1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * super.c
4 *
5 * Copyright (c) 1999 Al Smith
6 *
7 * Portions derived from work (c) 1995,1996 Christian Vogelgsang.
8 */
9
10 #include <linux/init.h>
11 #include <linux/module.h>
12 #include <linux/exportfs.h>
13 #include <linux/slab.h>
14 #include <linux/buffer_head.h>
15 #include <linux/vfs.h>
16 #include <linux/blkdev.h>
17 #include <linux/fs_context.h>
18 #include "efs.h"
19 #include <linux/efs_vh.h>
20 #include <linux/efs_fs_sb.h>
21
22 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf);
23 static int efs_init_fs_context(struct fs_context *fc);
24
efs_kill_sb(struct super_block * s)25 static void efs_kill_sb(struct super_block *s)
26 {
27 struct efs_sb_info *sbi = SUPER_INFO(s);
28 kill_block_super(s);
29 kfree(sbi);
30 }
31
32 static struct pt_types sgi_pt_types[] = {
33 {0x00, "SGI vh"},
34 {0x01, "SGI trkrepl"},
35 {0x02, "SGI secrepl"},
36 {0x03, "SGI raw"},
37 {0x04, "SGI bsd"},
38 {SGI_SYSV, "SGI sysv"},
39 {0x06, "SGI vol"},
40 {SGI_EFS, "SGI efs"},
41 {0x08, "SGI lv"},
42 {0x09, "SGI rlv"},
43 {0x0A, "SGI xfs"},
44 {0x0B, "SGI xfslog"},
45 {0x0C, "SGI xlv"},
46 {0x82, "Linux swap"},
47 {0x83, "Linux native"},
48 {0, NULL}
49 };
50
51 /*
52 * File system definition and registration.
53 */
54 static struct file_system_type efs_fs_type = {
55 .owner = THIS_MODULE,
56 .name = "efs",
57 .kill_sb = efs_kill_sb,
58 .fs_flags = FS_REQUIRES_DEV,
59 .init_fs_context = efs_init_fs_context,
60 };
61 MODULE_ALIAS_FS("efs");
62
63 static struct kmem_cache * efs_inode_cachep;
64
efs_alloc_inode(struct super_block * sb)65 static struct inode *efs_alloc_inode(struct super_block *sb)
66 {
67 struct efs_inode_info *ei;
68 ei = alloc_inode_sb(sb, efs_inode_cachep, GFP_KERNEL);
69 if (!ei)
70 return NULL;
71 return &ei->vfs_inode;
72 }
73
efs_free_inode(struct inode * inode)74 static void efs_free_inode(struct inode *inode)
75 {
76 kmem_cache_free(efs_inode_cachep, INODE_INFO(inode));
77 }
78
init_once(void * foo)79 static void init_once(void *foo)
80 {
81 struct efs_inode_info *ei = (struct efs_inode_info *) foo;
82
83 inode_init_once(&ei->vfs_inode);
84 }
85
init_inodecache(void)86 static int __init init_inodecache(void)
87 {
88 efs_inode_cachep = kmem_cache_create("efs_inode_cache",
89 sizeof(struct efs_inode_info), 0,
90 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
91 init_once);
92 if (efs_inode_cachep == NULL)
93 return -ENOMEM;
94 return 0;
95 }
96
destroy_inodecache(void)97 static void destroy_inodecache(void)
98 {
99 /*
100 * Make sure all delayed rcu free inodes are flushed before we
101 * destroy cache.
102 */
103 rcu_barrier();
104 kmem_cache_destroy(efs_inode_cachep);
105 }
106
107 static const struct super_operations efs_superblock_operations = {
108 .alloc_inode = efs_alloc_inode,
109 .free_inode = efs_free_inode,
110 .statfs = efs_statfs,
111 };
112
113 static const struct export_operations efs_export_ops = {
114 .encode_fh = generic_encode_ino32_fh,
115 .fh_to_dentry = efs_fh_to_dentry,
116 .fh_to_parent = efs_fh_to_parent,
117 .get_parent = efs_get_parent,
118 };
119
init_efs_fs(void)120 static int __init init_efs_fs(void) {
121 int err;
122 pr_info(EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n");
123 err = init_inodecache();
124 if (err)
125 goto out1;
126 err = register_filesystem(&efs_fs_type);
127 if (err)
128 goto out;
129 return 0;
130 out:
131 destroy_inodecache();
132 out1:
133 return err;
134 }
135
exit_efs_fs(void)136 static void __exit exit_efs_fs(void) {
137 unregister_filesystem(&efs_fs_type);
138 destroy_inodecache();
139 }
140
141 module_init(init_efs_fs)
module_exit(exit_efs_fs)142 module_exit(exit_efs_fs)
143
144 static efs_block_t efs_validate_vh(struct volume_header *vh) {
145 int i;
146 __be32 cs, *ui;
147 int csum;
148 efs_block_t sblock = 0; /* shuts up gcc */
149 struct pt_types *pt_entry;
150 int pt_type, slice = -1;
151
152 if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
153 /*
154 * assume that we're dealing with a partition and allow
155 * read_super() to try and detect a valid superblock
156 * on the next block.
157 */
158 return 0;
159 }
160
161 ui = ((__be32 *) (vh + 1)) - 1;
162 for(csum = 0; ui >= ((__be32 *) vh);) {
163 cs = *ui--;
164 csum += be32_to_cpu(cs);
165 }
166 if (csum) {
167 pr_warn("SGI disklabel: checksum bad, label corrupted\n");
168 return 0;
169 }
170
171 #ifdef DEBUG
172 pr_debug("bf: \"%16s\"\n", vh->vh_bootfile);
173
174 for(i = 0; i < NVDIR; i++) {
175 int j;
176 char name[VDNAMESIZE+1];
177
178 for(j = 0; j < VDNAMESIZE; j++) {
179 name[j] = vh->vh_vd[i].vd_name[j];
180 }
181 name[j] = (char) 0;
182
183 if (name[0]) {
184 pr_debug("vh: %8s block: 0x%08x size: 0x%08x\n",
185 name, (int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
186 (int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
187 }
188 }
189 #endif
190
191 for(i = 0; i < NPARTAB; i++) {
192 pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
193 for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) {
194 if (pt_type == pt_entry->pt_type) break;
195 }
196 #ifdef DEBUG
197 if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) {
198 pr_debug("pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
199 i, (int)be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
200 (int)be32_to_cpu(vh->vh_pt[i].pt_nblks),
201 pt_type, (pt_entry->pt_name) ?
202 pt_entry->pt_name : "unknown");
203 }
204 #endif
205 if (IS_EFS(pt_type)) {
206 sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
207 slice = i;
208 }
209 }
210
211 if (slice == -1) {
212 pr_notice("partition table contained no EFS partitions\n");
213 #ifdef DEBUG
214 } else {
215 pr_info("using slice %d (type %s, offset 0x%x)\n", slice,
216 (pt_entry->pt_name) ? pt_entry->pt_name : "unknown",
217 sblock);
218 #endif
219 }
220 return sblock;
221 }
222
efs_validate_super(struct efs_sb_info * sb,struct efs_super * super)223 static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) {
224
225 if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic)))
226 return -1;
227
228 sb->fs_magic = be32_to_cpu(super->fs_magic);
229 sb->total_blocks = be32_to_cpu(super->fs_size);
230 sb->first_block = be32_to_cpu(super->fs_firstcg);
231 sb->group_size = be32_to_cpu(super->fs_cgfsize);
232 sb->data_free = be32_to_cpu(super->fs_tfree);
233 sb->inode_free = be32_to_cpu(super->fs_tinode);
234 sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
235 sb->total_groups = be16_to_cpu(super->fs_ncg);
236
237 return 0;
238 }
239
efs_fill_super(struct super_block * s,struct fs_context * fc)240 static int efs_fill_super(struct super_block *s, struct fs_context *fc)
241 {
242 struct efs_sb_info *sb;
243 struct buffer_head *bh;
244 struct inode *root;
245
246 sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL);
247 if (!sb)
248 return -ENOMEM;
249 s->s_fs_info = sb;
250 s->s_time_min = 0;
251 s->s_time_max = U32_MAX;
252
253 s->s_magic = EFS_SUPER_MAGIC;
254 if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) {
255 pr_err("device does not support %d byte blocks\n",
256 EFS_BLOCKSIZE);
257 return invalf(fc, "device does not support %d byte blocks\n",
258 EFS_BLOCKSIZE);
259 }
260
261 /* read the vh (volume header) block */
262 bh = sb_bread(s, 0);
263
264 if (!bh) {
265 pr_err("cannot read volume header\n");
266 return -EIO;
267 }
268
269 /*
270 * if this returns zero then we didn't find any partition table.
271 * this isn't (yet) an error - just assume for the moment that
272 * the device is valid and go on to search for a superblock.
273 */
274 sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data);
275 brelse(bh);
276
277 if (sb->fs_start == -1) {
278 return -EINVAL;
279 }
280
281 bh = sb_bread(s, sb->fs_start + EFS_SUPER);
282 if (!bh) {
283 pr_err("cannot read superblock\n");
284 return -EIO;
285 }
286
287 if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) {
288 #ifdef DEBUG
289 pr_warn("invalid superblock at block %u\n",
290 sb->fs_start + EFS_SUPER);
291 #endif
292 brelse(bh);
293 return -EINVAL;
294 }
295 brelse(bh);
296
297 if (!sb_rdonly(s)) {
298 #ifdef DEBUG
299 pr_info("forcing read-only mode\n");
300 #endif
301 s->s_flags |= SB_RDONLY;
302 }
303 s->s_op = &efs_superblock_operations;
304 s->s_export_op = &efs_export_ops;
305 root = efs_iget(s, EFS_ROOTINODE);
306 if (IS_ERR(root)) {
307 pr_err("get root inode failed\n");
308 return PTR_ERR(root);
309 }
310
311 s->s_root = d_make_root(root);
312 if (!(s->s_root)) {
313 pr_err("get root dentry failed\n");
314 return -ENOMEM;
315 }
316
317 return 0;
318 }
319
efs_get_tree(struct fs_context * fc)320 static int efs_get_tree(struct fs_context *fc)
321 {
322 return get_tree_bdev(fc, efs_fill_super);
323 }
324
efs_reconfigure(struct fs_context * fc)325 static int efs_reconfigure(struct fs_context *fc)
326 {
327 sync_filesystem(fc->root->d_sb);
328 fc->sb_flags |= SB_RDONLY;
329
330 return 0;
331 }
332
333 static const struct fs_context_operations efs_context_opts = {
334 .get_tree = efs_get_tree,
335 .reconfigure = efs_reconfigure,
336 };
337
338 /*
339 * Set up the filesystem mount context.
340 */
efs_init_fs_context(struct fs_context * fc)341 static int efs_init_fs_context(struct fs_context *fc)
342 {
343 fc->ops = &efs_context_opts;
344
345 return 0;
346 }
347
efs_statfs(struct dentry * dentry,struct kstatfs * buf)348 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) {
349 struct super_block *sb = dentry->d_sb;
350 struct efs_sb_info *sbi = SUPER_INFO(sb);
351 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
352
353 buf->f_type = EFS_SUPER_MAGIC; /* efs magic number */
354 buf->f_bsize = EFS_BLOCKSIZE; /* blocksize */
355 buf->f_blocks = sbi->total_groups * /* total data blocks */
356 (sbi->group_size - sbi->inode_blocks);
357 buf->f_bfree = sbi->data_free; /* free data blocks */
358 buf->f_bavail = sbi->data_free; /* free blocks for non-root */
359 buf->f_files = sbi->total_groups * /* total inodes */
360 sbi->inode_blocks *
361 (EFS_BLOCKSIZE / sizeof(struct efs_dinode));
362 buf->f_ffree = sbi->inode_free; /* free inodes */
363 buf->f_fsid = u64_to_fsid(id);
364 buf->f_namelen = EFS_MAXNAMELEN; /* max filename length */
365
366 return 0;
367 }
368
369