, UMOUNT_PROPAGATE);
1957 		retval = 0;
1958 	} else {
1959 		shrink_submounts(mnt);
1960 		retval = -EBUSY;
1961 		if (!propagate_mount_busy(mnt, 2)) {
1962 			if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
1963 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1964 			retval = 0;
1965 		}
1966 	}
1967 out:
1968 	unlock_mount_hash();
1969 	namespace_unlock();
1970 	return retval;
1971 }
1972 
1973 /*
1974  * __detach_mounts - lazily unmount all mounts on the specified dentry
1975  *
1976  * During unlink, rmdir, and d_drop it is possible to loose the path
1977  * to an existing mountpoint, and wind up leaking the mount.
1978  * detach_mounts allows lazily unmounting those mounts instead of
1979  * leaking them.
1980  *
1981  * The caller may hold dentry->d_inode->i_mutex.
1982  */
__detach_mounts(struct dentry * dentry)1983 void __detach_mounts(struct dentry *dentry)
1984 {
1985 	struct mountpoint *mp;
1986 	struct mount *mnt;
1987 
1988 	namespace_lock();
1989 	lock_mount_hash();
1990 	mp = lookup_mountpoint(dentry);
1991 	if (!mp)
1992 		goto out_unlock;
1993 
1994 	event++;
1995 	while (!hlist_empty(&mp->m_list)) {
1996 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1997 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1998 			umount_mnt(mnt);
1999 			hlist_add_head(&mnt->mnt_umount, &unmounted);
2000 		}
2001 		else umount_tree(mnt, UMOUNT_CONNECTED);
2002 	}
2003 	put_mountpoint(mp);
2004 out_unlock:
2005 	unlock_mount_hash();
2006 	namespace_unlock();
2007 }
2008 
2009 /*
2010  * Is the caller allowed to modify his namespace?
2011  */
may_mount(void)2012 bool may_mount(void)
2013 {
2014 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
2015 }
2016 
warn_mandlock(void)2017 static void warn_mandlock(void)
2018 {
2019 	pr_warn_once("=======================================================\n"
2020 		     "WARNING: The mand mount option has been deprecated and\n"
2021 		     "         and is ignored by this kernel. Remove the mand\n"
2022 		     "         option from the mount to silence this warning.\n"
2023 		     "=======================================================\n");
2024 }
2025 
can_umount(const struct path * path,int flags)2026 static int can_umount(const struct path *path, int flags)
2027 {
2028 	struct mount *mnt = real_mount(path->mnt);
2029 	struct super_block *sb = path->dentry->d_sb;
2030 
2031 	if (!may_mount())
2032 		return -EPERM;
2033 	if (!path_mounted(path))
2034 		return -EINVAL;
2035 	if (!check_mnt(mnt))
2036 		return -EINVAL;
2037 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2038 		return -EINVAL;
2039 	if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2040 		return -EPERM;
2041 	return 0;
2042 }
2043 
2044 // caller is responsible for flags being sane
path_umount(struct path * path,int flags)2045 int path_umount(struct path *path, int flags)
2046 {
2047 	struct mount *mnt = real_mount(path->mnt);
2048 	int ret;
2049 
2050 	ret = can_umount(path, flags);
2051 	if (!ret)
2052 		ret = do_umount(mnt, flags);
2053 
2054 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
2055 	dput(path->dentry);
2056 	mntput_no_expire(mnt);
2057 	return ret;
2058 }
2059 
ksys_umount(char __user * name,int flags)2060 static int ksys_umount(char __user *name, int flags)
2061 {
2062 	int lookup_flags = LOOKUP_MOUNTPOINT;
2063 	struct path path;
2064 	int ret;
2065 
2066 	// basic validity checks done first
2067 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2068 		return -EINVAL;
2069 
2070 	if (!(flags & UMOUNT_NOFOLLOW))
2071 		lookup_flags |= LOOKUP_FOLLOW;
2072 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2073 	if (ret)
2074 		return ret;
2075 	return path_umount(&path, flags);
2076 }
2077 
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)2078 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2079 {
2080 	return ksys_umount(name, flags);
2081 }
2082 
2083 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2084 
2085 /*
2086  *	The 2.0 compatible umount. No flags.
2087  */
SYSCALL_DEFINE1(oldumount,char __user *,name)2088 SYSCALL_DEFINE1(oldumount, char __user *, name)
2089 {
2090 	return ksys_umount(name, 0);
2091 }
2092 
2093 #endif
2094 
is_mnt_ns_file(struct dentry * dentry)2095 static bool is_mnt_ns_file(struct dentry *dentry)
2096 {
2097 	struct ns_common *ns;
2098 
2099 	/* Is this a proxy for a mount namespace? */
2100 	if (dentry->d_op != &ns_dentry_operations)
2101 		return false;
2102 
2103 	ns = d_inode(dentry)->i_private;
2104 
2105 	return ns->ops == &mntns_operations;
2106 }
2107 
from_mnt_ns(struct mnt_namespace * mnt)2108 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2109 {
2110 	return &mnt->ns;
2111 }
2112 
get_sequential_mnt_ns(struct mnt_namespace * mntns,bool previous)2113 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2114 {
2115 	guard(rcu)();
2116 
2117 	for (;;) {
2118 		struct list_head *list;
2119 
2120 		if (previous)
2121 			list = rcu_dereference(list_bidir_prev_rcu(&mntns->mnt_ns_list));
2122 		else
2123 			list = rcu_dereference(list_next_rcu(&mntns->mnt_ns_list));
2124 		if (list_is_head(list, &mnt_ns_list))
2125 			return ERR_PTR(-ENOENT);
2126 
2127 		mntns = list_entry_rcu(list, struct mnt_namespace, mnt_ns_list);
2128 
2129 		/*
2130 		 * The last passive reference count is put with RCU
2131 		 * delay so accessing the mount namespace is not just
2132 		 * safe but all relevant members are still valid.
2133 		 */
2134 		if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2135 			continue;
2136 
2137 		/*
2138 		 * We need an active reference count as we're persisting
2139 		 * the mount namespace and it might already be on its
2140 		 * deathbed.
2141 		 */
2142 		if (!refcount_inc_not_zero(&mntns->ns.count))
2143 			continue;
2144 
2145 		return mntns;
2146 	}
2147 }
2148 
mnt_ns_loop(struct dentry * dentry)2149 static bool mnt_ns_loop(struct dentry *dentry)
2150 {
2151 	/* Could bind mounting the mount namespace inode cause a
2152 	 * mount namespace loop?
2153 	 */
2154 	struct mnt_namespace *mnt_ns;
2155 	if (!is_mnt_ns_file(dentry))
2156 		return false;
2157 
2158 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
2159 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2160 }
2161 
copy_tree(struct mount * src_root,struct dentry * dentry,int flag)2162 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2163 					int flag)
2164 {
2165 	struct mount *res, *src_parent, *src_root_child, *src_mnt,
2166 		*dst_parent, *dst_mnt;
2167 
2168 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2169 		return ERR_PTR(-EINVAL);
2170 
2171 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2172 		return ERR_PTR(-EINVAL);
2173 
2174 	res = dst_mnt = clone_mnt(src_root, dentry, flag);
2175 	if (IS_ERR(dst_mnt))
2176 		return dst_mnt;
2177 
2178 	src_parent = src_root;
2179 	dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint;
2180 
2181 	list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2182 		if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2183 			continue;
2184 
2185 		for (src_mnt = src_root_child; src_mnt;
2186 		    src_mnt = next_mnt(src_mnt, src_root_child)) {
2187 			if (!(flag & CL_COPY_UNBINDABLE) &&
2188 			    IS_MNT_UNBINDABLE(src_mnt)) {
2189 				if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2190 					/* Both unbindable and locked. */
2191 					dst_mnt = ERR_PTR(-EPERM);
2192 					goto out;
2193 				} else {
2194 					src_mnt = skip_mnt_tree(src_mnt);
2195 					continue;
2196 				}
2197 			}
2198 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2199 			    is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2200 				src_mnt = skip_mnt_tree(src_mnt);
2201 				continue;
2202 			}
2203 			while (src_parent != src_mnt->mnt_parent) {
2204 				src_parent = src_parent->mnt_parent;
2205 				dst_mnt = dst_mnt->mnt_parent;
2206 			}
2207 
2208 			src_parent = src_mnt;
2209 			dst_parent = dst_mnt;
2210 			dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2211 			if (IS_ERR(dst_mnt))
2212 				goto out;
2213 			lock_mount_hash();
2214 			list_add_tail(&dst_mnt->mnt_list, &res->mnt_list);
2215 			attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false);
2216 			unlock_mount_hash();
2217 		}
2218 	}
2219 	return res;
2220 
2221 out:
2222 	if (res) {
2223 		lock_mount_hash();
2224 		umount_tree(res, UMOUNT_SYNC);
2225 		unlock_mount_hash();
2226 	}
2227 	return dst_mnt;
2228 }
2229 
2230 /* Caller should check returned pointer for errors */
2231 
collect_mounts(const struct path * path)2232 struct vfsmount *collect_mounts(const struct path *path)
2233 {
2234 	struct mount *tree;
2235 	namespace_lock();
2236 	if (!check_mnt(real_mount(path->mnt)))
2237 		tree = ERR_PTR(-EINVAL);
2238 	else
2239 		tree = copy_tree(real_mount(path->mnt), path->dentry,
2240 				 CL_COPY_ALL | CL_PRIVATE);
2241 	namespace_unlock();
2242 	if (IS_ERR(tree))
2243 		return ERR_CAST(tree);
2244 	return &tree->mnt;
2245 }
2246 
2247 static void free_mnt_ns(struct mnt_namespace *);
2248 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2249 
dissolve_on_fput(struct vfsmount * mnt)2250 void dissolve_on_fput(struct vfsmount *mnt)
2251 {
2252 	struct mnt_namespace *ns;
2253 	namespace_lock();
2254 	lock_mount_hash();
2255 	ns = real_mount(mnt)->mnt_ns;
2256 	if (ns) {
2257 		if (is_anon_ns(ns))
2258 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2259 		else
2260 			ns = NULL;
2261 	}
2262 	unlock_mount_hash();
2263 	namespace_unlock();
2264 	if (ns)
2265 		free_mnt_ns(ns);
2266 }
2267 
drop_collected_mounts(struct vfsmount * mnt)2268 void drop_collected_mounts(struct vfsmount *mnt)
2269 {
2270 	namespace_lock();
2271 	lock_mount_hash();
2272 	umount_tree(real_mount(mnt), 0);
2273 	unlock_mount_hash();
2274 	namespace_unlock();
2275 }
2276 
has_locked_children(struct mount * mnt,struct dentry * dentry)2277 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2278 {
2279 	struct mount *child;
2280 
2281 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2282 		if (!is_subdir(child->mnt_mountpoint, dentry))
2283 			continue;
2284 
2285 		if (child->mnt.mnt_flags & MNT_LOCKED)
2286 			return true;
2287 	}
2288 	return false;
2289 }
2290 
2291 /**
2292  * clone_private_mount - create a private clone of a path
2293  * @path: path to clone
2294  *
2295  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2296  * will not be attached anywhere in the namespace and will be private (i.e.
2297  * changes to the originating mount won't be propagated into this).
2298  *
2299  * Release with mntput().
2300  */
clone_private_mount(const struct path * path)2301 struct vfsmount *clone_private_mount(const struct path *path)
2302 {
2303 	struct mount *old_mnt = real_mount(path->mnt);
2304 	struct mount *new_mnt;
2305 
2306 	down_read(&namespace_sem);
2307 	if (IS_MNT_UNBINDABLE(old_mnt))
2308 		goto invalid;
2309 
2310 	if (!check_mnt(old_mnt))
2311 		goto invalid;
2312 
2313 	if (has_locked_children(old_mnt, path->dentry))
2314 		goto invalid;
2315 
2316 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2317 	up_read(&namespace_sem);
2318 
2319 	if (IS_ERR(new_mnt))
2320 		return ERR_CAST(new_mnt);
2321 
2322 	/* Longterm mount to be removed by kern_unmount*() */
2323 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2324 
2325 	return &new_mnt->mnt;
2326 
2327 invalid:
2328 	up_read(&namespace_sem);
2329 	return ERR_PTR(-EINVAL);
2330 }
2331 EXPORT_SYMBOL_GPL(clone_private_mount);
2332 
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)2333 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2334 		   struct vfsmount *root)
2335 {
2336 	struct mount *mnt;
2337 	int res = f(root, arg);
2338 	if (res)
2339 		return res;
2340 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2341 		res = f(&mnt->mnt, arg);
2342 		if (res)
2343 			return res;
2344 	}
2345 	return 0;
2346 }
2347 
lock_mnt_tree(struct mount * mnt)2348 static void lock_mnt_tree(struct mount *mnt)
2349 {
2350 	struct mount *p;
2351 
2352 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2353 		int flags = p->mnt.mnt_flags;
2354 		/* Don't allow unprivileged users to change mount flags */
2355 		flags |= MNT_LOCK_ATIME;
2356 
2357 		if (flags & MNT_READONLY)
2358 			flags |= MNT_LOCK_READONLY;
2359 
2360 		if (flags & MNT_NODEV)
2361 			flags |= MNT_LOCK_NODEV;
2362 
2363 		if (flags & MNT_NOSUID)
2364 			flags |= MNT_LOCK_NOSUID;
2365 
2366 		if (flags & MNT_NOEXEC)
2367 			flags |= MNT_LOCK_NOEXEC;
2368 		/* Don't allow unprivileged users to reveal what is under a mount */
2369 		if (list_empty(&p->mnt_expire))
2370 			flags |= MNT_LOCKED;
2371 		p->mnt.mnt_flags = flags;
2372 	}
2373 }
2374 
cleanup_group_ids(struct mount * mnt,struct mount * end)2375 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2376 {
2377 	struct mount *p;
2378 
2379 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2380 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2381 			mnt_release_group_id(p);
2382 	}
2383 }
2384 
invent_group_ids(struct mount * mnt,bool recurse)2385 static int invent_group_ids(struct mount *mnt, bool recurse)
2386 {
2387 	struct mount *p;
2388 
2389 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2390 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2391 			int err = mnt_alloc_group_id(p);
2392 			if (err) {
2393 				cleanup_group_ids(mnt, p);
2394 				return err;
2395 			}
2396 		}
2397 	}
2398 
2399 	return 0;
2400 }
2401 
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2402 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2403 {
2404 	unsigned int max = READ_ONCE(sysctl_mount_max);
2405 	unsigned int mounts = 0;
2406 	struct mount *p;
2407 
2408 	if (ns->nr_mounts >= max)
2409 		return -ENOSPC;
2410 	max -= ns->nr_mounts;
2411 	if (ns->pending_mounts >= max)
2412 		return -ENOSPC;
2413 	max -= ns->pending_mounts;
2414 
2415 	for (p = mnt; p; p = next_mnt(p, mnt))
2416 		mounts++;
2417 
2418 	if (mounts > max)
2419 		return -ENOSPC;
2420 
2421 	ns->pending_mounts += mounts;
2422 	return 0;
2423 }
2424 
2425 enum mnt_tree_flags_t {
2426 	MNT_TREE_MOVE = BIT(0),
2427 	MNT_TREE_BENEATH = BIT(1),
2428 };
2429 
2430 /**
2431  * attach_recursive_mnt - attach a source mount tree
2432  * @source_mnt: mount tree to be attached
2433  * @top_mnt:    mount that @source_mnt will be mounted on or mounted beneath
2434  * @dest_mp:    the mountpoint @source_mnt will be mounted at
2435  * @flags:      modify how @source_mnt is supposed to be attached
2436  *
2437  *  NOTE: in the table below explains the semantics when a source mount
2438  *  of a given type is attached to a destination mount of a given type.
2439  * ---------------------------------------------------------------------------
2440  * |         BIND MOUNT OPERATION                                            |
2441  * |**************************************************************************
2442  * | source-->| shared        |       private  |       slave    | unbindable |
2443  * | dest     |               |                |                |            |
2444  * |   |      |               |                |                |            |
2445  * |   v      |               |                |                |            |
2446  * |**************************************************************************
2447  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2448  * |          |               |                |                |            |
2449  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2450  * ***************************************************************************
2451  * A bind operation clones the source mount and mounts the clone on the
2452  * destination mount.
2453  *
2454  * (++)  the cloned mount is propagated to all the mounts in the propagation
2455  * 	 tree of the destination mount and the cloned mount is added to
2456  * 	 the peer group of the source mount.
2457  * (+)   the cloned mount is created under the destination mount and is marked
2458  *       as shared. The cloned mount is added to the peer group of the source
2459  *       mount.
2460  * (+++) the mount is propagated to all the mounts in the propagation tree
2461  *       of the destination mount and the cloned mount is made slave
2462  *       of the same master as that of the source mount. The cloned mount
2463  *       is marked as 'shared and slave'.
2464  * (*)   the cloned mount is made a slave of the same master as that of the
2465  * 	 source mount.
2466  *
2467  * ---------------------------------------------------------------------------
2468  * |         		MOVE MOUNT OPERATION                                 |
2469  * |**************************************************************************
2470  * | source-->| shared        |       private  |       slave    | unbindable |
2471  * | dest     |               |                |                |            |
2472  * |   |      |               |                |                |            |
2473  * |   v      |               |                |                |            |
2474  * |**************************************************************************
2475  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2476  * |          |               |                |                |            |
2477  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2478  * ***************************************************************************
2479  *
2480  * (+)  the mount is moved to the destination. And is then propagated to
2481  * 	all the mounts in the propagation tree of the destination mount.
2482  * (+*)  the mount is moved to the destination.
2483  * (+++)  the mount is moved to the destination and is then propagated to
2484  * 	all the mounts belonging to the destination mount's propagation tree.
2485  * 	the mount is marked as 'shared and slave'.
2486  * (*)	the mount continues to be a slave at the new location.
2487  *
2488  * if the source mount is a tree, the operations explained above is
2489  * applied to each mount in the tree.
2490  * Must be called without spinlocks held, since this function can sleep
2491  * in allocations.
2492  *
2493  * Context: The function expects namespace_lock() to be held.
2494  * Return: If @source_mnt was successfully attached 0 is returned.
2495  *         Otherwise a negative error code is returned.
2496  */
attach_recursive_mnt(struct mount * source_mnt,struct mount * top_mnt,struct mountpoint * dest_mp,enum mnt_tree_flags_t flags)2497 static int attach_recursive_mnt(struct mount *source_mnt,
2498 				struct mount *top_mnt,
2499 				struct mountpoint *dest_mp,
2500 				enum mnt_tree_flags_t flags)
2501 {
2502 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2503 	HLIST_HEAD(tree_list);
2504 	struct mnt_namespace *ns = top_mnt->mnt_ns;
2505 	struct mountpoint *smp;
2506 	struct mount *child, *dest_mnt, *p;
2507 	struct hlist_node *n;
2508 	int err = 0;
2509 	bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2510 
2511 	/*
2512 	 * Preallocate a mountpoint in case the new mounts need to be
2513 	 * mounted beneath mounts on the same mountpoint.
2514 	 */
2515 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2516 	if (IS_ERR(smp))
2517 		return PTR_ERR(smp);
2518 
2519 	/* Is there space to add these mounts to the mount namespace? */
2520 	if (!moving) {
2521 		err = count_mounts(ns, source_mnt);
2522 		if (err)
2523 			goto out;
2524 	}
2525 
2526 	if (beneath)
2527 		dest_mnt = top_mnt->mnt_parent;
2528 	else
2529 		dest_mnt = top_mnt;
2530 
2531 	if (IS_MNT_SHARED(dest_mnt)) {
2532 		err = invent_group_ids(source_mnt, true);
2533 		if (err)
2534 			goto out;
2535 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2536 	}
2537 	lock_mount_hash();
2538 	if (err)
2539 		goto out_cleanup_ids;
2540 
2541 	if (IS_MNT_SHARED(dest_mnt)) {
2542 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2543 			set_mnt_shared(p);
2544 	}
2545 
2546 	if (moving) {
2547 		if (beneath)
2548 			dest_mp = smp;
2549 		unhash_mnt(source_mnt);
2550 		attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2551 		touch_mnt_namespace(source_mnt->mnt_ns);
2552 	} else {
2553 		if (source_mnt->mnt_ns) {
2554 			LIST_HEAD(head);
2555 
2556 			/* move from anon - the caller will destroy */
2557 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2558 				move_from_ns(p, &head);
2559 			list_del_init(&head);
2560 		}
2561 		if (beneath)
2562 			mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2563 		else
2564 			mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2565 		commit_tree(source_mnt);
2566 	}
2567 
2568 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2569 		struct mount *q;
2570 		hlist_del_init(&child->mnt_hash);
2571 		q = __lookup_mnt(&child->mnt_parent->mnt,
2572 				 child->mnt_mountpoint);
2573 		if (q)
2574 			mnt_change_mountpoint(child, smp, q);
2575 		/* Notice when we are propagating across user namespaces */
2576 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2577 			lock_mnt_tree(child);
2578 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2579 		commit_tree(child);
2580 	}
2581 	put_mountpoint(smp);
2582 	unlock_mount_hash();
2583 
2584 	return 0;
2585 
2586  out_cleanup_ids:
2587 	while (!hlist_empty(&tree_list)) {
2588 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2589 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2590 		umount_tree(child, UMOUNT_SYNC);
2591 	}
2592 	unlock_mount_hash();
2593 	cleanup_group_ids(source_mnt, NULL);
2594  out:
2595 	ns->pending_mounts = 0;
2596 
2597 	read_seqlock_excl(&mount_lock);
2598 	put_mountpoint(smp);
2599 	read_sequnlock_excl(&mount_lock);
2600 
2601 	return err;
2602 }
2603 
2604 /**
2605  * do_lock_mount - lock mount and mountpoint
2606  * @path:    target path
2607  * @beneath: whether the intention is to mount beneath @path
2608  *
2609  * Follow the mount stack on @path until the top mount @mnt is found. If
2610  * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2611  * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2612  * until nothing is stacked on top of it anymore.
2613  *
2614  * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2615  * against concurrent removal of the new mountpoint from another mount
2616  * namespace.
2617  *
2618  * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2619  * @mp on @mnt->mnt_parent must be acquired. This protects against a
2620  * concurrent unlink of @mp->mnt_dentry from another mount namespace
2621  * where @mnt doesn't have a child mount mounted @mp. A concurrent
2622  * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2623  * on top of it for @beneath.
2624  *
2625  * In addition, @beneath needs to make sure that @mnt hasn't been
2626  * unmounted or moved from its current mountpoint in between dropping
2627  * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2628  * being unmounted would be detected later by e.g., calling
2629  * check_mnt(mnt) in the function it's called from. For the @beneath
2630  * case however, it's useful to detect it directly in do_lock_mount().
2631  * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2632  * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2633  * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2634  *
2635  * Return: Either the target mountpoint on the top mount or the top
2636  *         mount's mountpoint.
2637  */
do_lock_mount(struct path * path,bool beneath)2638 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2639 {
2640 	struct vfsmount *mnt = path->mnt;
2641 	struct dentry *dentry;
2642 	struct mountpoint *mp = ERR_PTR(-ENOENT);
2643 
2644 	for (;;) {
2645 		struct mount *m;
2646 
2647 		if (beneath) {
2648 			m = real_mount(mnt);
2649 			read_seqlock_excl(&mount_lock);
2650 			dentry = dget(m->mnt_mountpoint);
2651 			read_sequnlock_excl(&mount_lock);
2652 		} else {
2653 			dentry = path->dentry;
2654 		}
2655 
2656 		inode_lock(dentry->d_inode);
2657 		if (unlikely(cant_mount(dentry))) {
2658 			inode_unlock(dentry->d_inode);
2659 			goto out;
2660 		}
2661 
2662 		namespace_lock();
2663 
2664 		if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) {
2665 			namespace_unlock();
2666 			inode_unlock(dentry->d_inode);
2667 			goto out;
2668 		}
2669 
2670 		mnt = lookup_mnt(path);
2671 		if (likely(!mnt))
2672 			break;
2673 
2674 		namespace_unlock();
2675 		inode_unlock(dentry->d_inode);
2676 		if (beneath)
2677 			dput(dentry);
2678 		path_put(path);
2679 		path->mnt = mnt;
2680 		path->dentry = dget(mnt->mnt_root);
2681 	}
2682 
2683 	mp = get_mountpoint(dentry);
2684 	if (IS_ERR(mp)) {
2685 		namespace_unlock();
2686 		inode_unlock(dentry->d_inode);
2687 	}
2688 
2689 out:
2690 	if (beneath)
2691 		dput(dentry);
2692 
2693 	return mp;
2694 }
2695 
lock_mount(struct path * path)2696 static inline struct mountpoint *lock_mount(struct path *path)
2697 {
2698 	return do_lock_mount(path, false);
2699 }
2700 
unlock_mount(struct mountpoint * where)2701 static void unlock_mount(struct mountpoint *where)
2702 {
2703 	struct dentry *dentry = where->m_dentry;
2704 
2705 	read_seqlock_excl(&mount_lock);
2706 	put_mountpoint(where);
2707 	read_sequnlock_excl(&mount_lock);
2708 
2709 	namespace_unlock();
2710 	inode_unlock(dentry->d_inode);
2711 }
2712 
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2713 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2714 {
2715 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2716 		return -EINVAL;
2717 
2718 	if (d_is_dir(mp->m_dentry) !=
2719 	      d_is_dir(mnt->mnt.mnt_root))
2720 		return -ENOTDIR;
2721 
2722 	return attach_recursive_mnt(mnt, p, mp, 0);
2723 }
2724 
2725 /*
2726  * Sanity check the flags to change_mnt_propagation.
2727  */
2728 
flags_to_propagation_type(int ms_flags)2729 static int flags_to_propagation_type(int ms_flags)
2730 {
2731 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2732 
2733 	/* Fail if any non-propagation flags are set */
2734 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2735 		return 0;
2736 	/* Only one propagation flag should be set */
2737 	if (!is_power_of_2(type))
2738 		return 0;
2739 	return type;
2740 }
2741 
2742 /*
2743  * recursively change the type of the mountpoint.
2744  */
do_change_type(struct path * path,int ms_flags)2745 static int do_change_type(struct path *path, int ms_flags)
2746 {
2747 	struct mount *m;
2748 	struct mount *mnt = real_mount(path->mnt);
2749 	int recurse = ms_flags & MS_REC;
2750 	int type;
2751 	int err = 0;
2752 
2753 	if (!path_mounted(path))
2754 		return -EINVAL;
2755 
2756 	type = flags_to_propagation_type(ms_flags);
2757 	if (!type)
2758 		return -EINVAL;
2759 
2760 	namespace_lock();
2761 	if (type == MS_SHARED) {
2762 		err = invent_group_ids(mnt, recurse);
2763 		if (err)
2764 			goto out_unlock;
2765 	}
2766 
2767 	lock_mount_hash();
2768 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2769 		change_mnt_propagation(m, type);
2770 	unlock_mount_hash();
2771 
2772  out_unlock:
2773 	namespace_unlock();
2774 	return err;
2775 }
2776 
__do_loopback(struct path * old_path,int recurse)2777 static struct mount *__do_loopback(struct path *old_path, int recurse)
2778 {
2779 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2780 
2781 	if (IS_MNT_UNBINDABLE(old))
2782 		return mnt;
2783 
2784 	if (!check_mnt(old)) {
2785 		const struct dentry_operations *d_op = old_path->dentry->d_op;
2786 
2787 		if (d_op != &ns_dentry_operations &&
2788 		    d_op != &pidfs_dentry_operations)
2789 			return mnt;
2790 	}
2791 
2792 	if (!recurse && has_locked_children(old, old_path->dentry))
2793 		return mnt;
2794 
2795 	if (recurse)
2796 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2797 	else
2798 		mnt = clone_mnt(old, old_path->dentry, 0);
2799 
2800 	if (!IS_ERR(mnt))
2801 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2802 
2803 	return mnt;
2804 }
2805 
2806 /*
2807  * do loopback mount.
2808  */
do_loopback(struct path * path,const char * old_name,int recurse)2809 static int do_loopback(struct path *path, const char *old_name,
2810 				int recurse)
2811 {
2812 	struct path old_path;
2813 	struct mount *mnt = NULL, *parent;
2814 	struct mountpoint *mp;
2815 	int err;
2816 	if (!old_name || !*old_name)
2817 		return -EINVAL;
2818 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2819 	if (err)
2820 		return err;
2821 
2822 	err = -EINVAL;
2823 	if (mnt_ns_loop(old_path.dentry))
2824 		goto out;
2825 
2826 	mp = lock_mount(path);
2827 	if (IS_ERR(mp)) {
2828 		err = PTR_ERR(mp);
2829 		goto out;
2830 	}
2831 
2832 	parent = real_mount(path->mnt);
2833 	if (!check_mnt(parent))
2834 		goto out2;
2835 
2836 	mnt = __do_loopback(&old_path, recurse);
2837 	if (IS_ERR(mnt)) {
2838 		err = PTR_ERR(mnt);
2839 		goto out2;
2840 	}
2841 
2842 	err = graft_tree(mnt, parent, mp);
2843 	if (err) {
2844 		lock_mount_hash();
2845 		umount_tree(mnt, UMOUNT_SYNC);
2846 		unlock_mount_hash();
2847 	}
2848 out2:
2849 	unlock_mount(mp);
2850 out:
2851 	path_put(&old_path);
2852 	return err;
2853 }
2854 
open_detached_copy(struct path * path,bool recursive)2855 static struct file *open_detached_copy(struct path *path, bool recursive)
2856 {
2857 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2858 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2859 	struct mount *mnt, *p;
2860 	struct file *file;
2861 
2862 	if (IS_ERR(ns))
2863 		return ERR_CAST(ns);
2864 
2865 	namespace_lock();
2866 	mnt = __do_loopback(path, recursive);
2867 	if (IS_ERR(mnt)) {
2868 		namespace_unlock();
2869 		free_mnt_ns(ns);
2870 		return ERR_CAST(mnt);
2871 	}
2872 
2873 	lock_mount_hash();
2874 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2875 		mnt_add_to_ns(ns, p);
2876 		ns->nr_mounts++;
2877 	}
2878 	ns->root = mnt;
2879 	mntget(&mnt->mnt);
2880 	unlock_mount_hash();
2881 	namespace_unlock();
2882 
2883 	mntput(path->mnt);
2884 	path->mnt = &mnt->mnt;
2885 	file = dentry_open(path, O_PATH, current_cred());
2886 	if (IS_ERR(file))
2887 		dissolve_on_fput(path->mnt);
2888 	else
2889 		file->f_mode |= FMODE_NEED_UNMOUNT;
2890 	return file;
2891 }
2892 
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)2893 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2894 {
2895 	struct file *file;
2896 	struct path path;
2897 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2898 	bool detached = flags & OPEN_TREE_CLONE;
2899 	int error;
2900 	int fd;
2901 
2902 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2903 
2904 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2905 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2906 		      OPEN_TREE_CLOEXEC))
2907 		return -EINVAL;
2908 
2909 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2910 		return -EINVAL;
2911 
2912 	if (flags & AT_NO_AUTOMOUNT)
2913 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2914 	if (flags & AT_SYMLINK_NOFOLLOW)
2915 		lookup_flags &= ~LOOKUP_FOLLOW;
2916 	if (flags & AT_EMPTY_PATH)
2917 		lookup_flags |= LOOKUP_EMPTY;
2918 
2919 	if (detached && !may_mount())
2920 		return -EPERM;
2921 
2922 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2923 	if (fd < 0)
2924 		return fd;
2925 
2926 	error = user_path_at(dfd, filename, lookup_flags, &path);
2927 	if (unlikely(error)) {
2928 		file = ERR_PTR(error);
2929 	} else {
2930 		if (detached)
2931 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2932 		else
2933 			file = dentry_open(&path, O_PATH, current_cred());
2934 		path_put(&path);
2935 	}
2936 	if (IS_ERR(file)) {
2937 		put_unused_fd(fd);
2938 		return PTR_ERR(file);
2939 	}
2940 	fd_install(fd, file);
2941 	return fd;
2942 }
2943 
2944 /*
2945  * Don't allow locked mount flags to be cleared.
2946  *
2947  * No locks need to be held here while testing the various MNT_LOCK
2948  * flags because those flags can never be cleared once they are set.
2949  */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)2950 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2951 {
2952 	unsigned int fl = mnt->mnt.mnt_flags;
2953 
2954 	if ((fl & MNT_LOCK_READONLY) &&
2955 	    !(mnt_flags & MNT_READONLY))
2956 		return false;
2957 
2958 	if ((fl & MNT_LOCK_NODEV) &&
2959 	    !(mnt_flags & MNT_NODEV))
2960 		return false;
2961 
2962 	if ((fl & MNT_LOCK_NOSUID) &&
2963 	    !(mnt_flags & MNT_NOSUID))
2964 		return false;
2965 
2966 	if ((fl & MNT_LOCK_NOEXEC) &&
2967 	    !(mnt_flags & MNT_NOEXEC))
2968 		return false;
2969 
2970 	if ((fl & MNT_LOCK_ATIME) &&
2971 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2972 		return false;
2973 
2974 	return true;
2975 }
2976 
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)2977 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2978 {
2979 	bool readonly_request = (mnt_flags & MNT_READONLY);
2980 
2981 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2982 		return 0;
2983 
2984 	if (readonly_request)
2985 		return mnt_make_readonly(mnt);
2986 
2987 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2988 	return 0;
2989 }
2990 
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)2991 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2992 {
2993 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2994 	mnt->mnt.mnt_flags = mnt_flags;
2995 	touch_mnt_namespace(mnt->mnt_ns);
2996 }
2997 
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)2998 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2999 {
3000 	struct super_block *sb = mnt->mnt_sb;
3001 
3002 	if (!__mnt_is_readonly(mnt) &&
3003 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3004 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3005 		char *buf, *mntpath;
3006 
3007 		buf = (char *)__get_free_page(GFP_KERNEL);
3008 		if (buf)
3009 			mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3010 		else
3011 			mntpath = ERR_PTR(-ENOMEM);
3012 		if (IS_ERR(mntpath))
3013 			mntpath = "(unknown)";
3014 
3015 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3016 			sb->s_type->name,
3017 			is_mounted(mnt) ? "remounted" : "mounted",
3018 			mntpath, &sb->s_time_max,
3019 			(unsigned long long)sb->s_time_max);
3020 
3021 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3022 		if (buf)
3023 			free_page((unsigned long)buf);
3024 	}
3025 }
3026 
3027 /*
3028  * Handle reconfiguration of the mountpoint only without alteration of the
3029  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
3030  * to mount(2).
3031  */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)3032 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
3033 {
3034 	struct super_block *sb = path->mnt->mnt_sb;
3035 	struct mount *mnt = real_mount(path->mnt);
3036 	int ret;
3037 
3038 	if (!check_mnt(mnt))
3039 		return -EINVAL;
3040 
3041 	if (!path_mounted(path))
3042 		return -EINVAL;
3043 
3044 	if (!can_change_locked_flags(mnt, mnt_flags))
3045 		return -EPERM;
3046 
3047 	/*
3048 	 * We're only checking whether the superblock is read-only not
3049 	 * changing it, so only take down_read(&sb->s_umount).
3050 	 */
3051 	down_read(&sb->s_umount);
3052 	lock_mount_hash();
3053 	ret = change_mount_ro_state(mnt, mnt_flags);
3054 	if (ret == 0)
3055 		set_mount_attributes(mnt, mnt_flags);
3056 	unlock_mount_hash();
3057 	up_read(&sb->s_umount);
3058 
3059 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3060 
3061 	return ret;
3062 }
3063 
3064 /*
3065  * change filesystem flags. dir should be a physical root of filesystem.
3066  * If you've mounted a non-root directory somewhere and want to do remount
3067  * on it - tough luck.
3068  */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)3069 static int do_remount(struct path *path, int ms_flags, int sb_flags,
3070 		      int mnt_flags, void *data)
3071 {
3072 	int err;
3073 	struct super_block *sb = path->mnt->mnt_sb;
3074 	struct mount *mnt = real_mount(path->mnt);
3075 	struct fs_context *fc;
3076 
3077 	if (!check_mnt(mnt))
3078 		return -EINVAL;
3079 
3080 	if (!path_mounted(path))
3081 		return -EINVAL;
3082 
3083 	if (!can_change_locked_flags(mnt, mnt_flags))
3084 		return -EPERM;
3085 
3086 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3087 	if (IS_ERR(fc))
3088 		return PTR_ERR(fc);
3089 
3090 	/*
3091 	 * Indicate to the filesystem that the remount request is coming
3092 	 * from the legacy mount system call.
3093 	 */
3094 	fc->oldapi = true;
3095 
3096 	err = parse_monolithic_mount_data(fc, data);
3097 	if (!err) {
3098 		down_write(&sb->s_umount);
3099 		err = -EPERM;
3100 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3101 			err = reconfigure_super(fc);
3102 			if (!err) {
3103 				lock_mount_hash();
3104 				set_mount_attributes(mnt, mnt_flags);
3105 				unlock_mount_hash();
3106 			}
3107 		}
3108 		up_write(&sb->s_umount);
3109 	}
3110 
3111 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3112 
3113 	put_fs_context(fc);
3114 	return err;
3115 }
3116 
tree_contains_unbindable(struct mount * mnt)3117 static inline int tree_contains_unbindable(struct mount *mnt)
3118 {
3119 	struct mount *p;
3120 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3121 		if (IS_MNT_UNBINDABLE(p))
3122 			return 1;
3123 	}
3124 	return 0;
3125 }
3126 
3127 /*
3128  * Check that there aren't references to earlier/same mount namespaces in the
3129  * specified subtree.  Such references can act as pins for mount namespaces
3130  * that aren't checked by the mount-cycle checking code, thereby allowing
3131  * cycles to be made.
3132  */
check_for_nsfs_mounts(struct mount * subtree)3133 static bool check_for_nsfs_mounts(struct mount *subtree)
3134 {
3135 	struct mount *p;
3136 	bool ret = false;
3137 
3138 	lock_mount_hash();
3139 	for (p = subtree; p; p = next_mnt(p, subtree))
3140 		if (mnt_ns_loop(p->mnt.mnt_root))
3141 			goto out;
3142 
3143 	ret = true;
3144 out:
3145 	unlock_mount_hash();
3146 	return ret;
3147 }
3148 
do_set_group(struct path * from_path,struct path * to_path)3149 static int do_set_group(struct path *from_path, struct path *to_path)
3150 {
3151 	struct mount *from, *to;
3152 	int err;
3153 
3154 	from = real_mount(from_path->mnt);
3155 	to = real_mount(to_path->mnt);
3156 
3157 	namespace_lock();
3158 
3159 	err = -EINVAL;
3160 	/* To and From must be mounted */
3161 	if (!is_mounted(&from->mnt))
3162 		goto out;
3163 	if (!is_mounted(&to->mnt))
3164 		goto out;
3165 
3166 	err = -EPERM;
3167 	/* We should be allowed to modify mount namespaces of both mounts */
3168 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
3169 		goto out;
3170 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
3171 		goto out;
3172 
3173 	err = -EINVAL;
3174 	/* To and From paths should be mount roots */
3175 	if (!path_mounted(from_path))
3176 		goto out;
3177 	if (!path_mounted(to_path))
3178 		goto out;
3179 
3180 	/* Setting sharing groups is only allowed across same superblock */
3181 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3182 		goto out;
3183 
3184 	/* From mount root should be wider than To mount root */
3185 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3186 		goto out;
3187 
3188 	/* From mount should not have locked children in place of To's root */
3189 	if (has_locked_children(from, to->mnt.mnt_root))
3190 		goto out;
3191 
3192 	/* Setting sharing groups is only allowed on private mounts */
3193 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3194 		goto out;
3195 
3196 	/* From should not be private */
3197 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3198 		goto out;
3199 
3200 	if (IS_MNT_SLAVE(from)) {
3201 		struct mount *m = from->mnt_master;
3202 
3203 		list_add(&to->mnt_slave, &m->mnt_slave_list);
3204 		to->mnt_master = m;
3205 	}
3206 
3207 	if (IS_MNT_SHARED(from)) {
3208 		to->mnt_group_id = from->mnt_group_id;
3209 		list_add(&to->mnt_share, &from->mnt_share);
3210 		lock_mount_hash();
3211 		set_mnt_shared(to);
3212 		unlock_mount_hash();
3213 	}
3214 
3215 	err = 0;
3216 out:
3217 	namespace_unlock();
3218 	return err;
3219 }
3220 
3221 /**
3222  * path_overmounted - check if path is overmounted
3223  * @path: path to check
3224  *
3225  * Check if path is overmounted, i.e., if there's a mount on top of
3226  * @path->mnt with @path->dentry as mountpoint.
3227  *
3228  * Context: This function expects namespace_lock() to be held.
3229  * Return: If path is overmounted true is returned, false if not.
3230  */
path_overmounted(const struct path * path)3231 static inline bool path_overmounted(const struct path *path)
3232 {
3233 	rcu_read_lock();
3234 	if (unlikely(__lookup_mnt(path->mnt, path->dentry))) {
3235 		rcu_read_unlock();
3236 		return true;
3237 	}
3238 	rcu_read_unlock();
3239 	return false;
3240 }
3241 
3242 /**
3243  * can_move_mount_beneath - check that we can mount beneath the top mount
3244  * @from: mount to mount beneath
3245  * @to:   mount under which to mount
3246  * @mp:   mountpoint of @to
3247  *
3248  * - Make sure that @to->dentry is actually the root of a mount under
3249  *   which we can mount another mount.
3250  * - Make sure that nothing can be mounted beneath the caller's current
3251  *   root or the rootfs of the namespace.
3252  * - Make sure that the caller can unmount the topmost mount ensuring
3253  *   that the caller could reveal the underlying mountpoint.
3254  * - Ensure that nothing has been mounted on top of @from before we
3255  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3256  * - Prevent mounting beneath a mount if the propagation relationship
3257  *   between the source mount, parent mount, and top mount would lead to
3258  *   nonsensical mount trees.
3259  *
3260  * Context: This function expects namespace_lock() to be held.
3261  * Return: On success 0, and on error a negative error code is returned.
3262  */
can_move_mount_beneath(const struct path * from,const struct path * to,const struct mountpoint * mp)3263 static int can_move_mount_beneath(const struct path *from,
3264 				  const struct path *to,
3265 				  const struct mountpoint *mp)
3266 {
3267 	struct mount *mnt_from = real_mount(from->mnt),
3268 		     *mnt_to = real_mount(to->mnt),
3269 		     *parent_mnt_to = mnt_to->mnt_parent;
3270 
3271 	if (!mnt_has_parent(mnt_to))
3272 		return -EINVAL;
3273 
3274 	if (!path_mounted(to))
3275 		return -EINVAL;
3276 
3277 	if (IS_MNT_LOCKED(mnt_to))
3278 		return -EINVAL;
3279 
3280 	/* Avoid creating shadow mounts during mount propagation. */
3281 	if (path_overmounted(from))
3282 		return -EINVAL;
3283 
3284 	/*
3285 	 * Mounting beneath the rootfs only makes sense when the
3286 	 * semantics of pivot_root(".", ".") are used.
3287 	 */
3288 	if (&mnt_to->mnt == current->fs->root.mnt)
3289 		return -EINVAL;
3290 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3291 		return -EINVAL;
3292 
3293 	for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3294 		if (p == mnt_to)
3295 			return -EINVAL;
3296 
3297 	/*
3298 	 * If the parent mount propagates to the child mount this would
3299 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3300 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3301 	 * defeats the whole purpose of mounting beneath another mount.
3302 	 */
3303 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3304 		return -EINVAL;
3305 
3306 	/*
3307 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3308 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3309 	 * Afterwards @mnt_from would be mounted on top of
3310 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3311 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3312 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3313 	 * remounted on top of @c. Afterwards, @mnt_from would be
3314 	 * covered by a copy @c of @mnt_from and @c would be covered by
3315 	 * @mnt_from itself. This defeats the whole purpose of mounting
3316 	 * @mnt_from beneath @mnt_to.
3317 	 */
3318 	if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3319 		return -EINVAL;
3320 
3321 	return 0;
3322 }
3323 
do_move_mount(struct path * old_path,struct path * new_path,bool beneath)3324 static int do_move_mount(struct path *old_path, struct path *new_path,
3325 			 bool beneath)
3326 {
3327 	struct mnt_namespace *ns;
3328 	struct mount *p;
3329 	struct mount *old;
3330 	struct mount *parent;
3331 	struct mountpoint *mp, *old_mp;
3332 	int err;
3333 	bool attached;
3334 	enum mnt_tree_flags_t flags = 0;
3335 
3336 	mp = do_lock_mount(new_path, beneath);
3337 	if (IS_ERR(mp))
3338 		return PTR_ERR(mp);
3339 
3340 	old = real_mount(old_path->mnt);
3341 	p = real_mount(new_path->mnt);
3342 	parent = old->mnt_parent;
3343 	attached = mnt_has_parent(old);
3344 	if (attached)
3345 		flags |= MNT_TREE_MOVE;
3346 	old_mp = old->mnt_mp;
3347 	ns = old->mnt_ns;
3348 
3349 	err = -EINVAL;
3350 	/* The mountpoint must be in our namespace. */
3351 	if (!check_mnt(p))
3352 		goto out;
3353 
3354 	/* The thing moved must be mounted... */
3355 	if (!is_mounted(&old->mnt))
3356 		goto out;
3357 
3358 	/* ... and either ours or the root of anon namespace */
3359 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3360 		goto out;
3361 
3362 	if (old->mnt.mnt_flags & MNT_LOCKED)
3363 		goto out;
3364 
3365 	if (!path_mounted(old_path))
3366 		goto out;
3367 
3368 	if (d_is_dir(new_path->dentry) !=
3369 	    d_is_dir(old_path->dentry))
3370 		goto out;
3371 	/*
3372 	 * Don't move a mount residing in a shared parent.
3373 	 */
3374 	if (attached && IS_MNT_SHARED(parent))
3375 		goto out;
3376 
3377 	if (beneath) {
3378 		err = can_move_mount_beneath(old_path, new_path, mp);
3379 		if (err)
3380 			goto out;
3381 
3382 		err = -EINVAL;
3383 		p = p->mnt_parent;
3384 		flags |= MNT_TREE_BENEATH;
3385 	}
3386 
3387 	/*
3388 	 * Don't move a mount tree containing unbindable mounts to a destination
3389 	 * mount which is shared.
3390 	 */
3391 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3392 		goto out;
3393 	err = -ELOOP;
3394 	if (!check_for_nsfs_mounts(old))
3395 		goto out;
3396 	for (; mnt_has_parent(p); p = p->mnt_parent)
3397 		if (p == old)
3398 			goto out;
3399 
3400 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3401 	if (err)
3402 		goto out;
3403 
3404 	/* if the mount is moved, it should no longer be expire
3405 	 * automatically */
3406 	list_del_init(&old->mnt_expire);
3407 	if (attached)
3408 		put_mountpoint(old_mp);
3409 out:
3410 	unlock_mount(mp);
3411 	if (!err) {
3412 		if (attached)
3413 			mntput_no_expire(parent);
3414 		else
3415 			free_mnt_ns(ns);
3416 	}
3417 	return err;
3418 }
3419 
do_move_mount_old(struct path * path,const char * old_name)3420 static int do_move_mount_old(struct path *path, const char *old_name)
3421 {
3422 	struct path old_path;
3423 	int err;
3424 
3425 	if (!old_name || !*old_name)
3426 		return -EINVAL;
3427 
3428 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3429 	if (err)
3430 		return err;
3431 
3432 	err = do_move_mount(&old_path, path, false);
3433 	path_put(&old_path);
3434 	return err;
3435 }
3436 
3437 /*
3438  * add a mount into a namespace's mount tree
3439  */
do_add_mount(struct mount * newmnt,struct mountpoint * mp,const struct path * path,int mnt_flags)3440 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3441 			const struct path *path, int mnt_flags)
3442 {
3443 	struct mount *parent = real_mount(path->mnt);
3444 
3445 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3446 
3447 	if (unlikely(!check_mnt(parent))) {
3448 		/* that's acceptable only for automounts done in private ns */
3449 		if (!(mnt_flags & MNT_SHRINKABLE))
3450 			return -EINVAL;
3451 		/* ... and for those we'd better have mountpoint still alive */
3452 		if (!parent->mnt_ns)
3453 			return -EINVAL;
3454 	}
3455 
3456 	/* Refuse the same filesystem on the same mount point */
3457 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3458 		return -EBUSY;
3459 
3460 	if (d_is_symlink(newmnt->mnt.mnt_root))
3461 		return -EINVAL;
3462 
3463 	newmnt->mnt.mnt_flags = mnt_flags;
3464 	return graft_tree(newmnt, parent, mp);
3465 }
3466 
3467 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3468 
3469 /*
3470  * Create a new mount using a superblock configuration and request it
3471  * be added to the namespace tree.
3472  */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)3473 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3474 			   unsigned int mnt_flags)
3475 {
3476 	struct vfsmount *mnt;
3477 	struct mountpoint *mp;
3478 	struct super_block *sb = fc->root->d_sb;
3479 	int error;
3480 
3481 	error = security_sb_kern_mount(sb);
3482 	if (!error && mount_too_revealing(sb, &mnt_flags))
3483 		error = -EPERM;
3484 
3485 	if (unlikely(error)) {
3486 		fc_drop_locked(fc);
3487 		return error;
3488 	}
3489 
3490 	up_write(&sb->s_umount);
3491 
3492 	mnt = vfs_create_mount(fc);
3493 	if (IS_ERR(mnt))
3494 		return PTR_ERR(mnt);
3495 
3496 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3497 
3498 	mp = lock_mount(mountpoint);
3499 	if (IS_ERR(mp)) {
3500 		mntput(mnt);
3501 		return PTR_ERR(mp);
3502 	}
3503 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3504 	unlock_mount(mp);
3505 	if (error < 0)
3506 		mntput(mnt);
3507 	return error;
3508 }
3509 
3510 /*
3511  * create a new mount for userspace and request it to be added into the
3512  * namespace's tree
3513  */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)3514 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3515 			int mnt_flags, const char *name, void *data)
3516 {
3517 	struct file_system_type *type;
3518 	struct fs_context *fc;
3519 	const char *subtype = NULL;
3520 	int err = 0;
3521 
3522 	if (!fstype)
3523 		return -EINVAL;
3524 
3525 	type = get_fs_type(fstype);
3526 	if (!type)
3527 		return -ENODEV;
3528 
3529 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3530 		subtype = strchr(fstype, '.');
3531 		if (subtype) {
3532 			subtype++;
3533 			if (!*subtype) {
3534 				put_filesystem(type);
3535 				return -EINVAL;
3536 			}
3537 		}
3538 	}
3539 
3540 	fc = fs_context_for_mount(type, sb_flags);
3541 	put_filesystem(type);
3542 	if (IS_ERR(fc))
3543 		return PTR_ERR(fc);
3544 
3545 	/*
3546 	 * Indicate to the filesystem that the mount request is coming
3547 	 * from the legacy mount system call.
3548 	 */
3549 	fc->oldapi = true;
3550 
3551 	if (subtype)
3552 		err = vfs_parse_fs_string(fc, "subtype",
3553 					  subtype, strlen(subtype));
3554 	if (!err && name)
3555 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3556 	if (!err)
3557 		err = parse_monolithic_mount_data(fc, data);
3558 	if (!err && !mount_capable(fc))
3559 		err = -EPERM;
3560 	if (!err)
3561 		err = vfs_get_tree(fc);
3562 	if (!err)
3563 		err = do_new_mount_fc(fc, path, mnt_flags);
3564 
3565 	put_fs_context(fc);
3566 	return err;
3567 }
3568 
finish_automount(struct vfsmount * m,const struct path * path)3569 int finish_automount(struct vfsmount *m, const struct path *path)
3570 {
3571 	struct dentry *dentry = path->dentry;
3572 	struct mountpoint *mp;
3573 	struct mount *mnt;
3574 	int err;
3575 
3576 	if (!m)
3577 		return 0;
3578 	if (IS_ERR(m))
3579 		return PTR_ERR(m);
3580 
3581 	mnt = real_mount(m);
3582 	/* The new mount record should have at least 2 refs to prevent it being
3583 	 * expired before we get a chance to add it
3584 	 */
3585 	BUG_ON(mnt_get_count(mnt) < 2);
3586 
3587 	if (m->mnt_sb == path->mnt->mnt_sb &&
3588 	    m->mnt_root == dentry) {
3589 		err = -ELOOP;
3590 		goto discard;
3591 	}
3592 
3593 	/*
3594 	 * we don't want to use lock_mount() - in this case finding something
3595 	 * that overmounts our mountpoint to be means "quitely drop what we've
3596 	 * got", not "try to mount it on top".
3597 	 */
3598 	inode_lock(dentry->d_inode);
3599 	namespace_lock();
3600 	if (unlikely(cant_mount(dentry))) {
3601 		err = -ENOENT;
3602 		goto discard_locked;
3603 	}
3604 	if (path_overmounted(path)) {
3605 		err = 0;
3606 		goto discard_locked;
3607 	}
3608 	mp = get_mountpoint(dentry);
3609 	if (IS_ERR(mp)) {
3610 		err = PTR_ERR(mp);
3611 		goto discard_locked;
3612 	}
3613 
3614 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3615 	unlock_mount(mp);
3616 	if (unlikely(err))
3617 		goto discard;
3618 	mntput(m);
3619 	return 0;
3620 
3621 discard_locked:
3622 	namespace_unlock();
3623 	inode_unlock(dentry->d_inode);
3624 discard:
3625 	/* remove m from any expiration list it may be on */
3626 	if (!list_empty(&mnt->mnt_expire)) {
3627 		namespace_lock();
3628 		list_del_init(&mnt->mnt_expire);
3629 		namespace_unlock();
3630 	}
3631 	mntput(m);
3632 	mntput(m);
3633 	return err;
3634 }
3635 
3636 /**
3637  * mnt_set_expiry - Put a mount on an expiration list
3638  * @mnt: The mount to list.
3639  * @expiry_list: The list to add the mount to.
3640  */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3641 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3642 {
3643 	namespace_lock();
3644 
3645 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3646 
3647 	namespace_unlock();
3648 }
3649 EXPORT_SYMBOL(mnt_set_expiry);
3650 
3651 /*
3652  * process a list of expirable mountpoints with the intent of discarding any
3653  * mountpoints that aren't in use and haven't been touched since last we came
3654  * here
3655  */
mark_mounts_for_expiry(struct list_head * mounts)3656 void mark_mounts_for_expiry(struct list_head *mounts)
3657 {
3658 	struct mount *mnt, *next;
3659 	LIST_HEAD(graveyard);
3660 
3661 	if (list_empty(mounts))
3662 		return;
3663 
3664 	namespace_lock();
3665 	lock_mount_hash();
3666 
3667 	/* extract from the expiration list every vfsmount that matches the
3668 	 * following criteria:
3669 	 * - only referenced by its parent vfsmount
3670 	 * - still marked for expiry (marked on the last call here; marks are
3671 	 *   cleared by mntput())
3672 	 */
3673 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3674 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3675 			propagate_mount_busy(mnt, 1))
3676 			continue;
3677 		list_move(&mnt->mnt_expire, &graveyard);
3678 	}
3679 	while (!list_empty(&graveyard)) {
3680 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3681 		touch_mnt_namespace(mnt->mnt_ns);
3682 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3683 	}
3684 	unlock_mount_hash();
3685 	namespace_unlock();
3686 }
3687 
3688 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3689 
3690 /*
3691  * Ripoff of 'select_parent()'
3692  *
3693  * search the list of submounts for a given mountpoint, and move any
3694  * shrinkable submounts to the 'graveyard' list.
3695  */
select_submounts(struct mount * parent,struct list_head * graveyard)3696 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3697 {
3698 	struct mount *this_parent = parent;
3699 	struct list_head *next;
3700 	int found = 0;
3701 
3702 repeat:
3703 	next = this_parent->mnt_mounts.next;
3704 resume:
3705 	while (next != &this_parent->mnt_mounts) {
3706 		struct list_head *tmp = next;
3707 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3708 
3709 		next = tmp->next;
3710 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3711 			continue;
3712 		/*
3713 		 * Descend a level if the d_mounts list is non-empty.
3714 		 */
3715 		if (!list_empty(&mnt->mnt_mounts)) {
3716 			this_parent = mnt;
3717 			goto repeat;
3718 		}
3719 
3720 		if (!propagate_mount_busy(mnt, 1)) {
3721 			list_move_tail(&mnt->mnt_expire, graveyard);
3722 			found++;
3723 		}
3724 	}
3725 	/*
3726 	 * All done at this level ... ascend and resume the search
3727 	 */
3728 	if (this_parent != parent) {
3729 		next = this_parent->mnt_child.next;
3730 		this_parent = this_parent->mnt_parent;
3731 		goto resume;
3732 	}
3733 	return found;
3734 }
3735 
3736 /*
3737  * process a list of expirable mountpoints with the intent of discarding any
3738  * submounts of a specific parent mountpoint
3739  *
3740  * mount_lock must be held for write
3741  */
shrink_submounts(struct mount * mnt)3742 static void shrink_submounts(struct mount *mnt)
3743 {
3744 	LIST_HEAD(graveyard);
3745 	struct mount *m;
3746 
3747 	/* extract submounts of 'mountpoint' from the expiration list */
3748 	while (select_submounts(mnt, &graveyard)) {
3749 		while (!list_empty(&graveyard)) {
3750 			m = list_first_entry(&graveyard, struct mount,
3751 						mnt_expire);
3752 			touch_mnt_namespace(m->mnt_ns);
3753 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3754 		}
3755 	}
3756 }
3757 
copy_mount_options(const void __user * data)3758 static void *copy_mount_options(const void __user * data)
3759 {
3760 	char *copy;
3761 	unsigned left, offset;
3762 
3763 	if (!data)
3764 		return NULL;
3765 
3766 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3767 	if (!copy)
3768 		return ERR_PTR(-ENOMEM);
3769 
3770 	left = copy_from_user(copy, data, PAGE_SIZE);
3771 
3772 	/*
3773 	 * Not all architectures have an exact copy_from_user(). Resort to
3774 	 * byte at a time.
3775 	 */
3776 	offset = PAGE_SIZE - left;
3777 	while (left) {
3778 		char c;
3779 		if (get_user(c, (const char __user *)data + offset))
3780 			break;
3781 		copy[offset] = c;
3782 		left--;
3783 		offset++;
3784 	}
3785 
3786 	if (left == PAGE_SIZE) {
3787 		kfree(copy);
3788 		return ERR_PTR(-EFAULT);
3789 	}
3790 
3791 	return copy;
3792 }
3793 
copy_mount_string(const void __user * data)3794 static char *copy_mount_string(const void __user *data)
3795 {
3796 	return data ? strndup_user(data, PATH_MAX) : NULL;
3797 }
3798 
3799 /*
3800  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3801  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3802  *
3803  * data is a (void *) that can point to any structure up to
3804  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3805  * information (or be NULL).
3806  *
3807  * Pre-0.97 versions of mount() didn't have a flags word.
3808  * When the flags word was introduced its top half was required
3809  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3810  * Therefore, if this magic number is present, it carries no information
3811  * and must be discarded.
3812  */
path_mount(const char * dev_name,struct path * path,const char * type_page,unsigned long flags,void * data_page)3813 int path_mount(const char *dev_name, struct path *path,
3814 		const char *type_page, unsigned long flags, void *data_page)
3815 {
3816 	unsigned int mnt_flags = 0, sb_flags;
3817 	int ret;
3818 
3819 	/* Discard magic */
3820 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3821 		flags &= ~MS_MGC_MSK;
3822 
3823 	/* Basic sanity checks */
3824 	if (data_page)
3825 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3826 
3827 	if (flags & MS_NOUSER)
3828 		return -EINVAL;
3829 
3830 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3831 	if (ret)
3832 		return ret;
3833 	if (!may_mount())
3834 		return -EPERM;
3835 	if (flags & SB_MANDLOCK)
3836 		warn_mandlock();
3837 
3838 	/* Default to relatime unless overriden */
3839 	if (!(flags & MS_NOATIME))
3840 		mnt_flags |= MNT_RELATIME;
3841 
3842 	/* Separate the per-mountpoint flags */
3843 	if (flags & MS_NOSUID)
3844 		mnt_flags |= MNT_NOSUID;
3845 	if (flags & MS_NODEV)
3846 		mnt_flags |= MNT_NODEV;
3847 	if (flags & MS_NOEXEC)
3848 		mnt_flags |= MNT_NOEXEC;
3849 	if (flags & MS_NOATIME)
3850 		mnt_flags |= MNT_NOATIME;
3851 	if (flags & MS_NODIRATIME)
3852 		mnt_flags |= MNT_NODIRATIME;
3853 	if (flags & MS_STRICTATIME)
3854 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3855 	if (flags & MS_RDONLY)
3856 		mnt_flags |= MNT_READONLY;
3857 	if (flags & MS_NOSYMFOLLOW)
3858 		mnt_flags |= MNT_NOSYMFOLLOW;
3859 
3860 	/* The default atime for remount is preservation */
3861 	if ((flags & MS_REMOUNT) &&
3862 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3863 		       MS_STRICTATIME)) == 0)) {
3864 		mnt_flags &= ~MNT_ATIME_MASK;
3865 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3866 	}
3867 
3868 	sb_flags = flags & (SB_RDONLY |
3869 			    SB_SYNCHRONOUS |
3870 			    SB_MANDLOCK |
3871 			    SB_DIRSYNC |
3872 			    SB_SILENT |
3873 			    SB_POSIXACL |
3874 			    SB_LAZYTIME |
3875 			    SB_I_VERSION);
3876 
3877 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3878 		return do_reconfigure_mnt(path, mnt_flags);
3879 	if (flags & MS_REMOUNT)
3880 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3881 	if (flags & MS_BIND)
3882 		return do_loopback(path, dev_name, flags & MS_REC);
3883 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3884 		return do_change_type(path, flags);
3885 	if (flags & MS_MOVE)
3886 		return do_move_mount_old(path, dev_name);
3887 
3888 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3889 			    data_page);
3890 }
3891 
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)3892 int do_mount(const char *dev_name, const char __user *dir_name,
3893 		const char *type_page, unsigned long flags, void *data_page)
3894 {
3895 	struct path path;
3896 	int ret;
3897 
3898 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3899 	if (ret)
3900 		return ret;
3901 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3902 	path_put(&path);
3903 	return ret;
3904 }
3905 
inc_mnt_namespaces(struct user_namespace * ns)3906 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3907 {
3908 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3909 }
3910 
dec_mnt_namespaces(struct ucounts * ucounts)3911 static void dec_mnt_namespaces(struct ucounts *ucounts)
3912 {
3913 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3914 }
3915 
free_mnt_ns(struct mnt_namespace * ns)3916 static void free_mnt_ns(struct mnt_namespace *ns)
3917 {
3918 	if (!is_anon_ns(ns))
3919 		ns_free_inum(&ns->ns);
3920 	dec_mnt_namespaces(ns->ucounts);
3921 	mnt_ns_tree_remove(ns);
3922 }
3923 
3924 /*
3925  * Assign a sequence number so we can detect when we attempt to bind
3926  * mount a reference to an older mount namespace into the current
3927  * mount namespace, preventing reference counting loops.  A 64bit
3928  * number incrementing at 10Ghz will take 12,427 years to wrap which
3929  * is effectively never, so we can ignore the possibility.
3930  */
3931 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3932 
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)3933 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3934 {
3935 	struct mnt_namespace *new_ns;
3936 	struct ucounts *ucounts;
3937 	int ret;
3938 
3939 	ucounts = inc_mnt_namespaces(user_ns);
3940 	if (!ucounts)
3941 		return ERR_PTR(-ENOSPC);
3942 
3943 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3944 	if (!new_ns) {
3945 		dec_mnt_namespaces(ucounts);
3946 		return ERR_PTR(-ENOMEM);
3947 	}
3948 	if (!anon) {
3949 		ret = ns_alloc_inum(&new_ns->ns);
3950 		if (ret) {
3951 			kfree(new_ns);
3952 			dec_mnt_namespaces(ucounts);
3953 			return ERR_PTR(ret);
3954 		}
3955 	}
3956 	new_ns->ns.ops = &mntns_operations;
3957 	if (!anon)
3958 		new_ns->seq = atomic64_inc_return(&mnt_ns_seq);
3959 	refcount_set(&new_ns->ns.count, 1);
3960 	refcount_set(&new_ns->passive, 1);
3961 	new_ns->mounts = RB_ROOT;
3962 	INIT_LIST_HEAD(&new_ns->mnt_ns_list);
3963 	RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
3964 	init_waitqueue_head(&new_ns->poll);
3965 	new_ns->user_ns = get_user_ns(user_ns);
3966 	new_ns->ucounts = ucounts;
3967 	return new_ns;
3968 }
3969 
3970 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)3971 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3972 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3973 {
3974 	struct mnt_namespace *new_ns;
3975 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3976 	struct mount *p, *q;
3977 	struct mount *old;
3978 	struct mount *new;
3979 	int copy_flags;
3980 
3981 	BUG_ON(!ns);
3982 
3983 	if (likely(!(flags & CLONE_NEWNS))) {
3984 		get_mnt_ns(ns);
3985 		return ns;
3986 	}
3987 
3988 	old = ns->root;
3989 
3990 	new_ns = alloc_mnt_ns(user_ns, false);
3991 	if (IS_ERR(new_ns))
3992 		return new_ns;
3993 
3994 	namespace_lock();
3995 	/* First pass: copy the tree topology */
3996 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3997 	if (user_ns != ns->user_ns)
3998 		copy_flags |= CL_SHARED_TO_SLAVE;
3999 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4000 	if (IS_ERR(new)) {
4001 		namespace_unlock();
4002 		ns_free_inum(&new_ns->ns);
4003 		dec_mnt_namespaces(new_ns->ucounts);
4004 		mnt_ns_release(new_ns);
4005 		return ERR_CAST(new);
4006 	}
4007 	if (user_ns != ns->user_ns) {
4008 		lock_mount_hash();
4009 		lock_mnt_tree(new);
4010 		unlock_mount_hash();
4011 	}
4012 	new_ns->root = new;
4013 
4014 	/*
4015 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4016 	 * as belonging to new namespace.  We have already acquired a private
4017 	 * fs_struct, so tsk->fs->lock is not needed.
4018 	 */
4019 	p = old;
4020 	q = new;
4021 	while (p) {
4022 		mnt_add_to_ns(new_ns, q);
4023 		new_ns->nr_mounts++;
4024 		if (new_fs) {
4025 			if (&p->mnt == new_fs->root.mnt) {
4026 				new_fs->root.mnt = mntget(&q->mnt);
4027 				rootmnt = &p->mnt;
4028 			}
4029 			if (&p->mnt == new_fs->pwd.mnt) {
4030 				new_fs->pwd.mnt = mntget(&q->mnt);
4031 				pwdmnt = &p->mnt;
4032 			}
4033 		}
4034 		p = next_mnt(p, old);
4035 		q = next_mnt(q, new);
4036 		if (!q)
4037 			break;
4038 		// an mntns binding we'd skipped?
4039 		while (p->mnt.mnt_root != q->mnt.mnt_root)
4040 			p = next_mnt(skip_mnt_tree(p), old);
4041 	}
4042 	namespace_unlock();
4043 
4044 	if (rootmnt)
4045 		mntput(rootmnt);
4046 	if (pwdmnt)
4047 		mntput(pwdmnt);
4048 
4049 	mnt_ns_tree_add(new_ns);
4050 	return new_ns;
4051 }
4052 
mount_subtree(struct vfsmount * m,const char * name)4053 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4054 {
4055 	struct mount *mnt = real_mount(m);
4056 	struct mnt_namespace *ns;
4057 	struct super_block *s;
4058 	struct path path;
4059 	int err;
4060 
4061 	ns = alloc_mnt_ns(&init_user_ns, true);
4062 	if (IS_ERR(ns)) {
4063 		mntput(m);
4064 		return ERR_CAST(ns);
4065 	}
4066 	ns->root = mnt;
4067 	ns->nr_mounts++;
4068 	mnt_add_to_ns(ns, mnt);
4069 
4070 	err = vfs_path_lookup(m->mnt_root, m,
4071 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4072 
4073 	put_mnt_ns(ns);
4074 
4075 	if (err)
4076 		return ERR_PTR(err);
4077 
4078 	/* trade a vfsmount reference for active sb one */
4079 	s = path.mnt->mnt_sb;
4080 	atomic_inc(&s->s_active);
4081 	mntput(path.mnt);
4082 	/* lock the sucker */
4083 	down_write(&s->s_umount);
4084 	/* ... and return the root of (sub)tree on it */
4085 	return path.dentry;
4086 }
4087 EXPORT_SYMBOL(mount_subtree);
4088 
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)4089 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4090 		char __user *, type, unsigned long, flags, void __user *, data)
4091 {
4092 	int ret;
4093 	char *kernel_type;
4094 	char *kernel_dev;
4095 	void *options;
4096 
4097 	kernel_type = copy_mount_string(type);
4098 	ret = PTR_ERR(kernel_type);
4099 	if (IS_ERR(kernel_type))
4100 		goto out_type;
4101 
4102 	kernel_dev = copy_mount_string(dev_name);
4103 	ret = PTR_ERR(kernel_dev);
4104 	if (IS_ERR(kernel_dev))
4105 		goto out_dev;
4106 
4107 	options = copy_mount_options(data);
4108 	ret = PTR_ERR(options);
4109 	if (IS_ERR(options))
4110 		goto out_data;
4111 
4112 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4113 
4114 	kfree(options);
4115 out_data:
4116 	kfree(kernel_dev);
4117 out_dev:
4118 	kfree(kernel_type);
4119 out_type:
4120 	return ret;
4121 }
4122 
4123 #define FSMOUNT_VALID_FLAGS                                                    \
4124 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
4125 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
4126 	 MOUNT_ATTR_NOSYMFOLLOW)
4127 
4128 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4129 
4130 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4131 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4132 
attr_flags_to_mnt_flags(u64 attr_flags)4133 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4134 {
4135 	unsigned int mnt_flags = 0;
4136 
4137 	if (attr_flags & MOUNT_ATTR_RDONLY)
4138 		mnt_flags |= MNT_READONLY;
4139 	if (attr_flags & MOUNT_ATTR_NOSUID)
4140 		mnt_flags |= MNT_NOSUID;
4141 	if (attr_flags & MOUNT_ATTR_NODEV)
4142 		mnt_flags |= MNT_NODEV;
4143 	if (attr_flags & MOUNT_ATTR_NOEXEC)
4144 		mnt_flags |= MNT_NOEXEC;
4145 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
4146 		mnt_flags |= MNT_NODIRATIME;
4147 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4148 		mnt_flags |= MNT_NOSYMFOLLOW;
4149 
4150 	return mnt_flags;
4151 }
4152 
4153 /*
4154  * Create a kernel mount representation for a new, prepared superblock
4155  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4156  */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)4157 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4158 		unsigned int, attr_flags)
4159 {
4160 	struct mnt_namespace *ns;
4161 	struct fs_context *fc;
4162 	struct file *file;
4163 	struct path newmount;
4164 	struct mount *mnt;
4165 	unsigned int mnt_flags = 0;
4166 	long ret;
4167 
4168 	if (!may_mount())
4169 		return -EPERM;
4170 
4171 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4172 		return -EINVAL;
4173 
4174 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4175 		return -EINVAL;
4176 
4177 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4178 
4179 	switch (attr_flags & MOUNT_ATTR__ATIME) {
4180 	case MOUNT_ATTR_STRICTATIME:
4181 		break;
4182 	case MOUNT_ATTR_NOATIME:
4183 		mnt_flags |= MNT_NOATIME;
4184 		break;
4185 	case MOUNT_ATTR_RELATIME:
4186 		mnt_flags |= MNT_RELATIME;
4187 		break;
4188 	default:
4189 		return -EINVAL;
4190 	}
4191 
4192 	CLASS(fd, f)(fs_fd);
4193 	if (fd_empty(f))
4194 		return -EBADF;
4195 
4196 	if (fd_file(f)->f_op != &fscontext_fops)
4197 		return -EINVAL;
4198 
4199 	fc = fd_file(f)->private_data;
4200 
4201 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
4202 	if (ret < 0)
4203 		return ret;
4204 
4205 	/* There must be a valid superblock or we can't mount it */
4206 	ret = -EINVAL;
4207 	if (!fc->root)
4208 		goto err_unlock;
4209 
4210 	ret = -EPERM;
4211 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4212 		pr_warn("VFS: Mount too revealing\n");
4213 		goto err_unlock;
4214 	}
4215 
4216 	ret = -EBUSY;
4217 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4218 		goto err_unlock;
4219 
4220 	if (fc->sb_flags & SB_MANDLOCK)
4221 		warn_mandlock();
4222 
4223 	newmount.mnt = vfs_create_mount(fc);
4224 	if (IS_ERR(newmount.mnt)) {
4225 		ret = PTR_ERR(newmount.mnt);
4226 		goto err_unlock;
4227 	}
4228 	newmount.dentry = dget(fc->root);
4229 	newmount.mnt->mnt_flags = mnt_flags;
4230 
4231 	/* We've done the mount bit - now move the file context into more or
4232 	 * less the same state as if we'd done an fspick().  We don't want to
4233 	 * do any memory allocation or anything like that at this point as we
4234 	 * don't want to have to handle any errors incurred.
4235 	 */
4236 	vfs_clean_context(fc);
4237 
4238 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4239 	if (IS_ERR(ns)) {
4240 		ret = PTR_ERR(ns);
4241 		goto err_path;
4242 	}
4243 	mnt = real_mount(newmount.mnt);
4244 	ns->root = mnt;
4245 	ns->nr_mounts = 1;
4246 	mnt_add_to_ns(ns, mnt);
4247 	mntget(newmount.mnt);
4248 
4249 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4250 	 * it, not just simply put it.
4251 	 */
4252 	file = dentry_open(&newmount, O_PATH, fc->cred);
4253 	if (IS_ERR(file)) {
4254 		dissolve_on_fput(newmount.mnt);
4255 		ret = PTR_ERR(file);
4256 		goto err_path;
4257 	}
4258 	file->f_mode |= FMODE_NEED_UNMOUNT;
4259 
4260 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4261 	if (ret >= 0)
4262 		fd_install(ret, file);
4263 	else
4264 		fput(file);
4265 
4266 err_path:
4267 	path_put(&newmount);
4268 err_unlock:
4269 	mutex_unlock(&fc->uapi_mutex);
4270 	return ret;
4271 }
4272 
4273 /*
4274  * Move a mount from one place to another.  In combination with
4275  * fsopen()/fsmount() this is used to install a new mount and in combination
4276  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4277  * a mount subtree.
4278  *
4279  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4280  */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)4281 SYSCALL_DEFINE5(move_mount,
4282 		int, from_dfd, const char __user *, from_pathname,
4283 		int, to_dfd, const char __user *, to_pathname,
4284 		unsigned int, flags)
4285 {
4286 	struct path from_path, to_path;
4287 	unsigned int lflags;
4288 	int ret = 0;
4289 
4290 	if (!may_mount())
4291 		return -EPERM;
4292 
4293 	if (flags & ~MOVE_MOUNT__MASK)
4294 		return -EINVAL;
4295 
4296 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4297 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4298 		return -EINVAL;
4299 
4300 	/* If someone gives a pathname, they aren't permitted to move
4301 	 * from an fd that requires unmount as we can't get at the flag
4302 	 * to clear it afterwards.
4303 	 */
4304 	lflags = 0;
4305 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4306 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4307 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4308 
4309 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4310 	if (ret < 0)
4311 		return ret;
4312 
4313 	lflags = 0;
4314 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4315 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4316 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4317 
4318 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4319 	if (ret < 0)
4320 		goto out_from;
4321 
4322 	ret = security_move_mount(&from_path, &to_path);
4323 	if (ret < 0)
4324 		goto out_to;
4325 
4326 	if (flags & MOVE_MOUNT_SET_GROUP)
4327 		ret = do_set_group(&from_path, &to_path);
4328 	else
4329 		ret = do_move_mount(&from_path, &to_path,
4330 				    (flags & MOVE_MOUNT_BENEATH));
4331 
4332 out_to:
4333 	path_put(&to_path);
4334 out_from:
4335 	path_put(&from_path);
4336 	return ret;
4337 }
4338 
4339 /*
4340  * Return true if path is reachable from root
4341  *
4342  * namespace_sem or mount_lock is held
4343  */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)4344 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4345 			 const struct path *root)
4346 {
4347 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4348 		dentry = mnt->mnt_mountpoint;
4349 		mnt = mnt->mnt_parent;
4350 	}
4351 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4352 }
4353 
path_is_under(const struct path * path1,const struct path * path2)4354 bool path_is_under(const struct path *path1, const struct path *path2)
4355 {
4356 	bool res;
4357 	read_seqlock_excl(&mount_lock);
4358 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4359 	read_sequnlock_excl(&mount_lock);
4360 	return res;
4361 }
4362 EXPORT_SYMBOL(path_is_under);
4363 
4364 /*
4365  * pivot_root Semantics:
4366  * Moves the root file system of the current process to the directory put_old,
4367  * makes new_root as the new root file system of the current process, and sets
4368  * root/cwd of all processes which had them on the current root to new_root.
4369  *
4370  * Restrictions:
4371  * The new_root and put_old must be directories, and  must not be on the
4372  * same file  system as the current process root. The put_old  must  be
4373  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4374  * pointed to by put_old must yield the same directory as new_root. No other
4375  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4376  *
4377  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4378  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4379  * in this situation.
4380  *
4381  * Notes:
4382  *  - we don't move root/cwd if they are not at the root (reason: if something
4383  *    cared enough to change them, it's probably wrong to force them elsewhere)
4384  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4385  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4386  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4387  *    first.
4388  */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)4389 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4390 		const char __user *, put_old)
4391 {
4392 	struct path new, old, root;
4393 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4394 	struct mountpoint *old_mp, *root_mp;
4395 	int error;
4396 
4397 	if (!may_mount())
4398 		return -EPERM;
4399 
4400 	error = user_path_at(AT_FDCWD, new_root,
4401 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4402 	if (error)
4403 		goto out0;
4404 
4405 	error = user_path_at(AT_FDCWD, put_old,
4406 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4407 	if (error)
4408 		goto out1;
4409 
4410 	error = security_sb_pivotroot(&old, &new);
4411 	if (error)
4412 		goto out2;
4413 
4414 	get_fs_root(current->fs, &root);
4415 	old_mp = lock_mount(&old);
4416 	error = PTR_ERR(old_mp);
4417 	if (IS_ERR(old_mp))
4418 		goto out3;
4419 
4420 	error = -EINVAL;
4421 	new_mnt = real_mount(new.mnt);
4422 	root_mnt = real_mount(root.mnt);
4423 	old_mnt = real_mount(old.mnt);
4424 	ex_parent = new_mnt->mnt_parent;
4425 	root_parent = root_mnt->mnt_parent;
4426 	if (IS_MNT_SHARED(old_mnt) ||
4427 		IS_MNT_SHARED(ex_parent) ||
4428 		IS_MNT_SHARED(root_parent))
4429 		goto out4;
4430 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4431 		goto out4;
4432 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4433 		goto out4;
4434 	error = -ENOENT;
4435 	if (d_unlinked(new.dentry))
4436 		goto out4;
4437 	error = -EBUSY;
4438 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4439 		goto out4; /* loop, on the same file system  */
4440 	error = -EINVAL;
4441 	if (!path_mounted(&root))
4442 		goto out4; /* not a mountpoint */
4443 	if (!mnt_has_parent(root_mnt))
4444 		goto out4; /* not attached */
4445 	if (!path_mounted(&new))
4446 		goto out4; /* not a mountpoint */
4447 	if (!mnt_has_parent(new_mnt))
4448 		goto out4; /* not attached */
4449 	/* make sure we can reach put_old from new_root */
4450 	if (!is_path_reachable(old_mnt, old.dentry, &new))
4451 		goto out4;
4452 	/* make certain new is below the root */
4453 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4454 		goto out4;
4455 	lock_mount_hash();
4456 	umount_mnt(new_mnt);
4457 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
4458 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4459 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4460 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4461 	}
4462 	/* mount old root on put_old */
4463 	attach_mnt(root_mnt, old_mnt, old_mp, false);
4464 	/* mount new_root on / */
4465 	attach_mnt(new_mnt, root_parent, root_mp, false);
4466 	mnt_add_count(root_parent, -1);
4467 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4468 	/* A moved mount should not expire automatically */
4469 	list_del_init(&new_mnt->mnt_expire);
4470 	put_mountpoint(root_mp);
4471 	unlock_mount_hash();
4472 	chroot_fs_refs(&root, &new);
4473 	error = 0;
4474 out4:
4475 	unlock_mount(old_mp);
4476 	if (!error)
4477 		mntput_no_expire(ex_parent);
4478 out3:
4479 	path_put(&root);
4480 out2:
4481 	path_put(&old);
4482 out1:
4483 	path_put(&new);
4484 out0:
4485 	return error;
4486 }
4487 
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)4488 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4489 {
4490 	unsigned int flags = mnt->mnt.mnt_flags;
4491 
4492 	/*  flags to clear */
4493 	flags &= ~kattr->attr_clr;
4494 	/* flags to raise */
4495 	flags |= kattr->attr_set;
4496 
4497 	return flags;
4498 }
4499 
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4500 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4501 {
4502 	struct vfsmount *m = &mnt->mnt;
4503 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4504 
4505 	if (!kattr->mnt_idmap)
4506 		return 0;
4507 
4508 	/*
4509 	 * Creating an idmapped mount with the filesystem wide idmapping
4510 	 * doesn't make sense so block that. We don't allow mushy semantics.
4511 	 */
4512 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4513 		return -EINVAL;
4514 
4515 	/*
4516 	 * Once a mount has been idmapped we don't allow it to change its
4517 	 * mapping. It makes things simpler and callers can just create
4518 	 * another bind-mount they can idmap if they want to.
4519 	 */
4520 	if (is_idmapped_mnt(m))
4521 		return -EPERM;
4522 
4523 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4524 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4525 		return -EINVAL;
4526 
4527 	/* The filesystem has turned off idmapped mounts. */
4528 	if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4529 		return -EINVAL;
4530 
4531 	/* We're not controlling the superblock. */
4532 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4533 		return -EPERM;
4534 
4535 	/* Mount has already been visible in the filesystem hierarchy. */
4536 	if (!is_anon_ns(mnt->mnt_ns))
4537 		return -EINVAL;
4538 
4539 	return 0;
4540 }
4541 
4542 /**
4543  * mnt_allow_writers() - check whether the attribute change allows writers
4544  * @kattr: the new mount attributes
4545  * @mnt: the mount to which @kattr will be applied
4546  *
4547  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4548  *
4549  * Return: true if writers need to be held, false if not
4550  */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)4551 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4552 				     const struct mount *mnt)
4553 {
4554 	return (!(kattr->attr_set & MNT_READONLY) ||
4555 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4556 	       !kattr->mnt_idmap;
4557 }
4558 
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt)4559 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4560 {
4561 	struct mount *m;
4562 	int err;
4563 
4564 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4565 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4566 			err = -EPERM;
4567 			break;
4568 		}
4569 
4570 		err = can_idmap_mount(kattr, m);
4571 		if (err)
4572 			break;
4573 
4574 		if (!mnt_allow_writers(kattr, m)) {
4575 			err = mnt_hold_writers(m);
4576 			if (err)
4577 				break;
4578 		}
4579 
4580 		if (!kattr->recurse)
4581 			return 0;
4582 	}
4583 
4584 	if (err) {
4585 		struct mount *p;
4586 
4587 		/*
4588 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4589 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4590 		 * mounts and needs to take care to include the first mount.
4591 		 */
4592 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4593 			/* If we had to hold writers unblock them. */
4594 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4595 				mnt_unhold_writers(p);
4596 
4597 			/*
4598 			 * We're done once the first mount we changed got
4599 			 * MNT_WRITE_HOLD unset.
4600 			 */
4601 			if (p == m)
4602 				break;
4603 		}
4604 	}
4605 	return err;
4606 }
4607 
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4608 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4609 {
4610 	if (!kattr->mnt_idmap)
4611 		return;
4612 
4613 	/*
4614 	 * Pairs with smp_load_acquire() in mnt_idmap().
4615 	 *
4616 	 * Since we only allow a mount to change the idmapping once and
4617 	 * verified this in can_idmap_mount() we know that the mount has
4618 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4619 	 * references.
4620 	 */
4621 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4622 }
4623 
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt)4624 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4625 {
4626 	struct mount *m;
4627 
4628 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4629 		unsigned int flags;
4630 
4631 		do_idmap_mount(kattr, m);
4632 		flags = recalc_flags(kattr, m);
4633 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4634 
4635 		/* If we had to hold writers unblock them. */
4636 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4637 			mnt_unhold_writers(m);
4638 
4639 		if (kattr->propagation)
4640 			change_mnt_propagation(m, kattr->propagation);
4641 		if (!kattr->recurse)
4642 			break;
4643 	}
4644 	touch_mnt_namespace(mnt->mnt_ns);
4645 }
4646 
do_mount_setattr(struct path * path,struct mount_kattr * kattr)4647 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4648 {
4649 	struct mount *mnt = real_mount(path->mnt);
4650 	int err = 0;
4651 
4652 	if (!path_mounted(path))
4653 		return -EINVAL;
4654 
4655 	if (kattr->mnt_userns) {
4656 		struct mnt_idmap *mnt_idmap;
4657 
4658 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4659 		if (IS_ERR(mnt_idmap))
4660 			return PTR_ERR(mnt_idmap);
4661 		kattr->mnt_idmap = mnt_idmap;
4662 	}
4663 
4664 	if (kattr->propagation) {
4665 		/*
4666 		 * Only take namespace_lock() if we're actually changing
4667 		 * propagation.
4668 		 */
4669 		namespace_lock();
4670 		if (kattr->propagation == MS_SHARED) {
4671 			err = invent_group_ids(mnt, kattr->recurse);
4672 			if (err) {
4673 				namespace_unlock();
4674 				return err;
4675 			}
4676 		}
4677 	}
4678 
4679 	err = -EINVAL;
4680 	lock_mount_hash();
4681 
4682 	/* Ensure that this isn't anything purely vfs internal. */
4683 	if (!is_mounted(&mnt->mnt))
4684 		goto out;
4685 
4686 	/*
4687 	 * If this is an attached mount make sure it's located in the callers
4688 	 * mount namespace. If it's not don't let the caller interact with it.
4689 	 *
4690 	 * If this mount doesn't have a parent it's most often simply a
4691 	 * detached mount with an anonymous mount namespace. IOW, something
4692 	 * that's simply not attached yet. But there are apparently also users
4693 	 * that do change mount properties on the rootfs itself. That obviously
4694 	 * neither has a parent nor is it a detached mount so we cannot
4695 	 * unconditionally check for detached mounts.
4696 	 */
4697 	if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
4698 		goto out;
4699 
4700 	/*
4701 	 * First, we get the mount tree in a shape where we can change mount
4702 	 * properties without failure. If we succeeded to do so we commit all
4703 	 * changes and if we failed we clean up.
4704 	 */
4705 	err = mount_setattr_prepare(kattr, mnt);
4706 	if (!err)
4707 		mount_setattr_commit(kattr, mnt);
4708 
4709 out:
4710 	unlock_mount_hash();
4711 
4712 	if (kattr->propagation) {
4713 		if (err)
4714 			cleanup_group_ids(mnt, NULL);
4715 		namespace_unlock();
4716 	}
4717 
4718 	return err;
4719 }
4720 
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4721 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4722 				struct mount_kattr *kattr, unsigned int flags)
4723 {
4724 	struct ns_common *ns;
4725 	struct user_namespace *mnt_userns;
4726 
4727 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4728 		return 0;
4729 
4730 	/*
4731 	 * We currently do not support clearing an idmapped mount. If this ever
4732 	 * is a use-case we can revisit this but for now let's keep it simple
4733 	 * and not allow it.
4734 	 */
4735 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4736 		return -EINVAL;
4737 
4738 	if (attr->userns_fd > INT_MAX)
4739 		return -EINVAL;
4740 
4741 	CLASS(fd, f)(attr->userns_fd);
4742 	if (fd_empty(f))
4743 		return -EBADF;
4744 
4745 	if (!proc_ns_file(fd_file(f)))
4746 		return -EINVAL;
4747 
4748 	ns = get_proc_ns(file_inode(fd_file(f)));
4749 	if (ns->ops->type != CLONE_NEWUSER)
4750 		return -EINVAL;
4751 
4752 	/*
4753 	 * The initial idmapping cannot be used to create an idmapped
4754 	 * mount. We use the initial idmapping as an indicator of a mount
4755 	 * that is not idmapped. It can simply be passed into helpers that
4756 	 * are aware of idmapped mounts as a convenient shortcut. A user
4757 	 * can just create a dedicated identity mapping to achieve the same
4758 	 * result.
4759 	 */
4760 	mnt_userns = container_of(ns, struct user_namespace, ns);
4761 	if (mnt_userns == &init_user_ns)
4762 		return -EPERM;
4763 
4764 	/* We're not controlling the target namespace. */
4765 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
4766 		return -EPERM;
4767 
4768 	kattr->mnt_userns = get_user_ns(mnt_userns);
4769 	return 0;
4770 }
4771 
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4772 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4773 			     struct mount_kattr *kattr, unsigned int flags)
4774 {
4775 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4776 
4777 	if (flags & AT_NO_AUTOMOUNT)
4778 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4779 	if (flags & AT_SYMLINK_NOFOLLOW)
4780 		lookup_flags &= ~LOOKUP_FOLLOW;
4781 	if (flags & AT_EMPTY_PATH)
4782 		lookup_flags |= LOOKUP_EMPTY;
4783 
4784 	*kattr = (struct mount_kattr) {
4785 		.lookup_flags	= lookup_flags,
4786 		.recurse	= !!(flags & AT_RECURSIVE),
4787 	};
4788 
4789 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4790 		return -EINVAL;
4791 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4792 		return -EINVAL;
4793 	kattr->propagation = attr->propagation;
4794 
4795 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4796 		return -EINVAL;
4797 
4798 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4799 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4800 
4801 	/*
4802 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4803 	 * users wanting to transition to a different atime setting cannot
4804 	 * simply specify the atime setting in @attr_set, but must also
4805 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4806 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4807 	 * @attr_clr and that @attr_set can't have any atime bits set if
4808 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4809 	 */
4810 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4811 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4812 			return -EINVAL;
4813 
4814 		/*
4815 		 * Clear all previous time settings as they are mutually
4816 		 * exclusive.
4817 		 */
4818 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4819 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4820 		case MOUNT_ATTR_RELATIME:
4821 			kattr->attr_set |= MNT_RELATIME;
4822 			break;
4823 		case MOUNT_ATTR_NOATIME:
4824 			kattr->attr_set |= MNT_NOATIME;
4825 			break;
4826 		case MOUNT_ATTR_STRICTATIME:
4827 			break;
4828 		default:
4829 			return -EINVAL;
4830 		}
4831 	} else {
4832 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4833 			return -EINVAL;
4834 	}
4835 
4836 	return build_mount_idmapped(attr, usize, kattr, flags);
4837 }
4838 
finish_mount_kattr(struct mount_kattr * kattr)4839 static void finish_mount_kattr(struct mount_kattr *kattr)
4840 {
4841 	put_user_ns(kattr->mnt_userns);
4842 	kattr->mnt_userns = NULL;
4843 
4844 	if (kattr->mnt_idmap)
4845 		mnt_idmap_put(kattr->mnt_idmap);
4846 }
4847 
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)4848 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4849 		unsigned int, flags, struct mount_attr __user *, uattr,
4850 		size_t, usize)
4851 {
4852 	int err;
4853 	struct path target;
4854 	struct mount_attr attr;
4855 	struct mount_kattr kattr;
4856 
4857 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4858 
4859 	if (flags & ~(AT_EMPTY_PATH |
4860 		      AT_RECURSIVE |
4861 		      AT_SYMLINK_NOFOLLOW |
4862 		      AT_NO_AUTOMOUNT))
4863 		return -EINVAL;
4864 
4865 	if (unlikely(usize > PAGE_SIZE))
4866 		return -E2BIG;
4867 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4868 		return -EINVAL;
4869 
4870 	if (!may_mount())
4871 		return -EPERM;
4872 
4873 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4874 	if (err)
4875 		return err;
4876 
4877 	/* Don't bother walking through the mounts if this is a nop. */
4878 	if (attr.attr_set == 0 &&
4879 	    attr.attr_clr == 0 &&
4880 	    attr.propagation == 0)
4881 		return 0;
4882 
4883 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4884 	if (err)
4885 		return err;
4886 
4887 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4888 	if (!err) {
4889 		err = do_mount_setattr(&target, &kattr);
4890 		path_put(&target);
4891 	}
4892 	finish_mount_kattr(&kattr);
4893 	return err;
4894 }
4895 
show_path(struct seq_file * m,struct dentry * root)4896 int show_path(struct seq_file *m, struct dentry *root)
4897 {
4898 	if (root->d_sb->s_op->show_path)
4899 		return root->d_sb->s_op->show_path(m, root);
4900 
4901 	seq_dentry(m, root, " \t\n\\");
4902 	return 0;
4903 }
4904 
lookup_mnt_in_ns(u64 id,struct mnt_namespace * ns)4905 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
4906 {
4907 	struct mount *mnt = mnt_find_id_at(ns, id);
4908 
4909 	if (!mnt || mnt->mnt_id_unique != id)
4910 		return NULL;
4911 
4912 	return &mnt->mnt;
4913 }
4914 
4915 struct kstatmount {
4916 	struct statmount __user *buf;
4917 	size_t bufsize;
4918 	struct vfsmount *mnt;
4919 	u64 mask;
4920 	struct path root;
4921 	struct statmount sm;
4922 	struct seq_file seq;
4923 };
4924 
mnt_to_attr_flags(struct vfsmount * mnt)4925 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
4926 {
4927 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
4928 	u64 attr_flags = 0;
4929 
4930 	if (mnt_flags & MNT_READONLY)
4931 		attr_flags |= MOUNT_ATTR_RDONLY;
4932 	if (mnt_flags & MNT_NOSUID)
4933 		attr_flags |= MOUNT_ATTR_NOSUID;
4934 	if (mnt_flags & MNT_NODEV)
4935 		attr_flags |= MOUNT_ATTR_NODEV;
4936 	if (mnt_flags & MNT_NOEXEC)
4937 		attr_flags |= MOUNT_ATTR_NOEXEC;
4938 	if (mnt_flags & MNT_NODIRATIME)
4939 		attr_flags |= MOUNT_ATTR_NODIRATIME;
4940 	if (mnt_flags & MNT_NOSYMFOLLOW)
4941 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
4942 
4943 	if (mnt_flags & MNT_NOATIME)
4944 		attr_flags |= MOUNT_ATTR_NOATIME;
4945 	else if (mnt_flags & MNT_RELATIME)
4946 		attr_flags |= MOUNT_ATTR_RELATIME;
4947 	else
4948 		attr_flags |= MOUNT_ATTR_STRICTATIME;
4949 
4950 	if (is_idmapped_mnt(mnt))
4951 		attr_flags |= MOUNT_ATTR_IDMAP;
4952 
4953 	return attr_flags;
4954 }
4955 
mnt_to_propagation_flags(struct mount * m)4956 static u64 mnt_to_propagation_flags(struct mount *m)
4957 {
4958 	u64 propagation = 0;
4959 
4960 	if (IS_MNT_SHARED(m))
4961 		propagation |= MS_SHARED;
4962 	if (IS_MNT_SLAVE(m))
4963 		propagation |= MS_SLAVE;
4964 	if (IS_MNT_UNBINDABLE(m))
4965 		propagation |= MS_UNBINDABLE;
4966 	if (!propagation)
4967 		propagation |= MS_PRIVATE;
4968 
4969 	return propagation;
4970 }
4971 
statmount_sb_basic(struct kstatmount * s)4972 static void statmount_sb_basic(struct kstatmount *s)
4973 {
4974 	struct super_block *sb = s->mnt->mnt_sb;
4975 
4976 	s->sm.mask |= STATMOUNT_SB_BASIC;
4977 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
4978 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
4979 	s->sm.sb_magic = sb->s_magic;
4980 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
4981 }
4982 
statmount_mnt_basic(struct kstatmount * s)4983 static void statmount_mnt_basic(struct kstatmount *s)
4984 {
4985 	struct mount *m = real_mount(s->mnt);
4986 
4987 	s->sm.mask |= STATMOUNT_MNT_BASIC;
4988 	s->sm.mnt_id = m->mnt_id_unique;
4989 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
4990 	s->sm.mnt_id_old = m->mnt_id;
4991 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
4992 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
4993 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
4994 	s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0;
4995 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
4996 }
4997 
statmount_propagate_from(struct kstatmount * s)4998 static void statmount_propagate_from(struct kstatmount *s)
4999 {
5000 	struct mount *m = real_mount(s->mnt);
5001 
5002 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5003 	if (IS_MNT_SLAVE(m))
5004 		s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
5005 }
5006 
statmount_mnt_root(struct kstatmount * s,struct seq_file * seq)5007 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5008 {
5009 	int ret;
5010 	size_t start = seq->count;
5011 
5012 	ret = show_path(seq, s->mnt->mnt_root);
5013 	if (ret)
5014 		return ret;
5015 
5016 	if (unlikely(seq_has_overflowed(seq)))
5017 		return -EAGAIN;
5018 
5019 	/*
5020          * Unescape the result. It would be better if supplied string was not
5021          * escaped in the first place, but that's a pretty invasive change.
5022          */
5023 	seq->buf[seq->count] = '\0';
5024 	seq->count = start;
5025 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5026 	return 0;
5027 }
5028 
statmount_mnt_point(struct kstatmount * s,struct seq_file * seq)5029 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5030 {
5031 	struct vfsmount *mnt = s->mnt;
5032 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5033 	int err;
5034 
5035 	err = seq_path_root(seq, &mnt_path, &s->root, "");
5036 	return err == SEQ_SKIP ? 0 : err;
5037 }
5038 
statmount_fs_type(struct kstatmount * s,struct seq_file * seq)5039 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5040 {
5041 	struct super_block *sb = s->mnt->mnt_sb;
5042 
5043 	seq_puts(seq, sb->s_type->name);
5044 	return 0;
5045 }
5046 
statmount_fs_subtype(struct kstatmount * s,struct seq_file * seq)5047 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5048 {
5049 	struct super_block *sb = s->mnt->mnt_sb;
5050 
5051 	if (sb->s_subtype)
5052 		seq_puts(seq, sb->s_subtype);
5053 }
5054 
statmount_sb_source(struct kstatmount * s,struct seq_file * seq)5055 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5056 {
5057 	struct super_block *sb = s->mnt->mnt_sb;
5058 	struct mount *r = real_mount(s->mnt);
5059 
5060 	if (sb->s_op->show_devname) {
5061 		size_t start = seq->count;
5062 		int ret;
5063 
5064 		ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5065 		if (ret)
5066 			return ret;
5067 
5068 		if (unlikely(seq_has_overflowed(seq)))
5069 			return -EAGAIN;
5070 
5071 		/* Unescape the result */
5072 		seq->buf[seq->count] = '\0';
5073 		seq->count = start;
5074 		seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5075 	} else if (r->mnt_devname) {
5076 		seq_puts(seq, r->mnt_devname);
5077 	}
5078 	return 0;
5079 }
5080 
statmount_mnt_ns_id(struct kstatmount * s,struct mnt_namespace * ns)5081 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5082 {
5083 	s->sm.mask |= STATMOUNT_MNT_NS_ID;
5084 	s->sm.mnt_ns_id = ns->seq;
5085 }
5086 
statmount_mnt_opts(struct kstatmount * s,struct seq_file * seq)5087 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5088 {
5089 	struct vfsmount *mnt = s->mnt;
5090 	struct super_block *sb = mnt->mnt_sb;
5091 	size_t start = seq->count;
5092 	int err;
5093 
5094 	err = security_sb_show_options(seq, sb);
5095 	if (err)
5096 		return err;
5097 
5098 	if (sb->s_op->show_options) {
5099 		err = sb->s_op->show_options(seq, mnt->mnt_root);
5100 		if (err)
5101 			return err;
5102 	}
5103 
5104 	if (unlikely(seq_has_overflowed(seq)))
5105 		return -EAGAIN;
5106 
5107 	if (seq->count == start)
5108 		return 0;
5109 
5110 	/* skip leading comma */
5111 	memmove(seq->buf + start, seq->buf + start + 1,
5112 		seq->count - start - 1);
5113 	seq->count--;
5114 
5115 	return 0;
5116 }
5117 
statmount_opt_process(struct seq_file * seq,size_t start)5118 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5119 {
5120 	char *buf_end, *opt_end, *src, *dst;
5121 	int count = 0;
5122 
5123 	if (unlikely(seq_has_overflowed(seq)))
5124 		return -EAGAIN;
5125 
5126 	buf_end = seq->buf + seq->count;
5127 	dst = seq->buf + start;
5128 	src = dst + 1;	/* skip initial comma */
5129 
5130 	if (src >= buf_end) {
5131 		seq->count = start;
5132 		return 0;
5133 	}
5134 
5135 	*buf_end = '\0';
5136 	for (; src < buf_end; src = opt_end + 1) {
5137 		opt_end = strchrnul(src, ',');
5138 		*opt_end = '\0';
5139 		dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5140 		if (WARN_ON_ONCE(++count == INT_MAX))
5141 			return -EOVERFLOW;
5142 	}
5143 	seq->count = dst - 1 - seq->buf;
5144 	return count;
5145 }
5146 
statmount_opt_array(struct kstatmount * s,struct seq_file * seq)5147 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5148 {
5149 	struct vfsmount *mnt = s->mnt;
5150 	struct super_block *sb = mnt->mnt_sb;
5151 	size_t start = seq->count;
5152 	int err;
5153 
5154 	if (!sb->s_op->show_options)
5155 		return 0;
5156 
5157 	err = sb->s_op->show_options(seq, mnt->mnt_root);
5158 	if (err)
5159 		return err;
5160 
5161 	err = statmount_opt_process(seq, start);
5162 	if (err < 0)
5163 		return err;
5164 
5165 	s->sm.opt_num = err;
5166 	return 0;
5167 }
5168 
statmount_opt_sec_array(struct kstatmount * s,struct seq_file * seq)5169 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5170 {
5171 	struct vfsmount *mnt = s->mnt;
5172 	struct super_block *sb = mnt->mnt_sb;
5173 	size_t start = seq->count;
5174 	int err;
5175 
5176 	err = security_sb_show_options(seq, sb);
5177 	if (err)
5178 		return err;
5179 
5180 	err = statmount_opt_process(seq, start);
5181 	if (err < 0)
5182 		return err;
5183 
5184 	s->sm.opt_sec_num = err;
5185 	return 0;
5186 }
5187 
statmount_string(struct kstatmount * s,u64 flag)5188 static int statmount_string(struct kstatmount *s, u64 flag)
5189 {
5190 	int ret = 0;
5191 	size_t kbufsize;
5192 	struct seq_file *seq = &s->seq;
5193 	struct statmount *sm = &s->sm;
5194 	u32 start, *offp;
5195 
5196 	/* Reserve an empty string at the beginning for any unset offsets */
5197 	if (!seq->count)
5198 		seq_putc(seq, 0);
5199 
5200 	start = seq->count;
5201 
5202 	switch (flag) {
5203 	case STATMOUNT_FS_TYPE:
5204 		offp = &sm->fs_type;
5205 		ret = statmount_fs_type(s, seq);
5206 		break;
5207 	case STATMOUNT_MNT_ROOT:
5208 		offp = &sm->mnt_root;
5209 		ret = statmount_mnt_root(s, seq);
5210 		break;
5211 	case STATMOUNT_MNT_POINT:
5212 		offp = &sm->mnt_point;
5213 		ret = statmount_mnt_point(s, seq);
5214 		break;
5215 	case STATMOUNT_MNT_OPTS:
5216 		offp = &sm->mnt_opts;
5217 		ret = statmount_mnt_opts(s, seq);
5218 		break;
5219 	case STATMOUNT_OPT_ARRAY:
5220 		offp = &sm->opt_array;
5221 		ret = statmount_opt_array(s, seq);
5222 		break;
5223 	case STATMOUNT_OPT_SEC_ARRAY:
5224 		offp = &sm->opt_sec_array;
5225 		ret = statmount_opt_sec_array(s, seq);
5226 		break;
5227 	case STATMOUNT_FS_SUBTYPE:
5228 		offp = &sm->fs_subtype;
5229 		statmount_fs_subtype(s, seq);
5230 		break;
5231 	case STATMOUNT_SB_SOURCE:
5232 		offp = &sm->sb_source;
5233 		ret = statmount_sb_source(s, seq);
5234 		break;
5235 	default:
5236 		WARN_ON_ONCE(true);
5237 		return -EINVAL;
5238 	}
5239 
5240 	/*
5241 	 * If nothing was emitted, return to avoid setting the flag
5242 	 * and terminating the buffer.
5243 	 */
5244 	if (seq->count == start)
5245 		return ret;
5246 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5247 		return -EOVERFLOW;
5248 	if (kbufsize >= s->bufsize)
5249 		return -EOVERFLOW;
5250 
5251 	/* signal a retry */
5252 	if (unlikely(seq_has_overflowed(seq)))
5253 		return -EAGAIN;
5254 
5255 	if (ret)
5256 		return ret;
5257 
5258 	seq->buf[seq->count++] = '\0';
5259 	sm->mask |= flag;
5260 	*offp = start;
5261 	return 0;
5262 }
5263 
copy_statmount_to_user(struct kstatmount * s)5264 static int copy_statmount_to_user(struct kstatmount *s)
5265 {
5266 	struct statmount *sm = &s->sm;
5267 	struct seq_file *seq = &s->seq;
5268 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5269 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5270 
5271 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
5272 		return -EFAULT;
5273 
5274 	/* Return the number of bytes copied to the buffer */
5275 	sm->size = copysize + seq->count;
5276 	if (copy_to_user(s->buf, sm, copysize))
5277 		return -EFAULT;
5278 
5279 	return 0;
5280 }
5281 
listmnt_next(struct mount * curr,bool reverse)5282 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5283 {
5284 	struct rb_node *node;
5285 
5286 	if (reverse)
5287 		node = rb_prev(&curr->mnt_node);
5288 	else
5289 		node = rb_next(&curr->mnt_node);
5290 
5291 	return node_to_mount(node);
5292 }
5293 
grab_requested_root(struct mnt_namespace * ns,struct path * root)5294 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5295 {
5296 	struct mount *first, *child;
5297 
5298 	rwsem_assert_held(&namespace_sem);
5299 
5300 	/* We're looking at our own ns, just use get_fs_root. */
5301 	if (ns == current->nsproxy->mnt_ns) {
5302 		get_fs_root(current->fs, root);
5303 		return 0;
5304 	}
5305 
5306 	/*
5307 	 * We have to find the first mount in our ns and use that, however it
5308 	 * may not exist, so handle that properly.
5309 	 */
5310 	if (RB_EMPTY_ROOT(&ns->mounts))
5311 		return -ENOENT;
5312 
5313 	first = child = ns->root;
5314 	for (;;) {
5315 		child = listmnt_next(child, false);
5316 		if (!child)
5317 			return -ENOENT;
5318 		if (child->mnt_parent == first)
5319 			break;
5320 	}
5321 
5322 	root->mnt = mntget(&child->mnt);
5323 	root->dentry = dget(root->mnt->mnt_root);
5324 	return 0;
5325 }
5326 
do_statmount(struct kstatmount * s,u64 mnt_id,u64 mnt_ns_id,struct mnt_namespace * ns)5327 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5328 			struct mnt_namespace *ns)
5329 {
5330 	struct path root __free(path_put) = {};
5331 	struct mount *m;
5332 	int err;
5333 
5334 	/* Has the namespace already been emptied? */
5335 	if (mnt_ns_id && RB_EMPTY_ROOT(&ns->mounts))
5336 		return -ENOENT;
5337 
5338 	s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5339 	if (!s->mnt)
5340 		return -ENOENT;
5341 
5342 	err = grab_requested_root(ns, &root);
5343 	if (err)
5344 		return err;
5345 
5346 	/*
5347 	 * Don't trigger audit denials. We just want to determine what
5348 	 * mounts to show users.
5349 	 */
5350 	m = real_mount(s->mnt);
5351 	if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5352 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5353 		return -EPERM;
5354 
5355 	err = security_sb_statfs(s->mnt->mnt_root);
5356 	if (err)
5357 		return err;
5358 
5359 	s->root = root;
5360 	if (s->mask & STATMOUNT_SB_BASIC)
5361 		statmount_sb_basic(s);
5362 
5363 	if (s->mask & STATMOUNT_MNT_BASIC)
5364 		statmount_mnt_basic(s);
5365 
5366 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
5367 		statmount_propagate_from(s);
5368 
5369 	if (s->mask & STATMOUNT_FS_TYPE)
5370 		err = statmount_string(s, STATMOUNT_FS_TYPE);
5371 
5372 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
5373 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
5374 
5375 	if (!err && s->mask & STATMOUNT_MNT_POINT)
5376 		err = statmount_string(s, STATMOUNT_MNT_POINT);
5377 
5378 	if (!err && s->mask & STATMOUNT_MNT_OPTS)
5379 		err = statmount_string(s, STATMOUNT_MNT_OPTS);
5380 
5381 	if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5382 		err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5383 
5384 	if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5385 		err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5386 
5387 	if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5388 		err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5389 
5390 	if (!err && s->mask & STATMOUNT_SB_SOURCE)
5391 		err = statmount_string(s, STATMOUNT_SB_SOURCE);
5392 
5393 	if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5394 		statmount_mnt_ns_id(s, ns);
5395 
5396 	if (err)
5397 		return err;
5398 
5399 	return 0;
5400 }
5401 
retry_statmount(const long ret,size_t * seq_size)5402 static inline bool retry_statmount(const long ret, size_t *seq_size)
5403 {
5404 	if (likely(ret != -EAGAIN))
5405 		return false;
5406 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5407 		return false;
5408 	if (unlikely(*seq_size > MAX_RW_COUNT))
5409 		return false;
5410 	return true;
5411 }
5412 
5413 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5414 			      STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5415 			      STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5416 			      STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY)
5417 
prepare_kstatmount(struct kstatmount * ks,struct mnt_id_req * kreq,struct statmount __user * buf,size_t bufsize,size_t seq_size)5418 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5419 			      struct statmount __user *buf, size_t bufsize,
5420 			      size_t seq_size)
5421 {
5422 	if (!access_ok(buf, bufsize))
5423 		return -EFAULT;
5424 
5425 	memset(ks, 0, sizeof(*ks));
5426 	ks->mask = kreq->param;
5427 	ks->buf = buf;
5428 	ks->bufsize = bufsize;
5429 
5430 	if (ks->mask & STATMOUNT_STRING_REQ) {
5431 		if (bufsize == sizeof(ks->sm))
5432 			return -EOVERFLOW;
5433 
5434 		ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5435 		if (!ks->seq.buf)
5436 			return -ENOMEM;
5437 
5438 		ks->seq.size = seq_size;
5439 	}
5440 
5441 	return 0;
5442 }
5443 
copy_mnt_id_req(const struct mnt_id_req __user * req,struct mnt_id_req * kreq)5444 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5445 			   struct mnt_id_req *kreq)
5446 {
5447 	int ret;
5448 	size_t usize;
5449 
5450 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5451 
5452 	ret = get_user(usize, &req->size);
5453 	if (ret)
5454 		return -EFAULT;
5455 	if (unlikely(usize > PAGE_SIZE))
5456 		return -E2BIG;
5457 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5458 		return -EINVAL;
5459 	memset(kreq, 0, sizeof(*kreq));
5460 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5461 	if (ret)
5462 		return ret;
5463 	if (kreq->spare != 0)
5464 		return -EINVAL;
5465 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5466 	if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5467 		return -EINVAL;
5468 	return 0;
5469 }
5470 
5471 /*
5472  * If the user requested a specific mount namespace id, look that up and return
5473  * that, or if not simply grab a passive reference on our mount namespace and
5474  * return that.
5475  */
grab_requested_mnt_ns(const struct mnt_id_req * kreq)5476 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5477 {
5478 	struct mnt_namespace *mnt_ns;
5479 
5480 	if (kreq->mnt_ns_id && kreq->spare)
5481 		return ERR_PTR(-EINVAL);
5482 
5483 	if (kreq->mnt_ns_id)
5484 		return lookup_mnt_ns(kreq->mnt_ns_id);
5485 
5486 	if (kreq->spare) {
5487 		struct ns_common *ns;
5488 
5489 		CLASS(fd, f)(kreq->spare);
5490 		if (fd_empty(f))
5491 			return ERR_PTR(-EBADF);
5492 
5493 		if (!proc_ns_file(fd_file(f)))
5494 			return ERR_PTR(-EINVAL);
5495 
5496 		ns = get_proc_ns(file_inode(fd_file(f)));
5497 		if (ns->ops->type != CLONE_NEWNS)
5498 			return ERR_PTR(-EINVAL);
5499 
5500 		mnt_ns = to_mnt_ns(ns);
5501 	} else {
5502 		mnt_ns = current->nsproxy->mnt_ns;
5503 	}
5504 
5505 	refcount_inc(&mnt_ns->passive);
5506 	return mnt_ns;
5507 }
5508 
SYSCALL_DEFINE4(statmount,const struct mnt_id_req __user *,req,struct statmount __user *,buf,size_t,bufsize,unsigned int,flags)5509 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5510 		struct statmount __user *, buf, size_t, bufsize,
5511 		unsigned int, flags)
5512 {
5513 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5514 	struct kstatmount *ks __free(kfree) = NULL;
5515 	struct mnt_id_req kreq;
5516 	/* We currently support retrieval of 3 strings. */
5517 	size_t seq_size = 3 * PATH_MAX;
5518 	int ret;
5519 
5520 	if (flags)
5521 		return -EINVAL;
5522 
5523 	ret = copy_mnt_id_req(req, &kreq);
5524 	if (ret)
5525 		return ret;
5526 
5527 	ns = grab_requested_mnt_ns(&kreq);
5528 	if (!ns)
5529 		return -ENOENT;
5530 
5531 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5532 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5533 		return -ENOENT;
5534 
5535 	ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5536 	if (!ks)
5537 		return -ENOMEM;
5538 
5539 retry:
5540 	ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5541 	if (ret)
5542 		return ret;
5543 
5544 	scoped_guard(rwsem_read, &namespace_sem)
5545 		ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5546 
5547 	if (!ret)
5548 		ret = copy_statmount_to_user(ks);
5549 	kvfree(ks->seq.buf);
5550 	if (retry_statmount(ret, &seq_size))
5551 		goto retry;
5552 	return ret;
5553 }
5554 
do_listmount(struct mnt_namespace * ns,u64 mnt_parent_id,u64 last_mnt_id,u64 * mnt_ids,size_t nr_mnt_ids,bool reverse)5555 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
5556 			    u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
5557 			    bool reverse)
5558 {
5559 	struct path root __free(path_put) = {};
5560 	struct path orig;
5561 	struct mount *r, *first;
5562 	ssize_t ret;
5563 
5564 	rwsem_assert_held(&namespace_sem);
5565 
5566 	ret = grab_requested_root(ns, &root);
5567 	if (ret)
5568 		return ret;
5569 
5570 	if (mnt_parent_id == LSMT_ROOT) {
5571 		orig = root;
5572 	} else {
5573 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5574 		if (!orig.mnt)
5575 			return -ENOENT;
5576 		orig.dentry = orig.mnt->mnt_root;
5577 	}
5578 
5579 	/*
5580 	 * Don't trigger audit denials. We just want to determine what
5581 	 * mounts to show users.
5582 	 */
5583 	if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
5584 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5585 		return -EPERM;
5586 
5587 	ret = security_sb_statfs(orig.dentry);
5588 	if (ret)
5589 		return ret;
5590 
5591 	if (!last_mnt_id) {
5592 		if (reverse)
5593 			first = node_to_mount(ns->mnt_last_node);
5594 		else
5595 			first = node_to_mount(ns->mnt_first_node);
5596 	} else {
5597 		if (reverse)
5598 			first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5599 		else
5600 			first = mnt_find_id_at(ns, last_mnt_id + 1);
5601 	}
5602 
5603 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5604 		if (r->mnt_id_unique == mnt_parent_id)
5605 			continue;
5606 		if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5607 			continue;
5608 		*mnt_ids = r->mnt_id_unique;
5609 		mnt_ids++;
5610 		nr_mnt_ids--;
5611 		ret++;
5612 	}
5613 	return ret;
5614 }
5615 
SYSCALL_DEFINE4(listmount,const struct mnt_id_req __user *,req,u64 __user *,mnt_ids,size_t,nr_mnt_ids,unsigned int,flags)5616 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5617 		u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5618 {
5619 	u64 *kmnt_ids __free(kvfree) = NULL;
5620 	const size_t maxcount = 1000000;
5621 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5622 	struct mnt_id_req kreq;
5623 	u64 last_mnt_id;
5624 	ssize_t ret;
5625 
5626 	if (flags & ~LISTMOUNT_REVERSE)
5627 		return -EINVAL;
5628 
5629 	/*
5630 	 * If the mount namespace really has more than 1 million mounts the
5631 	 * caller must iterate over the mount namespace (and reconsider their
5632 	 * system design...).
5633 	 */
5634 	if (unlikely(nr_mnt_ids > maxcount))
5635 		return -EOVERFLOW;
5636 
5637 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5638 		return -EFAULT;
5639 
5640 	ret = copy_mnt_id_req(req, &kreq);
5641 	if (ret)
5642 		return ret;
5643 
5644 	last_mnt_id = kreq.param;
5645 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5646 	if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5647 		return -EINVAL;
5648 
5649 	kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
5650 				  GFP_KERNEL_ACCOUNT);
5651 	if (!kmnt_ids)
5652 		return -ENOMEM;
5653 
5654 	ns = grab_requested_mnt_ns(&kreq);
5655 	if (!ns)
5656 		return -ENOENT;
5657 
5658 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5659 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5660 		return -ENOENT;
5661 
5662 	scoped_guard(rwsem_read, &namespace_sem)
5663 		ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
5664 				   nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
5665 	if (ret <= 0)
5666 		return ret;
5667 
5668 	if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
5669 		return -EFAULT;
5670 
5671 	return ret;
5672 }
5673 
init_mount_tree(void)5674 static void __init init_mount_tree(void)
5675 {
5676 	struct vfsmount *mnt;
5677 	struct mount *m;
5678 	struct mnt_namespace *ns;
5679 	struct path root;
5680 
5681 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
5682 	if (IS_ERR(mnt))
5683 		panic("Can't create rootfs");
5684 
5685 	ns = alloc_mnt_ns(&init_user_ns, false);
5686 	if (IS_ERR(ns))
5687 		panic("Can't allocate initial namespace");
5688 	m = real_mount(mnt);
5689 	ns->root = m;
5690 	ns->nr_mounts = 1;
5691 	mnt_add_to_ns(ns, m);
5692 	init_task.nsproxy->mnt_ns = ns;
5693 	get_mnt_ns(ns);
5694 
5695 	root.mnt = mnt;
5696 	root.dentry = mnt->mnt_root;
5697 	mnt->mnt_flags |= MNT_LOCKED;
5698 
5699 	set_fs_pwd(current->fs, &root);
5700 	set_fs_root(current->fs, &root);
5701 
5702 	mnt_ns_tree_add(ns);
5703 }
5704 
mnt_init(void)5705 void __init mnt_init(void)
5706 {
5707 	int err;
5708 
5709 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
5710 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
5711 
5712 	mount_hashtable = alloc_large_system_hash("Mount-cache",
5713 				sizeof(struct hlist_head),
5714 				mhash_entries, 19,
5715 				HASH_ZERO,
5716 				&m_hash_shift, &m_hash_mask, 0, 0);
5717 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
5718 				sizeof(struct hlist_head),
5719 				mphash_entries, 19,
5720 				HASH_ZERO,
5721 				&mp_hash_shift, &mp_hash_mask, 0, 0);
5722 
5723 	if (!mount_hashtable || !mountpoint_hashtable)
5724 		panic("Failed to allocate mount hash table\n");
5725 
5726 	kernfs_init();
5727 
5728 	err = sysfs_init();
5729 	if (err)
5730 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
5731 			__func__, err);
5732 	fs_kobj = kobject_create_and_add("fs", NULL);
5733 	if (!fs_kobj)
5734 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
5735 	shmem_init();
5736 	init_rootfs();
5737 	init_mount_tree();
5738 }
5739 
put_mnt_ns(struct mnt_namespace * ns)5740 void put_mnt_ns(struct mnt_namespace *ns)
5741 {
5742 	if (!refcount_dec_and_test(&ns->ns.count))
5743 		return;
5744 	drop_collected_mounts(&ns->root->mnt);
5745 	free_mnt_ns(ns);
5746 }
5747 
kern_mount(struct file_system_type * type)5748 struct vfsmount *kern_mount(struct file_system_type *type)
5749 {
5750 	struct vfsmount *mnt;
5751 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
5752 	if (!IS_ERR(mnt)) {
5753 		/*
5754 		 * it is a longterm mount, don't release mnt until
5755 		 * we unmount before file sys is unregistered
5756 		*/
5757 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
5758 	}
5759 	return mnt;
5760 }
5761 EXPORT_SYMBOL_GPL(kern_mount);
5762 
kern_unmount(struct vfsmount * mnt)5763 void kern_unmount(struct vfsmount *mnt)
5764 {
5765 	/* release long term mount so mount point can be released */
5766 	if (!IS_ERR(mnt)) {
5767 		mnt_make_shortterm(mnt);
5768 		synchronize_rcu();	/* yecchhh... */
5769 		mntput(mnt);
5770 	}
5771 }
5772 EXPORT_SYMBOL(kern_unmount);
5773 
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)5774 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
5775 {
5776 	unsigned int i;
5777 
5778 	for (i = 0; i < num; i++)
5779 		mnt_make_shortterm(mnt[i]);
5780 	synchronize_rcu_expedited();
5781 	for (i = 0; i < num; i++)
5782 		mntput(mnt[i]);
5783 }
5784 EXPORT_SYMBOL(kern_unmount_array);
5785 
our_mnt(struct vfsmount * mnt)5786 bool our_mnt(struct vfsmount *mnt)
5787 {
5788 	return check_mnt(real_mount(mnt));
5789 }
5790 
current_chrooted(void)5791 bool current_chrooted(void)
5792 {
5793 	/* Does the current process have a non-standard root */
5794 	struct path ns_root;
5795 	struct path fs_root;
5796 	bool chrooted;
5797 
5798 	/* Find the namespace root */
5799 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
5800 	ns_root.dentry = ns_root.mnt->mnt_root;
5801 	path_get(&ns_root);
5802 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
5803 		;
5804 
5805 	get_fs_root(current->fs, &fs_root);
5806 
5807 	chrooted = !path_equal(&fs_root, &ns_root);
5808 
5809 	path_put(&fs_root);
5810 	path_put(&ns_root);
5811 
5812 	return chrooted;
5813 }
5814 
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)5815 static bool mnt_already_visible(struct mnt_namespace *ns,
5816 				const struct super_block *sb,
5817 				int *new_mnt_flags)
5818 {
5819 	int new_flags = *new_mnt_flags;
5820 	struct mount *mnt, *n;
5821 	bool visible = false;
5822 
5823 	down_read(&namespace_sem);
5824 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
5825 		struct mount *child;
5826 		int mnt_flags;
5827 
5828 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
5829 			continue;
5830 
5831 		/* This mount is not fully visible if it's root directory
5832 		 * is not the root directory of the filesystem.
5833 		 */
5834 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
5835 			continue;
5836 
5837 		/* A local view of the mount flags */
5838 		mnt_flags = mnt->mnt.mnt_flags;
5839 
5840 		/* Don't miss readonly hidden in the superblock flags */
5841 		if (sb_rdonly(mnt->mnt.mnt_sb))
5842 			mnt_flags |= MNT_LOCK_READONLY;
5843 
5844 		/* Verify the mount flags are equal to or more permissive
5845 		 * than the proposed new mount.
5846 		 */
5847 		if ((mnt_flags & MNT_LOCK_READONLY) &&
5848 		    !(new_flags & MNT_READONLY))
5849 			continue;
5850 		if ((mnt_flags & MNT_LOCK_ATIME) &&
5851 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
5852 			continue;
5853 
5854 		/* This mount is not fully visible if there are any
5855 		 * locked child mounts that cover anything except for
5856 		 * empty directories.
5857 		 */
5858 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
5859 			struct inode *inode = child->mnt_mountpoint->d_inode;
5860 			/* Only worry about locked mounts */
5861 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
5862 				continue;
5863 			/* Is the directory permanently empty? */
5864 			if (!is_empty_dir_inode(inode))
5865 				goto next;
5866 		}
5867 		/* Preserve the locked attributes */
5868 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
5869 					       MNT_LOCK_ATIME);
5870 		visible = true;
5871 		goto found;
5872 	next:	;
5873 	}
5874 found:
5875 	up_read(&namespace_sem);
5876 	return visible;
5877 }
5878 
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)5879 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
5880 {
5881 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
5882 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
5883 	unsigned long s_iflags;
5884 
5885 	if (ns->user_ns == &init_user_ns)
5886 		return false;
5887 
5888 	/* Can this filesystem be too revealing? */
5889 	s_iflags = sb->s_iflags;
5890 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
5891 		return false;
5892 
5893 	if ((s_iflags & required_iflags) != required_iflags) {
5894 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
5895 			  required_iflags);
5896 		return true;
5897 	}
5898 
5899 	return !mnt_already_visible(ns, sb, new_mnt_flags);
5900 }
5901 
mnt_may_suid(struct vfsmount * mnt)5902 bool mnt_may_suid(struct vfsmount *mnt)
5903 {
5904 	/*
5905 	 * Foreign mounts (accessed via fchdir or through /proc
5906 	 * symlinks) are always treated as if they are nosuid.  This
5907 	 * prevents namespaces from trusting potentially unsafe
5908 	 * suid/sgid bits, file caps, or security labels that originate
5909 	 * in other namespaces.
5910 	 */
5911 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
5912 	       current_in_userns(mnt->mnt_sb->s_user_ns);
5913 }
5914 
mntns_get(struct task_struct * task)5915 static struct ns_common *mntns_get(struct task_struct *task)
5916 {
5917 	struct ns_common *ns = NULL;
5918 	struct nsproxy *nsproxy;
5919 
5920 	task_lock(task);
5921 	nsproxy = task->nsproxy;
5922 	if (nsproxy) {
5923 		ns = &nsproxy->mnt_ns->ns;
5924 		get_mnt_ns(to_mnt_ns(ns));
5925 	}
5926 	task_unlock(task);
5927 
5928 	return ns;
5929 }
5930 
mntns_put(struct ns_common * ns)5931 static void mntns_put(struct ns_common *ns)
5932 {
5933 	put_mnt_ns(to_mnt_ns(ns));
5934 }
5935 
mntns_install(struct nsset * nsset,struct ns_common * ns)5936 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
5937 {
5938 	struct nsproxy *nsproxy = nsset->nsproxy;
5939 	struct fs_struct *fs = nsset->fs;
5940 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
5941 	struct user_namespace *user_ns = nsset->cred->user_ns;
5942 	struct path root;
5943 	int err;
5944 
5945 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5946 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
5947 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
5948 		return -EPERM;
5949 
5950 	if (is_anon_ns(mnt_ns))
5951 		return -EINVAL;
5952 
5953 	if (fs->users != 1)
5954 		return -EINVAL;
5955 
5956 	get_mnt_ns(mnt_ns);
5957 	old_mnt_ns = nsproxy->mnt_ns;
5958 	nsproxy->mnt_ns = mnt_ns;
5959 
5960 	/* Find the root */
5961 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
5962 				"/", LOOKUP_DOWN, &root);
5963 	if (err) {
5964 		/* revert to old namespace */
5965 		nsproxy->mnt_ns = old_mnt_ns;
5966 		put_mnt_ns(mnt_ns);
5967 		return err;
5968 	}
5969 
5970 	put_mnt_ns(old_mnt_ns);
5971 
5972 	/* Update the pwd and root */
5973 	set_fs_pwd(fs, &root);
5974 	set_fs_root(fs, &root);
5975 
5976 	path_put(&root);
5977 	return 0;
5978 }
5979 
mntns_owner(struct ns_common * ns)5980 static struct user_namespace *mntns_owner(struct ns_common *ns)
5981 {
5982 	return to_mnt_ns(ns)->user_ns;
5983 }
5984 
5985 const struct proc_ns_operations mntns_operations = {
5986 	.name		= "mnt",
5987 	.type		= CLONE_NEWNS,
5988 	.get		= mntns_get,
5989 	.put		= mntns_put,
5990 	.install	= mntns_install,
5991 	.owner		= mntns_owner,
5992 };
5993 
5994 #ifdef CONFIG_SYSCTL
5995 static const struct ctl_table fs_namespace_sysctls[] = {
5996 	{
5997 		.procname	= "mount-max",
5998 		.data		= &sysctl_mount_max,
5999 		.maxlen		= sizeof(unsigned int),
6000 		.mode		= 0644,
6001 		.proc_handler	= proc_dointvec_minmax,
6002 		.extra1		= SYSCTL_ONE,
6003 	},
6004 };
6005 
init_fs_namespace_sysctls(void)6006 static int __init init_fs_namespace_sysctls(void)
6007 {
6008 	register_sysctl_init("fs", fs_namespace_sysctls);
6009 	return 0;
6010 }
6011 fs_initcall(init_fs_namespace_sysctls);
6012 
6013 #endif /* CONFIG_SYSCTL */
6014