1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/file.c
4 *
5 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6 *
7 * Manage the dynamic fd arrays in the process files_struct.
8 */
9
10 #include <linux/syscalls.h>
11 #include <linux/export.h>
12 #include <linux/fs.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/file.h>
18 #include <linux/fdtable.h>
19 #include <linux/bitops.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/close_range.h>
23 #include <linux/file_ref.h>
24 #include <net/sock.h>
25 #include <linux/init_task.h>
26
27 #include "internal.h"
28
29 /**
30 * __file_ref_put - Slowpath of file_ref_put()
31 * @ref: Pointer to the reference count
32 * @cnt: Current reference count
33 *
34 * Invoked when the reference count is outside of the valid zone.
35 *
36 * Return:
37 * True if this was the last reference with no future references
38 * possible. This signals the caller that it can safely schedule the
39 * object, which is protected by the reference counter, for
40 * deconstruction.
41 *
42 * False if there are still active references or the put() raced
43 * with a concurrent get()/put() pair. Caller is not allowed to
44 * deconstruct the protected object.
45 */
__file_ref_put(file_ref_t * ref,unsigned long cnt)46 bool __file_ref_put(file_ref_t *ref, unsigned long cnt)
47 {
48 /* Did this drop the last reference? */
49 if (likely(cnt == FILE_REF_NOREF)) {
50 /*
51 * Carefully try to set the reference count to FILE_REF_DEAD.
52 *
53 * This can fail if a concurrent get() operation has
54 * elevated it again or the corresponding put() even marked
55 * it dead already. Both are valid situations and do not
56 * require a retry. If this fails the caller is not
57 * allowed to deconstruct the object.
58 */
59 if (!atomic_long_try_cmpxchg_release(&ref->refcnt, &cnt, FILE_REF_DEAD))
60 return false;
61
62 /*
63 * The caller can safely schedule the object for
64 * deconstruction. Provide acquire ordering.
65 */
66 smp_acquire__after_ctrl_dep();
67 return true;
68 }
69
70 /*
71 * If the reference count was already in the dead zone, then this
72 * put() operation is imbalanced. Warn, put the reference count back to
73 * DEAD and tell the caller to not deconstruct the object.
74 */
75 if (WARN_ONCE(cnt >= FILE_REF_RELEASED, "imbalanced put on file reference count")) {
76 atomic_long_set(&ref->refcnt, FILE_REF_DEAD);
77 return false;
78 }
79
80 /*
81 * This is a put() operation on a saturated refcount. Restore the
82 * mean saturation value and tell the caller to not deconstruct the
83 * object.
84 */
85 if (cnt > FILE_REF_MAXREF)
86 atomic_long_set(&ref->refcnt, FILE_REF_SATURATED);
87 return false;
88 }
89 EXPORT_SYMBOL_GPL(__file_ref_put);
90
91 unsigned int sysctl_nr_open __read_mostly = 1024*1024;
92 unsigned int sysctl_nr_open_min = BITS_PER_LONG;
93 /* our min() is unusable in constant expressions ;-/ */
94 #define __const_min(x, y) ((x) < (y) ? (x) : (y))
95 unsigned int sysctl_nr_open_max =
96 __const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
97
__free_fdtable(struct fdtable * fdt)98 static void __free_fdtable(struct fdtable *fdt)
99 {
100 kvfree(fdt->fd);
101 kvfree(fdt->open_fds);
102 kfree(fdt);
103 }
104
free_fdtable_rcu(struct rcu_head * rcu)105 static void free_fdtable_rcu(struct rcu_head *rcu)
106 {
107 __free_fdtable(container_of(rcu, struct fdtable, rcu));
108 }
109
110 #define BITBIT_NR(nr) BITS_TO_LONGS(BITS_TO_LONGS(nr))
111 #define BITBIT_SIZE(nr) (BITBIT_NR(nr) * sizeof(long))
112
113 #define fdt_words(fdt) ((fdt)->max_fds / BITS_PER_LONG) // words in ->open_fds
114 /*
115 * Copy 'count' fd bits from the old table to the new table and clear the extra
116 * space if any. This does not copy the file pointers. Called with the files
117 * spinlock held for write.
118 */
copy_fd_bitmaps(struct fdtable * nfdt,struct fdtable * ofdt,unsigned int copy_words)119 static inline void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
120 unsigned int copy_words)
121 {
122 unsigned int nwords = fdt_words(nfdt);
123
124 bitmap_copy_and_extend(nfdt->open_fds, ofdt->open_fds,
125 copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
126 bitmap_copy_and_extend(nfdt->close_on_exec, ofdt->close_on_exec,
127 copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
128 bitmap_copy_and_extend(nfdt->full_fds_bits, ofdt->full_fds_bits,
129 copy_words, nwords);
130 }
131
132 /*
133 * Copy all file descriptors from the old table to the new, expanded table and
134 * clear the extra space. Called with the files spinlock held for write.
135 */
copy_fdtable(struct fdtable * nfdt,struct fdtable * ofdt)136 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
137 {
138 size_t cpy, set;
139
140 BUG_ON(nfdt->max_fds < ofdt->max_fds);
141
142 cpy = ofdt->max_fds * sizeof(struct file *);
143 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
144 memcpy(nfdt->fd, ofdt->fd, cpy);
145 memset((char *)nfdt->fd + cpy, 0, set);
146
147 copy_fd_bitmaps(nfdt, ofdt, fdt_words(ofdt));
148 }
149
150 /*
151 * Note how the fdtable bitmap allocations very much have to be a multiple of
152 * BITS_PER_LONG. This is not only because we walk those things in chunks of
153 * 'unsigned long' in some places, but simply because that is how the Linux
154 * kernel bitmaps are defined to work: they are not "bits in an array of bytes",
155 * they are very much "bits in an array of unsigned long".
156 */
alloc_fdtable(unsigned int slots_wanted)157 static struct fdtable *alloc_fdtable(unsigned int slots_wanted)
158 {
159 struct fdtable *fdt;
160 unsigned int nr;
161 void *data;
162
163 /*
164 * Figure out how many fds we actually want to support in this fdtable.
165 * Allocation steps are keyed to the size of the fdarray, since it
166 * grows far faster than any of the other dynamic data. We try to fit
167 * the fdarray into comfortable page-tuned chunks: starting at 1024B
168 * and growing in powers of two from there on. Since we called only
169 * with slots_wanted > BITS_PER_LONG (embedded instance in files->fdtab
170 * already gives BITS_PER_LONG slots), the above boils down to
171 * 1. use the smallest power of two large enough to give us that many
172 * slots.
173 * 2. on 32bit skip 64 and 128 - the minimal capacity we want there is
174 * 256 slots (i.e. 1Kb fd array).
175 * 3. on 64bit don't skip anything, 1Kb fd array means 128 slots there
176 * and we are never going to be asked for 64 or less.
177 */
178 if (IS_ENABLED(CONFIG_32BIT) && slots_wanted < 256)
179 nr = 256;
180 else
181 nr = roundup_pow_of_two(slots_wanted);
182 /*
183 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
184 * had been set lower between the check in expand_files() and here.
185 *
186 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
187 * bitmaps handling below becomes unpleasant, to put it mildly...
188 */
189 if (unlikely(nr > sysctl_nr_open)) {
190 nr = round_down(sysctl_nr_open, BITS_PER_LONG);
191 if (nr < slots_wanted)
192 return ERR_PTR(-EMFILE);
193 }
194
195 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
196 if (!fdt)
197 goto out;
198 fdt->max_fds = nr;
199 data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
200 if (!data)
201 goto out_fdt;
202 fdt->fd = data;
203
204 data = kvmalloc(max_t(size_t,
205 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
206 GFP_KERNEL_ACCOUNT);
207 if (!data)
208 goto out_arr;
209 fdt->open_fds = data;
210 data += nr / BITS_PER_BYTE;
211 fdt->close_on_exec = data;
212 data += nr / BITS_PER_BYTE;
213 fdt->full_fds_bits = data;
214
215 return fdt;
216
217 out_arr:
218 kvfree(fdt->fd);
219 out_fdt:
220 kfree(fdt);
221 out:
222 return ERR_PTR(-ENOMEM);
223 }
224
225 /*
226 * Expand the file descriptor table.
227 * This function will allocate a new fdtable and both fd array and fdset, of
228 * the given size.
229 * Return <0 error code on error; 0 on successful completion.
230 * The files->file_lock should be held on entry, and will be held on exit.
231 */
expand_fdtable(struct files_struct * files,unsigned int nr)232 static int expand_fdtable(struct files_struct *files, unsigned int nr)
233 __releases(files->file_lock)
234 __acquires(files->file_lock)
235 {
236 struct fdtable *new_fdt, *cur_fdt;
237
238 spin_unlock(&files->file_lock);
239 new_fdt = alloc_fdtable(nr + 1);
240
241 /* make sure all fd_install() have seen resize_in_progress
242 * or have finished their rcu_read_lock_sched() section.
243 */
244 if (atomic_read(&files->count) > 1)
245 synchronize_rcu();
246
247 spin_lock(&files->file_lock);
248 if (IS_ERR(new_fdt))
249 return PTR_ERR(new_fdt);
250 cur_fdt = files_fdtable(files);
251 BUG_ON(nr < cur_fdt->max_fds);
252 copy_fdtable(new_fdt, cur_fdt);
253 rcu_assign_pointer(files->fdt, new_fdt);
254 if (cur_fdt != &files->fdtab)
255 call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
256 /* coupled with smp_rmb() in fd_install() */
257 smp_wmb();
258 return 0;
259 }
260
261 /*
262 * Expand files.
263 * This function will expand the file structures, if the requested size exceeds
264 * the current capacity and there is room for expansion.
265 * Return <0 error code on error; 0 on success.
266 * The files->file_lock should be held on entry, and will be held on exit.
267 */
expand_files(struct files_struct * files,unsigned int nr)268 static int expand_files(struct files_struct *files, unsigned int nr)
269 __releases(files->file_lock)
270 __acquires(files->file_lock)
271 {
272 struct fdtable *fdt;
273 int error;
274
275 repeat:
276 fdt = files_fdtable(files);
277
278 /* Do we need to expand? */
279 if (nr < fdt->max_fds)
280 return 0;
281
282 if (unlikely(files->resize_in_progress)) {
283 spin_unlock(&files->file_lock);
284 wait_event(files->resize_wait, !files->resize_in_progress);
285 spin_lock(&files->file_lock);
286 goto repeat;
287 }
288
289 /* Can we expand? */
290 if (unlikely(nr >= sysctl_nr_open))
291 return -EMFILE;
292
293 /* All good, so we try */
294 files->resize_in_progress = true;
295 error = expand_fdtable(files, nr);
296 files->resize_in_progress = false;
297
298 wake_up_all(&files->resize_wait);
299 return error;
300 }
301
__set_close_on_exec(unsigned int fd,struct fdtable * fdt,bool set)302 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt,
303 bool set)
304 {
305 if (set) {
306 __set_bit(fd, fdt->close_on_exec);
307 } else {
308 if (test_bit(fd, fdt->close_on_exec))
309 __clear_bit(fd, fdt->close_on_exec);
310 }
311 }
312
__set_open_fd(unsigned int fd,struct fdtable * fdt,bool set)313 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt, bool set)
314 {
315 __set_bit(fd, fdt->open_fds);
316 __set_close_on_exec(fd, fdt, set);
317 fd /= BITS_PER_LONG;
318 if (!~fdt->open_fds[fd])
319 __set_bit(fd, fdt->full_fds_bits);
320 }
321
__clear_open_fd(unsigned int fd,struct fdtable * fdt)322 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
323 {
324 __clear_bit(fd, fdt->open_fds);
325 fd /= BITS_PER_LONG;
326 if (test_bit(fd, fdt->full_fds_bits))
327 __clear_bit(fd, fdt->full_fds_bits);
328 }
329
fd_is_open(unsigned int fd,const struct fdtable * fdt)330 static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt)
331 {
332 return test_bit(fd, fdt->open_fds);
333 }
334
335 /*
336 * Note that a sane fdtable size always has to be a multiple of
337 * BITS_PER_LONG, since we have bitmaps that are sized by this.
338 *
339 * punch_hole is optional - when close_range() is asked to unshare
340 * and close, we don't need to copy descriptors in that range, so
341 * a smaller cloned descriptor table might suffice if the last
342 * currently opened descriptor falls into that range.
343 */
sane_fdtable_size(struct fdtable * fdt,struct fd_range * punch_hole)344 static unsigned int sane_fdtable_size(struct fdtable *fdt, struct fd_range *punch_hole)
345 {
346 unsigned int last = find_last_bit(fdt->open_fds, fdt->max_fds);
347
348 if (last == fdt->max_fds)
349 return NR_OPEN_DEFAULT;
350 if (punch_hole && punch_hole->to >= last && punch_hole->from <= last) {
351 last = find_last_bit(fdt->open_fds, punch_hole->from);
352 if (last == punch_hole->from)
353 return NR_OPEN_DEFAULT;
354 }
355 return ALIGN(last + 1, BITS_PER_LONG);
356 }
357
358 /*
359 * Allocate a new descriptor table and copy contents from the passed in
360 * instance. Returns a pointer to cloned table on success, ERR_PTR()
361 * on failure. For 'punch_hole' see sane_fdtable_size().
362 */
dup_fd(struct files_struct * oldf,struct fd_range * punch_hole)363 struct files_struct *dup_fd(struct files_struct *oldf, struct fd_range *punch_hole)
364 {
365 struct files_struct *newf;
366 struct file **old_fds, **new_fds;
367 unsigned int open_files, i;
368 struct fdtable *old_fdt, *new_fdt;
369
370 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
371 if (!newf)
372 return ERR_PTR(-ENOMEM);
373
374 atomic_set(&newf->count, 1);
375
376 spin_lock_init(&newf->file_lock);
377 newf->resize_in_progress = false;
378 init_waitqueue_head(&newf->resize_wait);
379 newf->next_fd = 0;
380 new_fdt = &newf->fdtab;
381 new_fdt->max_fds = NR_OPEN_DEFAULT;
382 new_fdt->close_on_exec = newf->close_on_exec_init;
383 new_fdt->open_fds = newf->open_fds_init;
384 new_fdt->full_fds_bits = newf->full_fds_bits_init;
385 new_fdt->fd = &newf->fd_array[0];
386
387 spin_lock(&oldf->file_lock);
388 old_fdt = files_fdtable(oldf);
389 open_files = sane_fdtable_size(old_fdt, punch_hole);
390
391 /*
392 * Check whether we need to allocate a larger fd array and fd set.
393 */
394 while (unlikely(open_files > new_fdt->max_fds)) {
395 spin_unlock(&oldf->file_lock);
396
397 if (new_fdt != &newf->fdtab)
398 __free_fdtable(new_fdt);
399
400 new_fdt = alloc_fdtable(open_files);
401 if (IS_ERR(new_fdt)) {
402 kmem_cache_free(files_cachep, newf);
403 return ERR_CAST(new_fdt);
404 }
405
406 /*
407 * Reacquire the oldf lock and a pointer to its fd table
408 * who knows it may have a new bigger fd table. We need
409 * the latest pointer.
410 */
411 spin_lock(&oldf->file_lock);
412 old_fdt = files_fdtable(oldf);
413 open_files = sane_fdtable_size(old_fdt, punch_hole);
414 }
415
416 copy_fd_bitmaps(new_fdt, old_fdt, open_files / BITS_PER_LONG);
417
418 old_fds = old_fdt->fd;
419 new_fds = new_fdt->fd;
420
421 /*
422 * We may be racing against fd allocation from other threads using this
423 * files_struct, despite holding ->file_lock.
424 *
425 * alloc_fd() might have already claimed a slot, while fd_install()
426 * did not populate it yet. Note the latter operates locklessly, so
427 * the file can show up as we are walking the array below.
428 *
429 * At the same time we know no files will disappear as all other
430 * operations take the lock.
431 *
432 * Instead of trying to placate userspace racing with itself, we
433 * ref the file if we see it and mark the fd slot as unused otherwise.
434 */
435 for (i = open_files; i != 0; i--) {
436 struct file *f = rcu_dereference_raw(*old_fds++);
437 if (f) {
438 get_file(f);
439 } else {
440 __clear_open_fd(open_files - i, new_fdt);
441 }
442 rcu_assign_pointer(*new_fds++, f);
443 }
444 spin_unlock(&oldf->file_lock);
445
446 /* clear the remainder */
447 memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
448
449 rcu_assign_pointer(newf->fdt, new_fdt);
450
451 return newf;
452 }
453
close_files(struct files_struct * files)454 static struct fdtable *close_files(struct files_struct * files)
455 {
456 /*
457 * It is safe to dereference the fd table without RCU or
458 * ->file_lock because this is the last reference to the
459 * files structure.
460 */
461 struct fdtable *fdt = rcu_dereference_raw(files->fdt);
462 unsigned int i, j = 0;
463
464 for (;;) {
465 unsigned long set;
466 i = j * BITS_PER_LONG;
467 if (i >= fdt->max_fds)
468 break;
469 set = fdt->open_fds[j++];
470 while (set) {
471 if (set & 1) {
472 struct file *file = fdt->fd[i];
473 if (file) {
474 filp_close(file, files);
475 cond_resched();
476 }
477 }
478 i++;
479 set >>= 1;
480 }
481 }
482
483 return fdt;
484 }
485
put_files_struct(struct files_struct * files)486 void put_files_struct(struct files_struct *files)
487 {
488 if (atomic_dec_and_test(&files->count)) {
489 struct fdtable *fdt = close_files(files);
490
491 /* free the arrays if they are not embedded */
492 if (fdt != &files->fdtab)
493 __free_fdtable(fdt);
494 kmem_cache_free(files_cachep, files);
495 }
496 }
497
exit_files(struct task_struct * tsk)498 void exit_files(struct task_struct *tsk)
499 {
500 struct files_struct * files = tsk->files;
501
502 if (files) {
503 task_lock(tsk);
504 tsk->files = NULL;
505 task_unlock(tsk);
506 put_files_struct(files);
507 }
508 }
509
510 struct files_struct init_files = {
511 .count = ATOMIC_INIT(1),
512 .fdt = &init_files.fdtab,
513 .fdtab = {
514 .max_fds = NR_OPEN_DEFAULT,
515 .fd = &init_files.fd_array[0],
516 .close_on_exec = init_files.close_on_exec_init,
517 .open_fds = init_files.open_fds_init,
518 .full_fds_bits = init_files.full_fds_bits_init,
519 },
520 .file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock),
521 .resize_wait = __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
522 };
523
find_next_fd(struct fdtable * fdt,unsigned int start)524 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
525 {
526 unsigned int maxfd = fdt->max_fds; /* always multiple of BITS_PER_LONG */
527 unsigned int maxbit = maxfd / BITS_PER_LONG;
528 unsigned int bitbit = start / BITS_PER_LONG;
529 unsigned int bit;
530
531 /*
532 * Try to avoid looking at the second level bitmap
533 */
534 bit = find_next_zero_bit(&fdt->open_fds[bitbit], BITS_PER_LONG,
535 start & (BITS_PER_LONG - 1));
536 if (bit < BITS_PER_LONG)
537 return bit + bitbit * BITS_PER_LONG;
538
539 bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
540 if (bitbit >= maxfd)
541 return maxfd;
542 if (bitbit > start)
543 start = bitbit;
544 return find_next_zero_bit(fdt->open_fds, maxfd, start);
545 }
546
547 /*
548 * allocate a file descriptor, mark it busy.
549 */
alloc_fd(unsigned start,unsigned end,unsigned flags)550 static int alloc_fd(unsigned start, unsigned end, unsigned flags)
551 {
552 struct files_struct *files = current->files;
553 unsigned int fd;
554 int error;
555 struct fdtable *fdt;
556
557 spin_lock(&files->file_lock);
558 repeat:
559 fdt = files_fdtable(files);
560 fd = start;
561 if (fd < files->next_fd)
562 fd = files->next_fd;
563
564 if (likely(fd < fdt->max_fds))
565 fd = find_next_fd(fdt, fd);
566
567 /*
568 * N.B. For clone tasks sharing a files structure, this test
569 * will limit the total number of files that can be opened.
570 */
571 error = -EMFILE;
572 if (unlikely(fd >= end))
573 goto out;
574
575 if (unlikely(fd >= fdt->max_fds)) {
576 error = expand_files(files, fd);
577 if (error < 0)
578 goto out;
579
580 goto repeat;
581 }
582
583 if (start <= files->next_fd)
584 files->next_fd = fd + 1;
585
586 __set_open_fd(fd, fdt, flags & O_CLOEXEC);
587 error = fd;
588
589 out:
590 spin_unlock(&files->file_lock);
591 return error;
592 }
593
__get_unused_fd_flags(unsigned flags,unsigned long nofile)594 int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
595 {
596 return alloc_fd(0, nofile, flags);
597 }
598
get_unused_fd_flags(unsigned flags)599 int get_unused_fd_flags(unsigned flags)
600 {
601 return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
602 }
603 EXPORT_SYMBOL(get_unused_fd_flags);
604
__put_unused_fd(struct files_struct * files,unsigned int fd)605 static void __put_unused_fd(struct files_struct *files, unsigned int fd)
606 {
607 struct fdtable *fdt = files_fdtable(files);
608 __clear_open_fd(fd, fdt);
609 if (fd < files->next_fd)
610 files->next_fd = fd;
611 }
612
put_unused_fd(unsigned int fd)613 void put_unused_fd(unsigned int fd)
614 {
615 struct files_struct *files = current->files;
616 spin_lock(&files->file_lock);
617 __put_unused_fd(files, fd);
618 spin_unlock(&files->file_lock);
619 }
620
621 EXPORT_SYMBOL(put_unused_fd);
622
623 /*
624 * Install a file pointer in the fd array.
625 *
626 * The VFS is full of places where we drop the files lock between
627 * setting the open_fds bitmap and installing the file in the file
628 * array. At any such point, we are vulnerable to a dup2() race
629 * installing a file in the array before us. We need to detect this and
630 * fput() the struct file we are about to overwrite in this case.
631 *
632 * It should never happen - if we allow dup2() do it, _really_ bad things
633 * will follow.
634 *
635 * This consumes the "file" refcount, so callers should treat it
636 * as if they had called fput(file).
637 */
638
fd_install(unsigned int fd,struct file * file)639 void fd_install(unsigned int fd, struct file *file)
640 {
641 struct files_struct *files = current->files;
642 struct fdtable *fdt;
643
644 if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING)))
645 return;
646
647 rcu_read_lock_sched();
648
649 if (unlikely(files->resize_in_progress)) {
650 rcu_read_unlock_sched();
651 spin_lock(&files->file_lock);
652 fdt = files_fdtable(files);
653 WARN_ON(fdt->fd[fd] != NULL);
654 rcu_assign_pointer(fdt->fd[fd], file);
655 spin_unlock(&files->file_lock);
656 return;
657 }
658 /* coupled with smp_wmb() in expand_fdtable() */
659 smp_rmb();
660 fdt = rcu_dereference_sched(files->fdt);
661 BUG_ON(fdt->fd[fd] != NULL);
662 rcu_assign_pointer(fdt->fd[fd], file);
663 rcu_read_unlock_sched();
664 }
665
666 EXPORT_SYMBOL(fd_install);
667
668 /**
669 * file_close_fd_locked - return file associated with fd
670 * @files: file struct to retrieve file from
671 * @fd: file descriptor to retrieve file for
672 *
673 * Doesn't take a separate reference count.
674 *
675 * Context: files_lock must be held.
676 *
677 * Returns: The file associated with @fd (NULL if @fd is not open)
678 */
file_close_fd_locked(struct files_struct * files,unsigned fd)679 struct file *file_close_fd_locked(struct files_struct *files, unsigned fd)
680 {
681 struct fdtable *fdt = files_fdtable(files);
682 struct file *file;
683
684 lockdep_assert_held(&files->file_lock);
685
686 if (fd >= fdt->max_fds)
687 return NULL;
688
689 fd = array_index_nospec(fd, fdt->max_fds);
690 file = rcu_dereference_raw(fdt->fd[fd]);
691 if (file) {
692 rcu_assign_pointer(fdt->fd[fd], NULL);
693 __put_unused_fd(files, fd);
694 }
695 return file;
696 }
697
close_fd(unsigned fd)698 int close_fd(unsigned fd)
699 {
700 struct files_struct *files = current->files;
701 struct file *file;
702
703 spin_lock(&files->file_lock);
704 file = file_close_fd_locked(files, fd);
705 spin_unlock(&files->file_lock);
706 if (!file)
707 return -EBADF;
708
709 return filp_close(file, files);
710 }
711 EXPORT_SYMBOL(close_fd);
712
713 /**
714 * last_fd - return last valid index into fd table
715 * @fdt: File descriptor table.
716 *
717 * Context: Either rcu read lock or files_lock must be held.
718 *
719 * Returns: Last valid index into fdtable.
720 */
last_fd(struct fdtable * fdt)721 static inline unsigned last_fd(struct fdtable *fdt)
722 {
723 return fdt->max_fds - 1;
724 }
725
__range_cloexec(struct files_struct * cur_fds,unsigned int fd,unsigned int max_fd)726 static inline void __range_cloexec(struct files_struct *cur_fds,
727 unsigned int fd, unsigned int max_fd)
728 {
729 struct fdtable *fdt;
730
731 /* make sure we're using the correct maximum value */
732 spin_lock(&cur_fds->file_lock);
733 fdt = files_fdtable(cur_fds);
734 max_fd = min(last_fd(fdt), max_fd);
735 if (fd <= max_fd)
736 bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
737 spin_unlock(&cur_fds->file_lock);
738 }
739
__range_close(struct files_struct * files,unsigned int fd,unsigned int max_fd)740 static inline void __range_close(struct files_struct *files, unsigned int fd,
741 unsigned int max_fd)
742 {
743 struct file *file;
744 unsigned n;
745
746 spin_lock(&files->file_lock);
747 n = last_fd(files_fdtable(files));
748 max_fd = min(max_fd, n);
749
750 for (; fd <= max_fd; fd++) {
751 file = file_close_fd_locked(files, fd);
752 if (file) {
753 spin_unlock(&files->file_lock);
754 filp_close(file, files);
755 cond_resched();
756 spin_lock(&files->file_lock);
757 } else if (need_resched()) {
758 spin_unlock(&files->file_lock);
759 cond_resched();
760 spin_lock(&files->file_lock);
761 }
762 }
763 spin_unlock(&files->file_lock);
764 }
765
766 /**
767 * sys_close_range() - Close all file descriptors in a given range.
768 *
769 * @fd: starting file descriptor to close
770 * @max_fd: last file descriptor to close
771 * @flags: CLOSE_RANGE flags.
772 *
773 * This closes a range of file descriptors. All file descriptors
774 * from @fd up to and including @max_fd are closed.
775 * Currently, errors to close a given file descriptor are ignored.
776 */
SYSCALL_DEFINE3(close_range,unsigned int,fd,unsigned int,max_fd,unsigned int,flags)777 SYSCALL_DEFINE3(close_range, unsigned int, fd, unsigned int, max_fd,
778 unsigned int, flags)
779 {
780 struct task_struct *me = current;
781 struct files_struct *cur_fds = me->files, *fds = NULL;
782
783 if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
784 return -EINVAL;
785
786 if (fd > max_fd)
787 return -EINVAL;
788
789 if ((flags & CLOSE_RANGE_UNSHARE) && atomic_read(&cur_fds->count) > 1) {
790 struct fd_range range = {fd, max_fd}, *punch_hole = ⦥
791
792 /*
793 * If the caller requested all fds to be made cloexec we always
794 * copy all of the file descriptors since they still want to
795 * use them.
796 */
797 if (flags & CLOSE_RANGE_CLOEXEC)
798 punch_hole = NULL;
799
800 fds = dup_fd(cur_fds, punch_hole);
801 if (IS_ERR(fds))
802 return PTR_ERR(fds);
803 /*
804 * We used to share our file descriptor table, and have now
805 * created a private one, make sure we're using it below.
806 */
807 swap(cur_fds, fds);
808 }
809
810 if (flags & CLOSE_RANGE_CLOEXEC)
811 __range_cloexec(cur_fds, fd, max_fd);
812 else
813 __range_close(cur_fds, fd, max_fd);
814
815 if (fds) {
816 /*
817 * We're done closing the files we were supposed to. Time to install
818 * the new file descriptor table and drop the old one.
819 */
820 task_lock(me);
821 me->files = cur_fds;
822 task_unlock(me);
823 put_files_struct(fds);
824 }
825
826 return 0;
827 }
828
829 /**
830 * file_close_fd - return file associated with fd
831 * @fd: file descriptor to retrieve file for
832 *
833 * Doesn't take a separate reference count.
834 *
835 * Returns: The file associated with @fd (NULL if @fd is not open)
836 */
file_close_fd(unsigned int fd)837 struct file *file_close_fd(unsigned int fd)
838 {
839 struct files_struct *files = current->files;
840 struct file *file;
841
842 spin_lock(&files->file_lock);
843 file = file_close_fd_locked(files, fd);
844 spin_unlock(&files->file_lock);
845
846 return file;
847 }
848
do_close_on_exec(struct files_struct * files)849 void do_close_on_exec(struct files_struct *files)
850 {
851 unsigned i;
852 struct fdtable *fdt;
853
854 /* exec unshares first */
855 spin_lock(&files->file_lock);
856 for (i = 0; ; i++) {
857 unsigned long set;
858 unsigned fd = i * BITS_PER_LONG;
859 fdt = files_fdtable(files);
860 if (fd >= fdt->max_fds)
861 break;
862 set = fdt->close_on_exec[i];
863 if (!set)
864 continue;
865 fdt->close_on_exec[i] = 0;
866 for ( ; set ; fd++, set >>= 1) {
867 struct file *file;
868 if (!(set & 1))
869 continue;
870 file = fdt->fd[fd];
871 if (!file)
872 continue;
873 rcu_assign_pointer(fdt->fd[fd], NULL);
874 __put_unused_fd(files, fd);
875 spin_unlock(&files->file_lock);
876 filp_close(file, files);
877 cond_resched();
878 spin_lock(&files->file_lock);
879 }
880
881 }
882 spin_unlock(&files->file_lock);
883 }
884
__get_file_rcu(struct file __rcu ** f)885 static struct file *__get_file_rcu(struct file __rcu **f)
886 {
887 struct file __rcu *file;
888 struct file __rcu *file_reloaded;
889 struct file __rcu *file_reloaded_cmp;
890
891 file = rcu_dereference_raw(*f);
892 if (!file)
893 return NULL;
894
895 if (unlikely(!file_ref_get(&file->f_ref)))
896 return ERR_PTR(-EAGAIN);
897
898 file_reloaded = rcu_dereference_raw(*f);
899
900 /*
901 * Ensure that all accesses have a dependency on the load from
902 * rcu_dereference_raw() above so we get correct ordering
903 * between reuse/allocation and the pointer check below.
904 */
905 file_reloaded_cmp = file_reloaded;
906 OPTIMIZER_HIDE_VAR(file_reloaded_cmp);
907
908 /*
909 * file_ref_get() above provided a full memory barrier when we
910 * acquired a reference.
911 *
912 * This is paired with the write barrier from assigning to the
913 * __rcu protected file pointer so that if that pointer still
914 * matches the current file, we know we have successfully
915 * acquired a reference to the right file.
916 *
917 * If the pointers don't match the file has been reallocated by
918 * SLAB_TYPESAFE_BY_RCU.
919 */
920 if (file == file_reloaded_cmp)
921 return file_reloaded;
922
923 fput(file);
924 return ERR_PTR(-EAGAIN);
925 }
926
927 /**
928 * get_file_rcu - try go get a reference to a file under rcu
929 * @f: the file to get a reference on
930 *
931 * This function tries to get a reference on @f carefully verifying that
932 * @f hasn't been reused.
933 *
934 * This function should rarely have to be used and only by users who
935 * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
936 *
937 * Return: Returns @f with the reference count increased or NULL.
938 */
get_file_rcu(struct file __rcu ** f)939 struct file *get_file_rcu(struct file __rcu **f)
940 {
941 for (;;) {
942 struct file __rcu *file;
943
944 file = __get_file_rcu(f);
945 if (!IS_ERR(file))
946 return file;
947 }
948 }
949 EXPORT_SYMBOL_GPL(get_file_rcu);
950
951 /**
952 * get_file_active - try go get a reference to a file
953 * @f: the file to get a reference on
954 *
955 * In contast to get_file_rcu() the pointer itself isn't part of the
956 * reference counting.
957 *
958 * This function should rarely have to be used and only by users who
959 * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
960 *
961 * Return: Returns @f with the reference count increased or NULL.
962 */
get_file_active(struct file ** f)963 struct file *get_file_active(struct file **f)
964 {
965 struct file __rcu *file;
966
967 rcu_read_lock();
968 file = __get_file_rcu(f);
969 rcu_read_unlock();
970 if (IS_ERR(file))
971 file = NULL;
972 return file;
973 }
974 EXPORT_SYMBOL_GPL(get_file_active);
975
__fget_files_rcu(struct files_struct * files,unsigned int fd,fmode_t mask)976 static inline struct file *__fget_files_rcu(struct files_struct *files,
977 unsigned int fd, fmode_t mask)
978 {
979 for (;;) {
980 struct file *file;
981 struct fdtable *fdt = rcu_dereference_raw(files->fdt);
982 struct file __rcu **fdentry;
983 unsigned long nospec_mask;
984
985 /* Mask is a 0 for invalid fd's, ~0 for valid ones */
986 nospec_mask = array_index_mask_nospec(fd, fdt->max_fds);
987
988 /*
989 * fdentry points to the 'fd' offset, or fdt->fd[0].
990 * Loading from fdt->fd[0] is always safe, because the
991 * array always exists.
992 */
993 fdentry = fdt->fd + (fd & nospec_mask);
994
995 /* Do the load, then mask any invalid result */
996 file = rcu_dereference_raw(*fdentry);
997 file = (void *)(nospec_mask & (unsigned long)file);
998 if (unlikely(!file))
999 return NULL;
1000
1001 /*
1002 * Ok, we have a file pointer that was valid at
1003 * some point, but it might have become stale since.
1004 *
1005 * We need to confirm it by incrementing the refcount
1006 * and then check the lookup again.
1007 *
1008 * file_ref_get() gives us a full memory barrier. We
1009 * only really need an 'acquire' one to protect the
1010 * loads below, but we don't have that.
1011 */
1012 if (unlikely(!file_ref_get(&file->f_ref)))
1013 continue;
1014
1015 /*
1016 * Such a race can take two forms:
1017 *
1018 * (a) the file ref already went down to zero and the
1019 * file hasn't been reused yet or the file count
1020 * isn't zero but the file has already been reused.
1021 *
1022 * (b) the file table entry has changed under us.
1023 * Note that we don't need to re-check the 'fdt->fd'
1024 * pointer having changed, because it always goes
1025 * hand-in-hand with 'fdt'.
1026 *
1027 * If so, we need to put our ref and try again.
1028 */
1029 if (unlikely(file != rcu_dereference_raw(*fdentry)) ||
1030 unlikely(rcu_dereference_raw(files->fdt) != fdt)) {
1031 fput(file);
1032 continue;
1033 }
1034
1035 /*
1036 * This isn't the file we're looking for or we're not
1037 * allowed to get a reference to it.
1038 */
1039 if (unlikely(file->f_mode & mask)) {
1040 fput(file);
1041 return NULL;
1042 }
1043
1044 /*
1045 * Ok, we have a ref to the file, and checked that it
1046 * still exists.
1047 */
1048 return file;
1049 }
1050 }
1051
__fget_files(struct files_struct * files,unsigned int fd,fmode_t mask)1052 static struct file *__fget_files(struct files_struct *files, unsigned int fd,
1053 fmode_t mask)
1054 {
1055 struct file *file;
1056
1057 rcu_read_lock();
1058 file = __fget_files_rcu(files, fd, mask);
1059 rcu_read_unlock();
1060
1061 return file;
1062 }
1063
__fget(unsigned int fd,fmode_t mask)1064 static inline struct file *__fget(unsigned int fd, fmode_t mask)
1065 {
1066 return __fget_files(current->files, fd, mask);
1067 }
1068
fget(unsigned int fd)1069 struct file *fget(unsigned int fd)
1070 {
1071 return __fget(fd, FMODE_PATH);
1072 }
1073 EXPORT_SYMBOL(fget);
1074
fget_raw(unsigned int fd)1075 struct file *fget_raw(unsigned int fd)
1076 {
1077 return __fget(fd, 0);
1078 }
1079 EXPORT_SYMBOL(fget_raw);
1080
fget_task(struct task_struct * task,unsigned int fd)1081 struct file *fget_task(struct task_struct *task, unsigned int fd)
1082 {
1083 struct file *file = NULL;
1084
1085 task_lock(task);
1086 if (task->files)
1087 file = __fget_files(task->files, fd, 0);
1088 task_unlock(task);
1089
1090 return file;
1091 }
1092
fget_task_next(struct task_struct * task,unsigned int * ret_fd)1093 struct file *fget_task_next(struct task_struct *task, unsigned int *ret_fd)
1094 {
1095 /* Must be called with rcu_read_lock held */
1096 struct files_struct *files;
1097 unsigned int fd = *ret_fd;
1098 struct file *file = NULL;
1099
1100 task_lock(task);
1101 files = task->files;
1102 if (files) {
1103 rcu_read_lock();
1104 for (; fd < files_fdtable(files)->max_fds; fd++) {
1105 file = __fget_files_rcu(files, fd, 0);
1106 if (file)
1107 break;
1108 }
1109 rcu_read_unlock();
1110 }
1111 task_unlock(task);
1112 *ret_fd = fd;
1113 return file;
1114 }
1115 EXPORT_SYMBOL(fget_task_next);
1116
1117 /*
1118 * Lightweight file lookup - no refcnt increment if fd table isn't shared.
1119 *
1120 * You can use this instead of fget if you satisfy all of the following
1121 * conditions:
1122 * 1) You must call fput_light before exiting the syscall and returning control
1123 * to userspace (i.e. you cannot remember the returned struct file * after
1124 * returning to userspace).
1125 * 2) You must not call filp_close on the returned struct file * in between
1126 * calls to fget_light and fput_light.
1127 * 3) You must not clone the current task in between the calls to fget_light
1128 * and fput_light.
1129 *
1130 * The fput_needed flag returned by fget_light should be passed to the
1131 * corresponding fput_light.
1132 *
1133 * (As an exception to rule 2, you can call filp_close between fget_light and
1134 * fput_light provided that you capture a real refcount with get_file before
1135 * the call to filp_close, and ensure that this real refcount is fput *after*
1136 * the fput_light call.)
1137 *
1138 * See also the documentation in rust/kernel/file.rs.
1139 */
__fget_light(unsigned int fd,fmode_t mask)1140 static inline struct fd __fget_light(unsigned int fd, fmode_t mask)
1141 {
1142 struct files_struct *files = current->files;
1143 struct file *file;
1144
1145 /*
1146 * If another thread is concurrently calling close_fd() followed
1147 * by put_files_struct(), we must not observe the old table
1148 * entry combined with the new refcount - otherwise we could
1149 * return a file that is concurrently being freed.
1150 *
1151 * atomic_read_acquire() pairs with atomic_dec_and_test() in
1152 * put_files_struct().
1153 */
1154 if (likely(atomic_read_acquire(&files->count) == 1)) {
1155 file = files_lookup_fd_raw(files, fd);
1156 if (!file || unlikely(file->f_mode & mask))
1157 return EMPTY_FD;
1158 return BORROWED_FD(file);
1159 } else {
1160 file = __fget_files(files, fd, mask);
1161 if (!file)
1162 return EMPTY_FD;
1163 return CLONED_FD(file);
1164 }
1165 }
fdget(unsigned int fd)1166 struct fd fdget(unsigned int fd)
1167 {
1168 return __fget_light(fd, FMODE_PATH);
1169 }
1170 EXPORT_SYMBOL(fdget);
1171
fdget_raw(unsigned int fd)1172 struct fd fdget_raw(unsigned int fd)
1173 {
1174 return __fget_light(fd, 0);
1175 }
1176
1177 /*
1178 * Try to avoid f_pos locking. We only need it if the
1179 * file is marked for FMODE_ATOMIC_POS, and it can be
1180 * accessed multiple ways.
1181 *
1182 * Always do it for directories, because pidfd_getfd()
1183 * can make a file accessible even if it otherwise would
1184 * not be, and for directories this is a correctness
1185 * issue, not a "POSIX requirement".
1186 */
file_needs_f_pos_lock(struct file * file)1187 static inline bool file_needs_f_pos_lock(struct file *file)
1188 {
1189 return (file->f_mode & FMODE_ATOMIC_POS) &&
1190 (file_count(file) > 1 || file->f_op->iterate_shared);
1191 }
1192
fdget_pos(unsigned int fd)1193 struct fd fdget_pos(unsigned int fd)
1194 {
1195 struct fd f = fdget(fd);
1196 struct file *file = fd_file(f);
1197
1198 if (file && file_needs_f_pos_lock(file)) {
1199 f.word |= FDPUT_POS_UNLOCK;
1200 mutex_lock(&file->f_pos_lock);
1201 }
1202 return f;
1203 }
1204
__f_unlock_pos(struct file * f)1205 void __f_unlock_pos(struct file *f)
1206 {
1207 mutex_unlock(&f->f_pos_lock);
1208 }
1209
1210 /*
1211 * We only lock f_pos if we have threads or if the file might be
1212 * shared with another process. In both cases we'll have an elevated
1213 * file count (done either by fdget() or by fork()).
1214 */
1215
set_close_on_exec(unsigned int fd,int flag)1216 void set_close_on_exec(unsigned int fd, int flag)
1217 {
1218 struct files_struct *files = current->files;
1219 spin_lock(&files->file_lock);
1220 __set_close_on_exec(fd, files_fdtable(files), flag);
1221 spin_unlock(&files->file_lock);
1222 }
1223
get_close_on_exec(unsigned int fd)1224 bool get_close_on_exec(unsigned int fd)
1225 {
1226 bool res;
1227 rcu_read_lock();
1228 res = close_on_exec(fd, current->files);
1229 rcu_read_unlock();
1230 return res;
1231 }
1232
do_dup2(struct files_struct * files,struct file * file,unsigned fd,unsigned flags)1233 static int do_dup2(struct files_struct *files,
1234 struct file *file, unsigned fd, unsigned flags)
1235 __releases(&files->file_lock)
1236 {
1237 struct file *tofree;
1238 struct fdtable *fdt;
1239
1240 /*
1241 * We need to detect attempts to do dup2() over allocated but still
1242 * not finished descriptor.
1243 *
1244 * POSIX is silent on the issue, we return -EBUSY.
1245 */
1246 fdt = files_fdtable(files);
1247 fd = array_index_nospec(fd, fdt->max_fds);
1248 tofree = rcu_dereference_raw(fdt->fd[fd]);
1249 if (!tofree && fd_is_open(fd, fdt))
1250 goto Ebusy;
1251 get_file(file);
1252 rcu_assign_pointer(fdt->fd[fd], file);
1253 __set_open_fd(fd, fdt, flags & O_CLOEXEC);
1254 spin_unlock(&files->file_lock);
1255
1256 if (tofree)
1257 filp_close(tofree, files);
1258
1259 return fd;
1260
1261 Ebusy:
1262 spin_unlock(&files->file_lock);
1263 return -EBUSY;
1264 }
1265
replace_fd(unsigned fd,struct file * file,unsigned flags)1266 int replace_fd(unsigned fd, struct file *file, unsigned flags)
1267 {
1268 int err;
1269 struct files_struct *files = current->files;
1270
1271 if (!file)
1272 return close_fd(fd);
1273
1274 if (fd >= rlimit(RLIMIT_NOFILE))
1275 return -EBADF;
1276
1277 spin_lock(&files->file_lock);
1278 err = expand_files(files, fd);
1279 if (unlikely(err < 0))
1280 goto out_unlock;
1281 return do_dup2(files, file, fd, flags);
1282
1283 out_unlock:
1284 spin_unlock(&files->file_lock);
1285 return err;
1286 }
1287
1288 /**
1289 * receive_fd() - Install received file into file descriptor table
1290 * @file: struct file that was received from another process
1291 * @ufd: __user pointer to write new fd number to
1292 * @o_flags: the O_* flags to apply to the new fd entry
1293 *
1294 * Installs a received file into the file descriptor table, with appropriate
1295 * checks and count updates. Optionally writes the fd number to userspace, if
1296 * @ufd is non-NULL.
1297 *
1298 * This helper handles its own reference counting of the incoming
1299 * struct file.
1300 *
1301 * Returns newly install fd or -ve on error.
1302 */
receive_fd(struct file * file,int __user * ufd,unsigned int o_flags)1303 int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags)
1304 {
1305 int new_fd;
1306 int error;
1307
1308 error = security_file_receive(file);
1309 if (error)
1310 return error;
1311
1312 new_fd = get_unused_fd_flags(o_flags);
1313 if (new_fd < 0)
1314 return new_fd;
1315
1316 if (ufd) {
1317 error = put_user(new_fd, ufd);
1318 if (error) {
1319 put_unused_fd(new_fd);
1320 return error;
1321 }
1322 }
1323
1324 fd_install(new_fd, get_file(file));
1325 __receive_sock(file);
1326 return new_fd;
1327 }
1328 EXPORT_SYMBOL_GPL(receive_fd);
1329
receive_fd_replace(int new_fd,struct file * file,unsigned int o_flags)1330 int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags)
1331 {
1332 int error;
1333
1334 error = security_file_receive(file);
1335 if (error)
1336 return error;
1337 error = replace_fd(new_fd, file, o_flags);
1338 if (error)
1339 return error;
1340 __receive_sock(file);
1341 return new_fd;
1342 }
1343
ksys_dup3(unsigned int oldfd,unsigned int newfd,int flags)1344 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
1345 {
1346 int err = -EBADF;
1347 struct file *file;
1348 struct files_struct *files = current->files;
1349
1350 if ((flags & ~O_CLOEXEC) != 0)
1351 return -EINVAL;
1352
1353 if (unlikely(oldfd == newfd))
1354 return -EINVAL;
1355
1356 if (newfd >= rlimit(RLIMIT_NOFILE))
1357 return -EBADF;
1358
1359 spin_lock(&files->file_lock);
1360 err = expand_files(files, newfd);
1361 file = files_lookup_fd_locked(files, oldfd);
1362 if (unlikely(!file))
1363 goto Ebadf;
1364 if (unlikely(err < 0)) {
1365 if (err == -EMFILE)
1366 goto Ebadf;
1367 goto out_unlock;
1368 }
1369 return do_dup2(files, file, newfd, flags);
1370
1371 Ebadf:
1372 err = -EBADF;
1373 out_unlock:
1374 spin_unlock(&files->file_lock);
1375 return err;
1376 }
1377
SYSCALL_DEFINE3(dup3,unsigned int,oldfd,unsigned int,newfd,int,flags)1378 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
1379 {
1380 return ksys_dup3(oldfd, newfd, flags);
1381 }
1382
SYSCALL_DEFINE2(dup2,unsigned int,oldfd,unsigned int,newfd)1383 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
1384 {
1385 if (unlikely(newfd == oldfd)) { /* corner case */
1386 struct files_struct *files = current->files;
1387 struct file *f;
1388 int retval = oldfd;
1389
1390 rcu_read_lock();
1391 f = __fget_files_rcu(files, oldfd, 0);
1392 if (!f)
1393 retval = -EBADF;
1394 rcu_read_unlock();
1395 if (f)
1396 fput(f);
1397 return retval;
1398 }
1399 return ksys_dup3(oldfd, newfd, 0);
1400 }
1401
SYSCALL_DEFINE1(dup,unsigned int,fildes)1402 SYSCALL_DEFINE1(dup, unsigned int, fildes)
1403 {
1404 int ret = -EBADF;
1405 struct file *file = fget_raw(fildes);
1406
1407 if (file) {
1408 ret = get_unused_fd_flags(0);
1409 if (ret >= 0)
1410 fd_install(ret, file);
1411 else
1412 fput(file);
1413 }
1414 return ret;
1415 }
1416
f_dupfd(unsigned int from,struct file * file,unsigned flags)1417 int f_dupfd(unsigned int from, struct file *file, unsigned flags)
1418 {
1419 unsigned long nofile = rlimit(RLIMIT_NOFILE);
1420 int err;
1421 if (from >= nofile)
1422 return -EINVAL;
1423 err = alloc_fd(from, nofile, flags);
1424 if (err >= 0) {
1425 get_file(file);
1426 fd_install(err, file);
1427 }
1428 return err;
1429 }
1430
iterate_fd(struct files_struct * files,unsigned n,int (* f)(const void *,struct file *,unsigned),const void * p)1431 int iterate_fd(struct files_struct *files, unsigned n,
1432 int (*f)(const void *, struct file *, unsigned),
1433 const void *p)
1434 {
1435 struct fdtable *fdt;
1436 int res = 0;
1437 if (!files)
1438 return 0;
1439 spin_lock(&files->file_lock);
1440 for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
1441 struct file *file;
1442 file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
1443 if (!file)
1444 continue;
1445 res = f(p, file, n);
1446 if (res)
1447 break;
1448 }
1449 spin_unlock(&files->file_lock);
1450 return res;
1451 }
1452 EXPORT_SYMBOL(iterate_fd);
1453