1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) International Business Machines Corp., 2000-2004
4  *   Portions Copyright (C) Tino Reichardt, 2012
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include "jfs_incore.h"
10 #include "jfs_superblock.h"
11 #include "jfs_dmap.h"
12 #include "jfs_imap.h"
13 #include "jfs_lock.h"
14 #include "jfs_metapage.h"
15 #include "jfs_debug.h"
16 #include "jfs_discard.h"
17 
18 /*
19  *	SERIALIZATION of the Block Allocation Map.
20  *
21  *	the working state of the block allocation map is accessed in
22  *	two directions:
23  *
24  *	1) allocation and free requests that start at the dmap
25  *	   level and move up through the dmap control pages (i.e.
26  *	   the vast majority of requests).
27  *
28  *	2) allocation requests that start at dmap control page
29  *	   level and work down towards the dmaps.
30  *
31  *	the serialization scheme used here is as follows.
32  *
33  *	requests which start at the bottom are serialized against each
34  *	other through buffers and each requests holds onto its buffers
35  *	as it works it way up from a single dmap to the required level
36  *	of dmap control page.
37  *	requests that start at the top are serialized against each other
38  *	and request that start from the bottom by the multiple read/single
39  *	write inode lock of the bmap inode. requests starting at the top
40  *	take this lock in write mode while request starting at the bottom
41  *	take the lock in read mode.  a single top-down request may proceed
42  *	exclusively while multiple bottoms-up requests may proceed
43  *	simultaneously (under the protection of busy buffers).
44  *
45  *	in addition to information found in dmaps and dmap control pages,
46  *	the working state of the block allocation map also includes read/
47  *	write information maintained in the bmap descriptor (i.e. total
48  *	free block count, allocation group level free block counts).
49  *	a single exclusive lock (BMAP_LOCK) is used to guard this information
50  *	in the face of multiple-bottoms up requests.
51  *	(lock ordering: IREAD_LOCK, BMAP_LOCK);
52  *
53  *	accesses to the persistent state of the block allocation map (limited
54  *	to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
55  */
56 
57 #define BMAP_LOCK_INIT(bmp)	mutex_init(&bmp->db_bmaplock)
58 #define BMAP_LOCK(bmp)		mutex_lock(&bmp->db_bmaplock)
59 #define BMAP_UNLOCK(bmp)	mutex_unlock(&bmp->db_bmaplock)
60 
61 /*
62  * forward references
63  */
64 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
65 			int nblocks);
66 static void dbSplit(dmtree_t *tp, int leafno, int splitsz, int newval, bool is_ctl);
67 static int dbBackSplit(dmtree_t *tp, int leafno, bool is_ctl);
68 static int dbJoin(dmtree_t *tp, int leafno, int newval, bool is_ctl);
69 static void dbAdjTree(dmtree_t *tp, int leafno, int newval, bool is_ctl);
70 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
71 		    int level);
72 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
73 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
74 		       int nblocks);
75 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
76 		       int nblocks,
77 		       int l2nb, s64 * results);
78 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
79 		       int nblocks);
80 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
81 			  int l2nb,
82 			  s64 * results);
83 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
84 		     s64 * results);
85 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
86 		      s64 * results);
87 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
88 static int dbFindBits(u32 word, int l2nb);
89 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
90 static int dbFindLeaf(dmtree_t *tp, int l2nb, int *leafidx, bool is_ctl);
91 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
92 		      int nblocks);
93 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
94 		      int nblocks);
95 static int dbMaxBud(u8 * cp);
96 static int blkstol2(s64 nb);
97 
98 static int cntlz(u32 value);
99 static int cnttz(u32 word);
100 
101 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
102 			 int nblocks);
103 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
104 static int dbInitDmapTree(struct dmap * dp);
105 static int dbInitTree(struct dmaptree * dtp);
106 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
107 static int dbGetL2AGSize(s64 nblocks);
108 
109 /*
110  *	buddy table
111  *
112  * table used for determining buddy sizes within characters of
113  * dmap bitmap words.  the characters themselves serve as indexes
114  * into the table, with the table elements yielding the maximum
115  * binary buddy of free bits within the character.
116  */
117 static const s8 budtab[256] = {
118 	3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
119 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
120 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
121 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
122 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
123 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
124 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
125 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
126 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
127 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
128 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
129 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
130 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
132 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
133 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
134 };
135 
136 /*
137  * NAME:	dbMount()
138  *
139  * FUNCTION:	initializate the block allocation map.
140  *
141  *		memory is allocated for the in-core bmap descriptor and
142  *		the in-core descriptor is initialized from disk.
143  *
144  * PARAMETERS:
145  *	ipbmap	- pointer to in-core inode for the block map.
146  *
147  * RETURN VALUES:
148  *	0	- success
149  *	-ENOMEM	- insufficient memory
150  *	-EIO	- i/o error
151  *	-EINVAL - wrong bmap data
152  */
dbMount(struct inode * ipbmap)153 int dbMount(struct inode *ipbmap)
154 {
155 	struct bmap *bmp;
156 	struct dbmap_disk *dbmp_le;
157 	struct metapage *mp;
158 	int i, err;
159 
160 	/*
161 	 * allocate/initialize the in-memory bmap descriptor
162 	 */
163 	/* allocate memory for the in-memory bmap descriptor */
164 	bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
165 	if (bmp == NULL)
166 		return -ENOMEM;
167 
168 	/* read the on-disk bmap descriptor. */
169 	mp = read_metapage(ipbmap,
170 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
171 			   PSIZE, 0);
172 	if (mp == NULL) {
173 		err = -EIO;
174 		goto err_kfree_bmp;
175 	}
176 
177 	/* copy the on-disk bmap descriptor to its in-memory version. */
178 	dbmp_le = (struct dbmap_disk *) mp->data;
179 	bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
180 	bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
181 
182 	bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
183 	if (bmp->db_l2nbperpage > L2PSIZE - L2MINBLOCKSIZE ||
184 		bmp->db_l2nbperpage < 0) {
185 		err = -EINVAL;
186 		goto err_release_metapage;
187 	}
188 
189 	bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
190 	if (!bmp->db_numag || bmp->db_numag > MAXAG) {
191 		err = -EINVAL;
192 		goto err_release_metapage;
193 	}
194 
195 	bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
196 	bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
197 	bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
198 	if (bmp->db_maxag >= MAXAG || bmp->db_maxag < 0 ||
199 		bmp->db_agpref >= MAXAG || bmp->db_agpref < 0) {
200 		err = -EINVAL;
201 		goto err_release_metapage;
202 	}
203 
204 	bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
205 	bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
206 	bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
207 	if (!bmp->db_agwidth) {
208 		err = -EINVAL;
209 		goto err_release_metapage;
210 	}
211 	bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
212 	bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
213 	if (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG ||
214 	    bmp->db_agl2size < 0) {
215 		err = -EINVAL;
216 		goto err_release_metapage;
217 	}
218 
219 	if (((bmp->db_mapsize - 1) >> bmp->db_agl2size) > MAXAG) {
220 		err = -EINVAL;
221 		goto err_release_metapage;
222 	}
223 
224 	for (i = 0; i < MAXAG; i++)
225 		bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
226 	bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
227 	bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
228 
229 	/* release the buffer. */
230 	release_metapage(mp);
231 
232 	/* bind the bmap inode and the bmap descriptor to each other. */
233 	bmp->db_ipbmap = ipbmap;
234 	JFS_SBI(ipbmap->i_sb)->bmap = bmp;
235 
236 	memset(bmp->db_active, 0, sizeof(bmp->db_active));
237 
238 	/*
239 	 * allocate/initialize the bmap lock
240 	 */
241 	BMAP_LOCK_INIT(bmp);
242 
243 	return (0);
244 
245 err_release_metapage:
246 	release_metapage(mp);
247 err_kfree_bmp:
248 	kfree(bmp);
249 	return err;
250 }
251 
252 
253 /*
254  * NAME:	dbUnmount()
255  *
256  * FUNCTION:	terminate the block allocation map in preparation for
257  *		file system unmount.
258  *
259  *		the in-core bmap descriptor is written to disk and
260  *		the memory for this descriptor is freed.
261  *
262  * PARAMETERS:
263  *	ipbmap	- pointer to in-core inode for the block map.
264  *
265  * RETURN VALUES:
266  *	0	- success
267  *	-EIO	- i/o error
268  */
dbUnmount(struct inode * ipbmap,int mounterror)269 int dbUnmount(struct inode *ipbmap, int mounterror)
270 {
271 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
272 
273 	if (!(mounterror || isReadOnly(ipbmap)))
274 		dbSync(ipbmap);
275 
276 	/*
277 	 * Invalidate the page cache buffers
278 	 */
279 	truncate_inode_pages(ipbmap->i_mapping, 0);
280 
281 	/* free the memory for the in-memory bmap. */
282 	kfree(bmp);
283 	JFS_SBI(ipbmap->i_sb)->bmap = NULL;
284 
285 	return (0);
286 }
287 
288 /*
289  *	dbSync()
290  */
dbSync(struct inode * ipbmap)291 int dbSync(struct inode *ipbmap)
292 {
293 	struct dbmap_disk *dbmp_le;
294 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
295 	struct metapage *mp;
296 	int i;
297 
298 	/*
299 	 * write bmap global control page
300 	 */
301 	/* get the buffer for the on-disk bmap descriptor. */
302 	mp = read_metapage(ipbmap,
303 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
304 			   PSIZE, 0);
305 	if (mp == NULL) {
306 		jfs_err("dbSync: read_metapage failed!");
307 		return -EIO;
308 	}
309 	/* copy the in-memory version of the bmap to the on-disk version */
310 	dbmp_le = (struct dbmap_disk *) mp->data;
311 	dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
312 	dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
313 	dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
314 	dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
315 	dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
316 	dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
317 	dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
318 	dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
319 	dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
320 	dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
321 	dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
322 	dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
323 	for (i = 0; i < MAXAG; i++)
324 		dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
325 	dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
326 	dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
327 
328 	/* write the buffer */
329 	write_metapage(mp);
330 
331 	/*
332 	 * write out dirty pages of bmap
333 	 */
334 	filemap_write_and_wait(ipbmap->i_mapping);
335 
336 	diWriteSpecial(ipbmap, 0);
337 
338 	return (0);
339 }
340 
341 /*
342  * NAME:	dbFree()
343  *
344  * FUNCTION:	free the specified block range from the working block
345  *		allocation map.
346  *
347  *		the blocks will be free from the working map one dmap
348  *		at a time.
349  *
350  * PARAMETERS:
351  *	ip	- pointer to in-core inode;
352  *	blkno	- starting block number to be freed.
353  *	nblocks	- number of blocks to be freed.
354  *
355  * RETURN VALUES:
356  *	0	- success
357  *	-EIO	- i/o error
358  */
dbFree(struct inode * ip,s64 blkno,s64 nblocks)359 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
360 {
361 	struct metapage *mp;
362 	struct dmap *dp;
363 	int nb, rc;
364 	s64 lblkno, rem;
365 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
366 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
367 	struct super_block *sb = ipbmap->i_sb;
368 
369 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
370 
371 	/* block to be freed better be within the mapsize. */
372 	if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
373 		IREAD_UNLOCK(ipbmap);
374 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
375 		       (unsigned long long) blkno,
376 		       (unsigned long long) nblocks);
377 		jfs_error(ip->i_sb, "block to be freed is outside the map\n");
378 		return -EIO;
379 	}
380 
381 	/**
382 	 * TRIM the blocks, when mounted with discard option
383 	 */
384 	if (JFS_SBI(sb)->flag & JFS_DISCARD)
385 		if (JFS_SBI(sb)->minblks_trim <= nblocks)
386 			jfs_issue_discard(ipbmap, blkno, nblocks);
387 
388 	/*
389 	 * free the blocks a dmap at a time.
390 	 */
391 	mp = NULL;
392 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
393 		/* release previous dmap if any */
394 		if (mp) {
395 			write_metapage(mp);
396 		}
397 
398 		/* get the buffer for the current dmap. */
399 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
400 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
401 		if (mp == NULL) {
402 			IREAD_UNLOCK(ipbmap);
403 			return -EIO;
404 		}
405 		dp = (struct dmap *) mp->data;
406 
407 		/* determine the number of blocks to be freed from
408 		 * this dmap.
409 		 */
410 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
411 
412 		/* free the blocks. */
413 		if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
414 			jfs_error(ip->i_sb, "error in block map\n");
415 			release_metapage(mp);
416 			IREAD_UNLOCK(ipbmap);
417 			return (rc);
418 		}
419 	}
420 
421 	/* write the last buffer. */
422 	if (mp)
423 		write_metapage(mp);
424 
425 	IREAD_UNLOCK(ipbmap);
426 
427 	return (0);
428 }
429 
430 
431 /*
432  * NAME:	dbUpdatePMap()
433  *
434  * FUNCTION:	update the allocation state (free or allocate) of the
435  *		specified block range in the persistent block allocation map.
436  *
437  *		the blocks will be updated in the persistent map one
438  *		dmap at a time.
439  *
440  * PARAMETERS:
441  *	ipbmap	- pointer to in-core inode for the block map.
442  *	free	- 'true' if block range is to be freed from the persistent
443  *		  map; 'false' if it is to be allocated.
444  *	blkno	- starting block number of the range.
445  *	nblocks	- number of contiguous blocks in the range.
446  *	tblk	- transaction block;
447  *
448  * RETURN VALUES:
449  *	0	- success
450  *	-EIO	- i/o error
451  */
452 int
dbUpdatePMap(struct inode * ipbmap,int free,s64 blkno,s64 nblocks,struct tblock * tblk)453 dbUpdatePMap(struct inode *ipbmap,
454 	     int free, s64 blkno, s64 nblocks, struct tblock * tblk)
455 {
456 	int nblks, dbitno, wbitno, rbits;
457 	int word, nbits, nwords;
458 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
459 	s64 lblkno, rem, lastlblkno;
460 	u32 mask;
461 	struct dmap *dp;
462 	struct metapage *mp;
463 	struct jfs_log *log;
464 	int lsn, difft, diffp;
465 	unsigned long flags;
466 
467 	/* the blocks better be within the mapsize. */
468 	if (blkno + nblocks > bmp->db_mapsize) {
469 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
470 		       (unsigned long long) blkno,
471 		       (unsigned long long) nblocks);
472 		jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
473 		return -EIO;
474 	}
475 
476 	/* compute delta of transaction lsn from log syncpt */
477 	lsn = tblk->lsn;
478 	log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
479 	logdiff(difft, lsn, log);
480 
481 	/*
482 	 * update the block state a dmap at a time.
483 	 */
484 	mp = NULL;
485 	lastlblkno = 0;
486 	for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
487 		/* get the buffer for the current dmap. */
488 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
489 		if (lblkno != lastlblkno) {
490 			if (mp) {
491 				write_metapage(mp);
492 			}
493 
494 			mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
495 					   0);
496 			if (mp == NULL)
497 				return -EIO;
498 			metapage_wait_for_io(mp);
499 		}
500 		dp = (struct dmap *) mp->data;
501 
502 		/* determine the bit number and word within the dmap of
503 		 * the starting block.  also determine how many blocks
504 		 * are to be updated within this dmap.
505 		 */
506 		dbitno = blkno & (BPERDMAP - 1);
507 		word = dbitno >> L2DBWORD;
508 		nblks = min(rem, (s64)BPERDMAP - dbitno);
509 
510 		/* update the bits of the dmap words. the first and last
511 		 * words may only have a subset of their bits updated. if
512 		 * this is the case, we'll work against that word (i.e.
513 		 * partial first and/or last) only in a single pass.  a
514 		 * single pass will also be used to update all words that
515 		 * are to have all their bits updated.
516 		 */
517 		for (rbits = nblks; rbits > 0;
518 		     rbits -= nbits, dbitno += nbits) {
519 			/* determine the bit number within the word and
520 			 * the number of bits within the word.
521 			 */
522 			wbitno = dbitno & (DBWORD - 1);
523 			nbits = min(rbits, DBWORD - wbitno);
524 
525 			/* check if only part of the word is to be updated. */
526 			if (nbits < DBWORD) {
527 				/* update (free or allocate) the bits
528 				 * in this word.
529 				 */
530 				mask =
531 				    (ONES << (DBWORD - nbits) >> wbitno);
532 				if (free)
533 					dp->pmap[word] &=
534 					    cpu_to_le32(~mask);
535 				else
536 					dp->pmap[word] |=
537 					    cpu_to_le32(mask);
538 
539 				word += 1;
540 			} else {
541 				/* one or more words are to have all
542 				 * their bits updated.  determine how
543 				 * many words and how many bits.
544 				 */
545 				nwords = rbits >> L2DBWORD;
546 				nbits = nwords << L2DBWORD;
547 
548 				/* update (free or allocate) the bits
549 				 * in these words.
550 				 */
551 				if (free)
552 					memset(&dp->pmap[word], 0,
553 					       nwords * 4);
554 				else
555 					memset(&dp->pmap[word], (int) ONES,
556 					       nwords * 4);
557 
558 				word += nwords;
559 			}
560 		}
561 
562 		/*
563 		 * update dmap lsn
564 		 */
565 		if (lblkno == lastlblkno)
566 			continue;
567 
568 		lastlblkno = lblkno;
569 
570 		LOGSYNC_LOCK(log, flags);
571 		if (mp->lsn != 0) {
572 			/* inherit older/smaller lsn */
573 			logdiff(diffp, mp->lsn, log);
574 			if (difft < diffp) {
575 				mp->lsn = lsn;
576 
577 				/* move bp after tblock in logsync list */
578 				list_move(&mp->synclist, &tblk->synclist);
579 			}
580 
581 			/* inherit younger/larger clsn */
582 			logdiff(difft, tblk->clsn, log);
583 			logdiff(diffp, mp->clsn, log);
584 			if (difft > diffp)
585 				mp->clsn = tblk->clsn;
586 		} else {
587 			mp->log = log;
588 			mp->lsn = lsn;
589 
590 			/* insert bp after tblock in logsync list */
591 			log->count++;
592 			list_add(&mp->synclist, &tblk->synclist);
593 
594 			mp->clsn = tblk->clsn;
595 		}
596 		LOGSYNC_UNLOCK(log, flags);
597 	}
598 
599 	/* write the last buffer. */
600 	if (mp) {
601 		write_metapage(mp);
602 	}
603 
604 	return (0);
605 }
606 
607 
608 /*
609  * NAME:	dbNextAG()
610  *
611  * FUNCTION:	find the preferred allocation group for new allocations.
612  *
613  *		Within the allocation groups, we maintain a preferred
614  *		allocation group which consists of a group with at least
615  *		average free space.  It is the preferred group that we target
616  *		new inode allocation towards.  The tie-in between inode
617  *		allocation and block allocation occurs as we allocate the
618  *		first (data) block of an inode and specify the inode (block)
619  *		as the allocation hint for this block.
620  *
621  *		We try to avoid having more than one open file growing in
622  *		an allocation group, as this will lead to fragmentation.
623  *		This differs from the old OS/2 method of trying to keep
624  *		empty ags around for large allocations.
625  *
626  * PARAMETERS:
627  *	ipbmap	- pointer to in-core inode for the block map.
628  *
629  * RETURN VALUES:
630  *	the preferred allocation group number.
631  */
dbNextAG(struct inode * ipbmap)632 int dbNextAG(struct inode *ipbmap)
633 {
634 	s64 avgfree;
635 	int agpref;
636 	s64 hwm = 0;
637 	int i;
638 	int next_best = -1;
639 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
640 
641 	BMAP_LOCK(bmp);
642 
643 	/* determine the average number of free blocks within the ags. */
644 	avgfree = (u32)bmp->db_nfree / bmp->db_numag;
645 
646 	/*
647 	 * if the current preferred ag does not have an active allocator
648 	 * and has at least average freespace, return it
649 	 */
650 	agpref = bmp->db_agpref;
651 	if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
652 	    (bmp->db_agfree[agpref] >= avgfree))
653 		goto unlock;
654 
655 	/* From the last preferred ag, find the next one with at least
656 	 * average free space.
657 	 */
658 	for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
659 		if (agpref >= bmp->db_numag)
660 			agpref = 0;
661 
662 		if (atomic_read(&bmp->db_active[agpref]))
663 			/* open file is currently growing in this ag */
664 			continue;
665 		if (bmp->db_agfree[agpref] >= avgfree) {
666 			/* Return this one */
667 			bmp->db_agpref = agpref;
668 			goto unlock;
669 		} else if (bmp->db_agfree[agpref] > hwm) {
670 			/* Less than avg. freespace, but best so far */
671 			hwm = bmp->db_agfree[agpref];
672 			next_best = agpref;
673 		}
674 	}
675 
676 	/*
677 	 * If no inactive ag was found with average freespace, use the
678 	 * next best
679 	 */
680 	if (next_best != -1)
681 		bmp->db_agpref = next_best;
682 	/* else leave db_agpref unchanged */
683 unlock:
684 	BMAP_UNLOCK(bmp);
685 
686 	/* return the preferred group.
687 	 */
688 	return (bmp->db_agpref);
689 }
690 
691 /*
692  * NAME:	dbAlloc()
693  *
694  * FUNCTION:	attempt to allocate a specified number of contiguous free
695  *		blocks from the working allocation block map.
696  *
697  *		the block allocation policy uses hints and a multi-step
698  *		approach.
699  *
700  *		for allocation requests smaller than the number of blocks
701  *		per dmap, we first try to allocate the new blocks
702  *		immediately following the hint.  if these blocks are not
703  *		available, we try to allocate blocks near the hint.  if
704  *		no blocks near the hint are available, we next try to
705  *		allocate within the same dmap as contains the hint.
706  *
707  *		if no blocks are available in the dmap or the allocation
708  *		request is larger than the dmap size, we try to allocate
709  *		within the same allocation group as contains the hint. if
710  *		this does not succeed, we finally try to allocate anywhere
711  *		within the aggregate.
712  *
713  *		we also try to allocate anywhere within the aggregate
714  *		for allocation requests larger than the allocation group
715  *		size or requests that specify no hint value.
716  *
717  * PARAMETERS:
718  *	ip	- pointer to in-core inode;
719  *	hint	- allocation hint.
720  *	nblocks	- number of contiguous blocks in the range.
721  *	results	- on successful return, set to the starting block number
722  *		  of the newly allocated contiguous range.
723  *
724  * RETURN VALUES:
725  *	0	- success
726  *	-ENOSPC	- insufficient disk resources
727  *	-EIO	- i/o error
728  */
dbAlloc(struct inode * ip,s64 hint,s64 nblocks,s64 * results)729 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
730 {
731 	int rc, agno;
732 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
733 	struct bmap *bmp;
734 	struct metapage *mp;
735 	s64 lblkno, blkno;
736 	struct dmap *dp;
737 	int l2nb;
738 	s64 mapSize;
739 	int writers;
740 
741 	/* assert that nblocks is valid */
742 	assert(nblocks > 0);
743 
744 	/* get the log2 number of blocks to be allocated.
745 	 * if the number of blocks is not a log2 multiple,
746 	 * it will be rounded up to the next log2 multiple.
747 	 */
748 	l2nb = BLKSTOL2(nblocks);
749 
750 	bmp = JFS_SBI(ip->i_sb)->bmap;
751 
752 	mapSize = bmp->db_mapsize;
753 
754 	/* the hint should be within the map */
755 	if (hint >= mapSize) {
756 		jfs_error(ip->i_sb, "the hint is outside the map\n");
757 		return -EIO;
758 	}
759 
760 	/* if the number of blocks to be allocated is greater than the
761 	 * allocation group size, try to allocate anywhere.
762 	 */
763 	if (l2nb > bmp->db_agl2size) {
764 		IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
765 
766 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
767 
768 		goto write_unlock;
769 	}
770 
771 	/*
772 	 * If no hint, let dbNextAG recommend an allocation group
773 	 */
774 	if (hint == 0)
775 		goto pref_ag;
776 
777 	/* we would like to allocate close to the hint.  adjust the
778 	 * hint to the block following the hint since the allocators
779 	 * will start looking for free space starting at this point.
780 	 */
781 	blkno = hint + 1;
782 
783 	if (blkno >= bmp->db_mapsize)
784 		goto pref_ag;
785 
786 	agno = blkno >> bmp->db_agl2size;
787 
788 	/* check if blkno crosses over into a new allocation group.
789 	 * if so, check if we should allow allocations within this
790 	 * allocation group.
791 	 */
792 	if ((blkno & (bmp->db_agsize - 1)) == 0)
793 		/* check if the AG is currently being written to.
794 		 * if so, call dbNextAG() to find a non-busy
795 		 * AG with sufficient free space.
796 		 */
797 		if (atomic_read(&bmp->db_active[agno]))
798 			goto pref_ag;
799 
800 	/* check if the allocation request size can be satisfied from a
801 	 * single dmap.  if so, try to allocate from the dmap containing
802 	 * the hint using a tiered strategy.
803 	 */
804 	if (nblocks <= BPERDMAP) {
805 		IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
806 
807 		/* get the buffer for the dmap containing the hint.
808 		 */
809 		rc = -EIO;
810 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
811 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
812 		if (mp == NULL)
813 			goto read_unlock;
814 
815 		dp = (struct dmap *) mp->data;
816 
817 		/* first, try to satisfy the allocation request with the
818 		 * blocks beginning at the hint.
819 		 */
820 		if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
821 		    != -ENOSPC) {
822 			if (rc == 0) {
823 				*results = blkno;
824 				mark_metapage_dirty(mp);
825 			}
826 
827 			release_metapage(mp);
828 			goto read_unlock;
829 		}
830 
831 		writers = atomic_read(&bmp->db_active[agno]);
832 		if ((writers > 1) ||
833 		    ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
834 			/*
835 			 * Someone else is writing in this allocation
836 			 * group.  To avoid fragmenting, try another ag
837 			 */
838 			release_metapage(mp);
839 			IREAD_UNLOCK(ipbmap);
840 			goto pref_ag;
841 		}
842 
843 		/* next, try to satisfy the allocation request with blocks
844 		 * near the hint.
845 		 */
846 		if ((rc =
847 		     dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
848 		    != -ENOSPC) {
849 			if (rc == 0)
850 				mark_metapage_dirty(mp);
851 
852 			release_metapage(mp);
853 			goto read_unlock;
854 		}
855 
856 		/* try to satisfy the allocation request with blocks within
857 		 * the same dmap as the hint.
858 		 */
859 		if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
860 		    != -ENOSPC) {
861 			if (rc == 0)
862 				mark_metapage_dirty(mp);
863 
864 			release_metapage(mp);
865 			goto read_unlock;
866 		}
867 
868 		release_metapage(mp);
869 		IREAD_UNLOCK(ipbmap);
870 	}
871 
872 	/* try to satisfy the allocation request with blocks within
873 	 * the same allocation group as the hint.
874 	 */
875 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
876 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
877 		goto write_unlock;
878 
879 	IWRITE_UNLOCK(ipbmap);
880 
881 
882       pref_ag:
883 	/*
884 	 * Let dbNextAG recommend a preferred allocation group
885 	 */
886 	agno = dbNextAG(ipbmap);
887 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
888 
889 	/* Try to allocate within this allocation group.  if that fails, try to
890 	 * allocate anywhere in the map.
891 	 */
892 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
893 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
894 
895       write_unlock:
896 	IWRITE_UNLOCK(ipbmap);
897 
898 	return (rc);
899 
900       read_unlock:
901 	IREAD_UNLOCK(ipbmap);
902 
903 	return (rc);
904 }
905 
906 /*
907  * NAME:	dbReAlloc()
908  *
909  * FUNCTION:	attempt to extend a current allocation by a specified
910  *		number of blocks.
911  *
912  *		this routine attempts to satisfy the allocation request
913  *		by first trying to extend the existing allocation in
914  *		place by allocating the additional blocks as the blocks
915  *		immediately following the current allocation.  if these
916  *		blocks are not available, this routine will attempt to
917  *		allocate a new set of contiguous blocks large enough
918  *		to cover the existing allocation plus the additional
919  *		number of blocks required.
920  *
921  * PARAMETERS:
922  *	ip	    -  pointer to in-core inode requiring allocation.
923  *	blkno	    -  starting block of the current allocation.
924  *	nblocks	    -  number of contiguous blocks within the current
925  *		       allocation.
926  *	addnblocks  -  number of blocks to add to the allocation.
927  *	results	-      on successful return, set to the starting block number
928  *		       of the existing allocation if the existing allocation
929  *		       was extended in place or to a newly allocated contiguous
930  *		       range if the existing allocation could not be extended
931  *		       in place.
932  *
933  * RETURN VALUES:
934  *	0	- success
935  *	-ENOSPC	- insufficient disk resources
936  *	-EIO	- i/o error
937  */
938 int
dbReAlloc(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks,s64 * results)939 dbReAlloc(struct inode *ip,
940 	  s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
941 {
942 	int rc;
943 
944 	/* try to extend the allocation in place.
945 	 */
946 	if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
947 		*results = blkno;
948 		return (0);
949 	} else {
950 		if (rc != -ENOSPC)
951 			return (rc);
952 	}
953 
954 	/* could not extend the allocation in place, so allocate a
955 	 * new set of blocks for the entire request (i.e. try to get
956 	 * a range of contiguous blocks large enough to cover the
957 	 * existing allocation plus the additional blocks.)
958 	 */
959 	return (dbAlloc
960 		(ip, blkno + nblocks - 1, addnblocks + nblocks, results));
961 }
962 
963 
964 /*
965  * NAME:	dbExtend()
966  *
967  * FUNCTION:	attempt to extend a current allocation by a specified
968  *		number of blocks.
969  *
970  *		this routine attempts to satisfy the allocation request
971  *		by first trying to extend the existing allocation in
972  *		place by allocating the additional blocks as the blocks
973  *		immediately following the current allocation.
974  *
975  * PARAMETERS:
976  *	ip	    -  pointer to in-core inode requiring allocation.
977  *	blkno	    -  starting block of the current allocation.
978  *	nblocks	    -  number of contiguous blocks within the current
979  *		       allocation.
980  *	addnblocks  -  number of blocks to add to the allocation.
981  *
982  * RETURN VALUES:
983  *	0	- success
984  *	-ENOSPC	- insufficient disk resources
985  *	-EIO	- i/o error
986  */
dbExtend(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks)987 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
988 {
989 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
990 	s64 lblkno, lastblkno, extblkno;
991 	uint rel_block;
992 	struct metapage *mp;
993 	struct dmap *dp;
994 	int rc;
995 	struct inode *ipbmap = sbi->ipbmap;
996 	struct bmap *bmp;
997 
998 	/*
999 	 * We don't want a non-aligned extent to cross a page boundary
1000 	 */
1001 	if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1002 	    (rel_block + nblocks + addnblocks > sbi->nbperpage))
1003 		return -ENOSPC;
1004 
1005 	/* get the last block of the current allocation */
1006 	lastblkno = blkno + nblocks - 1;
1007 
1008 	/* determine the block number of the block following
1009 	 * the existing allocation.
1010 	 */
1011 	extblkno = lastblkno + 1;
1012 
1013 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1014 
1015 	/* better be within the file system */
1016 	bmp = sbi->bmap;
1017 	if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1018 		IREAD_UNLOCK(ipbmap);
1019 		jfs_error(ip->i_sb, "the block is outside the filesystem\n");
1020 		return -EIO;
1021 	}
1022 
1023 	/* we'll attempt to extend the current allocation in place by
1024 	 * allocating the additional blocks as the blocks immediately
1025 	 * following the current allocation.  we only try to extend the
1026 	 * current allocation in place if the number of additional blocks
1027 	 * can fit into a dmap, the last block of the current allocation
1028 	 * is not the last block of the file system, and the start of the
1029 	 * inplace extension is not on an allocation group boundary.
1030 	 */
1031 	if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1032 	    (extblkno & (bmp->db_agsize - 1)) == 0) {
1033 		IREAD_UNLOCK(ipbmap);
1034 		return -ENOSPC;
1035 	}
1036 
1037 	/* get the buffer for the dmap containing the first block
1038 	 * of the extension.
1039 	 */
1040 	lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1041 	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1042 	if (mp == NULL) {
1043 		IREAD_UNLOCK(ipbmap);
1044 		return -EIO;
1045 	}
1046 
1047 	dp = (struct dmap *) mp->data;
1048 
1049 	/* try to allocate the blocks immediately following the
1050 	 * current allocation.
1051 	 */
1052 	rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1053 
1054 	IREAD_UNLOCK(ipbmap);
1055 
1056 	/* were we successful ? */
1057 	if (rc == 0)
1058 		write_metapage(mp);
1059 	else
1060 		/* we were not successful */
1061 		release_metapage(mp);
1062 
1063 	return (rc);
1064 }
1065 
1066 
1067 /*
1068  * NAME:	dbAllocNext()
1069  *
1070  * FUNCTION:	attempt to allocate the blocks of the specified block
1071  *		range within a dmap.
1072  *
1073  * PARAMETERS:
1074  *	bmp	-  pointer to bmap descriptor
1075  *	dp	-  pointer to dmap.
1076  *	blkno	-  starting block number of the range.
1077  *	nblocks	-  number of contiguous free blocks of the range.
1078  *
1079  * RETURN VALUES:
1080  *	0	- success
1081  *	-ENOSPC	- insufficient disk resources
1082  *	-EIO	- i/o error
1083  *
1084  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1085  */
dbAllocNext(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)1086 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1087 		       int nblocks)
1088 {
1089 	int dbitno, word, rembits, nb, nwords, wbitno, nw;
1090 	int l2size;
1091 	s8 *leaf;
1092 	u32 mask;
1093 
1094 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1095 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1096 		return -EIO;
1097 	}
1098 
1099 	/* pick up a pointer to the leaves of the dmap tree.
1100 	 */
1101 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1102 
1103 	/* determine the bit number and word within the dmap of the
1104 	 * starting block.
1105 	 */
1106 	dbitno = blkno & (BPERDMAP - 1);
1107 	word = dbitno >> L2DBWORD;
1108 
1109 	/* check if the specified block range is contained within
1110 	 * this dmap.
1111 	 */
1112 	if (dbitno + nblocks > BPERDMAP)
1113 		return -ENOSPC;
1114 
1115 	/* check if the starting leaf indicates that anything
1116 	 * is free.
1117 	 */
1118 	if (leaf[word] == NOFREE)
1119 		return -ENOSPC;
1120 
1121 	/* check the dmaps words corresponding to block range to see
1122 	 * if the block range is free.  not all bits of the first and
1123 	 * last words may be contained within the block range.  if this
1124 	 * is the case, we'll work against those words (i.e. partial first
1125 	 * and/or last) on an individual basis (a single pass) and examine
1126 	 * the actual bits to determine if they are free.  a single pass
1127 	 * will be used for all dmap words fully contained within the
1128 	 * specified range.  within this pass, the leaves of the dmap
1129 	 * tree will be examined to determine if the blocks are free. a
1130 	 * single leaf may describe the free space of multiple dmap
1131 	 * words, so we may visit only a subset of the actual leaves
1132 	 * corresponding to the dmap words of the block range.
1133 	 */
1134 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1135 		/* determine the bit number within the word and
1136 		 * the number of bits within the word.
1137 		 */
1138 		wbitno = dbitno & (DBWORD - 1);
1139 		nb = min(rembits, DBWORD - wbitno);
1140 
1141 		/* check if only part of the word is to be examined.
1142 		 */
1143 		if (nb < DBWORD) {
1144 			/* check if the bits are free.
1145 			 */
1146 			mask = (ONES << (DBWORD - nb) >> wbitno);
1147 			if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1148 				return -ENOSPC;
1149 
1150 			word += 1;
1151 		} else {
1152 			/* one or more dmap words are fully contained
1153 			 * within the block range.  determine how many
1154 			 * words and how many bits.
1155 			 */
1156 			nwords = rembits >> L2DBWORD;
1157 			nb = nwords << L2DBWORD;
1158 
1159 			/* now examine the appropriate leaves to determine
1160 			 * if the blocks are free.
1161 			 */
1162 			while (nwords > 0) {
1163 				/* does the leaf describe any free space ?
1164 				 */
1165 				if (leaf[word] < BUDMIN)
1166 					return -ENOSPC;
1167 
1168 				/* determine the l2 number of bits provided
1169 				 * by this leaf.
1170 				 */
1171 				l2size =
1172 				    min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1173 
1174 				/* determine how many words were handled.
1175 				 */
1176 				nw = BUDSIZE(l2size, BUDMIN);
1177 
1178 				nwords -= nw;
1179 				word += nw;
1180 			}
1181 		}
1182 	}
1183 
1184 	/* allocate the blocks.
1185 	 */
1186 	return (dbAllocDmap(bmp, dp, blkno, nblocks));
1187 }
1188 
1189 
1190 /*
1191  * NAME:	dbAllocNear()
1192  *
1193  * FUNCTION:	attempt to allocate a number of contiguous free blocks near
1194  *		a specified block (hint) within a dmap.
1195  *
1196  *		starting with the dmap leaf that covers the hint, we'll
1197  *		check the next four contiguous leaves for sufficient free
1198  *		space.  if sufficient free space is found, we'll allocate
1199  *		the desired free space.
1200  *
1201  * PARAMETERS:
1202  *	bmp	-  pointer to bmap descriptor
1203  *	dp	-  pointer to dmap.
1204  *	blkno	-  block number to allocate near.
1205  *	nblocks	-  actual number of contiguous free blocks desired.
1206  *	l2nb	-  log2 number of contiguous free blocks desired.
1207  *	results	-  on successful return, set to the starting block number
1208  *		   of the newly allocated range.
1209  *
1210  * RETURN VALUES:
1211  *	0	- success
1212  *	-ENOSPC	- insufficient disk resources
1213  *	-EIO	- i/o error
1214  *
1215  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1216  */
1217 static int
dbAllocNear(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks,int l2nb,s64 * results)1218 dbAllocNear(struct bmap * bmp,
1219 	    struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1220 {
1221 	int word, lword, rc;
1222 	s8 *leaf;
1223 
1224 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1225 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1226 		return -EIO;
1227 	}
1228 
1229 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1230 
1231 	/* determine the word within the dmap that holds the hint
1232 	 * (i.e. blkno).  also, determine the last word in the dmap
1233 	 * that we'll include in our examination.
1234 	 */
1235 	word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1236 	lword = min(word + 4, LPERDMAP);
1237 
1238 	/* examine the leaves for sufficient free space.
1239 	 */
1240 	for (; word < lword; word++) {
1241 		/* does the leaf describe sufficient free space ?
1242 		 */
1243 		if (leaf[word] < l2nb)
1244 			continue;
1245 
1246 		/* determine the block number within the file system
1247 		 * of the first block described by this dmap word.
1248 		 */
1249 		blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1250 
1251 		/* if not all bits of the dmap word are free, get the
1252 		 * starting bit number within the dmap word of the required
1253 		 * string of free bits and adjust the block number with the
1254 		 * value.
1255 		 */
1256 		if (leaf[word] < BUDMIN)
1257 			blkno +=
1258 			    dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1259 
1260 		/* allocate the blocks.
1261 		 */
1262 		if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1263 			*results = blkno;
1264 
1265 		return (rc);
1266 	}
1267 
1268 	return -ENOSPC;
1269 }
1270 
1271 
1272 /*
1273  * NAME:	dbAllocAG()
1274  *
1275  * FUNCTION:	attempt to allocate the specified number of contiguous
1276  *		free blocks within the specified allocation group.
1277  *
1278  *		unless the allocation group size is equal to the number
1279  *		of blocks per dmap, the dmap control pages will be used to
1280  *		find the required free space, if available.  we start the
1281  *		search at the highest dmap control page level which
1282  *		distinctly describes the allocation group's free space
1283  *		(i.e. the highest level at which the allocation group's
1284  *		free space is not mixed in with that of any other group).
1285  *		in addition, we start the search within this level at a
1286  *		height of the dmapctl dmtree at which the nodes distinctly
1287  *		describe the allocation group's free space.  at this height,
1288  *		the allocation group's free space may be represented by 1
1289  *		or two sub-trees, depending on the allocation group size.
1290  *		we search the top nodes of these subtrees left to right for
1291  *		sufficient free space.  if sufficient free space is found,
1292  *		the subtree is searched to find the leftmost leaf that
1293  *		has free space.  once we have made it to the leaf, we
1294  *		move the search to the next lower level dmap control page
1295  *		corresponding to this leaf.  we continue down the dmap control
1296  *		pages until we find the dmap that contains or starts the
1297  *		sufficient free space and we allocate at this dmap.
1298  *
1299  *		if the allocation group size is equal to the dmap size,
1300  *		we'll start at the dmap corresponding to the allocation
1301  *		group and attempt the allocation at this level.
1302  *
1303  *		the dmap control page search is also not performed if the
1304  *		allocation group is completely free and we go to the first
1305  *		dmap of the allocation group to do the allocation.  this is
1306  *		done because the allocation group may be part (not the first
1307  *		part) of a larger binary buddy system, causing the dmap
1308  *		control pages to indicate no free space (NOFREE) within
1309  *		the allocation group.
1310  *
1311  * PARAMETERS:
1312  *	bmp	-  pointer to bmap descriptor
1313  *	agno	- allocation group number.
1314  *	nblocks	-  actual number of contiguous free blocks desired.
1315  *	l2nb	-  log2 number of contiguous free blocks desired.
1316  *	results	-  on successful return, set to the starting block number
1317  *		   of the newly allocated range.
1318  *
1319  * RETURN VALUES:
1320  *	0	- success
1321  *	-ENOSPC	- insufficient disk resources
1322  *	-EIO	- i/o error
1323  *
1324  * note: IWRITE_LOCK(ipmap) held on entry/exit;
1325  */
1326 static int
dbAllocAG(struct bmap * bmp,int agno,s64 nblocks,int l2nb,s64 * results)1327 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1328 {
1329 	struct metapage *mp;
1330 	struct dmapctl *dcp;
1331 	int rc, ti, i, k, m, n, agperlev;
1332 	s64 blkno, lblkno;
1333 	int budmin;
1334 
1335 	/* allocation request should not be for more than the
1336 	 * allocation group size.
1337 	 */
1338 	if (l2nb > bmp->db_agl2size) {
1339 		jfs_error(bmp->db_ipbmap->i_sb,
1340 			  "allocation request is larger than the allocation group size\n");
1341 		return -EIO;
1342 	}
1343 
1344 	/* determine the starting block number of the allocation
1345 	 * group.
1346 	 */
1347 	blkno = (s64) agno << bmp->db_agl2size;
1348 
1349 	/* check if the allocation group size is the minimum allocation
1350 	 * group size or if the allocation group is completely free. if
1351 	 * the allocation group size is the minimum size of BPERDMAP (i.e.
1352 	 * 1 dmap), there is no need to search the dmap control page (below)
1353 	 * that fully describes the allocation group since the allocation
1354 	 * group is already fully described by a dmap.  in this case, we
1355 	 * just call dbAllocCtl() to search the dmap tree and allocate the
1356 	 * required space if available.
1357 	 *
1358 	 * if the allocation group is completely free, dbAllocCtl() is
1359 	 * also called to allocate the required space.  this is done for
1360 	 * two reasons.  first, it makes no sense searching the dmap control
1361 	 * pages for free space when we know that free space exists.  second,
1362 	 * the dmap control pages may indicate that the allocation group
1363 	 * has no free space if the allocation group is part (not the first
1364 	 * part) of a larger binary buddy system.
1365 	 */
1366 	if (bmp->db_agsize == BPERDMAP
1367 	    || bmp->db_agfree[agno] == bmp->db_agsize) {
1368 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1369 		if ((rc == -ENOSPC) &&
1370 		    (bmp->db_agfree[agno] == bmp->db_agsize)) {
1371 			printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1372 			       (unsigned long long) blkno,
1373 			       (unsigned long long) nblocks);
1374 			jfs_error(bmp->db_ipbmap->i_sb,
1375 				  "dbAllocCtl failed in free AG\n");
1376 		}
1377 		return (rc);
1378 	}
1379 
1380 	/* the buffer for the dmap control page that fully describes the
1381 	 * allocation group.
1382 	 */
1383 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1384 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1385 	if (mp == NULL)
1386 		return -EIO;
1387 	dcp = (struct dmapctl *) mp->data;
1388 	budmin = dcp->budmin;
1389 
1390 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1391 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1392 		release_metapage(mp);
1393 		return -EIO;
1394 	}
1395 
1396 	/* search the subtree(s) of the dmap control page that describes
1397 	 * the allocation group, looking for sufficient free space.  to begin,
1398 	 * determine how many allocation groups are represented in a dmap
1399 	 * control page at the control page level (i.e. L0, L1, L2) that
1400 	 * fully describes an allocation group. next, determine the starting
1401 	 * tree index of this allocation group within the control page.
1402 	 */
1403 	agperlev =
1404 	    (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1405 	ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1406 
1407 	/* dmap control page trees fan-out by 4 and a single allocation
1408 	 * group may be described by 1 or 2 subtrees within the ag level
1409 	 * dmap control page, depending upon the ag size. examine the ag's
1410 	 * subtrees for sufficient free space, starting with the leftmost
1411 	 * subtree.
1412 	 */
1413 	for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1414 		/* is there sufficient free space ?
1415 		 */
1416 		if (l2nb > dcp->stree[ti])
1417 			continue;
1418 
1419 		/* sufficient free space found in a subtree. now search down
1420 		 * the subtree to find the leftmost leaf that describes this
1421 		 * free space.
1422 		 */
1423 		for (k = bmp->db_agheight; k > 0; k--) {
1424 			for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1425 				if (l2nb <= dcp->stree[m + n]) {
1426 					ti = m + n;
1427 					break;
1428 				}
1429 			}
1430 			if (n == 4) {
1431 				jfs_error(bmp->db_ipbmap->i_sb,
1432 					  "failed descending stree\n");
1433 				release_metapage(mp);
1434 				return -EIO;
1435 			}
1436 		}
1437 
1438 		/* determine the block number within the file system
1439 		 * that corresponds to this leaf.
1440 		 */
1441 		if (bmp->db_aglevel == 2)
1442 			blkno = 0;
1443 		else if (bmp->db_aglevel == 1)
1444 			blkno &= ~(MAXL1SIZE - 1);
1445 		else		/* bmp->db_aglevel == 0 */
1446 			blkno &= ~(MAXL0SIZE - 1);
1447 
1448 		blkno +=
1449 		    ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1450 
1451 		/* release the buffer in preparation for going down
1452 		 * the next level of dmap control pages.
1453 		 */
1454 		release_metapage(mp);
1455 
1456 		/* check if we need to continue to search down the lower
1457 		 * level dmap control pages.  we need to if the number of
1458 		 * blocks required is less than maximum number of blocks
1459 		 * described at the next lower level.
1460 		 */
1461 		if (l2nb < budmin) {
1462 
1463 			/* search the lower level dmap control pages to get
1464 			 * the starting block number of the dmap that
1465 			 * contains or starts off the free space.
1466 			 */
1467 			if ((rc =
1468 			     dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1469 				       &blkno))) {
1470 				if (rc == -ENOSPC) {
1471 					jfs_error(bmp->db_ipbmap->i_sb,
1472 						  "control page inconsistent\n");
1473 					return -EIO;
1474 				}
1475 				return (rc);
1476 			}
1477 		}
1478 
1479 		/* allocate the blocks.
1480 		 */
1481 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1482 		if (rc == -ENOSPC) {
1483 			jfs_error(bmp->db_ipbmap->i_sb,
1484 				  "unable to allocate blocks\n");
1485 			rc = -EIO;
1486 		}
1487 		return (rc);
1488 	}
1489 
1490 	/* no space in the allocation group.  release the buffer and
1491 	 * return -ENOSPC.
1492 	 */
1493 	release_metapage(mp);
1494 
1495 	return -ENOSPC;
1496 }
1497 
1498 
1499 /*
1500  * NAME:	dbAllocAny()
1501  *
1502  * FUNCTION:	attempt to allocate the specified number of contiguous
1503  *		free blocks anywhere in the file system.
1504  *
1505  *		dbAllocAny() attempts to find the sufficient free space by
1506  *		searching down the dmap control pages, starting with the
1507  *		highest level (i.e. L0, L1, L2) control page.  if free space
1508  *		large enough to satisfy the desired free space is found, the
1509  *		desired free space is allocated.
1510  *
1511  * PARAMETERS:
1512  *	bmp	-  pointer to bmap descriptor
1513  *	nblocks	 -  actual number of contiguous free blocks desired.
1514  *	l2nb	 -  log2 number of contiguous free blocks desired.
1515  *	results	-  on successful return, set to the starting block number
1516  *		   of the newly allocated range.
1517  *
1518  * RETURN VALUES:
1519  *	0	- success
1520  *	-ENOSPC	- insufficient disk resources
1521  *	-EIO	- i/o error
1522  *
1523  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1524  */
dbAllocAny(struct bmap * bmp,s64 nblocks,int l2nb,s64 * results)1525 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1526 {
1527 	int rc;
1528 	s64 blkno = 0;
1529 
1530 	/* starting with the top level dmap control page, search
1531 	 * down the dmap control levels for sufficient free space.
1532 	 * if free space is found, dbFindCtl() returns the starting
1533 	 * block number of the dmap that contains or starts off the
1534 	 * range of free space.
1535 	 */
1536 	if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1537 		return (rc);
1538 
1539 	/* allocate the blocks.
1540 	 */
1541 	rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1542 	if (rc == -ENOSPC) {
1543 		jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1544 		return -EIO;
1545 	}
1546 	return (rc);
1547 }
1548 
1549 
1550 /*
1551  * NAME:	dbDiscardAG()
1552  *
1553  * FUNCTION:	attempt to discard (TRIM) all free blocks of specific AG
1554  *
1555  *		algorithm:
1556  *		1) allocate blocks, as large as possible and save them
1557  *		   while holding IWRITE_LOCK on ipbmap
1558  *		2) trim all these saved block/length values
1559  *		3) mark the blocks free again
1560  *
1561  *		benefit:
1562  *		- we work only on one ag at some time, minimizing how long we
1563  *		  need to lock ipbmap
1564  *		- reading / writing the fs is possible most time, even on
1565  *		  trimming
1566  *
1567  *		downside:
1568  *		- we write two times to the dmapctl and dmap pages
1569  *		- but for me, this seems the best way, better ideas?
1570  *		/TR 2012
1571  *
1572  * PARAMETERS:
1573  *	ip	- pointer to in-core inode
1574  *	agno	- ag to trim
1575  *	minlen	- minimum value of contiguous blocks
1576  *
1577  * RETURN VALUES:
1578  *	s64	- actual number of blocks trimmed
1579  */
dbDiscardAG(struct inode * ip,int agno,s64 minlen)1580 s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1581 {
1582 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1583 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1584 	s64 nblocks, blkno;
1585 	u64 trimmed = 0;
1586 	int rc, l2nb;
1587 	struct super_block *sb = ipbmap->i_sb;
1588 
1589 	struct range2trim {
1590 		u64 blkno;
1591 		u64 nblocks;
1592 	} *totrim, *tt;
1593 
1594 	/* max blkno / nblocks pairs to trim */
1595 	int count = 0, range_cnt;
1596 	u64 max_ranges;
1597 
1598 	/* prevent others from writing new stuff here, while trimming */
1599 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1600 
1601 	nblocks = bmp->db_agfree[agno];
1602 	max_ranges = nblocks;
1603 	do_div(max_ranges, minlen);
1604 	range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1605 	totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1606 	if (totrim == NULL) {
1607 		jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1608 		IWRITE_UNLOCK(ipbmap);
1609 		return 0;
1610 	}
1611 
1612 	tt = totrim;
1613 	while (nblocks >= minlen) {
1614 		l2nb = BLKSTOL2(nblocks);
1615 
1616 		/* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1617 		rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1618 		if (rc == 0) {
1619 			tt->blkno = blkno;
1620 			tt->nblocks = nblocks;
1621 			tt++; count++;
1622 
1623 			/* the whole ag is free, trim now */
1624 			if (bmp->db_agfree[agno] == 0)
1625 				break;
1626 
1627 			/* give a hint for the next while */
1628 			nblocks = bmp->db_agfree[agno];
1629 			continue;
1630 		} else if (rc == -ENOSPC) {
1631 			/* search for next smaller log2 block */
1632 			l2nb = BLKSTOL2(nblocks) - 1;
1633 			if (unlikely(l2nb < 0))
1634 				break;
1635 			nblocks = 1LL << l2nb;
1636 		} else {
1637 			/* Trim any already allocated blocks */
1638 			jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1639 			break;
1640 		}
1641 
1642 		/* check, if our trim array is full */
1643 		if (unlikely(count >= range_cnt - 1))
1644 			break;
1645 	}
1646 	IWRITE_UNLOCK(ipbmap);
1647 
1648 	tt->nblocks = 0; /* mark the current end */
1649 	for (tt = totrim; tt->nblocks != 0; tt++) {
1650 		/* when mounted with online discard, dbFree() will
1651 		 * call jfs_issue_discard() itself */
1652 		if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1653 			jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1654 		dbFree(ip, tt->blkno, tt->nblocks);
1655 		trimmed += tt->nblocks;
1656 	}
1657 	kfree(totrim);
1658 
1659 	return trimmed;
1660 }
1661 
1662 /*
1663  * NAME:	dbFindCtl()
1664  *
1665  * FUNCTION:	starting at a specified dmap control page level and block
1666  *		number, search down the dmap control levels for a range of
1667  *		contiguous free blocks large enough to satisfy an allocation
1668  *		request for the specified number of free blocks.
1669  *
1670  *		if sufficient contiguous free blocks are found, this routine
1671  *		returns the starting block number within a dmap page that
1672  *		contains or starts a range of contiqious free blocks that
1673  *		is sufficient in size.
1674  *
1675  * PARAMETERS:
1676  *	bmp	-  pointer to bmap descriptor
1677  *	level	-  starting dmap control page level.
1678  *	l2nb	-  log2 number of contiguous free blocks desired.
1679  *	*blkno	-  on entry, starting block number for conducting the search.
1680  *		   on successful return, the first block within a dmap page
1681  *		   that contains or starts a range of contiguous free blocks.
1682  *
1683  * RETURN VALUES:
1684  *	0	- success
1685  *	-ENOSPC	- insufficient disk resources
1686  *	-EIO	- i/o error
1687  *
1688  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1689  */
dbFindCtl(struct bmap * bmp,int l2nb,int level,s64 * blkno)1690 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1691 {
1692 	int rc, leafidx, lev;
1693 	s64 b, lblkno;
1694 	struct dmapctl *dcp;
1695 	int budmin;
1696 	struct metapage *mp;
1697 
1698 	/* starting at the specified dmap control page level and block
1699 	 * number, search down the dmap control levels for the starting
1700 	 * block number of a dmap page that contains or starts off
1701 	 * sufficient free blocks.
1702 	 */
1703 	for (lev = level, b = *blkno; lev >= 0; lev--) {
1704 		/* get the buffer of the dmap control page for the block
1705 		 * number and level (i.e. L0, L1, L2).
1706 		 */
1707 		lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1708 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1709 		if (mp == NULL)
1710 			return -EIO;
1711 		dcp = (struct dmapctl *) mp->data;
1712 		budmin = dcp->budmin;
1713 
1714 		if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1715 			jfs_error(bmp->db_ipbmap->i_sb,
1716 				  "Corrupt dmapctl page\n");
1717 			release_metapage(mp);
1718 			return -EIO;
1719 		}
1720 
1721 		/* search the tree within the dmap control page for
1722 		 * sufficient free space.  if sufficient free space is found,
1723 		 * dbFindLeaf() returns the index of the leaf at which
1724 		 * free space was found.
1725 		 */
1726 		rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx, true);
1727 
1728 		/* release the buffer.
1729 		 */
1730 		release_metapage(mp);
1731 
1732 		/* space found ?
1733 		 */
1734 		if (rc) {
1735 			if (lev != level) {
1736 				jfs_error(bmp->db_ipbmap->i_sb,
1737 					  "dmap inconsistent\n");
1738 				return -EIO;
1739 			}
1740 			return -ENOSPC;
1741 		}
1742 
1743 		/* adjust the block number to reflect the location within
1744 		 * the dmap control page (i.e. the leaf) at which free
1745 		 * space was found.
1746 		 */
1747 		b += (((s64) leafidx) << budmin);
1748 
1749 		/* we stop the search at this dmap control page level if
1750 		 * the number of blocks required is greater than or equal
1751 		 * to the maximum number of blocks described at the next
1752 		 * (lower) level.
1753 		 */
1754 		if (l2nb >= budmin)
1755 			break;
1756 	}
1757 
1758 	*blkno = b;
1759 	return (0);
1760 }
1761 
1762 
1763 /*
1764  * NAME:	dbAllocCtl()
1765  *
1766  * FUNCTION:	attempt to allocate a specified number of contiguous
1767  *		blocks starting within a specific dmap.
1768  *
1769  *		this routine is called by higher level routines that search
1770  *		the dmap control pages above the actual dmaps for contiguous
1771  *		free space.  the result of successful searches by these
1772  *		routines are the starting block numbers within dmaps, with
1773  *		the dmaps themselves containing the desired contiguous free
1774  *		space or starting a contiguous free space of desired size
1775  *		that is made up of the blocks of one or more dmaps. these
1776  *		calls should not fail due to insufficent resources.
1777  *
1778  *		this routine is called in some cases where it is not known
1779  *		whether it will fail due to insufficient resources.  more
1780  *		specifically, this occurs when allocating from an allocation
1781  *		group whose size is equal to the number of blocks per dmap.
1782  *		in this case, the dmap control pages are not examined prior
1783  *		to calling this routine (to save pathlength) and the call
1784  *		might fail.
1785  *
1786  *		for a request size that fits within a dmap, this routine relies
1787  *		upon the dmap's dmtree to find the requested contiguous free
1788  *		space.  for request sizes that are larger than a dmap, the
1789  *		requested free space will start at the first block of the
1790  *		first dmap (i.e. blkno).
1791  *
1792  * PARAMETERS:
1793  *	bmp	-  pointer to bmap descriptor
1794  *	nblocks	 -  actual number of contiguous free blocks to allocate.
1795  *	l2nb	 -  log2 number of contiguous free blocks to allocate.
1796  *	blkno	 -  starting block number of the dmap to start the allocation
1797  *		    from.
1798  *	results	-  on successful return, set to the starting block number
1799  *		   of the newly allocated range.
1800  *
1801  * RETURN VALUES:
1802  *	0	- success
1803  *	-ENOSPC	- insufficient disk resources
1804  *	-EIO	- i/o error
1805  *
1806  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1807  */
1808 static int
dbAllocCtl(struct bmap * bmp,s64 nblocks,int l2nb,s64 blkno,s64 * results)1809 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1810 {
1811 	int rc, nb;
1812 	s64 b, lblkno, n;
1813 	struct metapage *mp;
1814 	struct dmap *dp;
1815 
1816 	/* check if the allocation request is confined to a single dmap.
1817 	 */
1818 	if (l2nb <= L2BPERDMAP) {
1819 		/* get the buffer for the dmap.
1820 		 */
1821 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1822 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1823 		if (mp == NULL)
1824 			return -EIO;
1825 		dp = (struct dmap *) mp->data;
1826 
1827 		if (dp->tree.budmin < 0)
1828 			return -EIO;
1829 
1830 		/* try to allocate the blocks.
1831 		 */
1832 		rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1833 		if (rc == 0)
1834 			mark_metapage_dirty(mp);
1835 
1836 		release_metapage(mp);
1837 
1838 		return (rc);
1839 	}
1840 
1841 	/* allocation request involving multiple dmaps. it must start on
1842 	 * a dmap boundary.
1843 	 */
1844 	assert((blkno & (BPERDMAP - 1)) == 0);
1845 
1846 	/* allocate the blocks dmap by dmap.
1847 	 */
1848 	for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1849 		/* get the buffer for the dmap.
1850 		 */
1851 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1852 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1853 		if (mp == NULL) {
1854 			rc = -EIO;
1855 			goto backout;
1856 		}
1857 		dp = (struct dmap *) mp->data;
1858 
1859 		/* the dmap better be all free.
1860 		 */
1861 		if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1862 			release_metapage(mp);
1863 			jfs_error(bmp->db_ipbmap->i_sb,
1864 				  "the dmap is not all free\n");
1865 			rc = -EIO;
1866 			goto backout;
1867 		}
1868 
1869 		/* determine how many blocks to allocate from this dmap.
1870 		 */
1871 		nb = min_t(s64, n, BPERDMAP);
1872 
1873 		/* allocate the blocks from the dmap.
1874 		 */
1875 		if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1876 			release_metapage(mp);
1877 			goto backout;
1878 		}
1879 
1880 		/* write the buffer.
1881 		 */
1882 		write_metapage(mp);
1883 	}
1884 
1885 	/* set the results (starting block number) and return.
1886 	 */
1887 	*results = blkno;
1888 	return (0);
1889 
1890 	/* something failed in handling an allocation request involving
1891 	 * multiple dmaps.  we'll try to clean up by backing out any
1892 	 * allocation that has already happened for this request.  if
1893 	 * we fail in backing out the allocation, we'll mark the file
1894 	 * system to indicate that blocks have been leaked.
1895 	 */
1896       backout:
1897 
1898 	/* try to backout the allocations dmap by dmap.
1899 	 */
1900 	for (n = nblocks - n, b = blkno; n > 0;
1901 	     n -= BPERDMAP, b += BPERDMAP) {
1902 		/* get the buffer for this dmap.
1903 		 */
1904 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1905 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1906 		if (mp == NULL) {
1907 			/* could not back out.  mark the file system
1908 			 * to indicate that we have leaked blocks.
1909 			 */
1910 			jfs_error(bmp->db_ipbmap->i_sb,
1911 				  "I/O Error: Block Leakage\n");
1912 			continue;
1913 		}
1914 		dp = (struct dmap *) mp->data;
1915 
1916 		/* free the blocks is this dmap.
1917 		 */
1918 		if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1919 			/* could not back out.  mark the file system
1920 			 * to indicate that we have leaked blocks.
1921 			 */
1922 			release_metapage(mp);
1923 			jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1924 			continue;
1925 		}
1926 
1927 		/* write the buffer.
1928 		 */
1929 		write_metapage(mp);
1930 	}
1931 
1932 	return (rc);
1933 }
1934 
1935 
1936 /*
1937  * NAME:	dbAllocDmapLev()
1938  *
1939  * FUNCTION:	attempt to allocate a specified number of contiguous blocks
1940  *		from a specified dmap.
1941  *
1942  *		this routine checks if the contiguous blocks are available.
1943  *		if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1944  *		returned.
1945  *
1946  * PARAMETERS:
1947  *	mp	-  pointer to bmap descriptor
1948  *	dp	-  pointer to dmap to attempt to allocate blocks from.
1949  *	l2nb	-  log2 number of contiguous block desired.
1950  *	nblocks	-  actual number of contiguous block desired.
1951  *	results	-  on successful return, set to the starting block number
1952  *		   of the newly allocated range.
1953  *
1954  * RETURN VALUES:
1955  *	0	- success
1956  *	-ENOSPC	- insufficient disk resources
1957  *	-EIO	- i/o error
1958  *
1959  * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1960  *	IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1961  */
1962 static int
dbAllocDmapLev(struct bmap * bmp,struct dmap * dp,int nblocks,int l2nb,s64 * results)1963 dbAllocDmapLev(struct bmap * bmp,
1964 	       struct dmap * dp, int nblocks, int l2nb, s64 * results)
1965 {
1966 	s64 blkno;
1967 	int leafidx, rc;
1968 
1969 	/* can't be more than a dmaps worth of blocks */
1970 	assert(l2nb <= L2BPERDMAP);
1971 
1972 	/* search the tree within the dmap page for sufficient
1973 	 * free space.  if sufficient free space is found, dbFindLeaf()
1974 	 * returns the index of the leaf at which free space was found.
1975 	 */
1976 	if (dbFindLeaf((dmtree_t *) &dp->tree, l2nb, &leafidx, false))
1977 		return -ENOSPC;
1978 
1979 	if (leafidx < 0)
1980 		return -EIO;
1981 
1982 	/* determine the block number within the file system corresponding
1983 	 * to the leaf at which free space was found.
1984 	 */
1985 	blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
1986 
1987 	/* if not all bits of the dmap word are free, get the starting
1988 	 * bit number within the dmap word of the required string of free
1989 	 * bits and adjust the block number with this value.
1990 	 */
1991 	if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
1992 		blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
1993 
1994 	/* allocate the blocks */
1995 	if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1996 		*results = blkno;
1997 
1998 	return (rc);
1999 }
2000 
2001 
2002 /*
2003  * NAME:	dbAllocDmap()
2004  *
2005  * FUNCTION:	adjust the disk allocation map to reflect the allocation
2006  *		of a specified block range within a dmap.
2007  *
2008  *		this routine allocates the specified blocks from the dmap
2009  *		through a call to dbAllocBits(). if the allocation of the
2010  *		block range causes the maximum string of free blocks within
2011  *		the dmap to change (i.e. the value of the root of the dmap's
2012  *		dmtree), this routine will cause this change to be reflected
2013  *		up through the appropriate levels of the dmap control pages
2014  *		by a call to dbAdjCtl() for the L0 dmap control page that
2015  *		covers this dmap.
2016  *
2017  * PARAMETERS:
2018  *	bmp	-  pointer to bmap descriptor
2019  *	dp	-  pointer to dmap to allocate the block range from.
2020  *	blkno	-  starting block number of the block to be allocated.
2021  *	nblocks	-  number of blocks to be allocated.
2022  *
2023  * RETURN VALUES:
2024  *	0	- success
2025  *	-EIO	- i/o error
2026  *
2027  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2028  */
dbAllocDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2029 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2030 		       int nblocks)
2031 {
2032 	s8 oldroot;
2033 	int rc;
2034 
2035 	/* save the current value of the root (i.e. maximum free string)
2036 	 * of the dmap tree.
2037 	 */
2038 	oldroot = dp->tree.stree[ROOT];
2039 
2040 	/* allocate the specified (blocks) bits */
2041 	dbAllocBits(bmp, dp, blkno, nblocks);
2042 
2043 	/* if the root has not changed, done. */
2044 	if (dp->tree.stree[ROOT] == oldroot)
2045 		return (0);
2046 
2047 	/* root changed. bubble the change up to the dmap control pages.
2048 	 * if the adjustment of the upper level control pages fails,
2049 	 * backout the bit allocation (thus making everything consistent).
2050 	 */
2051 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2052 		dbFreeBits(bmp, dp, blkno, nblocks);
2053 
2054 	return (rc);
2055 }
2056 
2057 
2058 /*
2059  * NAME:	dbFreeDmap()
2060  *
2061  * FUNCTION:	adjust the disk allocation map to reflect the allocation
2062  *		of a specified block range within a dmap.
2063  *
2064  *		this routine frees the specified blocks from the dmap through
2065  *		a call to dbFreeBits(). if the deallocation of the block range
2066  *		causes the maximum string of free blocks within the dmap to
2067  *		change (i.e. the value of the root of the dmap's dmtree), this
2068  *		routine will cause this change to be reflected up through the
2069  *		appropriate levels of the dmap control pages by a call to
2070  *		dbAdjCtl() for the L0 dmap control page that covers this dmap.
2071  *
2072  * PARAMETERS:
2073  *	bmp	-  pointer to bmap descriptor
2074  *	dp	-  pointer to dmap to free the block range from.
2075  *	blkno	-  starting block number of the block to be freed.
2076  *	nblocks	-  number of blocks to be freed.
2077  *
2078  * RETURN VALUES:
2079  *	0	- success
2080  *	-EIO	- i/o error
2081  *
2082  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2083  */
dbFreeDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2084 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2085 		      int nblocks)
2086 {
2087 	s8 oldroot;
2088 	int rc = 0, word;
2089 
2090 	/* save the current value of the root (i.e. maximum free string)
2091 	 * of the dmap tree.
2092 	 */
2093 	oldroot = dp->tree.stree[ROOT];
2094 
2095 	/* free the specified (blocks) bits */
2096 	rc = dbFreeBits(bmp, dp, blkno, nblocks);
2097 
2098 	/* if error or the root has not changed, done. */
2099 	if (rc || (dp->tree.stree[ROOT] == oldroot))
2100 		return (rc);
2101 
2102 	/* root changed. bubble the change up to the dmap control pages.
2103 	 * if the adjustment of the upper level control pages fails,
2104 	 * backout the deallocation.
2105 	 */
2106 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2107 		word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2108 
2109 		/* as part of backing out the deallocation, we will have
2110 		 * to back split the dmap tree if the deallocation caused
2111 		 * the freed blocks to become part of a larger binary buddy
2112 		 * system.
2113 		 */
2114 		if (dp->tree.stree[word] == NOFREE)
2115 			dbBackSplit((dmtree_t *)&dp->tree, word, false);
2116 
2117 		dbAllocBits(bmp, dp, blkno, nblocks);
2118 	}
2119 
2120 	return (rc);
2121 }
2122 
2123 
2124 /*
2125  * NAME:	dbAllocBits()
2126  *
2127  * FUNCTION:	allocate a specified block range from a dmap.
2128  *
2129  *		this routine updates the dmap to reflect the working
2130  *		state allocation of the specified block range. it directly
2131  *		updates the bits of the working map and causes the adjustment
2132  *		of the binary buddy system described by the dmap's dmtree
2133  *		leaves to reflect the bits allocated.  it also causes the
2134  *		dmap's dmtree, as a whole, to reflect the allocated range.
2135  *
2136  * PARAMETERS:
2137  *	bmp	-  pointer to bmap descriptor
2138  *	dp	-  pointer to dmap to allocate bits from.
2139  *	blkno	-  starting block number of the bits to be allocated.
2140  *	nblocks	-  number of bits to be allocated.
2141  *
2142  * RETURN VALUES: none
2143  *
2144  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2145  */
dbAllocBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2146 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2147 			int nblocks)
2148 {
2149 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2150 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2151 	int size;
2152 	s8 *leaf;
2153 
2154 	/* pick up a pointer to the leaves of the dmap tree */
2155 	leaf = dp->tree.stree + LEAFIND;
2156 
2157 	/* determine the bit number and word within the dmap of the
2158 	 * starting block.
2159 	 */
2160 	dbitno = blkno & (BPERDMAP - 1);
2161 	word = dbitno >> L2DBWORD;
2162 
2163 	/* block range better be within the dmap */
2164 	assert(dbitno + nblocks <= BPERDMAP);
2165 
2166 	/* allocate the bits of the dmap's words corresponding to the block
2167 	 * range. not all bits of the first and last words may be contained
2168 	 * within the block range.  if this is the case, we'll work against
2169 	 * those words (i.e. partial first and/or last) on an individual basis
2170 	 * (a single pass), allocating the bits of interest by hand and
2171 	 * updating the leaf corresponding to the dmap word. a single pass
2172 	 * will be used for all dmap words fully contained within the
2173 	 * specified range.  within this pass, the bits of all fully contained
2174 	 * dmap words will be marked as free in a single shot and the leaves
2175 	 * will be updated. a single leaf may describe the free space of
2176 	 * multiple dmap words, so we may update only a subset of the actual
2177 	 * leaves corresponding to the dmap words of the block range.
2178 	 */
2179 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2180 		/* determine the bit number within the word and
2181 		 * the number of bits within the word.
2182 		 */
2183 		wbitno = dbitno & (DBWORD - 1);
2184 		nb = min(rembits, DBWORD - wbitno);
2185 
2186 		/* check if only part of a word is to be allocated.
2187 		 */
2188 		if (nb < DBWORD) {
2189 			/* allocate (set to 1) the appropriate bits within
2190 			 * this dmap word.
2191 			 */
2192 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2193 						      >> wbitno);
2194 
2195 			/* update the leaf for this dmap word. in addition
2196 			 * to setting the leaf value to the binary buddy max
2197 			 * of the updated dmap word, dbSplit() will split
2198 			 * the binary system of the leaves if need be.
2199 			 */
2200 			dbSplit(tp, word, BUDMIN,
2201 				dbMaxBud((u8 *)&dp->wmap[word]), false);
2202 
2203 			word += 1;
2204 		} else {
2205 			/* one or more dmap words are fully contained
2206 			 * within the block range.  determine how many
2207 			 * words and allocate (set to 1) the bits of these
2208 			 * words.
2209 			 */
2210 			nwords = rembits >> L2DBWORD;
2211 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
2212 
2213 			/* determine how many bits.
2214 			 */
2215 			nb = nwords << L2DBWORD;
2216 
2217 			/* now update the appropriate leaves to reflect
2218 			 * the allocated words.
2219 			 */
2220 			for (; nwords > 0; nwords -= nw) {
2221 				if (leaf[word] < BUDMIN) {
2222 					jfs_error(bmp->db_ipbmap->i_sb,
2223 						  "leaf page corrupt\n");
2224 					break;
2225 				}
2226 
2227 				/* determine what the leaf value should be
2228 				 * updated to as the minimum of the l2 number
2229 				 * of bits being allocated and the l2 number
2230 				 * of bits currently described by this leaf.
2231 				 */
2232 				size = min_t(int, leaf[word],
2233 					     NLSTOL2BSZ(nwords));
2234 
2235 				/* update the leaf to reflect the allocation.
2236 				 * in addition to setting the leaf value to
2237 				 * NOFREE, dbSplit() will split the binary
2238 				 * system of the leaves to reflect the current
2239 				 * allocation (size).
2240 				 */
2241 				dbSplit(tp, word, size, NOFREE, false);
2242 
2243 				/* get the number of dmap words handled */
2244 				nw = BUDSIZE(size, BUDMIN);
2245 				word += nw;
2246 			}
2247 		}
2248 	}
2249 
2250 	/* update the free count for this dmap */
2251 	le32_add_cpu(&dp->nfree, -nblocks);
2252 
2253 	BMAP_LOCK(bmp);
2254 
2255 	/* if this allocation group is completely free,
2256 	 * update the maximum allocation group number if this allocation
2257 	 * group is the new max.
2258 	 */
2259 	agno = blkno >> bmp->db_agl2size;
2260 	if (agno > bmp->db_maxag)
2261 		bmp->db_maxag = agno;
2262 
2263 	/* update the free count for the allocation group and map */
2264 	bmp->db_agfree[agno] -= nblocks;
2265 	bmp->db_nfree -= nblocks;
2266 
2267 	BMAP_UNLOCK(bmp);
2268 }
2269 
2270 
2271 /*
2272  * NAME:	dbFreeBits()
2273  *
2274  * FUNCTION:	free a specified block range from a dmap.
2275  *
2276  *		this routine updates the dmap to reflect the working
2277  *		state allocation of the specified block range. it directly
2278  *		updates the bits of the working map and causes the adjustment
2279  *		of the binary buddy system described by the dmap's dmtree
2280  *		leaves to reflect the bits freed.  it also causes the dmap's
2281  *		dmtree, as a whole, to reflect the deallocated range.
2282  *
2283  * PARAMETERS:
2284  *	bmp	-  pointer to bmap descriptor
2285  *	dp	-  pointer to dmap to free bits from.
2286  *	blkno	-  starting block number of the bits to be freed.
2287  *	nblocks	-  number of bits to be freed.
2288  *
2289  * RETURN VALUES: 0 for success
2290  *
2291  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2292  */
dbFreeBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2293 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2294 		       int nblocks)
2295 {
2296 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2297 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2298 	int rc = 0;
2299 	int size;
2300 
2301 	/* determine the bit number and word within the dmap of the
2302 	 * starting block.
2303 	 */
2304 	dbitno = blkno & (BPERDMAP - 1);
2305 	word = dbitno >> L2DBWORD;
2306 
2307 	/* block range better be within the dmap.
2308 	 */
2309 	assert(dbitno + nblocks <= BPERDMAP);
2310 
2311 	/* free the bits of the dmaps words corresponding to the block range.
2312 	 * not all bits of the first and last words may be contained within
2313 	 * the block range.  if this is the case, we'll work against those
2314 	 * words (i.e. partial first and/or last) on an individual basis
2315 	 * (a single pass), freeing the bits of interest by hand and updating
2316 	 * the leaf corresponding to the dmap word. a single pass will be used
2317 	 * for all dmap words fully contained within the specified range.
2318 	 * within this pass, the bits of all fully contained dmap words will
2319 	 * be marked as free in a single shot and the leaves will be updated. a
2320 	 * single leaf may describe the free space of multiple dmap words,
2321 	 * so we may update only a subset of the actual leaves corresponding
2322 	 * to the dmap words of the block range.
2323 	 *
2324 	 * dbJoin() is used to update leaf values and will join the binary
2325 	 * buddy system of the leaves if the new leaf values indicate this
2326 	 * should be done.
2327 	 */
2328 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2329 		/* determine the bit number within the word and
2330 		 * the number of bits within the word.
2331 		 */
2332 		wbitno = dbitno & (DBWORD - 1);
2333 		nb = min(rembits, DBWORD - wbitno);
2334 
2335 		/* check if only part of a word is to be freed.
2336 		 */
2337 		if (nb < DBWORD) {
2338 			/* free (zero) the appropriate bits within this
2339 			 * dmap word.
2340 			 */
2341 			dp->wmap[word] &=
2342 			    cpu_to_le32(~(ONES << (DBWORD - nb)
2343 					  >> wbitno));
2344 
2345 			/* update the leaf for this dmap word.
2346 			 */
2347 			rc = dbJoin(tp, word,
2348 				    dbMaxBud((u8 *)&dp->wmap[word]), false);
2349 			if (rc)
2350 				return rc;
2351 
2352 			word += 1;
2353 		} else {
2354 			/* one or more dmap words are fully contained
2355 			 * within the block range.  determine how many
2356 			 * words and free (zero) the bits of these words.
2357 			 */
2358 			nwords = rembits >> L2DBWORD;
2359 			memset(&dp->wmap[word], 0, nwords * 4);
2360 
2361 			/* determine how many bits.
2362 			 */
2363 			nb = nwords << L2DBWORD;
2364 
2365 			/* now update the appropriate leaves to reflect
2366 			 * the freed words.
2367 			 */
2368 			for (; nwords > 0; nwords -= nw) {
2369 				/* determine what the leaf value should be
2370 				 * updated to as the minimum of the l2 number
2371 				 * of bits being freed and the l2 (max) number
2372 				 * of bits that can be described by this leaf.
2373 				 */
2374 				size =
2375 				    min(LITOL2BSZ
2376 					(word, L2LPERDMAP, BUDMIN),
2377 					NLSTOL2BSZ(nwords));
2378 
2379 				/* update the leaf.
2380 				 */
2381 				rc = dbJoin(tp, word, size, false);
2382 				if (rc)
2383 					return rc;
2384 
2385 				/* get the number of dmap words handled.
2386 				 */
2387 				nw = BUDSIZE(size, BUDMIN);
2388 				word += nw;
2389 			}
2390 		}
2391 	}
2392 
2393 	/* update the free count for this dmap.
2394 	 */
2395 	le32_add_cpu(&dp->nfree, nblocks);
2396 
2397 	BMAP_LOCK(bmp);
2398 
2399 	/* update the free count for the allocation group and
2400 	 * map.
2401 	 */
2402 	agno = blkno >> bmp->db_agl2size;
2403 	bmp->db_nfree += nblocks;
2404 	bmp->db_agfree[agno] += nblocks;
2405 
2406 	/* check if this allocation group is not completely free and
2407 	 * if it is currently the maximum (rightmost) allocation group.
2408 	 * if so, establish the new maximum allocation group number by
2409 	 * searching left for the first allocation group with allocation.
2410 	 */
2411 	if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2412 	    (agno == bmp->db_numag - 1 &&
2413 	     bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2414 		while (bmp->db_maxag > 0) {
2415 			bmp->db_maxag -= 1;
2416 			if (bmp->db_agfree[bmp->db_maxag] !=
2417 			    bmp->db_agsize)
2418 				break;
2419 		}
2420 
2421 		/* re-establish the allocation group preference if the
2422 		 * current preference is right of the maximum allocation
2423 		 * group.
2424 		 */
2425 		if (bmp->db_agpref > bmp->db_maxag)
2426 			bmp->db_agpref = bmp->db_maxag;
2427 	}
2428 
2429 	BMAP_UNLOCK(bmp);
2430 
2431 	return 0;
2432 }
2433 
2434 
2435 /*
2436  * NAME:	dbAdjCtl()
2437  *
2438  * FUNCTION:	adjust a dmap control page at a specified level to reflect
2439  *		the change in a lower level dmap or dmap control page's
2440  *		maximum string of free blocks (i.e. a change in the root
2441  *		of the lower level object's dmtree) due to the allocation
2442  *		or deallocation of a range of blocks with a single dmap.
2443  *
2444  *		on entry, this routine is provided with the new value of
2445  *		the lower level dmap or dmap control page root and the
2446  *		starting block number of the block range whose allocation
2447  *		or deallocation resulted in the root change.  this range
2448  *		is respresented by a single leaf of the current dmapctl
2449  *		and the leaf will be updated with this value, possibly
2450  *		causing a binary buddy system within the leaves to be
2451  *		split or joined.  the update may also cause the dmapctl's
2452  *		dmtree to be updated.
2453  *
2454  *		if the adjustment of the dmap control page, itself, causes its
2455  *		root to change, this change will be bubbled up to the next dmap
2456  *		control level by a recursive call to this routine, specifying
2457  *		the new root value and the next dmap control page level to
2458  *		be adjusted.
2459  * PARAMETERS:
2460  *	bmp	-  pointer to bmap descriptor
2461  *	blkno	-  the first block of a block range within a dmap.  it is
2462  *		   the allocation or deallocation of this block range that
2463  *		   requires the dmap control page to be adjusted.
2464  *	newval	-  the new value of the lower level dmap or dmap control
2465  *		   page root.
2466  *	alloc	-  'true' if adjustment is due to an allocation.
2467  *	level	-  current level of dmap control page (i.e. L0, L1, L2) to
2468  *		   be adjusted.
2469  *
2470  * RETURN VALUES:
2471  *	0	- success
2472  *	-EIO	- i/o error
2473  *
2474  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2475  */
2476 static int
dbAdjCtl(struct bmap * bmp,s64 blkno,int newval,int alloc,int level)2477 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2478 {
2479 	struct metapage *mp;
2480 	s8 oldroot;
2481 	int oldval;
2482 	s64 lblkno;
2483 	struct dmapctl *dcp;
2484 	int rc, leafno, ti;
2485 
2486 	/* get the buffer for the dmap control page for the specified
2487 	 * block number and control page level.
2488 	 */
2489 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2490 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2491 	if (mp == NULL)
2492 		return -EIO;
2493 	dcp = (struct dmapctl *) mp->data;
2494 
2495 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2496 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2497 		release_metapage(mp);
2498 		return -EIO;
2499 	}
2500 
2501 	/* determine the leaf number corresponding to the block and
2502 	 * the index within the dmap control tree.
2503 	 */
2504 	leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2505 	ti = leafno + le32_to_cpu(dcp->leafidx);
2506 
2507 	/* save the current leaf value and the current root level (i.e.
2508 	 * maximum l2 free string described by this dmapctl).
2509 	 */
2510 	oldval = dcp->stree[ti];
2511 	oldroot = dcp->stree[ROOT];
2512 
2513 	/* check if this is a control page update for an allocation.
2514 	 * if so, update the leaf to reflect the new leaf value using
2515 	 * dbSplit(); otherwise (deallocation), use dbJoin() to update
2516 	 * the leaf with the new value.  in addition to updating the
2517 	 * leaf, dbSplit() will also split the binary buddy system of
2518 	 * the leaves, if required, and bubble new values within the
2519 	 * dmapctl tree, if required.  similarly, dbJoin() will join
2520 	 * the binary buddy system of leaves and bubble new values up
2521 	 * the dmapctl tree as required by the new leaf value.
2522 	 */
2523 	if (alloc) {
2524 		/* check if we are in the middle of a binary buddy
2525 		 * system.  this happens when we are performing the
2526 		 * first allocation out of an allocation group that
2527 		 * is part (not the first part) of a larger binary
2528 		 * buddy system.  if we are in the middle, back split
2529 		 * the system prior to calling dbSplit() which assumes
2530 		 * that it is at the front of a binary buddy system.
2531 		 */
2532 		if (oldval == NOFREE) {
2533 			rc = dbBackSplit((dmtree_t *)dcp, leafno, true);
2534 			if (rc) {
2535 				release_metapage(mp);
2536 				return rc;
2537 			}
2538 			oldval = dcp->stree[ti];
2539 		}
2540 		dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval, true);
2541 	} else {
2542 		rc = dbJoin((dmtree_t *) dcp, leafno, newval, true);
2543 		if (rc) {
2544 			release_metapage(mp);
2545 			return rc;
2546 		}
2547 	}
2548 
2549 	/* check if the root of the current dmap control page changed due
2550 	 * to the update and if the current dmap control page is not at
2551 	 * the current top level (i.e. L0, L1, L2) of the map.  if so (i.e.
2552 	 * root changed and this is not the top level), call this routine
2553 	 * again (recursion) for the next higher level of the mapping to
2554 	 * reflect the change in root for the current dmap control page.
2555 	 */
2556 	if (dcp->stree[ROOT] != oldroot) {
2557 		/* are we below the top level of the map.  if so,
2558 		 * bubble the root up to the next higher level.
2559 		 */
2560 		if (level < bmp->db_maxlevel) {
2561 			/* bubble up the new root of this dmap control page to
2562 			 * the next level.
2563 			 */
2564 			if ((rc =
2565 			     dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2566 				      level + 1))) {
2567 				/* something went wrong in bubbling up the new
2568 				 * root value, so backout the changes to the
2569 				 * current dmap control page.
2570 				 */
2571 				if (alloc) {
2572 					dbJoin((dmtree_t *) dcp, leafno,
2573 					       oldval, true);
2574 				} else {
2575 					/* the dbJoin() above might have
2576 					 * caused a larger binary buddy system
2577 					 * to form and we may now be in the
2578 					 * middle of it.  if this is the case,
2579 					 * back split the buddies.
2580 					 */
2581 					if (dcp->stree[ti] == NOFREE)
2582 						dbBackSplit((dmtree_t *)
2583 							    dcp, leafno, true);
2584 					dbSplit((dmtree_t *) dcp, leafno,
2585 						dcp->budmin, oldval, true);
2586 				}
2587 
2588 				/* release the buffer and return the error.
2589 				 */
2590 				release_metapage(mp);
2591 				return (rc);
2592 			}
2593 		} else {
2594 			/* we're at the top level of the map. update
2595 			 * the bmap control page to reflect the size
2596 			 * of the maximum free buddy system.
2597 			 */
2598 			assert(level == bmp->db_maxlevel);
2599 			if (bmp->db_maxfreebud != oldroot) {
2600 				jfs_error(bmp->db_ipbmap->i_sb,
2601 					  "the maximum free buddy is not the old root\n");
2602 			}
2603 			bmp->db_maxfreebud = dcp->stree[ROOT];
2604 		}
2605 	}
2606 
2607 	/* write the buffer.
2608 	 */
2609 	write_metapage(mp);
2610 
2611 	return (0);
2612 }
2613 
2614 
2615 /*
2616  * NAME:	dbSplit()
2617  *
2618  * FUNCTION:	update the leaf of a dmtree with a new value, splitting
2619  *		the leaf from the binary buddy system of the dmtree's
2620  *		leaves, as required.
2621  *
2622  * PARAMETERS:
2623  *	tp	- pointer to the tree containing the leaf.
2624  *	leafno	- the number of the leaf to be updated.
2625  *	splitsz	- the size the binary buddy system starting at the leaf
2626  *		  must be split to, specified as the log2 number of blocks.
2627  *	newval	- the new value for the leaf.
2628  *
2629  * RETURN VALUES: none
2630  *
2631  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2632  */
dbSplit(dmtree_t * tp,int leafno,int splitsz,int newval,bool is_ctl)2633 static void dbSplit(dmtree_t *tp, int leafno, int splitsz, int newval, bool is_ctl)
2634 {
2635 	int budsz;
2636 	int cursz;
2637 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2638 
2639 	/* check if the leaf needs to be split.
2640 	 */
2641 	if (leaf[leafno] > tp->dmt_budmin) {
2642 		/* the split occurs by cutting the buddy system in half
2643 		 * at the specified leaf until we reach the specified
2644 		 * size.  pick up the starting split size (current size
2645 		 * - 1 in l2) and the corresponding buddy size.
2646 		 */
2647 		cursz = leaf[leafno] - 1;
2648 		budsz = BUDSIZE(cursz, tp->dmt_budmin);
2649 
2650 		/* split until we reach the specified size.
2651 		 */
2652 		while (cursz >= splitsz) {
2653 			/* update the buddy's leaf with its new value.
2654 			 */
2655 			dbAdjTree(tp, leafno ^ budsz, cursz, is_ctl);
2656 
2657 			/* on to the next size and buddy.
2658 			 */
2659 			cursz -= 1;
2660 			budsz >>= 1;
2661 		}
2662 	}
2663 
2664 	/* adjust the dmap tree to reflect the specified leaf's new
2665 	 * value.
2666 	 */
2667 	dbAdjTree(tp, leafno, newval, is_ctl);
2668 }
2669 
2670 
2671 /*
2672  * NAME:	dbBackSplit()
2673  *
2674  * FUNCTION:	back split the binary buddy system of dmtree leaves
2675  *		that hold a specified leaf until the specified leaf
2676  *		starts its own binary buddy system.
2677  *
2678  *		the allocators typically perform allocations at the start
2679  *		of binary buddy systems and dbSplit() is used to accomplish
2680  *		any required splits.  in some cases, however, allocation
2681  *		may occur in the middle of a binary system and requires a
2682  *		back split, with the split proceeding out from the middle of
2683  *		the system (less efficient) rather than the start of the
2684  *		system (more efficient).  the cases in which a back split
2685  *		is required are rare and are limited to the first allocation
2686  *		within an allocation group which is a part (not first part)
2687  *		of a larger binary buddy system and a few exception cases
2688  *		in which a previous join operation must be backed out.
2689  *
2690  * PARAMETERS:
2691  *	tp	- pointer to the tree containing the leaf.
2692  *	leafno	- the number of the leaf to be updated.
2693  *
2694  * RETURN VALUES: none
2695  *
2696  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2697  */
dbBackSplit(dmtree_t * tp,int leafno,bool is_ctl)2698 static int dbBackSplit(dmtree_t *tp, int leafno, bool is_ctl)
2699 {
2700 	int budsz, bud, w, bsz, size;
2701 	int cursz;
2702 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2703 
2704 	/* leaf should be part (not first part) of a binary
2705 	 * buddy system.
2706 	 */
2707 	assert(leaf[leafno] == NOFREE);
2708 
2709 	/* the back split is accomplished by iteratively finding the leaf
2710 	 * that starts the buddy system that contains the specified leaf and
2711 	 * splitting that system in two.  this iteration continues until
2712 	 * the specified leaf becomes the start of a buddy system.
2713 	 *
2714 	 * determine maximum possible l2 size for the specified leaf.
2715 	 */
2716 	size =
2717 	    LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2718 		      tp->dmt_budmin);
2719 
2720 	/* determine the number of leaves covered by this size.  this
2721 	 * is the buddy size that we will start with as we search for
2722 	 * the buddy system that contains the specified leaf.
2723 	 */
2724 	budsz = BUDSIZE(size, tp->dmt_budmin);
2725 
2726 	/* back split.
2727 	 */
2728 	while (leaf[leafno] == NOFREE) {
2729 		/* find the leftmost buddy leaf.
2730 		 */
2731 		for (w = leafno, bsz = budsz;; bsz <<= 1,
2732 		     w = (w < bud) ? w : bud) {
2733 			if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2734 				jfs_err("JFS: block map error in dbBackSplit");
2735 				return -EIO;
2736 			}
2737 
2738 			/* determine the buddy.
2739 			 */
2740 			bud = w ^ bsz;
2741 
2742 			/* check if this buddy is the start of the system.
2743 			 */
2744 			if (leaf[bud] != NOFREE) {
2745 				/* split the leaf at the start of the
2746 				 * system in two.
2747 				 */
2748 				cursz = leaf[bud] - 1;
2749 				dbSplit(tp, bud, cursz, cursz, is_ctl);
2750 				break;
2751 			}
2752 		}
2753 	}
2754 
2755 	if (leaf[leafno] != size) {
2756 		jfs_err("JFS: wrong leaf value in dbBackSplit");
2757 		return -EIO;
2758 	}
2759 	return 0;
2760 }
2761 
2762 
2763 /*
2764  * NAME:	dbJoin()
2765  *
2766  * FUNCTION:	update the leaf of a dmtree with a new value, joining
2767  *		the leaf with other leaves of the dmtree into a multi-leaf
2768  *		binary buddy system, as required.
2769  *
2770  * PARAMETERS:
2771  *	tp	- pointer to the tree containing the leaf.
2772  *	leafno	- the number of the leaf to be updated.
2773  *	newval	- the new value for the leaf.
2774  *
2775  * RETURN VALUES: none
2776  */
dbJoin(dmtree_t * tp,int leafno,int newval,bool is_ctl)2777 static int dbJoin(dmtree_t *tp, int leafno, int newval, bool is_ctl)
2778 {
2779 	int budsz, buddy;
2780 	s8 *leaf;
2781 
2782 	/* can the new leaf value require a join with other leaves ?
2783 	 */
2784 	if (newval >= tp->dmt_budmin) {
2785 		/* pickup a pointer to the leaves of the tree.
2786 		 */
2787 		leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2788 
2789 		/* try to join the specified leaf into a large binary
2790 		 * buddy system.  the join proceeds by attempting to join
2791 		 * the specified leafno with its buddy (leaf) at new value.
2792 		 * if the join occurs, we attempt to join the left leaf
2793 		 * of the joined buddies with its buddy at new value + 1.
2794 		 * we continue to join until we find a buddy that cannot be
2795 		 * joined (does not have a value equal to the size of the
2796 		 * last join) or until all leaves have been joined into a
2797 		 * single system.
2798 		 *
2799 		 * get the buddy size (number of words covered) of
2800 		 * the new value.
2801 		 */
2802 		budsz = BUDSIZE(newval, tp->dmt_budmin);
2803 
2804 		/* try to join.
2805 		 */
2806 		while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2807 			/* get the buddy leaf.
2808 			 */
2809 			buddy = leafno ^ budsz;
2810 
2811 			/* if the leaf's new value is greater than its
2812 			 * buddy's value, we join no more.
2813 			 */
2814 			if (newval > leaf[buddy])
2815 				break;
2816 
2817 			/* It shouldn't be less */
2818 			if (newval < leaf[buddy])
2819 				return -EIO;
2820 
2821 			/* check which (leafno or buddy) is the left buddy.
2822 			 * the left buddy gets to claim the blocks resulting
2823 			 * from the join while the right gets to claim none.
2824 			 * the left buddy is also eligible to participate in
2825 			 * a join at the next higher level while the right
2826 			 * is not.
2827 			 *
2828 			 */
2829 			if (leafno < buddy) {
2830 				/* leafno is the left buddy.
2831 				 */
2832 				dbAdjTree(tp, buddy, NOFREE, is_ctl);
2833 			} else {
2834 				/* buddy is the left buddy and becomes
2835 				 * leafno.
2836 				 */
2837 				dbAdjTree(tp, leafno, NOFREE, is_ctl);
2838 				leafno = buddy;
2839 			}
2840 
2841 			/* on to try the next join.
2842 			 */
2843 			newval += 1;
2844 			budsz <<= 1;
2845 		}
2846 	}
2847 
2848 	/* update the leaf value.
2849 	 */
2850 	dbAdjTree(tp, leafno, newval, is_ctl);
2851 
2852 	return 0;
2853 }
2854 
2855 
2856 /*
2857  * NAME:	dbAdjTree()
2858  *
2859  * FUNCTION:	update a leaf of a dmtree with a new value, adjusting
2860  *		the dmtree, as required, to reflect the new leaf value.
2861  *		the combination of any buddies must already be done before
2862  *		this is called.
2863  *
2864  * PARAMETERS:
2865  *	tp	- pointer to the tree to be adjusted.
2866  *	leafno	- the number of the leaf to be updated.
2867  *	newval	- the new value for the leaf.
2868  *
2869  * RETURN VALUES: none
2870  */
dbAdjTree(dmtree_t * tp,int leafno,int newval,bool is_ctl)2871 static void dbAdjTree(dmtree_t *tp, int leafno, int newval, bool is_ctl)
2872 {
2873 	int lp, pp, k;
2874 	int max, size;
2875 
2876 	size = is_ctl ? CTLTREESIZE : TREESIZE;
2877 
2878 	/* pick up the index of the leaf for this leafno.
2879 	 */
2880 	lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2881 
2882 	if (WARN_ON_ONCE(lp >= size || lp < 0))
2883 		return;
2884 
2885 	/* is the current value the same as the old value ?  if so,
2886 	 * there is nothing to do.
2887 	 */
2888 	if (tp->dmt_stree[lp] == newval)
2889 		return;
2890 
2891 	/* set the new value.
2892 	 */
2893 	tp->dmt_stree[lp] = newval;
2894 
2895 	/* bubble the new value up the tree as required.
2896 	 */
2897 	for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2898 		if (lp == 0)
2899 			break;
2900 
2901 		/* get the index of the first leaf of the 4 leaf
2902 		 * group containing the specified leaf (leafno).
2903 		 */
2904 		lp = ((lp - 1) & ~0x03) + 1;
2905 
2906 		/* get the index of the parent of this 4 leaf group.
2907 		 */
2908 		pp = (lp - 1) >> 2;
2909 
2910 		/* determine the maximum of the 4 leaves.
2911 		 */
2912 		max = TREEMAX(&tp->dmt_stree[lp]);
2913 
2914 		/* if the maximum of the 4 is the same as the
2915 		 * parent's value, we're done.
2916 		 */
2917 		if (tp->dmt_stree[pp] == max)
2918 			break;
2919 
2920 		/* parent gets new value.
2921 		 */
2922 		tp->dmt_stree[pp] = max;
2923 
2924 		/* parent becomes leaf for next go-round.
2925 		 */
2926 		lp = pp;
2927 	}
2928 }
2929 
2930 
2931 /*
2932  * NAME:	dbFindLeaf()
2933  *
2934  * FUNCTION:	search a dmtree_t for sufficient free blocks, returning
2935  *		the index of a leaf describing the free blocks if
2936  *		sufficient free blocks are found.
2937  *
2938  *		the search starts at the top of the dmtree_t tree and
2939  *		proceeds down the tree to the leftmost leaf with sufficient
2940  *		free space.
2941  *
2942  * PARAMETERS:
2943  *	tp	- pointer to the tree to be searched.
2944  *	l2nb	- log2 number of free blocks to search for.
2945  *	leafidx	- return pointer to be set to the index of the leaf
2946  *		  describing at least l2nb free blocks if sufficient
2947  *		  free blocks are found.
2948  *	is_ctl	- determines if the tree is of type ctl
2949  *
2950  * RETURN VALUES:
2951  *	0	- success
2952  *	-ENOSPC	- insufficient free blocks.
2953  */
dbFindLeaf(dmtree_t * tp,int l2nb,int * leafidx,bool is_ctl)2954 static int dbFindLeaf(dmtree_t *tp, int l2nb, int *leafidx, bool is_ctl)
2955 {
2956 	int ti, n = 0, k, x = 0;
2957 	int max_size, max_idx;
2958 
2959 	max_size = is_ctl ? CTLTREESIZE : TREESIZE;
2960 	max_idx = is_ctl ? LPERCTL : LPERDMAP;
2961 
2962 	/* first check the root of the tree to see if there is
2963 	 * sufficient free space.
2964 	 */
2965 	if (l2nb > tp->dmt_stree[ROOT])
2966 		return -ENOSPC;
2967 
2968 	/* sufficient free space available. now search down the tree
2969 	 * starting at the next level for the leftmost leaf that
2970 	 * describes sufficient free space.
2971 	 */
2972 	for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2973 	     k > 0; k--, ti = ((ti + n) << 2) + 1) {
2974 		/* search the four nodes at this level, starting from
2975 		 * the left.
2976 		 */
2977 		for (x = ti, n = 0; n < 4; n++) {
2978 			/* sufficient free space found.  move to the next
2979 			 * level (or quit if this is the last level).
2980 			 */
2981 			if (x + n > max_size)
2982 				return -ENOSPC;
2983 			if (l2nb <= tp->dmt_stree[x + n])
2984 				break;
2985 		}
2986 
2987 		/* better have found something since the higher
2988 		 * levels of the tree said it was here.
2989 		 */
2990 		assert(n < 4);
2991 	}
2992 	if (le32_to_cpu(tp->dmt_leafidx) >= max_idx)
2993 		return -ENOSPC;
2994 
2995 	/* set the return to the leftmost leaf describing sufficient
2996 	 * free space.
2997 	 */
2998 	*leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
2999 
3000 	return (0);
3001 }
3002 
3003 
3004 /*
3005  * NAME:	dbFindBits()
3006  *
3007  * FUNCTION:	find a specified number of binary buddy free bits within a
3008  *		dmap bitmap word value.
3009  *
3010  *		this routine searches the bitmap value for (1 << l2nb) free
3011  *		bits at (1 << l2nb) alignments within the value.
3012  *
3013  * PARAMETERS:
3014  *	word	-  dmap bitmap word value.
3015  *	l2nb	-  number of free bits specified as a log2 number.
3016  *
3017  * RETURN VALUES:
3018  *	starting bit number of free bits.
3019  */
dbFindBits(u32 word,int l2nb)3020 static int dbFindBits(u32 word, int l2nb)
3021 {
3022 	int bitno, nb;
3023 	u32 mask;
3024 
3025 	/* get the number of bits.
3026 	 */
3027 	nb = 1 << l2nb;
3028 	assert(nb <= DBWORD);
3029 
3030 	/* complement the word so we can use a mask (i.e. 0s represent
3031 	 * free bits) and compute the mask.
3032 	 */
3033 	word = ~word;
3034 	mask = ONES << (DBWORD - nb);
3035 
3036 	/* scan the word for nb free bits at nb alignments.
3037 	 */
3038 	for (bitno = 0; mask != 0; bitno += nb, mask = (mask >> nb)) {
3039 		if ((mask & word) == mask)
3040 			break;
3041 	}
3042 
3043 	ASSERT(bitno < 32);
3044 
3045 	/* return the bit number.
3046 	 */
3047 	return (bitno);
3048 }
3049 
3050 
3051 /*
3052  * NAME:	dbMaxBud(u8 *cp)
3053  *
3054  * FUNCTION:	determine the largest binary buddy string of free
3055  *		bits within 32-bits of the map.
3056  *
3057  * PARAMETERS:
3058  *	cp	-  pointer to the 32-bit value.
3059  *
3060  * RETURN VALUES:
3061  *	largest binary buddy of free bits within a dmap word.
3062  */
dbMaxBud(u8 * cp)3063 static int dbMaxBud(u8 * cp)
3064 {
3065 	signed char tmp1, tmp2;
3066 
3067 	/* check if the wmap word is all free. if so, the
3068 	 * free buddy size is BUDMIN.
3069 	 */
3070 	if (*((uint *) cp) == 0)
3071 		return (BUDMIN);
3072 
3073 	/* check if the wmap word is half free. if so, the
3074 	 * free buddy size is BUDMIN-1.
3075 	 */
3076 	if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3077 		return (BUDMIN - 1);
3078 
3079 	/* not all free or half free. determine the free buddy
3080 	 * size thru table lookup using quarters of the wmap word.
3081 	 */
3082 	tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3083 	tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3084 	return (max(tmp1, tmp2));
3085 }
3086 
3087 
3088 /*
3089  * NAME:	cnttz(uint word)
3090  *
3091  * FUNCTION:	determine the number of trailing zeros within a 32-bit
3092  *		value.
3093  *
3094  * PARAMETERS:
3095  *	value	-  32-bit value to be examined.
3096  *
3097  * RETURN VALUES:
3098  *	count of trailing zeros
3099  */
cnttz(u32 word)3100 static int cnttz(u32 word)
3101 {
3102 	int n;
3103 
3104 	for (n = 0; n < 32; n++, word >>= 1) {
3105 		if (word & 0x01)
3106 			break;
3107 	}
3108 
3109 	return (n);
3110 }
3111 
3112 
3113 /*
3114  * NAME:	cntlz(u32 value)
3115  *
3116  * FUNCTION:	determine the number of leading zeros within a 32-bit
3117  *		value.
3118  *
3119  * PARAMETERS:
3120  *	value	-  32-bit value to be examined.
3121  *
3122  * RETURN VALUES:
3123  *	count of leading zeros
3124  */
cntlz(u32 value)3125 static int cntlz(u32 value)
3126 {
3127 	int n;
3128 
3129 	for (n = 0; n < 32; n++, value <<= 1) {
3130 		if (value & HIGHORDER)
3131 			break;
3132 	}
3133 	return (n);
3134 }
3135 
3136 
3137 /*
3138  * NAME:	blkstol2(s64 nb)
3139  *
3140  * FUNCTION:	convert a block count to its log2 value. if the block
3141  *		count is not a l2 multiple, it is rounded up to the next
3142  *		larger l2 multiple.
3143  *
3144  * PARAMETERS:
3145  *	nb	-  number of blocks
3146  *
3147  * RETURN VALUES:
3148  *	log2 number of blocks
3149  */
blkstol2(s64 nb)3150 static int blkstol2(s64 nb)
3151 {
3152 	int l2nb;
3153 	s64 mask;		/* meant to be signed */
3154 
3155 	mask = (s64) 1 << (64 - 1);
3156 
3157 	/* count the leading bits.
3158 	 */
3159 	for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3160 		/* leading bit found.
3161 		 */
3162 		if (nb & mask) {
3163 			/* determine the l2 value.
3164 			 */
3165 			l2nb = (64 - 1) - l2nb;
3166 
3167 			/* check if we need to round up.
3168 			 */
3169 			if (~mask & nb)
3170 				l2nb++;
3171 
3172 			return (l2nb);
3173 		}
3174 	}
3175 	assert(0);
3176 	return 0;		/* fix compiler warning */
3177 }
3178 
3179 
3180 /*
3181  * NAME:	dbAllocBottomUp()
3182  *
3183  * FUNCTION:	alloc the specified block range from the working block
3184  *		allocation map.
3185  *
3186  *		the blocks will be alloc from the working map one dmap
3187  *		at a time.
3188  *
3189  * PARAMETERS:
3190  *	ip	-  pointer to in-core inode;
3191  *	blkno	-  starting block number to be freed.
3192  *	nblocks	-  number of blocks to be freed.
3193  *
3194  * RETURN VALUES:
3195  *	0	- success
3196  *	-EIO	- i/o error
3197  */
dbAllocBottomUp(struct inode * ip,s64 blkno,s64 nblocks)3198 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3199 {
3200 	struct metapage *mp;
3201 	struct dmap *dp;
3202 	int nb, rc;
3203 	s64 lblkno, rem;
3204 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3205 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3206 
3207 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3208 
3209 	/* block to be allocated better be within the mapsize. */
3210 	ASSERT(nblocks <= bmp->db_mapsize - blkno);
3211 
3212 	/*
3213 	 * allocate the blocks a dmap at a time.
3214 	 */
3215 	mp = NULL;
3216 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3217 		/* release previous dmap if any */
3218 		if (mp) {
3219 			write_metapage(mp);
3220 		}
3221 
3222 		/* get the buffer for the current dmap. */
3223 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3224 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3225 		if (mp == NULL) {
3226 			IREAD_UNLOCK(ipbmap);
3227 			return -EIO;
3228 		}
3229 		dp = (struct dmap *) mp->data;
3230 
3231 		/* determine the number of blocks to be allocated from
3232 		 * this dmap.
3233 		 */
3234 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3235 
3236 		/* allocate the blocks. */
3237 		if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3238 			release_metapage(mp);
3239 			IREAD_UNLOCK(ipbmap);
3240 			return (rc);
3241 		}
3242 	}
3243 
3244 	/* write the last buffer. */
3245 	write_metapage(mp);
3246 
3247 	IREAD_UNLOCK(ipbmap);
3248 
3249 	return (0);
3250 }
3251 
3252 
dbAllocDmapBU(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)3253 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3254 			 int nblocks)
3255 {
3256 	int rc;
3257 	int dbitno, word, rembits, nb, nwords, wbitno, agno;
3258 	s8 oldroot;
3259 	struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3260 
3261 	/* save the current value of the root (i.e. maximum free string)
3262 	 * of the dmap tree.
3263 	 */
3264 	oldroot = tp->stree[ROOT];
3265 
3266 	/* determine the bit number and word within the dmap of the
3267 	 * starting block.
3268 	 */
3269 	dbitno = blkno & (BPERDMAP - 1);
3270 	word = dbitno >> L2DBWORD;
3271 
3272 	/* block range better be within the dmap */
3273 	assert(dbitno + nblocks <= BPERDMAP);
3274 
3275 	/* allocate the bits of the dmap's words corresponding to the block
3276 	 * range. not all bits of the first and last words may be contained
3277 	 * within the block range.  if this is the case, we'll work against
3278 	 * those words (i.e. partial first and/or last) on an individual basis
3279 	 * (a single pass), allocating the bits of interest by hand and
3280 	 * updating the leaf corresponding to the dmap word. a single pass
3281 	 * will be used for all dmap words fully contained within the
3282 	 * specified range.  within this pass, the bits of all fully contained
3283 	 * dmap words will be marked as free in a single shot and the leaves
3284 	 * will be updated. a single leaf may describe the free space of
3285 	 * multiple dmap words, so we may update only a subset of the actual
3286 	 * leaves corresponding to the dmap words of the block range.
3287 	 */
3288 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3289 		/* determine the bit number within the word and
3290 		 * the number of bits within the word.
3291 		 */
3292 		wbitno = dbitno & (DBWORD - 1);
3293 		nb = min(rembits, DBWORD - wbitno);
3294 
3295 		/* check if only part of a word is to be allocated.
3296 		 */
3297 		if (nb < DBWORD) {
3298 			/* allocate (set to 1) the appropriate bits within
3299 			 * this dmap word.
3300 			 */
3301 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3302 						      >> wbitno);
3303 
3304 			word++;
3305 		} else {
3306 			/* one or more dmap words are fully contained
3307 			 * within the block range.  determine how many
3308 			 * words and allocate (set to 1) the bits of these
3309 			 * words.
3310 			 */
3311 			nwords = rembits >> L2DBWORD;
3312 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
3313 
3314 			/* determine how many bits */
3315 			nb = nwords << L2DBWORD;
3316 			word += nwords;
3317 		}
3318 	}
3319 
3320 	/* update the free count for this dmap */
3321 	le32_add_cpu(&dp->nfree, -nblocks);
3322 
3323 	/* reconstruct summary tree */
3324 	dbInitDmapTree(dp);
3325 
3326 	BMAP_LOCK(bmp);
3327 
3328 	/* if this allocation group is completely free,
3329 	 * update the highest active allocation group number
3330 	 * if this allocation group is the new max.
3331 	 */
3332 	agno = blkno >> bmp->db_agl2size;
3333 	if (agno > bmp->db_maxag)
3334 		bmp->db_maxag = agno;
3335 
3336 	/* update the free count for the allocation group and map */
3337 	bmp->db_agfree[agno] -= nblocks;
3338 	bmp->db_nfree -= nblocks;
3339 
3340 	BMAP_UNLOCK(bmp);
3341 
3342 	/* if the root has not changed, done. */
3343 	if (tp->stree[ROOT] == oldroot)
3344 		return (0);
3345 
3346 	/* root changed. bubble the change up to the dmap control pages.
3347 	 * if the adjustment of the upper level control pages fails,
3348 	 * backout the bit allocation (thus making everything consistent).
3349 	 */
3350 	if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3351 		dbFreeBits(bmp, dp, blkno, nblocks);
3352 
3353 	return (rc);
3354 }
3355 
3356 
3357 /*
3358  * NAME:	dbExtendFS()
3359  *
3360  * FUNCTION:	extend bmap from blkno for nblocks;
3361  *		dbExtendFS() updates bmap ready for dbAllocBottomUp();
3362  *
3363  * L2
3364  *  |
3365  *   L1---------------------------------L1
3366  *    |					 |
3367  *     L0---------L0---------L0		  L0---------L0---------L0
3368  *      |	   |	      |		   |	      |		 |
3369  *	 d0,...,dn  d0,...,dn  d0,...,dn    d0,...,dn  d0,...,dn  d0,.,dm;
3370  * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3371  *
3372  * <---old---><----------------------------extend----------------------->
3373  */
dbExtendFS(struct inode * ipbmap,s64 blkno,s64 nblocks)3374 int dbExtendFS(struct inode *ipbmap, s64 blkno,	s64 nblocks)
3375 {
3376 	struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3377 	int nbperpage = sbi->nbperpage;
3378 	int i, i0 = true, j, j0 = true, k, n;
3379 	s64 newsize;
3380 	s64 p;
3381 	struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3382 	struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3383 	struct dmap *dp;
3384 	s8 *l0leaf, *l1leaf, *l2leaf;
3385 	struct bmap *bmp = sbi->bmap;
3386 	int agno, l2agsize, oldl2agsize;
3387 	s64 ag_rem;
3388 
3389 	newsize = blkno + nblocks;
3390 
3391 	jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3392 		 (long long) blkno, (long long) nblocks, (long long) newsize);
3393 
3394 	/*
3395 	 *	initialize bmap control page.
3396 	 *
3397 	 * all the data in bmap control page should exclude
3398 	 * the mkfs hidden dmap page.
3399 	 */
3400 
3401 	/* update mapsize */
3402 	bmp->db_mapsize = newsize;
3403 	bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3404 
3405 	/* compute new AG size */
3406 	l2agsize = dbGetL2AGSize(newsize);
3407 	oldl2agsize = bmp->db_agl2size;
3408 
3409 	bmp->db_agl2size = l2agsize;
3410 	bmp->db_agsize = (s64)1 << l2agsize;
3411 
3412 	/* compute new number of AG */
3413 	agno = bmp->db_numag;
3414 	bmp->db_numag = newsize >> l2agsize;
3415 	bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3416 
3417 	/*
3418 	 *	reconfigure db_agfree[]
3419 	 * from old AG configuration to new AG configuration;
3420 	 *
3421 	 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3422 	 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3423 	 * note: new AG size = old AG size * (2**x).
3424 	 */
3425 	if (l2agsize == oldl2agsize)
3426 		goto extend;
3427 	k = 1 << (l2agsize - oldl2agsize);
3428 	ag_rem = bmp->db_agfree[0];	/* save agfree[0] */
3429 	for (i = 0, n = 0; i < agno; n++) {
3430 		bmp->db_agfree[n] = 0;	/* init collection point */
3431 
3432 		/* coalesce contiguous k AGs; */
3433 		for (j = 0; j < k && i < agno; j++, i++) {
3434 			/* merge AGi to AGn */
3435 			bmp->db_agfree[n] += bmp->db_agfree[i];
3436 		}
3437 	}
3438 	bmp->db_agfree[0] += ag_rem;	/* restore agfree[0] */
3439 
3440 	for (; n < MAXAG; n++)
3441 		bmp->db_agfree[n] = 0;
3442 
3443 	/*
3444 	 * update highest active ag number
3445 	 */
3446 
3447 	bmp->db_maxag = bmp->db_maxag / k;
3448 
3449 	/*
3450 	 *	extend bmap
3451 	 *
3452 	 * update bit maps and corresponding level control pages;
3453 	 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3454 	 */
3455       extend:
3456 	/* get L2 page */
3457 	p = BMAPBLKNO + nbperpage;	/* L2 page */
3458 	l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3459 	if (!l2mp) {
3460 		jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3461 		return -EIO;
3462 	}
3463 	l2dcp = (struct dmapctl *) l2mp->data;
3464 
3465 	/* compute start L1 */
3466 	k = blkno >> L2MAXL1SIZE;
3467 	l2leaf = l2dcp->stree + CTLLEAFIND + k;
3468 	p = BLKTOL1(blkno, sbi->l2nbperpage);	/* L1 page */
3469 
3470 	/*
3471 	 * extend each L1 in L2
3472 	 */
3473 	for (; k < LPERCTL; k++, p += nbperpage) {
3474 		/* get L1 page */
3475 		if (j0) {
3476 			/* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3477 			l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3478 			if (l1mp == NULL)
3479 				goto errout;
3480 			l1dcp = (struct dmapctl *) l1mp->data;
3481 
3482 			/* compute start L0 */
3483 			j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3484 			l1leaf = l1dcp->stree + CTLLEAFIND + j;
3485 			p = BLKTOL0(blkno, sbi->l2nbperpage);
3486 			j0 = false;
3487 		} else {
3488 			/* assign/init L1 page */
3489 			l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3490 			if (l1mp == NULL)
3491 				goto errout;
3492 
3493 			l1dcp = (struct dmapctl *) l1mp->data;
3494 
3495 			/* compute start L0 */
3496 			j = 0;
3497 			l1leaf = l1dcp->stree + CTLLEAFIND;
3498 			p += nbperpage;	/* 1st L0 of L1.k */
3499 		}
3500 
3501 		/*
3502 		 * extend each L0 in L1
3503 		 */
3504 		for (; j < LPERCTL; j++) {
3505 			/* get L0 page */
3506 			if (i0) {
3507 				/* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3508 
3509 				l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3510 				if (l0mp == NULL)
3511 					goto errout;
3512 				l0dcp = (struct dmapctl *) l0mp->data;
3513 
3514 				/* compute start dmap */
3515 				i = (blkno & (MAXL0SIZE - 1)) >>
3516 				    L2BPERDMAP;
3517 				l0leaf = l0dcp->stree + CTLLEAFIND + i;
3518 				p = BLKTODMAP(blkno,
3519 					      sbi->l2nbperpage);
3520 				i0 = false;
3521 			} else {
3522 				/* assign/init L0 page */
3523 				l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3524 				if (l0mp == NULL)
3525 					goto errout;
3526 
3527 				l0dcp = (struct dmapctl *) l0mp->data;
3528 
3529 				/* compute start dmap */
3530 				i = 0;
3531 				l0leaf = l0dcp->stree + CTLLEAFIND;
3532 				p += nbperpage;	/* 1st dmap of L0.j */
3533 			}
3534 
3535 			/*
3536 			 * extend each dmap in L0
3537 			 */
3538 			for (; i < LPERCTL; i++) {
3539 				/*
3540 				 * reconstruct the dmap page, and
3541 				 * initialize corresponding parent L0 leaf
3542 				 */
3543 				if ((n = blkno & (BPERDMAP - 1))) {
3544 					/* read in dmap page: */
3545 					mp = read_metapage(ipbmap, p,
3546 							   PSIZE, 0);
3547 					if (mp == NULL)
3548 						goto errout;
3549 					n = min(nblocks, (s64)BPERDMAP - n);
3550 				} else {
3551 					/* assign/init dmap page */
3552 					mp = read_metapage(ipbmap, p,
3553 							   PSIZE, 0);
3554 					if (mp == NULL)
3555 						goto errout;
3556 
3557 					n = min_t(s64, nblocks, BPERDMAP);
3558 				}
3559 
3560 				dp = (struct dmap *) mp->data;
3561 				*l0leaf = dbInitDmap(dp, blkno, n);
3562 
3563 				bmp->db_nfree += n;
3564 				agno = le64_to_cpu(dp->start) >> l2agsize;
3565 				bmp->db_agfree[agno] += n;
3566 
3567 				write_metapage(mp);
3568 
3569 				l0leaf++;
3570 				p += nbperpage;
3571 
3572 				blkno += n;
3573 				nblocks -= n;
3574 				if (nblocks == 0)
3575 					break;
3576 			}	/* for each dmap in a L0 */
3577 
3578 			/*
3579 			 * build current L0 page from its leaves, and
3580 			 * initialize corresponding parent L1 leaf
3581 			 */
3582 			*l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3583 			write_metapage(l0mp);
3584 			l0mp = NULL;
3585 
3586 			if (nblocks)
3587 				l1leaf++;	/* continue for next L0 */
3588 			else {
3589 				/* more than 1 L0 ? */
3590 				if (j > 0)
3591 					break;	/* build L1 page */
3592 				else {
3593 					/* summarize in global bmap page */
3594 					bmp->db_maxfreebud = *l1leaf;
3595 					release_metapage(l1mp);
3596 					release_metapage(l2mp);
3597 					goto finalize;
3598 				}
3599 			}
3600 		}		/* for each L0 in a L1 */
3601 
3602 		/*
3603 		 * build current L1 page from its leaves, and
3604 		 * initialize corresponding parent L2 leaf
3605 		 */
3606 		*l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3607 		write_metapage(l1mp);
3608 		l1mp = NULL;
3609 
3610 		if (nblocks)
3611 			l2leaf++;	/* continue for next L1 */
3612 		else {
3613 			/* more than 1 L1 ? */
3614 			if (k > 0)
3615 				break;	/* build L2 page */
3616 			else {
3617 				/* summarize in global bmap page */
3618 				bmp->db_maxfreebud = *l2leaf;
3619 				release_metapage(l2mp);
3620 				goto finalize;
3621 			}
3622 		}
3623 	}			/* for each L1 in a L2 */
3624 
3625 	jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3626 errout:
3627 	if (l0mp)
3628 		release_metapage(l0mp);
3629 	if (l1mp)
3630 		release_metapage(l1mp);
3631 	release_metapage(l2mp);
3632 	return -EIO;
3633 
3634 	/*
3635 	 *	finalize bmap control page
3636 	 */
3637 finalize:
3638 
3639 	return 0;
3640 }
3641 
3642 
3643 /*
3644  *	dbFinalizeBmap()
3645  */
dbFinalizeBmap(struct inode * ipbmap)3646 void dbFinalizeBmap(struct inode *ipbmap)
3647 {
3648 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3649 	int actags, inactags, l2nl;
3650 	s64 ag_rem, actfree, inactfree, avgfree;
3651 	int i, n;
3652 
3653 	/*
3654 	 *	finalize bmap control page
3655 	 */
3656 //finalize:
3657 	/*
3658 	 * compute db_agpref: preferred ag to allocate from
3659 	 * (the leftmost ag with average free space in it);
3660 	 */
3661 //agpref:
3662 	/* get the number of active ags and inactive ags */
3663 	actags = bmp->db_maxag + 1;
3664 	inactags = bmp->db_numag - actags;
3665 	ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1);	/* ??? */
3666 
3667 	/* determine how many blocks are in the inactive allocation
3668 	 * groups. in doing this, we must account for the fact that
3669 	 * the rightmost group might be a partial group (i.e. file
3670 	 * system size is not a multiple of the group size).
3671 	 */
3672 	inactfree = (inactags && ag_rem) ?
3673 	    (((s64)inactags - 1) << bmp->db_agl2size) + ag_rem
3674 	    : ((s64)inactags << bmp->db_agl2size);
3675 
3676 	/* determine how many free blocks are in the active
3677 	 * allocation groups plus the average number of free blocks
3678 	 * within the active ags.
3679 	 */
3680 	actfree = bmp->db_nfree - inactfree;
3681 	avgfree = (u32) actfree / (u32) actags;
3682 
3683 	/* if the preferred allocation group has not average free space.
3684 	 * re-establish the preferred group as the leftmost
3685 	 * group with average free space.
3686 	 */
3687 	if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3688 		for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3689 		     bmp->db_agpref++) {
3690 			if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3691 				break;
3692 		}
3693 		if (bmp->db_agpref >= bmp->db_numag) {
3694 			jfs_error(ipbmap->i_sb,
3695 				  "cannot find ag with average freespace\n");
3696 		}
3697 	}
3698 
3699 	/*
3700 	 * compute db_aglevel, db_agheight, db_width, db_agstart:
3701 	 * an ag is covered in aglevel dmapctl summary tree,
3702 	 * at agheight level height (from leaf) with agwidth number of nodes
3703 	 * each, which starts at agstart index node of the smmary tree node
3704 	 * array;
3705 	 */
3706 	bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3707 	l2nl =
3708 	    bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3709 	bmp->db_agheight = l2nl >> 1;
3710 	bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3711 	for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3712 	     i--) {
3713 		bmp->db_agstart += n;
3714 		n <<= 2;
3715 	}
3716 
3717 }
3718 
3719 
3720 /*
3721  * NAME:	dbInitDmap()/ujfs_idmap_page()
3722  *
3723  * FUNCTION:	initialize working/persistent bitmap of the dmap page
3724  *		for the specified number of blocks:
3725  *
3726  *		at entry, the bitmaps had been initialized as free (ZEROS);
3727  *		The number of blocks will only account for the actually
3728  *		existing blocks. Blocks which don't actually exist in
3729  *		the aggregate will be marked as allocated (ONES);
3730  *
3731  * PARAMETERS:
3732  *	dp	- pointer to page of map
3733  *	nblocks	- number of blocks this page
3734  *
3735  * RETURNS: NONE
3736  */
dbInitDmap(struct dmap * dp,s64 Blkno,int nblocks)3737 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3738 {
3739 	int blkno, w, b, r, nw, nb, i;
3740 
3741 	/* starting block number within the dmap */
3742 	blkno = Blkno & (BPERDMAP - 1);
3743 
3744 	if (blkno == 0) {
3745 		dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3746 		dp->start = cpu_to_le64(Blkno);
3747 
3748 		if (nblocks == BPERDMAP) {
3749 			memset(&dp->wmap[0], 0, LPERDMAP * 4);
3750 			memset(&dp->pmap[0], 0, LPERDMAP * 4);
3751 			goto initTree;
3752 		}
3753 	} else {
3754 		le32_add_cpu(&dp->nblocks, nblocks);
3755 		le32_add_cpu(&dp->nfree, nblocks);
3756 	}
3757 
3758 	/* word number containing start block number */
3759 	w = blkno >> L2DBWORD;
3760 
3761 	/*
3762 	 * free the bits corresponding to the block range (ZEROS):
3763 	 * note: not all bits of the first and last words may be contained
3764 	 * within the block range.
3765 	 */
3766 	for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3767 		/* number of bits preceding range to be freed in the word */
3768 		b = blkno & (DBWORD - 1);
3769 		/* number of bits to free in the word */
3770 		nb = min(r, DBWORD - b);
3771 
3772 		/* is partial word to be freed ? */
3773 		if (nb < DBWORD) {
3774 			/* free (set to 0) from the bitmap word */
3775 			dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3776 						     >> b));
3777 			dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3778 						     >> b));
3779 
3780 			/* skip the word freed */
3781 			w++;
3782 		} else {
3783 			/* free (set to 0) contiguous bitmap words */
3784 			nw = r >> L2DBWORD;
3785 			memset(&dp->wmap[w], 0, nw * 4);
3786 			memset(&dp->pmap[w], 0, nw * 4);
3787 
3788 			/* skip the words freed */
3789 			nb = nw << L2DBWORD;
3790 			w += nw;
3791 		}
3792 	}
3793 
3794 	/*
3795 	 * mark bits following the range to be freed (non-existing
3796 	 * blocks) as allocated (ONES)
3797 	 */
3798 
3799 	if (blkno == BPERDMAP)
3800 		goto initTree;
3801 
3802 	/* the first word beyond the end of existing blocks */
3803 	w = blkno >> L2DBWORD;
3804 
3805 	/* does nblocks fall on a 32-bit boundary ? */
3806 	b = blkno & (DBWORD - 1);
3807 	if (b) {
3808 		/* mark a partial word allocated */
3809 		dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3810 		w++;
3811 	}
3812 
3813 	/* set the rest of the words in the page to allocated (ONES) */
3814 	for (i = w; i < LPERDMAP; i++)
3815 		dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3816 
3817 	/*
3818 	 * init tree
3819 	 */
3820       initTree:
3821 	return (dbInitDmapTree(dp));
3822 }
3823 
3824 
3825 /*
3826  * NAME:	dbInitDmapTree()/ujfs_complete_dmap()
3827  *
3828  * FUNCTION:	initialize summary tree of the specified dmap:
3829  *
3830  *		at entry, bitmap of the dmap has been initialized;
3831  *
3832  * PARAMETERS:
3833  *	dp	- dmap to complete
3834  *	blkno	- starting block number for this dmap
3835  *	treemax	- will be filled in with max free for this dmap
3836  *
3837  * RETURNS:	max free string at the root of the tree
3838  */
dbInitDmapTree(struct dmap * dp)3839 static int dbInitDmapTree(struct dmap * dp)
3840 {
3841 	struct dmaptree *tp;
3842 	s8 *cp;
3843 	int i;
3844 
3845 	/* init fixed info of tree */
3846 	tp = &dp->tree;
3847 	tp->nleafs = cpu_to_le32(LPERDMAP);
3848 	tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3849 	tp->leafidx = cpu_to_le32(LEAFIND);
3850 	tp->height = cpu_to_le32(4);
3851 	tp->budmin = BUDMIN;
3852 
3853 	/* init each leaf from corresponding wmap word:
3854 	 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3855 	 * bitmap word are allocated.
3856 	 */
3857 	cp = tp->stree + le32_to_cpu(tp->leafidx);
3858 	for (i = 0; i < LPERDMAP; i++)
3859 		*cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3860 
3861 	/* build the dmap's binary buddy summary tree */
3862 	return (dbInitTree(tp));
3863 }
3864 
3865 
3866 /*
3867  * NAME:	dbInitTree()/ujfs_adjtree()
3868  *
3869  * FUNCTION:	initialize binary buddy summary tree of a dmap or dmapctl.
3870  *
3871  *		at entry, the leaves of the tree has been initialized
3872  *		from corresponding bitmap word or root of summary tree
3873  *		of the child control page;
3874  *		configure binary buddy system at the leaf level, then
3875  *		bubble up the values of the leaf nodes up the tree.
3876  *
3877  * PARAMETERS:
3878  *	cp	- Pointer to the root of the tree
3879  *	l2leaves- Number of leaf nodes as a power of 2
3880  *	l2min	- Number of blocks that can be covered by a leaf
3881  *		  as a power of 2
3882  *
3883  * RETURNS: max free string at the root of the tree
3884  */
dbInitTree(struct dmaptree * dtp)3885 static int dbInitTree(struct dmaptree * dtp)
3886 {
3887 	int l2max, l2free, bsize, nextb, i;
3888 	int child, parent, nparent;
3889 	s8 *tp, *cp, *cp1;
3890 
3891 	tp = dtp->stree;
3892 
3893 	/* Determine the maximum free string possible for the leaves */
3894 	l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3895 
3896 	/*
3897 	 * configure the leaf level into binary buddy system
3898 	 *
3899 	 * Try to combine buddies starting with a buddy size of 1
3900 	 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3901 	 * can be combined if both buddies have a maximum free of l2min;
3902 	 * the combination will result in the left-most buddy leaf having
3903 	 * a maximum free of l2min+1.
3904 	 * After processing all buddies for a given size, process buddies
3905 	 * at the next higher buddy size (i.e. current size * 2) and
3906 	 * the next maximum free (current free + 1).
3907 	 * This continues until the maximum possible buddy combination
3908 	 * yields maximum free.
3909 	 */
3910 	for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3911 	     l2free++, bsize = nextb) {
3912 		/* get next buddy size == current buddy pair size */
3913 		nextb = bsize << 1;
3914 
3915 		/* scan each adjacent buddy pair at current buddy size */
3916 		for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3917 		     i < le32_to_cpu(dtp->nleafs);
3918 		     i += nextb, cp += nextb) {
3919 			/* coalesce if both adjacent buddies are max free */
3920 			if (*cp == l2free && *(cp + bsize) == l2free) {
3921 				*cp = l2free + 1;	/* left take right */
3922 				*(cp + bsize) = -1;	/* right give left */
3923 			}
3924 		}
3925 	}
3926 
3927 	/*
3928 	 * bubble summary information of leaves up the tree.
3929 	 *
3930 	 * Starting at the leaf node level, the four nodes described by
3931 	 * the higher level parent node are compared for a maximum free and
3932 	 * this maximum becomes the value of the parent node.
3933 	 * when all lower level nodes are processed in this fashion then
3934 	 * move up to the next level (parent becomes a lower level node) and
3935 	 * continue the process for that level.
3936 	 */
3937 	for (child = le32_to_cpu(dtp->leafidx),
3938 	     nparent = le32_to_cpu(dtp->nleafs) >> 2;
3939 	     nparent > 0; nparent >>= 2, child = parent) {
3940 		/* get index of 1st node of parent level */
3941 		parent = (child - 1) >> 2;
3942 
3943 		/* set the value of the parent node as the maximum
3944 		 * of the four nodes of the current level.
3945 		 */
3946 		for (i = 0, cp = tp + child, cp1 = tp + parent;
3947 		     i < nparent; i++, cp += 4, cp1++)
3948 			*cp1 = TREEMAX(cp);
3949 	}
3950 
3951 	return (*tp);
3952 }
3953 
3954 
3955 /*
3956  *	dbInitDmapCtl()
3957  *
3958  * function: initialize dmapctl page
3959  */
dbInitDmapCtl(struct dmapctl * dcp,int level,int i)3960 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3961 {				/* start leaf index not covered by range */
3962 	s8 *cp;
3963 
3964 	dcp->nleafs = cpu_to_le32(LPERCTL);
3965 	dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3966 	dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3967 	dcp->height = cpu_to_le32(5);
3968 	dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3969 
3970 	/*
3971 	 * initialize the leaves of current level that were not covered
3972 	 * by the specified input block range (i.e. the leaves have no
3973 	 * low level dmapctl or dmap).
3974 	 */
3975 	cp = &dcp->stree[CTLLEAFIND + i];
3976 	for (; i < LPERCTL; i++)
3977 		*cp++ = NOFREE;
3978 
3979 	/* build the dmap's binary buddy summary tree */
3980 	return (dbInitTree((struct dmaptree *) dcp));
3981 }
3982 
3983 
3984 /*
3985  * NAME:	dbGetL2AGSize()/ujfs_getagl2size()
3986  *
3987  * FUNCTION:	Determine log2(allocation group size) from aggregate size
3988  *
3989  * PARAMETERS:
3990  *	nblocks	- Number of blocks in aggregate
3991  *
3992  * RETURNS: log2(allocation group size) in aggregate blocks
3993  */
dbGetL2AGSize(s64 nblocks)3994 static int dbGetL2AGSize(s64 nblocks)
3995 {
3996 	s64 sz;
3997 	s64 m;
3998 	int l2sz;
3999 
4000 	if (nblocks < BPERDMAP * MAXAG)
4001 		return (L2BPERDMAP);
4002 
4003 	/* round up aggregate size to power of 2 */
4004 	m = ((u64) 1 << (64 - 1));
4005 	for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
4006 		if (m & nblocks)
4007 			break;
4008 	}
4009 
4010 	sz = (s64) 1 << l2sz;
4011 	if (sz < nblocks)
4012 		l2sz += 1;
4013 
4014 	/* agsize = roundupSize/max_number_of_ag */
4015 	return (l2sz - L2MAXAG);
4016 }
4017 
4018 
4019 /*
4020  * NAME:	dbMapFileSizeToMapSize()
4021  *
4022  * FUNCTION:	compute number of blocks the block allocation map file
4023  *		can cover from the map file size;
4024  *
4025  * RETURNS:	Number of blocks which can be covered by this block map file;
4026  */
4027 
4028 /*
4029  * maximum number of map pages at each level including control pages
4030  */
4031 #define MAXL0PAGES	(1 + LPERCTL)
4032 #define MAXL1PAGES	(1 + LPERCTL * MAXL0PAGES)
4033 
4034 /*
4035  * convert number of map pages to the zero origin top dmapctl level
4036  */
4037 #define BMAPPGTOLEV(npages)	\
4038 	(((npages) <= 3 + MAXL0PAGES) ? 0 : \
4039 	 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4040 
dbMapFileSizeToMapSize(struct inode * ipbmap)4041 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4042 {
4043 	struct super_block *sb = ipbmap->i_sb;
4044 	s64 nblocks;
4045 	s64 npages, ndmaps;
4046 	int level, i;
4047 	int complete, factor;
4048 
4049 	nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4050 	npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4051 	level = BMAPPGTOLEV(npages);
4052 
4053 	/* At each level, accumulate the number of dmap pages covered by
4054 	 * the number of full child levels below it;
4055 	 * repeat for the last incomplete child level.
4056 	 */
4057 	ndmaps = 0;
4058 	npages--;		/* skip the first global control page */
4059 	/* skip higher level control pages above top level covered by map */
4060 	npages -= (2 - level);
4061 	npages--;		/* skip top level's control page */
4062 	for (i = level; i >= 0; i--) {
4063 		factor =
4064 		    (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4065 		complete = (u32) npages / factor;
4066 		ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4067 				      ((i == 1) ? LPERCTL : 1));
4068 
4069 		/* pages in last/incomplete child */
4070 		npages = (u32) npages % factor;
4071 		/* skip incomplete child's level control page */
4072 		npages--;
4073 	}
4074 
4075 	/* convert the number of dmaps into the number of blocks
4076 	 * which can be covered by the dmaps;
4077 	 */
4078 	nblocks = ndmaps << L2BPERDMAP;
4079 
4080 	return (nblocks);
4081 }
4082