1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/sched/mm.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/blkdev.h>
15 #include <linux/bio.h>
16 #include <linux/blk-crypto.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/sched/signal.h>
21 #include <linux/fiemap.h>
22 #include <linux/iomap.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "iostat.h"
28 #include <trace/events/f2fs.h>
29
30 #define NUM_PREALLOC_POST_READ_CTXS 128
31
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36
37 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
38
f2fs_init_bioset(void)39 int __init f2fs_init_bioset(void)
40 {
41 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42 0, BIOSET_NEED_BVECS);
43 }
44
f2fs_destroy_bioset(void)45 void f2fs_destroy_bioset(void)
46 {
47 bioset_exit(&f2fs_bioset);
48 }
49
f2fs_is_cp_guaranteed(struct page * page)50 bool f2fs_is_cp_guaranteed(struct page *page)
51 {
52 struct address_space *mapping = page->mapping;
53 struct inode *inode;
54 struct f2fs_sb_info *sbi;
55
56 if (!mapping)
57 return false;
58
59 inode = mapping->host;
60 sbi = F2FS_I_SB(inode);
61
62 if (inode->i_ino == F2FS_META_INO(sbi) ||
63 inode->i_ino == F2FS_NODE_INO(sbi) ||
64 S_ISDIR(inode->i_mode))
65 return true;
66
67 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
68 page_private_gcing(page))
69 return true;
70 return false;
71 }
72
__read_io_type(struct folio * folio)73 static enum count_type __read_io_type(struct folio *folio)
74 {
75 struct address_space *mapping = folio->mapping;
76
77 if (mapping) {
78 struct inode *inode = mapping->host;
79 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
80
81 if (inode->i_ino == F2FS_META_INO(sbi))
82 return F2FS_RD_META;
83
84 if (inode->i_ino == F2FS_NODE_INO(sbi))
85 return F2FS_RD_NODE;
86 }
87 return F2FS_RD_DATA;
88 }
89
90 /* postprocessing steps for read bios */
91 enum bio_post_read_step {
92 #ifdef CONFIG_FS_ENCRYPTION
93 STEP_DECRYPT = BIT(0),
94 #else
95 STEP_DECRYPT = 0, /* compile out the decryption-related code */
96 #endif
97 #ifdef CONFIG_F2FS_FS_COMPRESSION
98 STEP_DECOMPRESS = BIT(1),
99 #else
100 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
101 #endif
102 #ifdef CONFIG_FS_VERITY
103 STEP_VERITY = BIT(2),
104 #else
105 STEP_VERITY = 0, /* compile out the verity-related code */
106 #endif
107 };
108
109 struct bio_post_read_ctx {
110 struct bio *bio;
111 struct f2fs_sb_info *sbi;
112 struct work_struct work;
113 unsigned int enabled_steps;
114 /*
115 * decompression_attempted keeps track of whether
116 * f2fs_end_read_compressed_page() has been called on the pages in the
117 * bio that belong to a compressed cluster yet.
118 */
119 bool decompression_attempted;
120 block_t fs_blkaddr;
121 };
122
123 /*
124 * Update and unlock a bio's pages, and free the bio.
125 *
126 * This marks pages up-to-date only if there was no error in the bio (I/O error,
127 * decryption error, or verity error), as indicated by bio->bi_status.
128 *
129 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
130 * aren't marked up-to-date here, as decompression is done on a per-compression-
131 * cluster basis rather than a per-bio basis. Instead, we only must do two
132 * things for each compressed page here: call f2fs_end_read_compressed_page()
133 * with failed=true if an error occurred before it would have normally gotten
134 * called (i.e., I/O error or decryption error, but *not* verity error), and
135 * release the bio's reference to the decompress_io_ctx of the page's cluster.
136 */
f2fs_finish_read_bio(struct bio * bio,bool in_task)137 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
138 {
139 struct folio_iter fi;
140 struct bio_post_read_ctx *ctx = bio->bi_private;
141
142 bio_for_each_folio_all(fi, bio) {
143 struct folio *folio = fi.folio;
144
145 if (f2fs_is_compressed_page(&folio->page)) {
146 if (ctx && !ctx->decompression_attempted)
147 f2fs_end_read_compressed_page(&folio->page, true, 0,
148 in_task);
149 f2fs_put_page_dic(&folio->page, in_task);
150 continue;
151 }
152
153 dec_page_count(F2FS_F_SB(folio), __read_io_type(folio));
154 folio_end_read(folio, bio->bi_status == 0);
155 }
156
157 if (ctx)
158 mempool_free(ctx, bio_post_read_ctx_pool);
159 bio_put(bio);
160 }
161
f2fs_verify_bio(struct work_struct * work)162 static void f2fs_verify_bio(struct work_struct *work)
163 {
164 struct bio_post_read_ctx *ctx =
165 container_of(work, struct bio_post_read_ctx, work);
166 struct bio *bio = ctx->bio;
167 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
168
169 /*
170 * fsverity_verify_bio() may call readahead() again, and while verity
171 * will be disabled for this, decryption and/or decompression may still
172 * be needed, resulting in another bio_post_read_ctx being allocated.
173 * So to prevent deadlocks we need to release the current ctx to the
174 * mempool first. This assumes that verity is the last post-read step.
175 */
176 mempool_free(ctx, bio_post_read_ctx_pool);
177 bio->bi_private = NULL;
178
179 /*
180 * Verify the bio's pages with fs-verity. Exclude compressed pages,
181 * as those were handled separately by f2fs_end_read_compressed_page().
182 */
183 if (may_have_compressed_pages) {
184 struct bio_vec *bv;
185 struct bvec_iter_all iter_all;
186
187 bio_for_each_segment_all(bv, bio, iter_all) {
188 struct page *page = bv->bv_page;
189
190 if (!f2fs_is_compressed_page(page) &&
191 !fsverity_verify_page(page)) {
192 bio->bi_status = BLK_STS_IOERR;
193 break;
194 }
195 }
196 } else {
197 fsverity_verify_bio(bio);
198 }
199
200 f2fs_finish_read_bio(bio, true);
201 }
202
203 /*
204 * If the bio's data needs to be verified with fs-verity, then enqueue the
205 * verity work for the bio. Otherwise finish the bio now.
206 *
207 * Note that to avoid deadlocks, the verity work can't be done on the
208 * decryption/decompression workqueue. This is because verifying the data pages
209 * can involve reading verity metadata pages from the file, and these verity
210 * metadata pages may be encrypted and/or compressed.
211 */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)212 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
213 {
214 struct bio_post_read_ctx *ctx = bio->bi_private;
215
216 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
217 INIT_WORK(&ctx->work, f2fs_verify_bio);
218 fsverity_enqueue_verify_work(&ctx->work);
219 } else {
220 f2fs_finish_read_bio(bio, in_task);
221 }
222 }
223
224 /*
225 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
226 * remaining page was read by @ctx->bio.
227 *
228 * Note that a bio may span clusters (even a mix of compressed and uncompressed
229 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
230 * that the bio includes at least one compressed page. The actual decompression
231 * is done on a per-cluster basis, not a per-bio basis.
232 */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)233 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
234 bool in_task)
235 {
236 struct bio_vec *bv;
237 struct bvec_iter_all iter_all;
238 bool all_compressed = true;
239 block_t blkaddr = ctx->fs_blkaddr;
240
241 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
242 struct page *page = bv->bv_page;
243
244 if (f2fs_is_compressed_page(page))
245 f2fs_end_read_compressed_page(page, false, blkaddr,
246 in_task);
247 else
248 all_compressed = false;
249
250 blkaddr++;
251 }
252
253 ctx->decompression_attempted = true;
254
255 /*
256 * Optimization: if all the bio's pages are compressed, then scheduling
257 * the per-bio verity work is unnecessary, as verity will be fully
258 * handled at the compression cluster level.
259 */
260 if (all_compressed)
261 ctx->enabled_steps &= ~STEP_VERITY;
262 }
263
f2fs_post_read_work(struct work_struct * work)264 static void f2fs_post_read_work(struct work_struct *work)
265 {
266 struct bio_post_read_ctx *ctx =
267 container_of(work, struct bio_post_read_ctx, work);
268 struct bio *bio = ctx->bio;
269
270 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
271 f2fs_finish_read_bio(bio, true);
272 return;
273 }
274
275 if (ctx->enabled_steps & STEP_DECOMPRESS)
276 f2fs_handle_step_decompress(ctx, true);
277
278 f2fs_verify_and_finish_bio(bio, true);
279 }
280
f2fs_read_end_io(struct bio * bio)281 static void f2fs_read_end_io(struct bio *bio)
282 {
283 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
284 struct bio_post_read_ctx *ctx;
285 bool intask = in_task();
286
287 iostat_update_and_unbind_ctx(bio);
288 ctx = bio->bi_private;
289
290 if (time_to_inject(sbi, FAULT_READ_IO))
291 bio->bi_status = BLK_STS_IOERR;
292
293 if (bio->bi_status) {
294 f2fs_finish_read_bio(bio, intask);
295 return;
296 }
297
298 if (ctx) {
299 unsigned int enabled_steps = ctx->enabled_steps &
300 (STEP_DECRYPT | STEP_DECOMPRESS);
301
302 /*
303 * If we have only decompression step between decompression and
304 * decrypt, we don't need post processing for this.
305 */
306 if (enabled_steps == STEP_DECOMPRESS &&
307 !f2fs_low_mem_mode(sbi)) {
308 f2fs_handle_step_decompress(ctx, intask);
309 } else if (enabled_steps) {
310 INIT_WORK(&ctx->work, f2fs_post_read_work);
311 queue_work(ctx->sbi->post_read_wq, &ctx->work);
312 return;
313 }
314 }
315
316 f2fs_verify_and_finish_bio(bio, intask);
317 }
318
f2fs_write_end_io(struct bio * bio)319 static void f2fs_write_end_io(struct bio *bio)
320 {
321 struct f2fs_sb_info *sbi;
322 struct bio_vec *bvec;
323 struct bvec_iter_all iter_all;
324
325 iostat_update_and_unbind_ctx(bio);
326 sbi = bio->bi_private;
327
328 if (time_to_inject(sbi, FAULT_WRITE_IO))
329 bio->bi_status = BLK_STS_IOERR;
330
331 bio_for_each_segment_all(bvec, bio, iter_all) {
332 struct page *page = bvec->bv_page;
333 enum count_type type = WB_DATA_TYPE(page, false);
334
335 fscrypt_finalize_bounce_page(&page);
336
337 #ifdef CONFIG_F2FS_FS_COMPRESSION
338 if (f2fs_is_compressed_page(page)) {
339 f2fs_compress_write_end_io(bio, page);
340 continue;
341 }
342 #endif
343
344 if (unlikely(bio->bi_status)) {
345 mapping_set_error(page->mapping, -EIO);
346 if (type == F2FS_WB_CP_DATA)
347 f2fs_stop_checkpoint(sbi, true,
348 STOP_CP_REASON_WRITE_FAIL);
349 }
350
351 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
352 page_folio(page)->index != nid_of_node(page));
353
354 dec_page_count(sbi, type);
355 if (f2fs_in_warm_node_list(sbi, page))
356 f2fs_del_fsync_node_entry(sbi, page);
357 clear_page_private_gcing(page);
358 end_page_writeback(page);
359 }
360 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
361 wq_has_sleeper(&sbi->cp_wait))
362 wake_up(&sbi->cp_wait);
363
364 bio_put(bio);
365 }
366
367 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_write_end_io(struct bio * bio)368 static void f2fs_zone_write_end_io(struct bio *bio)
369 {
370 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
371
372 bio->bi_private = io->bi_private;
373 complete(&io->zone_wait);
374 f2fs_write_end_io(bio);
375 }
376 #endif
377
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,sector_t * sector)378 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
379 block_t blk_addr, sector_t *sector)
380 {
381 struct block_device *bdev = sbi->sb->s_bdev;
382 int i;
383
384 if (f2fs_is_multi_device(sbi)) {
385 for (i = 0; i < sbi->s_ndevs; i++) {
386 if (FDEV(i).start_blk <= blk_addr &&
387 FDEV(i).end_blk >= blk_addr) {
388 blk_addr -= FDEV(i).start_blk;
389 bdev = FDEV(i).bdev;
390 break;
391 }
392 }
393 }
394
395 if (sector)
396 *sector = SECTOR_FROM_BLOCK(blk_addr);
397 return bdev;
398 }
399
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)400 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
401 {
402 int i;
403
404 if (!f2fs_is_multi_device(sbi))
405 return 0;
406
407 for (i = 0; i < sbi->s_ndevs; i++)
408 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
409 return i;
410 return 0;
411 }
412
f2fs_io_flags(struct f2fs_io_info * fio)413 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
414 {
415 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
416 unsigned int fua_flag, meta_flag, io_flag;
417 blk_opf_t op_flags = 0;
418
419 if (fio->op != REQ_OP_WRITE)
420 return 0;
421 if (fio->type == DATA)
422 io_flag = fio->sbi->data_io_flag;
423 else if (fio->type == NODE)
424 io_flag = fio->sbi->node_io_flag;
425 else
426 return 0;
427
428 fua_flag = io_flag & temp_mask;
429 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
430
431 /*
432 * data/node io flag bits per temp:
433 * REQ_META | REQ_FUA |
434 * 5 | 4 | 3 | 2 | 1 | 0 |
435 * Cold | Warm | Hot | Cold | Warm | Hot |
436 */
437 if (BIT(fio->temp) & meta_flag)
438 op_flags |= REQ_META;
439 if (BIT(fio->temp) & fua_flag)
440 op_flags |= REQ_FUA;
441 return op_flags;
442 }
443
__bio_alloc(struct f2fs_io_info * fio,int npages)444 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
445 {
446 struct f2fs_sb_info *sbi = fio->sbi;
447 struct block_device *bdev;
448 sector_t sector;
449 struct bio *bio;
450
451 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
452 bio = bio_alloc_bioset(bdev, npages,
453 fio->op | fio->op_flags | f2fs_io_flags(fio),
454 GFP_NOIO, &f2fs_bioset);
455 bio->bi_iter.bi_sector = sector;
456 if (is_read_io(fio->op)) {
457 bio->bi_end_io = f2fs_read_end_io;
458 bio->bi_private = NULL;
459 } else {
460 bio->bi_end_io = f2fs_write_end_io;
461 bio->bi_private = sbi;
462 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
463 fio->type, fio->temp);
464 }
465 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
466
467 if (fio->io_wbc)
468 wbc_init_bio(fio->io_wbc, bio);
469
470 return bio;
471 }
472
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)473 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
474 pgoff_t first_idx,
475 const struct f2fs_io_info *fio,
476 gfp_t gfp_mask)
477 {
478 /*
479 * The f2fs garbage collector sets ->encrypted_page when it wants to
480 * read/write raw data without encryption.
481 */
482 if (!fio || !fio->encrypted_page)
483 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
484 }
485
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)486 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
487 pgoff_t next_idx,
488 const struct f2fs_io_info *fio)
489 {
490 /*
491 * The f2fs garbage collector sets ->encrypted_page when it wants to
492 * read/write raw data without encryption.
493 */
494 if (fio && fio->encrypted_page)
495 return !bio_has_crypt_ctx(bio);
496
497 return fscrypt_mergeable_bio(bio, inode, next_idx);
498 }
499
f2fs_submit_read_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)500 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
501 enum page_type type)
502 {
503 WARN_ON_ONCE(!is_read_io(bio_op(bio)));
504 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
505
506 iostat_update_submit_ctx(bio, type);
507 submit_bio(bio);
508 }
509
f2fs_submit_write_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)510 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
511 enum page_type type)
512 {
513 WARN_ON_ONCE(is_read_io(bio_op(bio)));
514 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
515 iostat_update_submit_ctx(bio, type);
516 submit_bio(bio);
517 }
518
__submit_merged_bio(struct f2fs_bio_info * io)519 static void __submit_merged_bio(struct f2fs_bio_info *io)
520 {
521 struct f2fs_io_info *fio = &io->fio;
522
523 if (!io->bio)
524 return;
525
526 if (is_read_io(fio->op)) {
527 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
528 f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
529 } else {
530 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
531 f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
532 }
533 io->bio = NULL;
534 }
535
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)536 static bool __has_merged_page(struct bio *bio, struct inode *inode,
537 struct page *page, nid_t ino)
538 {
539 struct bio_vec *bvec;
540 struct bvec_iter_all iter_all;
541
542 if (!bio)
543 return false;
544
545 if (!inode && !page && !ino)
546 return true;
547
548 bio_for_each_segment_all(bvec, bio, iter_all) {
549 struct page *target = bvec->bv_page;
550
551 if (fscrypt_is_bounce_page(target)) {
552 target = fscrypt_pagecache_page(target);
553 if (IS_ERR(target))
554 continue;
555 }
556 if (f2fs_is_compressed_page(target)) {
557 target = f2fs_compress_control_page(target);
558 if (IS_ERR(target))
559 continue;
560 }
561
562 if (inode && inode == target->mapping->host)
563 return true;
564 if (page && page == target)
565 return true;
566 if (ino && ino == ino_of_node(target))
567 return true;
568 }
569
570 return false;
571 }
572
f2fs_init_write_merge_io(struct f2fs_sb_info * sbi)573 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
574 {
575 int i;
576
577 for (i = 0; i < NR_PAGE_TYPE; i++) {
578 int n = (i == META) ? 1 : NR_TEMP_TYPE;
579 int j;
580
581 sbi->write_io[i] = f2fs_kmalloc(sbi,
582 array_size(n, sizeof(struct f2fs_bio_info)),
583 GFP_KERNEL);
584 if (!sbi->write_io[i])
585 return -ENOMEM;
586
587 for (j = HOT; j < n; j++) {
588 struct f2fs_bio_info *io = &sbi->write_io[i][j];
589
590 init_f2fs_rwsem(&io->io_rwsem);
591 io->sbi = sbi;
592 io->bio = NULL;
593 io->last_block_in_bio = 0;
594 spin_lock_init(&io->io_lock);
595 INIT_LIST_HEAD(&io->io_list);
596 INIT_LIST_HEAD(&io->bio_list);
597 init_f2fs_rwsem(&io->bio_list_lock);
598 #ifdef CONFIG_BLK_DEV_ZONED
599 init_completion(&io->zone_wait);
600 io->zone_pending_bio = NULL;
601 io->bi_private = NULL;
602 #endif
603 }
604 }
605
606 return 0;
607 }
608
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)609 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
610 enum page_type type, enum temp_type temp)
611 {
612 enum page_type btype = PAGE_TYPE_OF_BIO(type);
613 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
614
615 f2fs_down_write(&io->io_rwsem);
616
617 if (!io->bio)
618 goto unlock_out;
619
620 /* change META to META_FLUSH in the checkpoint procedure */
621 if (type >= META_FLUSH) {
622 io->fio.type = META_FLUSH;
623 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
624 if (!test_opt(sbi, NOBARRIER))
625 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
626 }
627 __submit_merged_bio(io);
628 unlock_out:
629 f2fs_up_write(&io->io_rwsem);
630 }
631
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)632 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
633 struct inode *inode, struct page *page,
634 nid_t ino, enum page_type type, bool force)
635 {
636 enum temp_type temp;
637 bool ret = true;
638
639 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
640 if (!force) {
641 enum page_type btype = PAGE_TYPE_OF_BIO(type);
642 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
643
644 f2fs_down_read(&io->io_rwsem);
645 ret = __has_merged_page(io->bio, inode, page, ino);
646 f2fs_up_read(&io->io_rwsem);
647 }
648 if (ret)
649 __f2fs_submit_merged_write(sbi, type, temp);
650
651 /* TODO: use HOT temp only for meta pages now. */
652 if (type >= META)
653 break;
654 }
655 }
656
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)657 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
658 {
659 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
660 }
661
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)662 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
663 struct inode *inode, struct page *page,
664 nid_t ino, enum page_type type)
665 {
666 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
667 }
668
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)669 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
670 {
671 f2fs_submit_merged_write(sbi, DATA);
672 f2fs_submit_merged_write(sbi, NODE);
673 f2fs_submit_merged_write(sbi, META);
674 }
675
676 /*
677 * Fill the locked page with data located in the block address.
678 * A caller needs to unlock the page on failure.
679 */
f2fs_submit_page_bio(struct f2fs_io_info * fio)680 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
681 {
682 struct bio *bio;
683 struct folio *fio_folio = page_folio(fio->page);
684 struct folio *data_folio = fio->encrypted_page ?
685 page_folio(fio->encrypted_page) : fio_folio;
686
687 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
688 fio->is_por ? META_POR : (__is_meta_io(fio) ?
689 META_GENERIC : DATA_GENERIC_ENHANCE)))
690 return -EFSCORRUPTED;
691
692 trace_f2fs_submit_folio_bio(data_folio, fio);
693
694 /* Allocate a new bio */
695 bio = __bio_alloc(fio, 1);
696
697 f2fs_set_bio_crypt_ctx(bio, fio_folio->mapping->host,
698 fio_folio->index, fio, GFP_NOIO);
699 bio_add_folio_nofail(bio, data_folio, folio_size(data_folio), 0);
700
701 if (fio->io_wbc && !is_read_io(fio->op))
702 wbc_account_cgroup_owner(fio->io_wbc, fio_folio, PAGE_SIZE);
703
704 inc_page_count(fio->sbi, is_read_io(fio->op) ?
705 __read_io_type(data_folio) : WB_DATA_TYPE(fio->page, false));
706
707 if (is_read_io(bio_op(bio)))
708 f2fs_submit_read_bio(fio->sbi, bio, fio->type);
709 else
710 f2fs_submit_write_bio(fio->sbi, bio, fio->type);
711 return 0;
712 }
713
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)714 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
715 block_t last_blkaddr, block_t cur_blkaddr)
716 {
717 if (unlikely(sbi->max_io_bytes &&
718 bio->bi_iter.bi_size >= sbi->max_io_bytes))
719 return false;
720 if (last_blkaddr + 1 != cur_blkaddr)
721 return false;
722 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
723 }
724
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)725 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
726 struct f2fs_io_info *fio)
727 {
728 if (io->fio.op != fio->op)
729 return false;
730 return io->fio.op_flags == fio->op_flags;
731 }
732
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)733 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
734 struct f2fs_bio_info *io,
735 struct f2fs_io_info *fio,
736 block_t last_blkaddr,
737 block_t cur_blkaddr)
738 {
739 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
740 return false;
741 return io_type_is_mergeable(io, fio);
742 }
743
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)744 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
745 struct page *page, enum temp_type temp)
746 {
747 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
748 struct bio_entry *be;
749
750 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
751 be->bio = bio;
752 bio_get(bio);
753
754 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
755 f2fs_bug_on(sbi, 1);
756
757 f2fs_down_write(&io->bio_list_lock);
758 list_add_tail(&be->list, &io->bio_list);
759 f2fs_up_write(&io->bio_list_lock);
760 }
761
del_bio_entry(struct bio_entry * be)762 static void del_bio_entry(struct bio_entry *be)
763 {
764 list_del(&be->list);
765 kmem_cache_free(bio_entry_slab, be);
766 }
767
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)768 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
769 struct page *page)
770 {
771 struct f2fs_sb_info *sbi = fio->sbi;
772 enum temp_type temp;
773 bool found = false;
774 int ret = -EAGAIN;
775
776 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
777 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
778 struct list_head *head = &io->bio_list;
779 struct bio_entry *be;
780
781 f2fs_down_write(&io->bio_list_lock);
782 list_for_each_entry(be, head, list) {
783 if (be->bio != *bio)
784 continue;
785
786 found = true;
787
788 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
789 *fio->last_block,
790 fio->new_blkaddr));
791 if (f2fs_crypt_mergeable_bio(*bio,
792 fio->page->mapping->host,
793 page_folio(fio->page)->index, fio) &&
794 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
795 PAGE_SIZE) {
796 ret = 0;
797 break;
798 }
799
800 /* page can't be merged into bio; submit the bio */
801 del_bio_entry(be);
802 f2fs_submit_write_bio(sbi, *bio, DATA);
803 break;
804 }
805 f2fs_up_write(&io->bio_list_lock);
806 }
807
808 if (ret) {
809 bio_put(*bio);
810 *bio = NULL;
811 }
812
813 return ret;
814 }
815
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)816 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
817 struct bio **bio, struct page *page)
818 {
819 enum temp_type temp;
820 bool found = false;
821 struct bio *target = bio ? *bio : NULL;
822
823 f2fs_bug_on(sbi, !target && !page);
824
825 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
826 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
827 struct list_head *head = &io->bio_list;
828 struct bio_entry *be;
829
830 if (list_empty(head))
831 continue;
832
833 f2fs_down_read(&io->bio_list_lock);
834 list_for_each_entry(be, head, list) {
835 if (target)
836 found = (target == be->bio);
837 else
838 found = __has_merged_page(be->bio, NULL,
839 page, 0);
840 if (found)
841 break;
842 }
843 f2fs_up_read(&io->bio_list_lock);
844
845 if (!found)
846 continue;
847
848 found = false;
849
850 f2fs_down_write(&io->bio_list_lock);
851 list_for_each_entry(be, head, list) {
852 if (target)
853 found = (target == be->bio);
854 else
855 found = __has_merged_page(be->bio, NULL,
856 page, 0);
857 if (found) {
858 target = be->bio;
859 del_bio_entry(be);
860 break;
861 }
862 }
863 f2fs_up_write(&io->bio_list_lock);
864 }
865
866 if (found)
867 f2fs_submit_write_bio(sbi, target, DATA);
868 if (bio && *bio) {
869 bio_put(*bio);
870 *bio = NULL;
871 }
872 }
873
f2fs_merge_page_bio(struct f2fs_io_info * fio)874 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
875 {
876 struct bio *bio = *fio->bio;
877 struct page *page = fio->encrypted_page ?
878 fio->encrypted_page : fio->page;
879
880 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
881 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
882 return -EFSCORRUPTED;
883
884 trace_f2fs_submit_folio_bio(page_folio(page), fio);
885
886 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
887 fio->new_blkaddr))
888 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
889 alloc_new:
890 if (!bio) {
891 bio = __bio_alloc(fio, BIO_MAX_VECS);
892 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
893 page_folio(fio->page)->index, fio, GFP_NOIO);
894
895 add_bio_entry(fio->sbi, bio, page, fio->temp);
896 } else {
897 if (add_ipu_page(fio, &bio, page))
898 goto alloc_new;
899 }
900
901 if (fio->io_wbc)
902 wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page),
903 PAGE_SIZE);
904
905 inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
906
907 *fio->last_block = fio->new_blkaddr;
908 *fio->bio = bio;
909
910 return 0;
911 }
912
913 #ifdef CONFIG_BLK_DEV_ZONED
is_end_zone_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)914 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
915 {
916 struct block_device *bdev = sbi->sb->s_bdev;
917 int devi = 0;
918
919 if (f2fs_is_multi_device(sbi)) {
920 devi = f2fs_target_device_index(sbi, blkaddr);
921 if (blkaddr < FDEV(devi).start_blk ||
922 blkaddr > FDEV(devi).end_blk) {
923 f2fs_err(sbi, "Invalid block %x", blkaddr);
924 return false;
925 }
926 blkaddr -= FDEV(devi).start_blk;
927 bdev = FDEV(devi).bdev;
928 }
929 return bdev_is_zoned(bdev) &&
930 f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
931 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
932 }
933 #endif
934
f2fs_submit_page_write(struct f2fs_io_info * fio)935 void f2fs_submit_page_write(struct f2fs_io_info *fio)
936 {
937 struct f2fs_sb_info *sbi = fio->sbi;
938 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
939 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
940 struct page *bio_page;
941 enum count_type type;
942
943 f2fs_bug_on(sbi, is_read_io(fio->op));
944
945 f2fs_down_write(&io->io_rwsem);
946 next:
947 #ifdef CONFIG_BLK_DEV_ZONED
948 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
949 wait_for_completion_io(&io->zone_wait);
950 bio_put(io->zone_pending_bio);
951 io->zone_pending_bio = NULL;
952 io->bi_private = NULL;
953 }
954 #endif
955
956 if (fio->in_list) {
957 spin_lock(&io->io_lock);
958 if (list_empty(&io->io_list)) {
959 spin_unlock(&io->io_lock);
960 goto out;
961 }
962 fio = list_first_entry(&io->io_list,
963 struct f2fs_io_info, list);
964 list_del(&fio->list);
965 spin_unlock(&io->io_lock);
966 }
967
968 verify_fio_blkaddr(fio);
969
970 if (fio->encrypted_page)
971 bio_page = fio->encrypted_page;
972 else if (fio->compressed_page)
973 bio_page = fio->compressed_page;
974 else
975 bio_page = fio->page;
976
977 /* set submitted = true as a return value */
978 fio->submitted = 1;
979
980 type = WB_DATA_TYPE(bio_page, fio->compressed_page);
981 inc_page_count(sbi, type);
982
983 if (io->bio &&
984 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
985 fio->new_blkaddr) ||
986 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
987 page_folio(bio_page)->index, fio)))
988 __submit_merged_bio(io);
989 alloc_new:
990 if (io->bio == NULL) {
991 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
992 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
993 page_folio(bio_page)->index, fio, GFP_NOIO);
994 io->fio = *fio;
995 }
996
997 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
998 __submit_merged_bio(io);
999 goto alloc_new;
1000 }
1001
1002 if (fio->io_wbc)
1003 wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page),
1004 PAGE_SIZE);
1005
1006 io->last_block_in_bio = fio->new_blkaddr;
1007
1008 trace_f2fs_submit_folio_write(page_folio(fio->page), fio);
1009 #ifdef CONFIG_BLK_DEV_ZONED
1010 if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1011 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1012 bio_get(io->bio);
1013 reinit_completion(&io->zone_wait);
1014 io->bi_private = io->bio->bi_private;
1015 io->bio->bi_private = io;
1016 io->bio->bi_end_io = f2fs_zone_write_end_io;
1017 io->zone_pending_bio = io->bio;
1018 __submit_merged_bio(io);
1019 }
1020 #endif
1021 if (fio->in_list)
1022 goto next;
1023 out:
1024 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1025 !f2fs_is_checkpoint_ready(sbi))
1026 __submit_merged_bio(io);
1027 f2fs_up_write(&io->io_rwsem);
1028 }
1029
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,blk_opf_t op_flag,pgoff_t first_idx,bool for_write)1030 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1031 unsigned nr_pages, blk_opf_t op_flag,
1032 pgoff_t first_idx, bool for_write)
1033 {
1034 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1035 struct bio *bio;
1036 struct bio_post_read_ctx *ctx = NULL;
1037 unsigned int post_read_steps = 0;
1038 sector_t sector;
1039 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1040
1041 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1042 REQ_OP_READ | op_flag,
1043 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1044 if (!bio)
1045 return ERR_PTR(-ENOMEM);
1046 bio->bi_iter.bi_sector = sector;
1047 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1048 bio->bi_end_io = f2fs_read_end_io;
1049
1050 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1051 post_read_steps |= STEP_DECRYPT;
1052
1053 if (f2fs_need_verity(inode, first_idx))
1054 post_read_steps |= STEP_VERITY;
1055
1056 /*
1057 * STEP_DECOMPRESS is handled specially, since a compressed file might
1058 * contain both compressed and uncompressed clusters. We'll allocate a
1059 * bio_post_read_ctx if the file is compressed, but the caller is
1060 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1061 */
1062
1063 if (post_read_steps || f2fs_compressed_file(inode)) {
1064 /* Due to the mempool, this never fails. */
1065 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1066 ctx->bio = bio;
1067 ctx->sbi = sbi;
1068 ctx->enabled_steps = post_read_steps;
1069 ctx->fs_blkaddr = blkaddr;
1070 ctx->decompression_attempted = false;
1071 bio->bi_private = ctx;
1072 }
1073 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1074
1075 return bio;
1076 }
1077
1078 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct folio * folio,block_t blkaddr,blk_opf_t op_flags,bool for_write)1079 static int f2fs_submit_page_read(struct inode *inode, struct folio *folio,
1080 block_t blkaddr, blk_opf_t op_flags,
1081 bool for_write)
1082 {
1083 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1084 struct bio *bio;
1085
1086 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1087 folio->index, for_write);
1088 if (IS_ERR(bio))
1089 return PTR_ERR(bio);
1090
1091 /* wait for GCed page writeback via META_MAPPING */
1092 f2fs_wait_on_block_writeback(inode, blkaddr);
1093
1094 if (!bio_add_folio(bio, folio, PAGE_SIZE, 0)) {
1095 iostat_update_and_unbind_ctx(bio);
1096 if (bio->bi_private)
1097 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1098 bio_put(bio);
1099 return -EFAULT;
1100 }
1101 inc_page_count(sbi, F2FS_RD_DATA);
1102 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1103 f2fs_submit_read_bio(sbi, bio, DATA);
1104 return 0;
1105 }
1106
__set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1107 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1108 {
1109 __le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1110
1111 dn->data_blkaddr = blkaddr;
1112 addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1113 }
1114
1115 /*
1116 * Lock ordering for the change of data block address:
1117 * ->data_page
1118 * ->node_page
1119 * update block addresses in the node page
1120 */
f2fs_set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1121 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1122 {
1123 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1124 __set_data_blkaddr(dn, blkaddr);
1125 if (set_page_dirty(dn->node_page))
1126 dn->node_changed = true;
1127 }
1128
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1129 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1130 {
1131 f2fs_set_data_blkaddr(dn, blkaddr);
1132 f2fs_update_read_extent_cache(dn);
1133 }
1134
1135 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1136 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1137 {
1138 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1139 int err;
1140
1141 if (!count)
1142 return 0;
1143
1144 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1145 return -EPERM;
1146 err = inc_valid_block_count(sbi, dn->inode, &count, true);
1147 if (unlikely(err))
1148 return err;
1149
1150 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1151 dn->ofs_in_node, count);
1152
1153 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1154
1155 for (; count > 0; dn->ofs_in_node++) {
1156 block_t blkaddr = f2fs_data_blkaddr(dn);
1157
1158 if (blkaddr == NULL_ADDR) {
1159 __set_data_blkaddr(dn, NEW_ADDR);
1160 count--;
1161 }
1162 }
1163
1164 if (set_page_dirty(dn->node_page))
1165 dn->node_changed = true;
1166 return 0;
1167 }
1168
1169 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1170 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1171 {
1172 unsigned int ofs_in_node = dn->ofs_in_node;
1173 int ret;
1174
1175 ret = f2fs_reserve_new_blocks(dn, 1);
1176 dn->ofs_in_node = ofs_in_node;
1177 return ret;
1178 }
1179
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1180 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1181 {
1182 bool need_put = dn->inode_page ? false : true;
1183 int err;
1184
1185 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1186 if (err)
1187 return err;
1188
1189 if (dn->data_blkaddr == NULL_ADDR)
1190 err = f2fs_reserve_new_block(dn);
1191 if (err || need_put)
1192 f2fs_put_dnode(dn);
1193 return err;
1194 }
1195
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,blk_opf_t op_flags,bool for_write,pgoff_t * next_pgofs)1196 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1197 blk_opf_t op_flags, bool for_write,
1198 pgoff_t *next_pgofs)
1199 {
1200 struct address_space *mapping = inode->i_mapping;
1201 struct dnode_of_data dn;
1202 struct page *page;
1203 int err;
1204
1205 page = f2fs_grab_cache_page(mapping, index, for_write);
1206 if (!page)
1207 return ERR_PTR(-ENOMEM);
1208
1209 if (f2fs_lookup_read_extent_cache_block(inode, index,
1210 &dn.data_blkaddr)) {
1211 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1212 DATA_GENERIC_ENHANCE_READ)) {
1213 err = -EFSCORRUPTED;
1214 goto put_err;
1215 }
1216 goto got_it;
1217 }
1218
1219 set_new_dnode(&dn, inode, NULL, NULL, 0);
1220 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1221 if (err) {
1222 if (err == -ENOENT && next_pgofs)
1223 *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1224 goto put_err;
1225 }
1226 f2fs_put_dnode(&dn);
1227
1228 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1229 err = -ENOENT;
1230 if (next_pgofs)
1231 *next_pgofs = index + 1;
1232 goto put_err;
1233 }
1234 if (dn.data_blkaddr != NEW_ADDR &&
1235 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1236 dn.data_blkaddr,
1237 DATA_GENERIC_ENHANCE)) {
1238 err = -EFSCORRUPTED;
1239 goto put_err;
1240 }
1241 got_it:
1242 if (PageUptodate(page)) {
1243 unlock_page(page);
1244 return page;
1245 }
1246
1247 /*
1248 * A new dentry page is allocated but not able to be written, since its
1249 * new inode page couldn't be allocated due to -ENOSPC.
1250 * In such the case, its blkaddr can be remained as NEW_ADDR.
1251 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1252 * f2fs_init_inode_metadata.
1253 */
1254 if (dn.data_blkaddr == NEW_ADDR) {
1255 zero_user_segment(page, 0, PAGE_SIZE);
1256 if (!PageUptodate(page))
1257 SetPageUptodate(page);
1258 unlock_page(page);
1259 return page;
1260 }
1261
1262 err = f2fs_submit_page_read(inode, page_folio(page), dn.data_blkaddr,
1263 op_flags, for_write);
1264 if (err)
1265 goto put_err;
1266 return page;
1267
1268 put_err:
1269 f2fs_put_page(page, 1);
1270 return ERR_PTR(err);
1271 }
1272
f2fs_find_data_page(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)1273 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1274 pgoff_t *next_pgofs)
1275 {
1276 struct address_space *mapping = inode->i_mapping;
1277 struct page *page;
1278
1279 page = find_get_page_flags(mapping, index, FGP_ACCESSED);
1280 if (page && PageUptodate(page))
1281 return page;
1282 f2fs_put_page(page, 0);
1283
1284 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1285 if (IS_ERR(page))
1286 return page;
1287
1288 if (PageUptodate(page))
1289 return page;
1290
1291 wait_on_page_locked(page);
1292 if (unlikely(!PageUptodate(page))) {
1293 f2fs_put_page(page, 0);
1294 return ERR_PTR(-EIO);
1295 }
1296 return page;
1297 }
1298
1299 /*
1300 * If it tries to access a hole, return an error.
1301 * Because, the callers, functions in dir.c and GC, should be able to know
1302 * whether this page exists or not.
1303 */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1304 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1305 bool for_write)
1306 {
1307 struct address_space *mapping = inode->i_mapping;
1308 struct page *page;
1309
1310 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1311 if (IS_ERR(page))
1312 return page;
1313
1314 /* wait for read completion */
1315 lock_page(page);
1316 if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1317 f2fs_put_page(page, 1);
1318 return ERR_PTR(-EIO);
1319 }
1320 return page;
1321 }
1322
1323 /*
1324 * Caller ensures that this data page is never allocated.
1325 * A new zero-filled data page is allocated in the page cache.
1326 *
1327 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1328 * f2fs_unlock_op().
1329 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1330 * ipage should be released by this function.
1331 */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1332 struct page *f2fs_get_new_data_page(struct inode *inode,
1333 struct page *ipage, pgoff_t index, bool new_i_size)
1334 {
1335 struct address_space *mapping = inode->i_mapping;
1336 struct page *page;
1337 struct dnode_of_data dn;
1338 int err;
1339
1340 page = f2fs_grab_cache_page(mapping, index, true);
1341 if (!page) {
1342 /*
1343 * before exiting, we should make sure ipage will be released
1344 * if any error occur.
1345 */
1346 f2fs_put_page(ipage, 1);
1347 return ERR_PTR(-ENOMEM);
1348 }
1349
1350 set_new_dnode(&dn, inode, ipage, NULL, 0);
1351 err = f2fs_reserve_block(&dn, index);
1352 if (err) {
1353 f2fs_put_page(page, 1);
1354 return ERR_PTR(err);
1355 }
1356 if (!ipage)
1357 f2fs_put_dnode(&dn);
1358
1359 if (PageUptodate(page))
1360 goto got_it;
1361
1362 if (dn.data_blkaddr == NEW_ADDR) {
1363 zero_user_segment(page, 0, PAGE_SIZE);
1364 if (!PageUptodate(page))
1365 SetPageUptodate(page);
1366 } else {
1367 f2fs_put_page(page, 1);
1368
1369 /* if ipage exists, blkaddr should be NEW_ADDR */
1370 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1371 page = f2fs_get_lock_data_page(inode, index, true);
1372 if (IS_ERR(page))
1373 return page;
1374 }
1375 got_it:
1376 if (new_i_size && i_size_read(inode) <
1377 ((loff_t)(index + 1) << PAGE_SHIFT))
1378 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1379 return page;
1380 }
1381
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1382 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1383 {
1384 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1385 struct f2fs_summary sum;
1386 struct node_info ni;
1387 block_t old_blkaddr;
1388 blkcnt_t count = 1;
1389 int err;
1390
1391 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1392 return -EPERM;
1393
1394 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1395 if (err)
1396 return err;
1397
1398 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1399 if (dn->data_blkaddr == NULL_ADDR) {
1400 err = inc_valid_block_count(sbi, dn->inode, &count, true);
1401 if (unlikely(err))
1402 return err;
1403 }
1404
1405 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1406 old_blkaddr = dn->data_blkaddr;
1407 err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1408 &dn->data_blkaddr, &sum, seg_type, NULL);
1409 if (err)
1410 return err;
1411
1412 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1413 f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
1414
1415 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1416 return 0;
1417 }
1418
f2fs_map_lock(struct f2fs_sb_info * sbi,int flag)1419 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1420 {
1421 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1422 f2fs_down_read(&sbi->node_change);
1423 else
1424 f2fs_lock_op(sbi);
1425 }
1426
f2fs_map_unlock(struct f2fs_sb_info * sbi,int flag)1427 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1428 {
1429 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1430 f2fs_up_read(&sbi->node_change);
1431 else
1432 f2fs_unlock_op(sbi);
1433 }
1434
f2fs_get_block_locked(struct dnode_of_data * dn,pgoff_t index)1435 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1436 {
1437 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1438 int err = 0;
1439
1440 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1441 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1442 &dn->data_blkaddr))
1443 err = f2fs_reserve_block(dn, index);
1444 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1445
1446 return err;
1447 }
1448
f2fs_map_no_dnode(struct inode * inode,struct f2fs_map_blocks * map,struct dnode_of_data * dn,pgoff_t pgoff)1449 static int f2fs_map_no_dnode(struct inode *inode,
1450 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1451 pgoff_t pgoff)
1452 {
1453 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1454
1455 /*
1456 * There is one exceptional case that read_node_page() may return
1457 * -ENOENT due to filesystem has been shutdown or cp_error, return
1458 * -EIO in that case.
1459 */
1460 if (map->m_may_create &&
1461 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1462 return -EIO;
1463
1464 if (map->m_next_pgofs)
1465 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1466 if (map->m_next_extent)
1467 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1468 return 0;
1469 }
1470
f2fs_map_blocks_cached(struct inode * inode,struct f2fs_map_blocks * map,int flag)1471 static bool f2fs_map_blocks_cached(struct inode *inode,
1472 struct f2fs_map_blocks *map, int flag)
1473 {
1474 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1475 unsigned int maxblocks = map->m_len;
1476 pgoff_t pgoff = (pgoff_t)map->m_lblk;
1477 struct extent_info ei = {};
1478
1479 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1480 return false;
1481
1482 map->m_pblk = ei.blk + pgoff - ei.fofs;
1483 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1484 map->m_flags = F2FS_MAP_MAPPED;
1485 if (map->m_next_extent)
1486 *map->m_next_extent = pgoff + map->m_len;
1487
1488 /* for hardware encryption, but to avoid potential issue in future */
1489 if (flag == F2FS_GET_BLOCK_DIO)
1490 f2fs_wait_on_block_writeback_range(inode,
1491 map->m_pblk, map->m_len);
1492
1493 if (f2fs_allow_multi_device_dio(sbi, flag)) {
1494 int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1495 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1496
1497 map->m_bdev = dev->bdev;
1498 map->m_pblk -= dev->start_blk;
1499 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1500 } else {
1501 map->m_bdev = inode->i_sb->s_bdev;
1502 }
1503 return true;
1504 }
1505
map_is_mergeable(struct f2fs_sb_info * sbi,struct f2fs_map_blocks * map,block_t blkaddr,int flag,int bidx,int ofs)1506 static bool map_is_mergeable(struct f2fs_sb_info *sbi,
1507 struct f2fs_map_blocks *map,
1508 block_t blkaddr, int flag, int bidx,
1509 int ofs)
1510 {
1511 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1512 return false;
1513 if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs))
1514 return true;
1515 if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR)
1516 return true;
1517 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1518 return true;
1519 if (flag == F2FS_GET_BLOCK_DIO &&
1520 map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR)
1521 return true;
1522 return false;
1523 }
1524
1525 /*
1526 * f2fs_map_blocks() tries to find or build mapping relationship which
1527 * maps continuous logical blocks to physical blocks, and return such
1528 * info via f2fs_map_blocks structure.
1529 */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int flag)1530 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1531 {
1532 unsigned int maxblocks = map->m_len;
1533 struct dnode_of_data dn;
1534 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1535 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1536 pgoff_t pgofs, end_offset, end;
1537 int err = 0, ofs = 1;
1538 unsigned int ofs_in_node, last_ofs_in_node;
1539 blkcnt_t prealloc;
1540 block_t blkaddr;
1541 unsigned int start_pgofs;
1542 int bidx = 0;
1543 bool is_hole;
1544
1545 if (!maxblocks)
1546 return 0;
1547
1548 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1549 goto out;
1550
1551 map->m_bdev = inode->i_sb->s_bdev;
1552 map->m_multidev_dio =
1553 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1554
1555 map->m_len = 0;
1556 map->m_flags = 0;
1557
1558 /* it only supports block size == page size */
1559 pgofs = (pgoff_t)map->m_lblk;
1560 end = pgofs + maxblocks;
1561
1562 next_dnode:
1563 if (map->m_may_create)
1564 f2fs_map_lock(sbi, flag);
1565
1566 /* When reading holes, we need its node page */
1567 set_new_dnode(&dn, inode, NULL, NULL, 0);
1568 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1569 if (err) {
1570 if (flag == F2FS_GET_BLOCK_BMAP)
1571 map->m_pblk = 0;
1572 if (err == -ENOENT)
1573 err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1574 goto unlock_out;
1575 }
1576
1577 start_pgofs = pgofs;
1578 prealloc = 0;
1579 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1580 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1581
1582 next_block:
1583 blkaddr = f2fs_data_blkaddr(&dn);
1584 is_hole = !__is_valid_data_blkaddr(blkaddr);
1585 if (!is_hole &&
1586 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1587 err = -EFSCORRUPTED;
1588 goto sync_out;
1589 }
1590
1591 /* use out-place-update for direct IO under LFS mode */
1592 if (map->m_may_create && (is_hole ||
1593 (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1594 !f2fs_is_pinned_file(inode)))) {
1595 if (unlikely(f2fs_cp_error(sbi))) {
1596 err = -EIO;
1597 goto sync_out;
1598 }
1599
1600 switch (flag) {
1601 case F2FS_GET_BLOCK_PRE_AIO:
1602 if (blkaddr == NULL_ADDR) {
1603 prealloc++;
1604 last_ofs_in_node = dn.ofs_in_node;
1605 }
1606 break;
1607 case F2FS_GET_BLOCK_PRE_DIO:
1608 case F2FS_GET_BLOCK_DIO:
1609 err = __allocate_data_block(&dn, map->m_seg_type);
1610 if (err)
1611 goto sync_out;
1612 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1613 file_need_truncate(inode);
1614 set_inode_flag(inode, FI_APPEND_WRITE);
1615 break;
1616 default:
1617 WARN_ON_ONCE(1);
1618 err = -EIO;
1619 goto sync_out;
1620 }
1621
1622 blkaddr = dn.data_blkaddr;
1623 if (is_hole)
1624 map->m_flags |= F2FS_MAP_NEW;
1625 } else if (is_hole) {
1626 if (f2fs_compressed_file(inode) &&
1627 f2fs_sanity_check_cluster(&dn)) {
1628 err = -EFSCORRUPTED;
1629 f2fs_handle_error(sbi,
1630 ERROR_CORRUPTED_CLUSTER);
1631 goto sync_out;
1632 }
1633
1634 switch (flag) {
1635 case F2FS_GET_BLOCK_PRECACHE:
1636 goto sync_out;
1637 case F2FS_GET_BLOCK_BMAP:
1638 map->m_pblk = 0;
1639 goto sync_out;
1640 case F2FS_GET_BLOCK_FIEMAP:
1641 if (blkaddr == NULL_ADDR) {
1642 if (map->m_next_pgofs)
1643 *map->m_next_pgofs = pgofs + 1;
1644 goto sync_out;
1645 }
1646 break;
1647 case F2FS_GET_BLOCK_DIO:
1648 if (map->m_next_pgofs)
1649 *map->m_next_pgofs = pgofs + 1;
1650 break;
1651 default:
1652 /* for defragment case */
1653 if (map->m_next_pgofs)
1654 *map->m_next_pgofs = pgofs + 1;
1655 goto sync_out;
1656 }
1657 }
1658
1659 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1660 goto skip;
1661
1662 if (map->m_multidev_dio)
1663 bidx = f2fs_target_device_index(sbi, blkaddr);
1664
1665 if (map->m_len == 0) {
1666 /* reserved delalloc block should be mapped for fiemap. */
1667 if (blkaddr == NEW_ADDR)
1668 map->m_flags |= F2FS_MAP_DELALLOC;
1669 /* DIO READ and hole case, should not map the blocks. */
1670 if (!(flag == F2FS_GET_BLOCK_DIO && is_hole && !map->m_may_create))
1671 map->m_flags |= F2FS_MAP_MAPPED;
1672
1673 map->m_pblk = blkaddr;
1674 map->m_len = 1;
1675
1676 if (map->m_multidev_dio)
1677 map->m_bdev = FDEV(bidx).bdev;
1678 } else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) {
1679 ofs++;
1680 map->m_len++;
1681 } else {
1682 goto sync_out;
1683 }
1684
1685 skip:
1686 dn.ofs_in_node++;
1687 pgofs++;
1688
1689 /* preallocate blocks in batch for one dnode page */
1690 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1691 (pgofs == end || dn.ofs_in_node == end_offset)) {
1692
1693 dn.ofs_in_node = ofs_in_node;
1694 err = f2fs_reserve_new_blocks(&dn, prealloc);
1695 if (err)
1696 goto sync_out;
1697
1698 map->m_len += dn.ofs_in_node - ofs_in_node;
1699 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1700 err = -ENOSPC;
1701 goto sync_out;
1702 }
1703 dn.ofs_in_node = end_offset;
1704 }
1705
1706 if (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1707 map->m_may_create) {
1708 /* the next block to be allocated may not be contiguous. */
1709 if (GET_SEGOFF_FROM_SEG0(sbi, blkaddr) % BLKS_PER_SEC(sbi) ==
1710 CAP_BLKS_PER_SEC(sbi) - 1)
1711 goto sync_out;
1712 }
1713
1714 if (pgofs >= end)
1715 goto sync_out;
1716 else if (dn.ofs_in_node < end_offset)
1717 goto next_block;
1718
1719 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1720 if (map->m_flags & F2FS_MAP_MAPPED) {
1721 unsigned int ofs = start_pgofs - map->m_lblk;
1722
1723 f2fs_update_read_extent_cache_range(&dn,
1724 start_pgofs, map->m_pblk + ofs,
1725 map->m_len - ofs);
1726 }
1727 }
1728
1729 f2fs_put_dnode(&dn);
1730
1731 if (map->m_may_create) {
1732 f2fs_map_unlock(sbi, flag);
1733 f2fs_balance_fs(sbi, dn.node_changed);
1734 }
1735 goto next_dnode;
1736
1737 sync_out:
1738
1739 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1740 /*
1741 * for hardware encryption, but to avoid potential issue
1742 * in future
1743 */
1744 f2fs_wait_on_block_writeback_range(inode,
1745 map->m_pblk, map->m_len);
1746
1747 if (map->m_multidev_dio) {
1748 block_t blk_addr = map->m_pblk;
1749
1750 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1751
1752 map->m_bdev = FDEV(bidx).bdev;
1753 map->m_pblk -= FDEV(bidx).start_blk;
1754
1755 if (map->m_may_create)
1756 f2fs_update_device_state(sbi, inode->i_ino,
1757 blk_addr, map->m_len);
1758
1759 f2fs_bug_on(sbi, blk_addr + map->m_len >
1760 FDEV(bidx).end_blk + 1);
1761 }
1762 }
1763
1764 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1765 if (map->m_flags & F2FS_MAP_MAPPED) {
1766 unsigned int ofs = start_pgofs - map->m_lblk;
1767
1768 f2fs_update_read_extent_cache_range(&dn,
1769 start_pgofs, map->m_pblk + ofs,
1770 map->m_len - ofs);
1771 }
1772 if (map->m_next_extent)
1773 *map->m_next_extent = pgofs + 1;
1774 }
1775 f2fs_put_dnode(&dn);
1776 unlock_out:
1777 if (map->m_may_create) {
1778 f2fs_map_unlock(sbi, flag);
1779 f2fs_balance_fs(sbi, dn.node_changed);
1780 }
1781 out:
1782 trace_f2fs_map_blocks(inode, map, flag, err);
1783 return err;
1784 }
1785
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1786 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1787 {
1788 struct f2fs_map_blocks map;
1789 block_t last_lblk;
1790 int err;
1791
1792 if (pos + len > i_size_read(inode))
1793 return false;
1794
1795 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1796 map.m_next_pgofs = NULL;
1797 map.m_next_extent = NULL;
1798 map.m_seg_type = NO_CHECK_TYPE;
1799 map.m_may_create = false;
1800 last_lblk = F2FS_BLK_ALIGN(pos + len);
1801
1802 while (map.m_lblk < last_lblk) {
1803 map.m_len = last_lblk - map.m_lblk;
1804 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1805 if (err || map.m_len == 0)
1806 return false;
1807 map.m_lblk += map.m_len;
1808 }
1809 return true;
1810 }
1811
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1812 static int f2fs_xattr_fiemap(struct inode *inode,
1813 struct fiemap_extent_info *fieinfo)
1814 {
1815 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1816 struct page *page;
1817 struct node_info ni;
1818 __u64 phys = 0, len;
1819 __u32 flags;
1820 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1821 int err = 0;
1822
1823 if (f2fs_has_inline_xattr(inode)) {
1824 int offset;
1825
1826 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1827 inode->i_ino, false);
1828 if (!page)
1829 return -ENOMEM;
1830
1831 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1832 if (err) {
1833 f2fs_put_page(page, 1);
1834 return err;
1835 }
1836
1837 phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1838 offset = offsetof(struct f2fs_inode, i_addr) +
1839 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1840 get_inline_xattr_addrs(inode));
1841
1842 phys += offset;
1843 len = inline_xattr_size(inode);
1844
1845 f2fs_put_page(page, 1);
1846
1847 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1848
1849 if (!xnid)
1850 flags |= FIEMAP_EXTENT_LAST;
1851
1852 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1853 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1854 if (err)
1855 return err;
1856 }
1857
1858 if (xnid) {
1859 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1860 if (!page)
1861 return -ENOMEM;
1862
1863 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1864 if (err) {
1865 f2fs_put_page(page, 1);
1866 return err;
1867 }
1868
1869 phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1870 len = inode->i_sb->s_blocksize;
1871
1872 f2fs_put_page(page, 1);
1873
1874 flags = FIEMAP_EXTENT_LAST;
1875 }
1876
1877 if (phys) {
1878 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1879 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1880 }
1881
1882 return (err < 0 ? err : 0);
1883 }
1884
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1885 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1886 u64 start, u64 len)
1887 {
1888 struct f2fs_map_blocks map;
1889 sector_t start_blk, last_blk, blk_len, max_len;
1890 pgoff_t next_pgofs;
1891 u64 logical = 0, phys = 0, size = 0;
1892 u32 flags = 0;
1893 int ret = 0;
1894 bool compr_cluster = false, compr_appended;
1895 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1896 unsigned int count_in_cluster = 0;
1897 loff_t maxbytes;
1898
1899 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1900 ret = f2fs_precache_extents(inode);
1901 if (ret)
1902 return ret;
1903 }
1904
1905 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1906 if (ret)
1907 return ret;
1908
1909 inode_lock_shared(inode);
1910
1911 maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
1912 if (start > maxbytes) {
1913 ret = -EFBIG;
1914 goto out;
1915 }
1916
1917 if (len > maxbytes || (maxbytes - len) < start)
1918 len = maxbytes - start;
1919
1920 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1921 ret = f2fs_xattr_fiemap(inode, fieinfo);
1922 goto out;
1923 }
1924
1925 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1926 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1927 if (ret != -EAGAIN)
1928 goto out;
1929 }
1930
1931 start_blk = F2FS_BYTES_TO_BLK(start);
1932 last_blk = F2FS_BYTES_TO_BLK(start + len - 1);
1933 blk_len = last_blk - start_blk + 1;
1934 max_len = F2FS_BYTES_TO_BLK(maxbytes) - start_blk;
1935
1936 next:
1937 memset(&map, 0, sizeof(map));
1938 map.m_lblk = start_blk;
1939 map.m_len = blk_len;
1940 map.m_next_pgofs = &next_pgofs;
1941 map.m_seg_type = NO_CHECK_TYPE;
1942
1943 if (compr_cluster) {
1944 map.m_lblk += 1;
1945 map.m_len = cluster_size - count_in_cluster;
1946 }
1947
1948 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1949 if (ret)
1950 goto out;
1951
1952 /* HOLE */
1953 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1954 start_blk = next_pgofs;
1955
1956 if (F2FS_BLK_TO_BYTES(start_blk) < maxbytes)
1957 goto prep_next;
1958
1959 flags |= FIEMAP_EXTENT_LAST;
1960 }
1961
1962 /*
1963 * current extent may cross boundary of inquiry, increase len to
1964 * requery.
1965 */
1966 if (!compr_cluster && (map.m_flags & F2FS_MAP_MAPPED) &&
1967 map.m_lblk + map.m_len - 1 == last_blk &&
1968 blk_len != max_len) {
1969 blk_len = max_len;
1970 goto next;
1971 }
1972
1973 compr_appended = false;
1974 /* In a case of compressed cluster, append this to the last extent */
1975 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1976 !(map.m_flags & F2FS_MAP_FLAGS))) {
1977 compr_appended = true;
1978 goto skip_fill;
1979 }
1980
1981 if (size) {
1982 flags |= FIEMAP_EXTENT_MERGED;
1983 if (IS_ENCRYPTED(inode))
1984 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1985
1986 ret = fiemap_fill_next_extent(fieinfo, logical,
1987 phys, size, flags);
1988 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1989 if (ret)
1990 goto out;
1991 size = 0;
1992 }
1993
1994 if (start_blk > last_blk)
1995 goto out;
1996
1997 skip_fill:
1998 if (map.m_pblk == COMPRESS_ADDR) {
1999 compr_cluster = true;
2000 count_in_cluster = 1;
2001 } else if (compr_appended) {
2002 unsigned int appended_blks = cluster_size -
2003 count_in_cluster + 1;
2004 size += F2FS_BLK_TO_BYTES(appended_blks);
2005 start_blk += appended_blks;
2006 compr_cluster = false;
2007 } else {
2008 logical = F2FS_BLK_TO_BYTES(start_blk);
2009 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2010 F2FS_BLK_TO_BYTES(map.m_pblk) : 0;
2011 size = F2FS_BLK_TO_BYTES(map.m_len);
2012 flags = 0;
2013
2014 if (compr_cluster) {
2015 flags = FIEMAP_EXTENT_ENCODED;
2016 count_in_cluster += map.m_len;
2017 if (count_in_cluster == cluster_size) {
2018 compr_cluster = false;
2019 size += F2FS_BLKSIZE;
2020 }
2021 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2022 flags = FIEMAP_EXTENT_UNWRITTEN;
2023 }
2024
2025 start_blk += F2FS_BYTES_TO_BLK(size);
2026 }
2027
2028 prep_next:
2029 cond_resched();
2030 if (fatal_signal_pending(current))
2031 ret = -EINTR;
2032 else
2033 goto next;
2034 out:
2035 if (ret == 1)
2036 ret = 0;
2037
2038 inode_unlock_shared(inode);
2039 return ret;
2040 }
2041
f2fs_readpage_limit(struct inode * inode)2042 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2043 {
2044 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2045 return F2FS_BLK_TO_BYTES(max_file_blocks(inode));
2046
2047 return i_size_read(inode);
2048 }
2049
f2fs_ra_op_flags(struct readahead_control * rac)2050 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac)
2051 {
2052 return rac ? REQ_RAHEAD : 0;
2053 }
2054
f2fs_read_single_page(struct inode * inode,struct folio * folio,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,struct readahead_control * rac)2055 static int f2fs_read_single_page(struct inode *inode, struct folio *folio,
2056 unsigned nr_pages,
2057 struct f2fs_map_blocks *map,
2058 struct bio **bio_ret,
2059 sector_t *last_block_in_bio,
2060 struct readahead_control *rac)
2061 {
2062 struct bio *bio = *bio_ret;
2063 const unsigned int blocksize = F2FS_BLKSIZE;
2064 sector_t block_in_file;
2065 sector_t last_block;
2066 sector_t last_block_in_file;
2067 sector_t block_nr;
2068 pgoff_t index = folio_index(folio);
2069 int ret = 0;
2070
2071 block_in_file = (sector_t)index;
2072 last_block = block_in_file + nr_pages;
2073 last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2074 blocksize - 1);
2075 if (last_block > last_block_in_file)
2076 last_block = last_block_in_file;
2077
2078 /* just zeroing out page which is beyond EOF */
2079 if (block_in_file >= last_block)
2080 goto zero_out;
2081 /*
2082 * Map blocks using the previous result first.
2083 */
2084 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2085 block_in_file > map->m_lblk &&
2086 block_in_file < (map->m_lblk + map->m_len))
2087 goto got_it;
2088
2089 /*
2090 * Then do more f2fs_map_blocks() calls until we are
2091 * done with this page.
2092 */
2093 map->m_lblk = block_in_file;
2094 map->m_len = last_block - block_in_file;
2095
2096 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2097 if (ret)
2098 goto out;
2099 got_it:
2100 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2101 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2102 folio_set_mappedtodisk(folio);
2103
2104 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2105 DATA_GENERIC_ENHANCE_READ)) {
2106 ret = -EFSCORRUPTED;
2107 goto out;
2108 }
2109 } else {
2110 zero_out:
2111 folio_zero_segment(folio, 0, folio_size(folio));
2112 if (f2fs_need_verity(inode, index) &&
2113 !fsverity_verify_folio(folio)) {
2114 ret = -EIO;
2115 goto out;
2116 }
2117 if (!folio_test_uptodate(folio))
2118 folio_mark_uptodate(folio);
2119 folio_unlock(folio);
2120 goto out;
2121 }
2122
2123 /*
2124 * This page will go to BIO. Do we need to send this
2125 * BIO off first?
2126 */
2127 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2128 *last_block_in_bio, block_nr) ||
2129 !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) {
2130 submit_and_realloc:
2131 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2132 bio = NULL;
2133 }
2134 if (bio == NULL) {
2135 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2136 f2fs_ra_op_flags(rac), index,
2137 false);
2138 if (IS_ERR(bio)) {
2139 ret = PTR_ERR(bio);
2140 bio = NULL;
2141 goto out;
2142 }
2143 }
2144
2145 /*
2146 * If the page is under writeback, we need to wait for
2147 * its completion to see the correct decrypted data.
2148 */
2149 f2fs_wait_on_block_writeback(inode, block_nr);
2150
2151 if (!bio_add_folio(bio, folio, blocksize, 0))
2152 goto submit_and_realloc;
2153
2154 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2155 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2156 F2FS_BLKSIZE);
2157 *last_block_in_bio = block_nr;
2158 out:
2159 *bio_ret = bio;
2160 return ret;
2161 }
2162
2163 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,struct readahead_control * rac,bool for_write)2164 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2165 unsigned nr_pages, sector_t *last_block_in_bio,
2166 struct readahead_control *rac, bool for_write)
2167 {
2168 struct dnode_of_data dn;
2169 struct inode *inode = cc->inode;
2170 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2171 struct bio *bio = *bio_ret;
2172 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2173 sector_t last_block_in_file;
2174 const unsigned int blocksize = F2FS_BLKSIZE;
2175 struct decompress_io_ctx *dic = NULL;
2176 struct extent_info ei = {};
2177 bool from_dnode = true;
2178 int i;
2179 int ret = 0;
2180
2181 if (unlikely(f2fs_cp_error(sbi))) {
2182 ret = -EIO;
2183 from_dnode = false;
2184 goto out_put_dnode;
2185 }
2186
2187 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2188
2189 last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2190 blocksize - 1);
2191
2192 /* get rid of pages beyond EOF */
2193 for (i = 0; i < cc->cluster_size; i++) {
2194 struct page *page = cc->rpages[i];
2195 struct folio *folio;
2196
2197 if (!page)
2198 continue;
2199
2200 folio = page_folio(page);
2201 if ((sector_t)folio->index >= last_block_in_file) {
2202 folio_zero_segment(folio, 0, folio_size(folio));
2203 if (!folio_test_uptodate(folio))
2204 folio_mark_uptodate(folio);
2205 } else if (!folio_test_uptodate(folio)) {
2206 continue;
2207 }
2208 folio_unlock(folio);
2209 if (for_write)
2210 folio_put(folio);
2211 cc->rpages[i] = NULL;
2212 cc->nr_rpages--;
2213 }
2214
2215 /* we are done since all pages are beyond EOF */
2216 if (f2fs_cluster_is_empty(cc))
2217 goto out;
2218
2219 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2220 from_dnode = false;
2221
2222 if (!from_dnode)
2223 goto skip_reading_dnode;
2224
2225 set_new_dnode(&dn, inode, NULL, NULL, 0);
2226 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2227 if (ret)
2228 goto out;
2229
2230 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2231
2232 skip_reading_dnode:
2233 for (i = 1; i < cc->cluster_size; i++) {
2234 block_t blkaddr;
2235
2236 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2237 dn.ofs_in_node + i) :
2238 ei.blk + i - 1;
2239
2240 if (!__is_valid_data_blkaddr(blkaddr))
2241 break;
2242
2243 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2244 ret = -EFAULT;
2245 goto out_put_dnode;
2246 }
2247 cc->nr_cpages++;
2248
2249 if (!from_dnode && i >= ei.c_len)
2250 break;
2251 }
2252
2253 /* nothing to decompress */
2254 if (cc->nr_cpages == 0) {
2255 ret = 0;
2256 goto out_put_dnode;
2257 }
2258
2259 dic = f2fs_alloc_dic(cc);
2260 if (IS_ERR(dic)) {
2261 ret = PTR_ERR(dic);
2262 goto out_put_dnode;
2263 }
2264
2265 for (i = 0; i < cc->nr_cpages; i++) {
2266 struct folio *folio = page_folio(dic->cpages[i]);
2267 block_t blkaddr;
2268 struct bio_post_read_ctx *ctx;
2269
2270 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2271 dn.ofs_in_node + i + 1) :
2272 ei.blk + i;
2273
2274 f2fs_wait_on_block_writeback(inode, blkaddr);
2275
2276 if (f2fs_load_compressed_page(sbi, folio_page(folio, 0),
2277 blkaddr)) {
2278 if (atomic_dec_and_test(&dic->remaining_pages)) {
2279 f2fs_decompress_cluster(dic, true);
2280 break;
2281 }
2282 continue;
2283 }
2284
2285 if (bio && (!page_is_mergeable(sbi, bio,
2286 *last_block_in_bio, blkaddr) ||
2287 !f2fs_crypt_mergeable_bio(bio, inode, folio->index, NULL))) {
2288 submit_and_realloc:
2289 f2fs_submit_read_bio(sbi, bio, DATA);
2290 bio = NULL;
2291 }
2292
2293 if (!bio) {
2294 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2295 f2fs_ra_op_flags(rac),
2296 folio->index, for_write);
2297 if (IS_ERR(bio)) {
2298 ret = PTR_ERR(bio);
2299 f2fs_decompress_end_io(dic, ret, true);
2300 f2fs_put_dnode(&dn);
2301 *bio_ret = NULL;
2302 return ret;
2303 }
2304 }
2305
2306 if (!bio_add_folio(bio, folio, blocksize, 0))
2307 goto submit_and_realloc;
2308
2309 ctx = get_post_read_ctx(bio);
2310 ctx->enabled_steps |= STEP_DECOMPRESS;
2311 refcount_inc(&dic->refcnt);
2312
2313 inc_page_count(sbi, F2FS_RD_DATA);
2314 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2315 *last_block_in_bio = blkaddr;
2316 }
2317
2318 if (from_dnode)
2319 f2fs_put_dnode(&dn);
2320
2321 *bio_ret = bio;
2322 return 0;
2323
2324 out_put_dnode:
2325 if (from_dnode)
2326 f2fs_put_dnode(&dn);
2327 out:
2328 for (i = 0; i < cc->cluster_size; i++) {
2329 if (cc->rpages[i]) {
2330 ClearPageUptodate(cc->rpages[i]);
2331 unlock_page(cc->rpages[i]);
2332 }
2333 }
2334 *bio_ret = bio;
2335 return ret;
2336 }
2337 #endif
2338
2339 /*
2340 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2341 * Major change was from block_size == page_size in f2fs by default.
2342 */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct folio * folio)2343 static int f2fs_mpage_readpages(struct inode *inode,
2344 struct readahead_control *rac, struct folio *folio)
2345 {
2346 struct bio *bio = NULL;
2347 sector_t last_block_in_bio = 0;
2348 struct f2fs_map_blocks map;
2349 #ifdef CONFIG_F2FS_FS_COMPRESSION
2350 struct compress_ctx cc = {
2351 .inode = inode,
2352 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2353 .cluster_size = F2FS_I(inode)->i_cluster_size,
2354 .cluster_idx = NULL_CLUSTER,
2355 .rpages = NULL,
2356 .cpages = NULL,
2357 .nr_rpages = 0,
2358 .nr_cpages = 0,
2359 };
2360 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2361 pgoff_t index;
2362 #endif
2363 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2364 unsigned max_nr_pages = nr_pages;
2365 int ret = 0;
2366
2367 map.m_pblk = 0;
2368 map.m_lblk = 0;
2369 map.m_len = 0;
2370 map.m_flags = 0;
2371 map.m_next_pgofs = NULL;
2372 map.m_next_extent = NULL;
2373 map.m_seg_type = NO_CHECK_TYPE;
2374 map.m_may_create = false;
2375
2376 for (; nr_pages; nr_pages--) {
2377 if (rac) {
2378 folio = readahead_folio(rac);
2379 prefetchw(&folio->flags);
2380 }
2381
2382 #ifdef CONFIG_F2FS_FS_COMPRESSION
2383 index = folio_index(folio);
2384
2385 if (!f2fs_compressed_file(inode))
2386 goto read_single_page;
2387
2388 /* there are remained compressed pages, submit them */
2389 if (!f2fs_cluster_can_merge_page(&cc, index)) {
2390 ret = f2fs_read_multi_pages(&cc, &bio,
2391 max_nr_pages,
2392 &last_block_in_bio,
2393 rac, false);
2394 f2fs_destroy_compress_ctx(&cc, false);
2395 if (ret)
2396 goto set_error_page;
2397 }
2398 if (cc.cluster_idx == NULL_CLUSTER) {
2399 if (nc_cluster_idx == index >> cc.log_cluster_size)
2400 goto read_single_page;
2401
2402 ret = f2fs_is_compressed_cluster(inode, index);
2403 if (ret < 0)
2404 goto set_error_page;
2405 else if (!ret) {
2406 nc_cluster_idx =
2407 index >> cc.log_cluster_size;
2408 goto read_single_page;
2409 }
2410
2411 nc_cluster_idx = NULL_CLUSTER;
2412 }
2413 ret = f2fs_init_compress_ctx(&cc);
2414 if (ret)
2415 goto set_error_page;
2416
2417 f2fs_compress_ctx_add_page(&cc, folio);
2418
2419 goto next_page;
2420 read_single_page:
2421 #endif
2422
2423 ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map,
2424 &bio, &last_block_in_bio, rac);
2425 if (ret) {
2426 #ifdef CONFIG_F2FS_FS_COMPRESSION
2427 set_error_page:
2428 #endif
2429 folio_zero_segment(folio, 0, folio_size(folio));
2430 folio_unlock(folio);
2431 }
2432 #ifdef CONFIG_F2FS_FS_COMPRESSION
2433 next_page:
2434 #endif
2435
2436 #ifdef CONFIG_F2FS_FS_COMPRESSION
2437 if (f2fs_compressed_file(inode)) {
2438 /* last page */
2439 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2440 ret = f2fs_read_multi_pages(&cc, &bio,
2441 max_nr_pages,
2442 &last_block_in_bio,
2443 rac, false);
2444 f2fs_destroy_compress_ctx(&cc, false);
2445 }
2446 }
2447 #endif
2448 }
2449 if (bio)
2450 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2451 return ret;
2452 }
2453
f2fs_read_data_folio(struct file * file,struct folio * folio)2454 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2455 {
2456 struct inode *inode = folio->mapping->host;
2457 int ret = -EAGAIN;
2458
2459 trace_f2fs_readpage(folio, DATA);
2460
2461 if (!f2fs_is_compress_backend_ready(inode)) {
2462 folio_unlock(folio);
2463 return -EOPNOTSUPP;
2464 }
2465
2466 /* If the file has inline data, try to read it directly */
2467 if (f2fs_has_inline_data(inode))
2468 ret = f2fs_read_inline_data(inode, folio);
2469 if (ret == -EAGAIN)
2470 ret = f2fs_mpage_readpages(inode, NULL, folio);
2471 return ret;
2472 }
2473
f2fs_readahead(struct readahead_control * rac)2474 static void f2fs_readahead(struct readahead_control *rac)
2475 {
2476 struct inode *inode = rac->mapping->host;
2477
2478 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2479
2480 if (!f2fs_is_compress_backend_ready(inode))
2481 return;
2482
2483 /* If the file has inline data, skip readahead */
2484 if (f2fs_has_inline_data(inode))
2485 return;
2486
2487 f2fs_mpage_readpages(inode, rac, NULL);
2488 }
2489
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2490 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2491 {
2492 struct inode *inode = fio->page->mapping->host;
2493 struct page *mpage, *page;
2494 gfp_t gfp_flags = GFP_NOFS;
2495
2496 if (!f2fs_encrypted_file(inode))
2497 return 0;
2498
2499 page = fio->compressed_page ? fio->compressed_page : fio->page;
2500
2501 if (fscrypt_inode_uses_inline_crypto(inode))
2502 return 0;
2503
2504 retry_encrypt:
2505 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2506 PAGE_SIZE, 0, gfp_flags);
2507 if (IS_ERR(fio->encrypted_page)) {
2508 /* flush pending IOs and wait for a while in the ENOMEM case */
2509 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2510 f2fs_flush_merged_writes(fio->sbi);
2511 memalloc_retry_wait(GFP_NOFS);
2512 gfp_flags |= __GFP_NOFAIL;
2513 goto retry_encrypt;
2514 }
2515 return PTR_ERR(fio->encrypted_page);
2516 }
2517
2518 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2519 if (mpage) {
2520 if (PageUptodate(mpage))
2521 memcpy(page_address(mpage),
2522 page_address(fio->encrypted_page), PAGE_SIZE);
2523 f2fs_put_page(mpage, 1);
2524 }
2525 return 0;
2526 }
2527
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2528 static inline bool check_inplace_update_policy(struct inode *inode,
2529 struct f2fs_io_info *fio)
2530 {
2531 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2532
2533 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2534 is_inode_flag_set(inode, FI_OPU_WRITE))
2535 return false;
2536 if (IS_F2FS_IPU_FORCE(sbi))
2537 return true;
2538 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2539 return true;
2540 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2541 return true;
2542 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2543 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2544 return true;
2545
2546 /*
2547 * IPU for rewrite async pages
2548 */
2549 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2550 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2551 return true;
2552
2553 /* this is only set during fdatasync */
2554 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2555 return true;
2556
2557 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2558 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2559 return true;
2560
2561 return false;
2562 }
2563
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2564 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2565 {
2566 /* swap file is migrating in aligned write mode */
2567 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2568 return false;
2569
2570 if (f2fs_is_pinned_file(inode))
2571 return true;
2572
2573 /* if this is cold file, we should overwrite to avoid fragmentation */
2574 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2575 return true;
2576
2577 return check_inplace_update_policy(inode, fio);
2578 }
2579
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2580 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2581 {
2582 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2583
2584 /* The below cases were checked when setting it. */
2585 if (f2fs_is_pinned_file(inode))
2586 return false;
2587 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2588 return true;
2589 if (f2fs_lfs_mode(sbi))
2590 return true;
2591 if (S_ISDIR(inode->i_mode))
2592 return true;
2593 if (IS_NOQUOTA(inode))
2594 return true;
2595 if (f2fs_used_in_atomic_write(inode))
2596 return true;
2597 /* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2598 if (f2fs_compressed_file(inode) &&
2599 F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2600 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2601 return true;
2602
2603 /* swap file is migrating in aligned write mode */
2604 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2605 return true;
2606
2607 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2608 return true;
2609
2610 if (fio) {
2611 if (page_private_gcing(fio->page))
2612 return true;
2613 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2614 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2615 return true;
2616 }
2617 return false;
2618 }
2619
need_inplace_update(struct f2fs_io_info * fio)2620 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2621 {
2622 struct inode *inode = fio->page->mapping->host;
2623
2624 if (f2fs_should_update_outplace(inode, fio))
2625 return false;
2626
2627 return f2fs_should_update_inplace(inode, fio);
2628 }
2629
f2fs_do_write_data_page(struct f2fs_io_info * fio)2630 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2631 {
2632 struct folio *folio = page_folio(fio->page);
2633 struct inode *inode = folio->mapping->host;
2634 struct dnode_of_data dn;
2635 struct node_info ni;
2636 bool ipu_force = false;
2637 bool atomic_commit;
2638 int err = 0;
2639
2640 /* Use COW inode to make dnode_of_data for atomic write */
2641 atomic_commit = f2fs_is_atomic_file(inode) &&
2642 page_private_atomic(folio_page(folio, 0));
2643 if (atomic_commit)
2644 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2645 else
2646 set_new_dnode(&dn, inode, NULL, NULL, 0);
2647
2648 if (need_inplace_update(fio) &&
2649 f2fs_lookup_read_extent_cache_block(inode, folio->index,
2650 &fio->old_blkaddr)) {
2651 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2652 DATA_GENERIC_ENHANCE))
2653 return -EFSCORRUPTED;
2654
2655 ipu_force = true;
2656 fio->need_lock = LOCK_DONE;
2657 goto got_it;
2658 }
2659
2660 /* Deadlock due to between page->lock and f2fs_lock_op */
2661 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2662 return -EAGAIN;
2663
2664 err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
2665 if (err)
2666 goto out;
2667
2668 fio->old_blkaddr = dn.data_blkaddr;
2669
2670 /* This page is already truncated */
2671 if (fio->old_blkaddr == NULL_ADDR) {
2672 folio_clear_uptodate(folio);
2673 clear_page_private_gcing(folio_page(folio, 0));
2674 goto out_writepage;
2675 }
2676 got_it:
2677 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2678 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2679 DATA_GENERIC_ENHANCE)) {
2680 err = -EFSCORRUPTED;
2681 goto out_writepage;
2682 }
2683
2684 /* wait for GCed page writeback via META_MAPPING */
2685 if (fio->meta_gc)
2686 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2687
2688 /*
2689 * If current allocation needs SSR,
2690 * it had better in-place writes for updated data.
2691 */
2692 if (ipu_force ||
2693 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2694 need_inplace_update(fio))) {
2695 err = f2fs_encrypt_one_page(fio);
2696 if (err)
2697 goto out_writepage;
2698
2699 folio_start_writeback(folio);
2700 f2fs_put_dnode(&dn);
2701 if (fio->need_lock == LOCK_REQ)
2702 f2fs_unlock_op(fio->sbi);
2703 err = f2fs_inplace_write_data(fio);
2704 if (err) {
2705 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2706 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2707 folio_end_writeback(folio);
2708 } else {
2709 set_inode_flag(inode, FI_UPDATE_WRITE);
2710 }
2711 trace_f2fs_do_write_data_page(folio, IPU);
2712 return err;
2713 }
2714
2715 if (fio->need_lock == LOCK_RETRY) {
2716 if (!f2fs_trylock_op(fio->sbi)) {
2717 err = -EAGAIN;
2718 goto out_writepage;
2719 }
2720 fio->need_lock = LOCK_REQ;
2721 }
2722
2723 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2724 if (err)
2725 goto out_writepage;
2726
2727 fio->version = ni.version;
2728
2729 err = f2fs_encrypt_one_page(fio);
2730 if (err)
2731 goto out_writepage;
2732
2733 folio_start_writeback(folio);
2734
2735 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2736 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2737
2738 /* LFS mode write path */
2739 f2fs_outplace_write_data(&dn, fio);
2740 trace_f2fs_do_write_data_page(folio, OPU);
2741 set_inode_flag(inode, FI_APPEND_WRITE);
2742 if (atomic_commit)
2743 clear_page_private_atomic(folio_page(folio, 0));
2744 out_writepage:
2745 f2fs_put_dnode(&dn);
2746 out:
2747 if (fio->need_lock == LOCK_REQ)
2748 f2fs_unlock_op(fio->sbi);
2749 return err;
2750 }
2751
f2fs_write_single_data_page(struct folio * folio,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2752 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
2753 struct bio **bio,
2754 sector_t *last_block,
2755 struct writeback_control *wbc,
2756 enum iostat_type io_type,
2757 int compr_blocks,
2758 bool allow_balance)
2759 {
2760 struct inode *inode = folio->mapping->host;
2761 struct page *page = folio_page(folio, 0);
2762 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2763 loff_t i_size = i_size_read(inode);
2764 const pgoff_t end_index = ((unsigned long long)i_size)
2765 >> PAGE_SHIFT;
2766 loff_t psize = (loff_t)(folio->index + 1) << PAGE_SHIFT;
2767 unsigned offset = 0;
2768 bool need_balance_fs = false;
2769 bool quota_inode = IS_NOQUOTA(inode);
2770 int err = 0;
2771 struct f2fs_io_info fio = {
2772 .sbi = sbi,
2773 .ino = inode->i_ino,
2774 .type = DATA,
2775 .op = REQ_OP_WRITE,
2776 .op_flags = wbc_to_write_flags(wbc),
2777 .old_blkaddr = NULL_ADDR,
2778 .page = page,
2779 .encrypted_page = NULL,
2780 .submitted = 0,
2781 .compr_blocks = compr_blocks,
2782 .need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2783 .meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2784 .io_type = io_type,
2785 .io_wbc = wbc,
2786 .bio = bio,
2787 .last_block = last_block,
2788 };
2789
2790 trace_f2fs_writepage(folio, DATA);
2791
2792 /* we should bypass data pages to proceed the kworker jobs */
2793 if (unlikely(f2fs_cp_error(sbi))) {
2794 mapping_set_error(folio->mapping, -EIO);
2795 /*
2796 * don't drop any dirty dentry pages for keeping lastest
2797 * directory structure.
2798 */
2799 if (S_ISDIR(inode->i_mode) &&
2800 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2801 goto redirty_out;
2802
2803 /* keep data pages in remount-ro mode */
2804 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2805 goto redirty_out;
2806 goto out;
2807 }
2808
2809 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2810 goto redirty_out;
2811
2812 if (folio->index < end_index ||
2813 f2fs_verity_in_progress(inode) ||
2814 compr_blocks)
2815 goto write;
2816
2817 /*
2818 * If the offset is out-of-range of file size,
2819 * this page does not have to be written to disk.
2820 */
2821 offset = i_size & (PAGE_SIZE - 1);
2822 if ((folio->index >= end_index + 1) || !offset)
2823 goto out;
2824
2825 folio_zero_segment(folio, offset, folio_size(folio));
2826 write:
2827 /* Dentry/quota blocks are controlled by checkpoint */
2828 if (S_ISDIR(inode->i_mode) || quota_inode) {
2829 /*
2830 * We need to wait for node_write to avoid block allocation during
2831 * checkpoint. This can only happen to quota writes which can cause
2832 * the below discard race condition.
2833 */
2834 if (quota_inode)
2835 f2fs_down_read(&sbi->node_write);
2836
2837 fio.need_lock = LOCK_DONE;
2838 err = f2fs_do_write_data_page(&fio);
2839
2840 if (quota_inode)
2841 f2fs_up_read(&sbi->node_write);
2842
2843 goto done;
2844 }
2845
2846 if (!wbc->for_reclaim)
2847 need_balance_fs = true;
2848 else if (has_not_enough_free_secs(sbi, 0, 0))
2849 goto redirty_out;
2850 else
2851 set_inode_flag(inode, FI_HOT_DATA);
2852
2853 err = -EAGAIN;
2854 if (f2fs_has_inline_data(inode)) {
2855 err = f2fs_write_inline_data(inode, folio);
2856 if (!err)
2857 goto out;
2858 }
2859
2860 if (err == -EAGAIN) {
2861 err = f2fs_do_write_data_page(&fio);
2862 if (err == -EAGAIN) {
2863 f2fs_bug_on(sbi, compr_blocks);
2864 fio.need_lock = LOCK_REQ;
2865 err = f2fs_do_write_data_page(&fio);
2866 }
2867 }
2868
2869 if (err) {
2870 file_set_keep_isize(inode);
2871 } else {
2872 spin_lock(&F2FS_I(inode)->i_size_lock);
2873 if (F2FS_I(inode)->last_disk_size < psize)
2874 F2FS_I(inode)->last_disk_size = psize;
2875 spin_unlock(&F2FS_I(inode)->i_size_lock);
2876 }
2877
2878 done:
2879 if (err && err != -ENOENT)
2880 goto redirty_out;
2881
2882 out:
2883 inode_dec_dirty_pages(inode);
2884 if (err) {
2885 folio_clear_uptodate(folio);
2886 clear_page_private_gcing(page);
2887 }
2888
2889 if (wbc->for_reclaim) {
2890 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2891 clear_inode_flag(inode, FI_HOT_DATA);
2892 f2fs_remove_dirty_inode(inode);
2893 submitted = NULL;
2894 }
2895 folio_unlock(folio);
2896 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2897 !F2FS_I(inode)->wb_task && allow_balance)
2898 f2fs_balance_fs(sbi, need_balance_fs);
2899
2900 if (unlikely(f2fs_cp_error(sbi))) {
2901 f2fs_submit_merged_write(sbi, DATA);
2902 if (bio && *bio)
2903 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2904 submitted = NULL;
2905 }
2906
2907 if (submitted)
2908 *submitted = fio.submitted;
2909
2910 return 0;
2911
2912 redirty_out:
2913 folio_redirty_for_writepage(wbc, folio);
2914 /*
2915 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2916 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2917 * file_write_and_wait_range() will see EIO error, which is critical
2918 * to return value of fsync() followed by atomic_write failure to user.
2919 */
2920 if (!err || wbc->for_reclaim)
2921 return AOP_WRITEPAGE_ACTIVATE;
2922 folio_unlock(folio);
2923 return err;
2924 }
2925
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2926 static int f2fs_write_data_page(struct page *page,
2927 struct writeback_control *wbc)
2928 {
2929 struct folio *folio = page_folio(page);
2930 #ifdef CONFIG_F2FS_FS_COMPRESSION
2931 struct inode *inode = folio->mapping->host;
2932
2933 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2934 goto out;
2935
2936 if (f2fs_compressed_file(inode)) {
2937 if (f2fs_is_compressed_cluster(inode, folio->index)) {
2938 folio_redirty_for_writepage(wbc, folio);
2939 return AOP_WRITEPAGE_ACTIVATE;
2940 }
2941 }
2942 out:
2943 #endif
2944
2945 return f2fs_write_single_data_page(folio, NULL, NULL, NULL,
2946 wbc, FS_DATA_IO, 0, true);
2947 }
2948
2949 /*
2950 * This function was copied from write_cache_pages from mm/page-writeback.c.
2951 * The major change is making write step of cold data page separately from
2952 * warm/hot data page.
2953 */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2954 static int f2fs_write_cache_pages(struct address_space *mapping,
2955 struct writeback_control *wbc,
2956 enum iostat_type io_type)
2957 {
2958 int ret = 0;
2959 int done = 0, retry = 0;
2960 struct page *pages_local[F2FS_ONSTACK_PAGES];
2961 struct page **pages = pages_local;
2962 struct folio_batch fbatch;
2963 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2964 struct bio *bio = NULL;
2965 sector_t last_block;
2966 #ifdef CONFIG_F2FS_FS_COMPRESSION
2967 struct inode *inode = mapping->host;
2968 struct compress_ctx cc = {
2969 .inode = inode,
2970 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2971 .cluster_size = F2FS_I(inode)->i_cluster_size,
2972 .cluster_idx = NULL_CLUSTER,
2973 .rpages = NULL,
2974 .nr_rpages = 0,
2975 .cpages = NULL,
2976 .valid_nr_cpages = 0,
2977 .rbuf = NULL,
2978 .cbuf = NULL,
2979 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2980 .private = NULL,
2981 };
2982 #endif
2983 int nr_folios, p, idx;
2984 int nr_pages;
2985 unsigned int max_pages = F2FS_ONSTACK_PAGES;
2986 pgoff_t index;
2987 pgoff_t end; /* Inclusive */
2988 pgoff_t done_index;
2989 int range_whole = 0;
2990 xa_mark_t tag;
2991 int nwritten = 0;
2992 int submitted = 0;
2993 int i;
2994
2995 #ifdef CONFIG_F2FS_FS_COMPRESSION
2996 if (f2fs_compressed_file(inode) &&
2997 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
2998 pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
2999 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
3000 max_pages = 1 << cc.log_cluster_size;
3001 }
3002 #endif
3003
3004 folio_batch_init(&fbatch);
3005
3006 if (get_dirty_pages(mapping->host) <=
3007 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3008 set_inode_flag(mapping->host, FI_HOT_DATA);
3009 else
3010 clear_inode_flag(mapping->host, FI_HOT_DATA);
3011
3012 if (wbc->range_cyclic) {
3013 index = mapping->writeback_index; /* prev offset */
3014 end = -1;
3015 } else {
3016 index = wbc->range_start >> PAGE_SHIFT;
3017 end = wbc->range_end >> PAGE_SHIFT;
3018 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3019 range_whole = 1;
3020 }
3021 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3022 tag = PAGECACHE_TAG_TOWRITE;
3023 else
3024 tag = PAGECACHE_TAG_DIRTY;
3025 retry:
3026 retry = 0;
3027 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3028 tag_pages_for_writeback(mapping, index, end);
3029 done_index = index;
3030 while (!done && !retry && (index <= end)) {
3031 nr_pages = 0;
3032 again:
3033 nr_folios = filemap_get_folios_tag(mapping, &index, end,
3034 tag, &fbatch);
3035 if (nr_folios == 0) {
3036 if (nr_pages)
3037 goto write;
3038 break;
3039 }
3040
3041 for (i = 0; i < nr_folios; i++) {
3042 struct folio *folio = fbatch.folios[i];
3043
3044 idx = 0;
3045 p = folio_nr_pages(folio);
3046 add_more:
3047 pages[nr_pages] = folio_page(folio, idx);
3048 folio_get(folio);
3049 if (++nr_pages == max_pages) {
3050 index = folio->index + idx + 1;
3051 folio_batch_release(&fbatch);
3052 goto write;
3053 }
3054 if (++idx < p)
3055 goto add_more;
3056 }
3057 folio_batch_release(&fbatch);
3058 goto again;
3059 write:
3060 for (i = 0; i < nr_pages; i++) {
3061 struct page *page = pages[i];
3062 struct folio *folio = page_folio(page);
3063 bool need_readd;
3064 readd:
3065 need_readd = false;
3066 #ifdef CONFIG_F2FS_FS_COMPRESSION
3067 if (f2fs_compressed_file(inode)) {
3068 void *fsdata = NULL;
3069 struct page *pagep;
3070 int ret2;
3071
3072 ret = f2fs_init_compress_ctx(&cc);
3073 if (ret) {
3074 done = 1;
3075 break;
3076 }
3077
3078 if (!f2fs_cluster_can_merge_page(&cc,
3079 folio->index)) {
3080 ret = f2fs_write_multi_pages(&cc,
3081 &submitted, wbc, io_type);
3082 if (!ret)
3083 need_readd = true;
3084 goto result;
3085 }
3086
3087 if (unlikely(f2fs_cp_error(sbi)))
3088 goto lock_folio;
3089
3090 if (!f2fs_cluster_is_empty(&cc))
3091 goto lock_folio;
3092
3093 if (f2fs_all_cluster_page_ready(&cc,
3094 pages, i, nr_pages, true))
3095 goto lock_folio;
3096
3097 ret2 = f2fs_prepare_compress_overwrite(
3098 inode, &pagep,
3099 folio->index, &fsdata);
3100 if (ret2 < 0) {
3101 ret = ret2;
3102 done = 1;
3103 break;
3104 } else if (ret2 &&
3105 (!f2fs_compress_write_end(inode,
3106 fsdata, folio->index, 1) ||
3107 !f2fs_all_cluster_page_ready(&cc,
3108 pages, i, nr_pages,
3109 false))) {
3110 retry = 1;
3111 break;
3112 }
3113 }
3114 #endif
3115 /* give a priority to WB_SYNC threads */
3116 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3117 wbc->sync_mode == WB_SYNC_NONE) {
3118 done = 1;
3119 break;
3120 }
3121 #ifdef CONFIG_F2FS_FS_COMPRESSION
3122 lock_folio:
3123 #endif
3124 done_index = folio->index;
3125 retry_write:
3126 folio_lock(folio);
3127
3128 if (unlikely(folio->mapping != mapping)) {
3129 continue_unlock:
3130 folio_unlock(folio);
3131 continue;
3132 }
3133
3134 if (!folio_test_dirty(folio)) {
3135 /* someone wrote it for us */
3136 goto continue_unlock;
3137 }
3138
3139 if (folio_test_writeback(folio)) {
3140 if (wbc->sync_mode == WB_SYNC_NONE)
3141 goto continue_unlock;
3142 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3143 }
3144
3145 if (!folio_clear_dirty_for_io(folio))
3146 goto continue_unlock;
3147
3148 #ifdef CONFIG_F2FS_FS_COMPRESSION
3149 if (f2fs_compressed_file(inode)) {
3150 folio_get(folio);
3151 f2fs_compress_ctx_add_page(&cc, folio);
3152 continue;
3153 }
3154 #endif
3155 submitted = 0;
3156 ret = f2fs_write_single_data_page(folio,
3157 &submitted, &bio, &last_block,
3158 wbc, io_type, 0, true);
3159 if (ret == AOP_WRITEPAGE_ACTIVATE)
3160 folio_unlock(folio);
3161 #ifdef CONFIG_F2FS_FS_COMPRESSION
3162 result:
3163 #endif
3164 nwritten += submitted;
3165 wbc->nr_to_write -= submitted;
3166
3167 if (unlikely(ret)) {
3168 /*
3169 * keep nr_to_write, since vfs uses this to
3170 * get # of written pages.
3171 */
3172 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3173 ret = 0;
3174 goto next;
3175 } else if (ret == -EAGAIN) {
3176 ret = 0;
3177 if (wbc->sync_mode == WB_SYNC_ALL) {
3178 f2fs_io_schedule_timeout(
3179 DEFAULT_IO_TIMEOUT);
3180 goto retry_write;
3181 }
3182 goto next;
3183 }
3184 done_index = folio_next_index(folio);
3185 done = 1;
3186 break;
3187 }
3188
3189 if (wbc->nr_to_write <= 0 &&
3190 wbc->sync_mode == WB_SYNC_NONE) {
3191 done = 1;
3192 break;
3193 }
3194 next:
3195 if (need_readd)
3196 goto readd;
3197 }
3198 release_pages(pages, nr_pages);
3199 cond_resched();
3200 }
3201 #ifdef CONFIG_F2FS_FS_COMPRESSION
3202 /* flush remained pages in compress cluster */
3203 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3204 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3205 nwritten += submitted;
3206 wbc->nr_to_write -= submitted;
3207 if (ret) {
3208 done = 1;
3209 retry = 0;
3210 }
3211 }
3212 if (f2fs_compressed_file(inode))
3213 f2fs_destroy_compress_ctx(&cc, false);
3214 #endif
3215 if (retry) {
3216 index = 0;
3217 end = -1;
3218 goto retry;
3219 }
3220 if (wbc->range_cyclic && !done)
3221 done_index = 0;
3222 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3223 mapping->writeback_index = done_index;
3224
3225 if (nwritten)
3226 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3227 NULL, 0, DATA);
3228 /* submit cached bio of IPU write */
3229 if (bio)
3230 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3231
3232 #ifdef CONFIG_F2FS_FS_COMPRESSION
3233 if (pages != pages_local)
3234 kfree(pages);
3235 #endif
3236
3237 return ret;
3238 }
3239
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3240 static inline bool __should_serialize_io(struct inode *inode,
3241 struct writeback_control *wbc)
3242 {
3243 /* to avoid deadlock in path of data flush */
3244 if (F2FS_I(inode)->wb_task)
3245 return false;
3246
3247 if (!S_ISREG(inode->i_mode))
3248 return false;
3249 if (IS_NOQUOTA(inode))
3250 return false;
3251
3252 if (f2fs_need_compress_data(inode))
3253 return true;
3254 if (wbc->sync_mode != WB_SYNC_ALL)
3255 return true;
3256 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3257 return true;
3258 return false;
3259 }
3260
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3261 static int __f2fs_write_data_pages(struct address_space *mapping,
3262 struct writeback_control *wbc,
3263 enum iostat_type io_type)
3264 {
3265 struct inode *inode = mapping->host;
3266 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3267 struct blk_plug plug;
3268 int ret;
3269 bool locked = false;
3270
3271 /* deal with chardevs and other special file */
3272 if (!mapping->a_ops->writepage)
3273 return 0;
3274
3275 /* skip writing if there is no dirty page in this inode */
3276 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3277 return 0;
3278
3279 /* during POR, we don't need to trigger writepage at all. */
3280 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3281 goto skip_write;
3282
3283 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3284 wbc->sync_mode == WB_SYNC_NONE &&
3285 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3286 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3287 goto skip_write;
3288
3289 /* skip writing in file defragment preparing stage */
3290 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3291 goto skip_write;
3292
3293 trace_f2fs_writepages(mapping->host, wbc, DATA);
3294
3295 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3296 if (wbc->sync_mode == WB_SYNC_ALL)
3297 atomic_inc(&sbi->wb_sync_req[DATA]);
3298 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3299 /* to avoid potential deadlock */
3300 if (current->plug)
3301 blk_finish_plug(current->plug);
3302 goto skip_write;
3303 }
3304
3305 if (__should_serialize_io(inode, wbc)) {
3306 mutex_lock(&sbi->writepages);
3307 locked = true;
3308 }
3309
3310 blk_start_plug(&plug);
3311 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3312 blk_finish_plug(&plug);
3313
3314 if (locked)
3315 mutex_unlock(&sbi->writepages);
3316
3317 if (wbc->sync_mode == WB_SYNC_ALL)
3318 atomic_dec(&sbi->wb_sync_req[DATA]);
3319 /*
3320 * if some pages were truncated, we cannot guarantee its mapping->host
3321 * to detect pending bios.
3322 */
3323
3324 f2fs_remove_dirty_inode(inode);
3325 return ret;
3326
3327 skip_write:
3328 wbc->pages_skipped += get_dirty_pages(inode);
3329 trace_f2fs_writepages(mapping->host, wbc, DATA);
3330 return 0;
3331 }
3332
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3333 static int f2fs_write_data_pages(struct address_space *mapping,
3334 struct writeback_control *wbc)
3335 {
3336 struct inode *inode = mapping->host;
3337
3338 return __f2fs_write_data_pages(mapping, wbc,
3339 F2FS_I(inode)->cp_task == current ?
3340 FS_CP_DATA_IO : FS_DATA_IO);
3341 }
3342
f2fs_write_failed(struct inode * inode,loff_t to)3343 void f2fs_write_failed(struct inode *inode, loff_t to)
3344 {
3345 loff_t i_size = i_size_read(inode);
3346
3347 if (IS_NOQUOTA(inode))
3348 return;
3349
3350 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3351 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3352 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3353 filemap_invalidate_lock(inode->i_mapping);
3354
3355 truncate_pagecache(inode, i_size);
3356 f2fs_truncate_blocks(inode, i_size, true);
3357
3358 filemap_invalidate_unlock(inode->i_mapping);
3359 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3360 }
3361 }
3362
prepare_write_begin(struct f2fs_sb_info * sbi,struct folio * folio,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed)3363 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3364 struct folio *folio, loff_t pos, unsigned int len,
3365 block_t *blk_addr, bool *node_changed)
3366 {
3367 struct inode *inode = folio->mapping->host;
3368 pgoff_t index = folio->index;
3369 struct dnode_of_data dn;
3370 struct page *ipage;
3371 bool locked = false;
3372 int flag = F2FS_GET_BLOCK_PRE_AIO;
3373 int err = 0;
3374
3375 /*
3376 * If a whole page is being written and we already preallocated all the
3377 * blocks, then there is no need to get a block address now.
3378 */
3379 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3380 return 0;
3381
3382 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3383 if (f2fs_has_inline_data(inode)) {
3384 if (pos + len > MAX_INLINE_DATA(inode))
3385 flag = F2FS_GET_BLOCK_DEFAULT;
3386 f2fs_map_lock(sbi, flag);
3387 locked = true;
3388 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3389 f2fs_map_lock(sbi, flag);
3390 locked = true;
3391 }
3392
3393 restart:
3394 /* check inline_data */
3395 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3396 if (IS_ERR(ipage)) {
3397 err = PTR_ERR(ipage);
3398 goto unlock_out;
3399 }
3400
3401 set_new_dnode(&dn, inode, ipage, ipage, 0);
3402
3403 if (f2fs_has_inline_data(inode)) {
3404 if (pos + len <= MAX_INLINE_DATA(inode)) {
3405 f2fs_do_read_inline_data(folio, ipage);
3406 set_inode_flag(inode, FI_DATA_EXIST);
3407 if (inode->i_nlink)
3408 set_page_private_inline(ipage);
3409 goto out;
3410 }
3411 err = f2fs_convert_inline_page(&dn, folio_page(folio, 0));
3412 if (err || dn.data_blkaddr != NULL_ADDR)
3413 goto out;
3414 }
3415
3416 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3417 &dn.data_blkaddr)) {
3418 if (IS_DEVICE_ALIASING(inode)) {
3419 err = -ENODATA;
3420 goto out;
3421 }
3422
3423 if (locked) {
3424 err = f2fs_reserve_block(&dn, index);
3425 goto out;
3426 }
3427
3428 /* hole case */
3429 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3430 if (!err && dn.data_blkaddr != NULL_ADDR)
3431 goto out;
3432 f2fs_put_dnode(&dn);
3433 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3434 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3435 locked = true;
3436 goto restart;
3437 }
3438 out:
3439 if (!err) {
3440 /* convert_inline_page can make node_changed */
3441 *blk_addr = dn.data_blkaddr;
3442 *node_changed = dn.node_changed;
3443 }
3444 f2fs_put_dnode(&dn);
3445 unlock_out:
3446 if (locked)
3447 f2fs_map_unlock(sbi, flag);
3448 return err;
3449 }
3450
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3451 static int __find_data_block(struct inode *inode, pgoff_t index,
3452 block_t *blk_addr)
3453 {
3454 struct dnode_of_data dn;
3455 struct page *ipage;
3456 int err = 0;
3457
3458 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3459 if (IS_ERR(ipage))
3460 return PTR_ERR(ipage);
3461
3462 set_new_dnode(&dn, inode, ipage, ipage, 0);
3463
3464 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3465 &dn.data_blkaddr)) {
3466 /* hole case */
3467 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3468 if (err) {
3469 dn.data_blkaddr = NULL_ADDR;
3470 err = 0;
3471 }
3472 }
3473 *blk_addr = dn.data_blkaddr;
3474 f2fs_put_dnode(&dn);
3475 return err;
3476 }
3477
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3478 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3479 block_t *blk_addr, bool *node_changed)
3480 {
3481 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3482 struct dnode_of_data dn;
3483 struct page *ipage;
3484 int err = 0;
3485
3486 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3487
3488 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3489 if (IS_ERR(ipage)) {
3490 err = PTR_ERR(ipage);
3491 goto unlock_out;
3492 }
3493 set_new_dnode(&dn, inode, ipage, ipage, 0);
3494
3495 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3496 &dn.data_blkaddr))
3497 err = f2fs_reserve_block(&dn, index);
3498
3499 *blk_addr = dn.data_blkaddr;
3500 *node_changed = dn.node_changed;
3501 f2fs_put_dnode(&dn);
3502
3503 unlock_out:
3504 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3505 return err;
3506 }
3507
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct folio * folio,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed,bool * use_cow)3508 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3509 struct folio *folio, loff_t pos, unsigned int len,
3510 block_t *blk_addr, bool *node_changed, bool *use_cow)
3511 {
3512 struct inode *inode = folio->mapping->host;
3513 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3514 pgoff_t index = folio->index;
3515 int err = 0;
3516 block_t ori_blk_addr = NULL_ADDR;
3517
3518 /* If pos is beyond the end of file, reserve a new block in COW inode */
3519 if ((pos & PAGE_MASK) >= i_size_read(inode))
3520 goto reserve_block;
3521
3522 /* Look for the block in COW inode first */
3523 err = __find_data_block(cow_inode, index, blk_addr);
3524 if (err) {
3525 return err;
3526 } else if (*blk_addr != NULL_ADDR) {
3527 *use_cow = true;
3528 return 0;
3529 }
3530
3531 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3532 goto reserve_block;
3533
3534 /* Look for the block in the original inode */
3535 err = __find_data_block(inode, index, &ori_blk_addr);
3536 if (err)
3537 return err;
3538
3539 reserve_block:
3540 /* Finally, we should reserve a new block in COW inode for the update */
3541 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3542 if (err)
3543 return err;
3544 inc_atomic_write_cnt(inode);
3545
3546 if (ori_blk_addr != NULL_ADDR)
3547 *blk_addr = ori_blk_addr;
3548 return 0;
3549 }
3550
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3551 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3552 loff_t pos, unsigned len, struct folio **foliop, void **fsdata)
3553 {
3554 struct inode *inode = mapping->host;
3555 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3556 struct folio *folio;
3557 pgoff_t index = pos >> PAGE_SHIFT;
3558 bool need_balance = false;
3559 bool use_cow = false;
3560 block_t blkaddr = NULL_ADDR;
3561 int err = 0;
3562
3563 trace_f2fs_write_begin(inode, pos, len);
3564
3565 if (!f2fs_is_checkpoint_ready(sbi)) {
3566 err = -ENOSPC;
3567 goto fail;
3568 }
3569
3570 /*
3571 * We should check this at this moment to avoid deadlock on inode page
3572 * and #0 page. The locking rule for inline_data conversion should be:
3573 * folio_lock(folio #0) -> folio_lock(inode_page)
3574 */
3575 if (index != 0) {
3576 err = f2fs_convert_inline_inode(inode);
3577 if (err)
3578 goto fail;
3579 }
3580
3581 #ifdef CONFIG_F2FS_FS_COMPRESSION
3582 if (f2fs_compressed_file(inode)) {
3583 int ret;
3584 struct page *page;
3585
3586 *fsdata = NULL;
3587
3588 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3589 goto repeat;
3590
3591 ret = f2fs_prepare_compress_overwrite(inode, &page,
3592 index, fsdata);
3593 if (ret < 0) {
3594 err = ret;
3595 goto fail;
3596 } else if (ret) {
3597 *foliop = page_folio(page);
3598 return 0;
3599 }
3600 }
3601 #endif
3602
3603 repeat:
3604 /*
3605 * Do not use FGP_STABLE to avoid deadlock.
3606 * Will wait that below with our IO control.
3607 */
3608 folio = __filemap_get_folio(mapping, index,
3609 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3610 if (IS_ERR(folio)) {
3611 err = PTR_ERR(folio);
3612 goto fail;
3613 }
3614
3615 /* TODO: cluster can be compressed due to race with .writepage */
3616
3617 *foliop = folio;
3618
3619 if (f2fs_is_atomic_file(inode))
3620 err = prepare_atomic_write_begin(sbi, folio, pos, len,
3621 &blkaddr, &need_balance, &use_cow);
3622 else
3623 err = prepare_write_begin(sbi, folio, pos, len,
3624 &blkaddr, &need_balance);
3625 if (err)
3626 goto put_folio;
3627
3628 if (need_balance && !IS_NOQUOTA(inode) &&
3629 has_not_enough_free_secs(sbi, 0, 0)) {
3630 folio_unlock(folio);
3631 f2fs_balance_fs(sbi, true);
3632 folio_lock(folio);
3633 if (folio->mapping != mapping) {
3634 /* The folio got truncated from under us */
3635 folio_unlock(folio);
3636 folio_put(folio);
3637 goto repeat;
3638 }
3639 }
3640
3641 f2fs_wait_on_page_writeback(&folio->page, DATA, false, true);
3642
3643 if (len == folio_size(folio) || folio_test_uptodate(folio))
3644 return 0;
3645
3646 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3647 !f2fs_verity_in_progress(inode)) {
3648 folio_zero_segment(folio, len, folio_size(folio));
3649 return 0;
3650 }
3651
3652 if (blkaddr == NEW_ADDR) {
3653 folio_zero_segment(folio, 0, folio_size(folio));
3654 folio_mark_uptodate(folio);
3655 } else {
3656 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3657 DATA_GENERIC_ENHANCE_READ)) {
3658 err = -EFSCORRUPTED;
3659 goto put_folio;
3660 }
3661 err = f2fs_submit_page_read(use_cow ?
3662 F2FS_I(inode)->cow_inode : inode,
3663 folio, blkaddr, 0, true);
3664 if (err)
3665 goto put_folio;
3666
3667 folio_lock(folio);
3668 if (unlikely(folio->mapping != mapping)) {
3669 folio_unlock(folio);
3670 folio_put(folio);
3671 goto repeat;
3672 }
3673 if (unlikely(!folio_test_uptodate(folio))) {
3674 err = -EIO;
3675 goto put_folio;
3676 }
3677 }
3678 return 0;
3679
3680 put_folio:
3681 folio_unlock(folio);
3682 folio_put(folio);
3683 fail:
3684 f2fs_write_failed(inode, pos + len);
3685 return err;
3686 }
3687
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3688 static int f2fs_write_end(struct file *file,
3689 struct address_space *mapping,
3690 loff_t pos, unsigned len, unsigned copied,
3691 struct folio *folio, void *fsdata)
3692 {
3693 struct inode *inode = folio->mapping->host;
3694
3695 trace_f2fs_write_end(inode, pos, len, copied);
3696
3697 /*
3698 * This should be come from len == PAGE_SIZE, and we expect copied
3699 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3700 * let generic_perform_write() try to copy data again through copied=0.
3701 */
3702 if (!folio_test_uptodate(folio)) {
3703 if (unlikely(copied != len))
3704 copied = 0;
3705 else
3706 folio_mark_uptodate(folio);
3707 }
3708
3709 #ifdef CONFIG_F2FS_FS_COMPRESSION
3710 /* overwrite compressed file */
3711 if (f2fs_compressed_file(inode) && fsdata) {
3712 f2fs_compress_write_end(inode, fsdata, folio->index, copied);
3713 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3714
3715 if (pos + copied > i_size_read(inode) &&
3716 !f2fs_verity_in_progress(inode))
3717 f2fs_i_size_write(inode, pos + copied);
3718 return copied;
3719 }
3720 #endif
3721
3722 if (!copied)
3723 goto unlock_out;
3724
3725 folio_mark_dirty(folio);
3726
3727 if (f2fs_is_atomic_file(inode))
3728 set_page_private_atomic(folio_page(folio, 0));
3729
3730 if (pos + copied > i_size_read(inode) &&
3731 !f2fs_verity_in_progress(inode)) {
3732 f2fs_i_size_write(inode, pos + copied);
3733 if (f2fs_is_atomic_file(inode))
3734 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3735 pos + copied);
3736 }
3737 unlock_out:
3738 folio_unlock(folio);
3739 folio_put(folio);
3740 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3741 return copied;
3742 }
3743
f2fs_invalidate_folio(struct folio * folio,size_t offset,size_t length)3744 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3745 {
3746 struct inode *inode = folio->mapping->host;
3747 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3748
3749 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3750 (offset || length != folio_size(folio)))
3751 return;
3752
3753 if (folio_test_dirty(folio)) {
3754 if (inode->i_ino == F2FS_META_INO(sbi)) {
3755 dec_page_count(sbi, F2FS_DIRTY_META);
3756 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3757 dec_page_count(sbi, F2FS_DIRTY_NODES);
3758 } else {
3759 inode_dec_dirty_pages(inode);
3760 f2fs_remove_dirty_inode(inode);
3761 }
3762 }
3763 clear_page_private_all(&folio->page);
3764 }
3765
f2fs_release_folio(struct folio * folio,gfp_t wait)3766 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3767 {
3768 /* If this is dirty folio, keep private data */
3769 if (folio_test_dirty(folio))
3770 return false;
3771
3772 clear_page_private_all(&folio->page);
3773 return true;
3774 }
3775
f2fs_dirty_data_folio(struct address_space * mapping,struct folio * folio)3776 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3777 struct folio *folio)
3778 {
3779 struct inode *inode = mapping->host;
3780
3781 trace_f2fs_set_page_dirty(folio, DATA);
3782
3783 if (!folio_test_uptodate(folio))
3784 folio_mark_uptodate(folio);
3785 BUG_ON(folio_test_swapcache(folio));
3786
3787 if (filemap_dirty_folio(mapping, folio)) {
3788 f2fs_update_dirty_folio(inode, folio);
3789 return true;
3790 }
3791 return false;
3792 }
3793
3794
f2fs_bmap_compress(struct inode * inode,sector_t block)3795 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3796 {
3797 #ifdef CONFIG_F2FS_FS_COMPRESSION
3798 struct dnode_of_data dn;
3799 sector_t start_idx, blknr = 0;
3800 int ret;
3801
3802 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3803
3804 set_new_dnode(&dn, inode, NULL, NULL, 0);
3805 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3806 if (ret)
3807 return 0;
3808
3809 if (dn.data_blkaddr != COMPRESS_ADDR) {
3810 dn.ofs_in_node += block - start_idx;
3811 blknr = f2fs_data_blkaddr(&dn);
3812 if (!__is_valid_data_blkaddr(blknr))
3813 blknr = 0;
3814 }
3815
3816 f2fs_put_dnode(&dn);
3817 return blknr;
3818 #else
3819 return 0;
3820 #endif
3821 }
3822
3823
f2fs_bmap(struct address_space * mapping,sector_t block)3824 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3825 {
3826 struct inode *inode = mapping->host;
3827 sector_t blknr = 0;
3828
3829 if (f2fs_has_inline_data(inode))
3830 goto out;
3831
3832 /* make sure allocating whole blocks */
3833 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3834 filemap_write_and_wait(mapping);
3835
3836 /* Block number less than F2FS MAX BLOCKS */
3837 if (unlikely(block >= max_file_blocks(inode)))
3838 goto out;
3839
3840 if (f2fs_compressed_file(inode)) {
3841 blknr = f2fs_bmap_compress(inode, block);
3842 } else {
3843 struct f2fs_map_blocks map;
3844
3845 memset(&map, 0, sizeof(map));
3846 map.m_lblk = block;
3847 map.m_len = 1;
3848 map.m_next_pgofs = NULL;
3849 map.m_seg_type = NO_CHECK_TYPE;
3850
3851 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3852 blknr = map.m_pblk;
3853 }
3854 out:
3855 trace_f2fs_bmap(inode, block, blknr);
3856 return blknr;
3857 }
3858
3859 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3860 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3861 unsigned int blkcnt)
3862 {
3863 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3864 unsigned int blkofs;
3865 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3866 unsigned int end_blk = start_blk + blkcnt - 1;
3867 unsigned int secidx = start_blk / blk_per_sec;
3868 unsigned int end_sec;
3869 int ret = 0;
3870
3871 if (!blkcnt)
3872 return 0;
3873 end_sec = end_blk / blk_per_sec;
3874
3875 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3876 filemap_invalidate_lock(inode->i_mapping);
3877
3878 set_inode_flag(inode, FI_ALIGNED_WRITE);
3879 set_inode_flag(inode, FI_OPU_WRITE);
3880
3881 for (; secidx <= end_sec; secidx++) {
3882 unsigned int blkofs_end = secidx == end_sec ?
3883 end_blk % blk_per_sec : blk_per_sec - 1;
3884
3885 f2fs_down_write(&sbi->pin_sem);
3886
3887 ret = f2fs_allocate_pinning_section(sbi);
3888 if (ret) {
3889 f2fs_up_write(&sbi->pin_sem);
3890 break;
3891 }
3892
3893 set_inode_flag(inode, FI_SKIP_WRITES);
3894
3895 for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3896 struct page *page;
3897 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3898
3899 page = f2fs_get_lock_data_page(inode, blkidx, true);
3900 if (IS_ERR(page)) {
3901 f2fs_up_write(&sbi->pin_sem);
3902 ret = PTR_ERR(page);
3903 goto done;
3904 }
3905
3906 set_page_dirty(page);
3907 f2fs_put_page(page, 1);
3908 }
3909
3910 clear_inode_flag(inode, FI_SKIP_WRITES);
3911
3912 ret = filemap_fdatawrite(inode->i_mapping);
3913
3914 f2fs_up_write(&sbi->pin_sem);
3915
3916 if (ret)
3917 break;
3918 }
3919
3920 done:
3921 clear_inode_flag(inode, FI_SKIP_WRITES);
3922 clear_inode_flag(inode, FI_OPU_WRITE);
3923 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3924
3925 filemap_invalidate_unlock(inode->i_mapping);
3926 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3927
3928 return ret;
3929 }
3930
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3931 static int check_swap_activate(struct swap_info_struct *sis,
3932 struct file *swap_file, sector_t *span)
3933 {
3934 struct address_space *mapping = swap_file->f_mapping;
3935 struct inode *inode = mapping->host;
3936 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3937 block_t cur_lblock;
3938 block_t last_lblock;
3939 block_t pblock;
3940 block_t lowest_pblock = -1;
3941 block_t highest_pblock = 0;
3942 int nr_extents = 0;
3943 unsigned int nr_pblocks;
3944 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3945 unsigned int not_aligned = 0;
3946 int ret = 0;
3947
3948 /*
3949 * Map all the blocks into the extent list. This code doesn't try
3950 * to be very smart.
3951 */
3952 cur_lblock = 0;
3953 last_lblock = F2FS_BYTES_TO_BLK(i_size_read(inode));
3954
3955 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3956 struct f2fs_map_blocks map;
3957 retry:
3958 cond_resched();
3959
3960 memset(&map, 0, sizeof(map));
3961 map.m_lblk = cur_lblock;
3962 map.m_len = last_lblock - cur_lblock;
3963 map.m_next_pgofs = NULL;
3964 map.m_next_extent = NULL;
3965 map.m_seg_type = NO_CHECK_TYPE;
3966 map.m_may_create = false;
3967
3968 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3969 if (ret)
3970 goto out;
3971
3972 /* hole */
3973 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3974 f2fs_err(sbi, "Swapfile has holes");
3975 ret = -EINVAL;
3976 goto out;
3977 }
3978
3979 pblock = map.m_pblk;
3980 nr_pblocks = map.m_len;
3981
3982 if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
3983 nr_pblocks % blks_per_sec ||
3984 !f2fs_valid_pinned_area(sbi, pblock)) {
3985 bool last_extent = false;
3986
3987 not_aligned++;
3988
3989 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3990 if (cur_lblock + nr_pblocks > sis->max)
3991 nr_pblocks -= blks_per_sec;
3992
3993 /* this extent is last one */
3994 if (!nr_pblocks) {
3995 nr_pblocks = last_lblock - cur_lblock;
3996 last_extent = true;
3997 }
3998
3999 ret = f2fs_migrate_blocks(inode, cur_lblock,
4000 nr_pblocks);
4001 if (ret) {
4002 if (ret == -ENOENT)
4003 ret = -EINVAL;
4004 goto out;
4005 }
4006
4007 if (!last_extent)
4008 goto retry;
4009 }
4010
4011 if (cur_lblock + nr_pblocks >= sis->max)
4012 nr_pblocks = sis->max - cur_lblock;
4013
4014 if (cur_lblock) { /* exclude the header page */
4015 if (pblock < lowest_pblock)
4016 lowest_pblock = pblock;
4017 if (pblock + nr_pblocks - 1 > highest_pblock)
4018 highest_pblock = pblock + nr_pblocks - 1;
4019 }
4020
4021 /*
4022 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4023 */
4024 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4025 if (ret < 0)
4026 goto out;
4027 nr_extents += ret;
4028 cur_lblock += nr_pblocks;
4029 }
4030 ret = nr_extents;
4031 *span = 1 + highest_pblock - lowest_pblock;
4032 if (cur_lblock == 0)
4033 cur_lblock = 1; /* force Empty message */
4034 sis->max = cur_lblock;
4035 sis->pages = cur_lblock - 1;
4036 out:
4037 if (not_aligned)
4038 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4039 not_aligned, blks_per_sec * F2FS_BLKSIZE);
4040 return ret;
4041 }
4042
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4043 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4044 sector_t *span)
4045 {
4046 struct inode *inode = file_inode(file);
4047 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4048 int ret;
4049
4050 if (!S_ISREG(inode->i_mode))
4051 return -EINVAL;
4052
4053 if (f2fs_readonly(sbi->sb))
4054 return -EROFS;
4055
4056 if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4057 f2fs_err(sbi, "Swapfile not supported in LFS mode");
4058 return -EINVAL;
4059 }
4060
4061 ret = f2fs_convert_inline_inode(inode);
4062 if (ret)
4063 return ret;
4064
4065 if (!f2fs_disable_compressed_file(inode))
4066 return -EINVAL;
4067
4068 ret = filemap_fdatawrite(inode->i_mapping);
4069 if (ret < 0)
4070 return ret;
4071
4072 f2fs_precache_extents(inode);
4073
4074 ret = check_swap_activate(sis, file, span);
4075 if (ret < 0)
4076 return ret;
4077
4078 stat_inc_swapfile_inode(inode);
4079 set_inode_flag(inode, FI_PIN_FILE);
4080 f2fs_update_time(sbi, REQ_TIME);
4081 return ret;
4082 }
4083
f2fs_swap_deactivate(struct file * file)4084 static void f2fs_swap_deactivate(struct file *file)
4085 {
4086 struct inode *inode = file_inode(file);
4087
4088 stat_dec_swapfile_inode(inode);
4089 clear_inode_flag(inode, FI_PIN_FILE);
4090 }
4091 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4092 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4093 sector_t *span)
4094 {
4095 return -EOPNOTSUPP;
4096 }
4097
f2fs_swap_deactivate(struct file * file)4098 static void f2fs_swap_deactivate(struct file *file)
4099 {
4100 }
4101 #endif
4102
4103 const struct address_space_operations f2fs_dblock_aops = {
4104 .read_folio = f2fs_read_data_folio,
4105 .readahead = f2fs_readahead,
4106 .writepage = f2fs_write_data_page,
4107 .writepages = f2fs_write_data_pages,
4108 .write_begin = f2fs_write_begin,
4109 .write_end = f2fs_write_end,
4110 .dirty_folio = f2fs_dirty_data_folio,
4111 .migrate_folio = filemap_migrate_folio,
4112 .invalidate_folio = f2fs_invalidate_folio,
4113 .release_folio = f2fs_release_folio,
4114 .bmap = f2fs_bmap,
4115 .swap_activate = f2fs_swap_activate,
4116 .swap_deactivate = f2fs_swap_deactivate,
4117 };
4118
f2fs_clear_page_cache_dirty_tag(struct folio * folio)4119 void f2fs_clear_page_cache_dirty_tag(struct folio *folio)
4120 {
4121 struct address_space *mapping = folio->mapping;
4122 unsigned long flags;
4123
4124 xa_lock_irqsave(&mapping->i_pages, flags);
4125 __xa_clear_mark(&mapping->i_pages, folio->index,
4126 PAGECACHE_TAG_DIRTY);
4127 xa_unlock_irqrestore(&mapping->i_pages, flags);
4128 }
4129
f2fs_init_post_read_processing(void)4130 int __init f2fs_init_post_read_processing(void)
4131 {
4132 bio_post_read_ctx_cache =
4133 kmem_cache_create("f2fs_bio_post_read_ctx",
4134 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4135 if (!bio_post_read_ctx_cache)
4136 goto fail;
4137 bio_post_read_ctx_pool =
4138 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4139 bio_post_read_ctx_cache);
4140 if (!bio_post_read_ctx_pool)
4141 goto fail_free_cache;
4142 return 0;
4143
4144 fail_free_cache:
4145 kmem_cache_destroy(bio_post_read_ctx_cache);
4146 fail:
4147 return -ENOMEM;
4148 }
4149
f2fs_destroy_post_read_processing(void)4150 void f2fs_destroy_post_read_processing(void)
4151 {
4152 mempool_destroy(bio_post_read_ctx_pool);
4153 kmem_cache_destroy(bio_post_read_ctx_cache);
4154 }
4155
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4156 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4157 {
4158 if (!f2fs_sb_has_encrypt(sbi) &&
4159 !f2fs_sb_has_verity(sbi) &&
4160 !f2fs_sb_has_compression(sbi))
4161 return 0;
4162
4163 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4164 WQ_UNBOUND | WQ_HIGHPRI,
4165 num_online_cpus());
4166 return sbi->post_read_wq ? 0 : -ENOMEM;
4167 }
4168
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4169 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4170 {
4171 if (sbi->post_read_wq)
4172 destroy_workqueue(sbi->post_read_wq);
4173 }
4174
f2fs_init_bio_entry_cache(void)4175 int __init f2fs_init_bio_entry_cache(void)
4176 {
4177 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4178 sizeof(struct bio_entry));
4179 return bio_entry_slab ? 0 : -ENOMEM;
4180 }
4181
f2fs_destroy_bio_entry_cache(void)4182 void f2fs_destroy_bio_entry_cache(void)
4183 {
4184 kmem_cache_destroy(bio_entry_slab);
4185 }
4186
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4187 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4188 unsigned int flags, struct iomap *iomap,
4189 struct iomap *srcmap)
4190 {
4191 struct f2fs_map_blocks map = {};
4192 pgoff_t next_pgofs = 0;
4193 int err;
4194
4195 map.m_lblk = F2FS_BYTES_TO_BLK(offset);
4196 map.m_len = F2FS_BYTES_TO_BLK(offset + length - 1) - map.m_lblk + 1;
4197 map.m_next_pgofs = &next_pgofs;
4198 map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
4199 inode->i_write_hint);
4200 if (flags & IOMAP_WRITE)
4201 map.m_may_create = true;
4202
4203 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4204 if (err)
4205 return err;
4206
4207 iomap->offset = F2FS_BLK_TO_BYTES(map.m_lblk);
4208
4209 /*
4210 * When inline encryption is enabled, sometimes I/O to an encrypted file
4211 * has to be broken up to guarantee DUN contiguity. Handle this by
4212 * limiting the length of the mapping returned.
4213 */
4214 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4215
4216 /*
4217 * We should never see delalloc or compressed extents here based on
4218 * prior flushing and checks.
4219 */
4220 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4221 return -EINVAL;
4222
4223 if (map.m_flags & F2FS_MAP_MAPPED) {
4224 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4225 return -EINVAL;
4226
4227 iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4228 iomap->type = IOMAP_MAPPED;
4229 iomap->flags |= IOMAP_F_MERGED;
4230 iomap->bdev = map.m_bdev;
4231 iomap->addr = F2FS_BLK_TO_BYTES(map.m_pblk);
4232 } else {
4233 if (flags & IOMAP_WRITE)
4234 return -ENOTBLK;
4235
4236 if (map.m_pblk == NULL_ADDR) {
4237 iomap->length = F2FS_BLK_TO_BYTES(next_pgofs) -
4238 iomap->offset;
4239 iomap->type = IOMAP_HOLE;
4240 } else if (map.m_pblk == NEW_ADDR) {
4241 iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4242 iomap->type = IOMAP_UNWRITTEN;
4243 } else {
4244 f2fs_bug_on(F2FS_I_SB(inode), 1);
4245 }
4246 iomap->addr = IOMAP_NULL_ADDR;
4247 }
4248
4249 if (map.m_flags & F2FS_MAP_NEW)
4250 iomap->flags |= IOMAP_F_NEW;
4251 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4252 offset + length > i_size_read(inode))
4253 iomap->flags |= IOMAP_F_DIRTY;
4254
4255 return 0;
4256 }
4257
4258 const struct iomap_ops f2fs_iomap_ops = {
4259 .iomap_begin = f2fs_iomap_begin,
4260 };
4261