1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * zs.c: Serial port driver for IOASIC DECstations.
4 *
5 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
6 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
7 *
8 * DECstation changes
9 * Copyright (C) 1998-2000 Harald Koerfgen
10 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
11 *
12 * For the rest of the code the original Copyright applies:
13 * Copyright (C) 1996 Paul Mackerras ([email protected])
14 * Copyright (C) 1995 David S. Miller ([email protected])
15 *
16 *
17 * Note: for IOASIC systems the wiring is as follows:
18 *
19 * mouse/keyboard:
20 * DIN-7 MJ-4 signal SCC
21 * 2 1 TxD <- A.TxD
22 * 3 4 RxD -> A.RxD
23 *
24 * EIA-232/EIA-423:
25 * DB-25 MMJ-6 signal SCC
26 * 2 2 TxD <- B.TxD
27 * 3 5 RxD -> B.RxD
28 * 4 RTS <- ~A.RTS
29 * 5 CTS -> ~B.CTS
30 * 6 6 DSR -> ~A.SYNC
31 * 8 CD -> ~B.DCD
32 * 12 DSRS(DCE) -> ~A.CTS (*)
33 * 15 TxC -> B.TxC
34 * 17 RxC -> B.RxC
35 * 20 1 DTR <- ~A.DTR
36 * 22 RI -> ~A.DCD
37 * 23 DSRS(DTE) <- ~B.RTS
38 *
39 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
40 * is shared with DSRS(DTE) at pin 23.
41 *
42 * As you can immediately notice the wiring of the RTS, DTR and DSR signals
43 * is a bit odd. This makes the handling of port B unnecessarily
44 * complicated and prevents the use of some automatic modes of operation.
45 */
46
47 #include <linux/bug.h>
48 #include <linux/console.h>
49 #include <linux/delay.h>
50 #include <linux/errno.h>
51 #include <linux/init.h>
52 #include <linux/interrupt.h>
53 #include <linux/io.h>
54 #include <linux/ioport.h>
55 #include <linux/irqflags.h>
56 #include <linux/kernel.h>
57 #include <linux/module.h>
58 #include <linux/major.h>
59 #include <linux/serial.h>
60 #include <linux/serial_core.h>
61 #include <linux/spinlock.h>
62 #include <linux/sysrq.h>
63 #include <linux/tty.h>
64 #include <linux/tty_flip.h>
65 #include <linux/types.h>
66
67 #include <linux/atomic.h>
68
69 #include <asm/dec/interrupts.h>
70 #include <asm/dec/ioasic_addrs.h>
71 #include <asm/dec/system.h>
72
73 #include "zs.h"
74
75
76 MODULE_AUTHOR("Maciej W. Rozycki <[email protected]>");
77 MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
78 MODULE_LICENSE("GPL");
79
80
81 static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
82 static char zs_version[] __initdata = "0.10";
83
84 /*
85 * It would be nice to dynamically allocate everything that
86 * depends on ZS_NUM_SCCS, so we could support any number of
87 * Z85C30s, but for now...
88 */
89 #define ZS_NUM_SCCS 2 /* Max # of ZS chips supported. */
90 #define ZS_NUM_CHAN 2 /* 2 channels per chip. */
91 #define ZS_CHAN_A 0 /* Index of the channel A. */
92 #define ZS_CHAN_B 1 /* Index of the channel B. */
93 #define ZS_CHAN_IO_SIZE 8 /* IOMEM space size. */
94 #define ZS_CHAN_IO_STRIDE 4 /* Register alignment. */
95 #define ZS_CHAN_IO_OFFSET 1 /* The SCC resides on the high byte
96 of the 16-bit IOBUS. */
97 #define ZS_CLOCK 7372800 /* Z85C30 PCLK input clock rate. */
98
99 #define to_zport(uport) container_of(uport, struct zs_port, port)
100
101 struct zs_parms {
102 resource_size_t scc[ZS_NUM_SCCS];
103 int irq[ZS_NUM_SCCS];
104 };
105
106 static struct zs_scc zs_sccs[ZS_NUM_SCCS];
107
108 static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
109 0, /* write 0 */
110 PAR_SPEC, /* write 1 */
111 0, /* write 2 */
112 0, /* write 3 */
113 X16CLK | SB1, /* write 4 */
114 0, /* write 5 */
115 0, 0, 0, /* write 6, 7, 8 */
116 MIE | DLC | NV, /* write 9 */
117 NRZ, /* write 10 */
118 TCBR | RCBR, /* write 11 */
119 0, 0, /* BRG time constant, write 12 + 13 */
120 BRSRC | BRENABL, /* write 14 */
121 0, /* write 15 */
122 };
123
124 /*
125 * Debugging.
126 */
127 #undef ZS_DEBUG_REGS
128
129
130 /*
131 * Reading and writing Z85C30 registers.
132 */
recovery_delay(void)133 static void recovery_delay(void)
134 {
135 udelay(2);
136 }
137
read_zsreg(struct zs_port * zport,int reg)138 static u8 read_zsreg(struct zs_port *zport, int reg)
139 {
140 void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
141 u8 retval;
142
143 if (reg != 0) {
144 writeb(reg & 0xf, control);
145 fast_iob();
146 recovery_delay();
147 }
148 retval = readb(control);
149 recovery_delay();
150 return retval;
151 }
152
write_zsreg(struct zs_port * zport,int reg,u8 value)153 static void write_zsreg(struct zs_port *zport, int reg, u8 value)
154 {
155 void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
156
157 if (reg != 0) {
158 writeb(reg & 0xf, control);
159 fast_iob(); recovery_delay();
160 }
161 writeb(value, control);
162 fast_iob();
163 recovery_delay();
164 return;
165 }
166
read_zsdata(struct zs_port * zport)167 static u8 read_zsdata(struct zs_port *zport)
168 {
169 void __iomem *data = zport->port.membase +
170 ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
171 u8 retval;
172
173 retval = readb(data);
174 recovery_delay();
175 return retval;
176 }
177
write_zsdata(struct zs_port * zport,u8 value)178 static void write_zsdata(struct zs_port *zport, u8 value)
179 {
180 void __iomem *data = zport->port.membase +
181 ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
182
183 writeb(value, data);
184 fast_iob();
185 recovery_delay();
186 return;
187 }
188
189 #ifdef ZS_DEBUG_REGS
zs_dump(void)190 void zs_dump(void)
191 {
192 struct zs_port *zport;
193 int i, j;
194
195 for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
196 zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
197
198 if (!zport->scc)
199 continue;
200
201 for (j = 0; j < 16; j++)
202 printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
203 printk("\n");
204 for (j = 0; j < 16; j++)
205 printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
206 printk("\n\n");
207 }
208 }
209 #endif
210
211
zs_spin_lock_cond_irq(spinlock_t * lock,int irq)212 static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
213 {
214 if (irq)
215 spin_lock_irq(lock);
216 else
217 spin_lock(lock);
218 }
219
zs_spin_unlock_cond_irq(spinlock_t * lock,int irq)220 static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
221 {
222 if (irq)
223 spin_unlock_irq(lock);
224 else
225 spin_unlock(lock);
226 }
227
zs_receive_drain(struct zs_port * zport)228 static int zs_receive_drain(struct zs_port *zport)
229 {
230 int loops = 10000;
231
232 while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
233 read_zsdata(zport);
234 return loops;
235 }
236
zs_transmit_drain(struct zs_port * zport,int irq)237 static int zs_transmit_drain(struct zs_port *zport, int irq)
238 {
239 struct zs_scc *scc = zport->scc;
240 int loops = 10000;
241
242 while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
243 zs_spin_unlock_cond_irq(&scc->zlock, irq);
244 udelay(2);
245 zs_spin_lock_cond_irq(&scc->zlock, irq);
246 }
247 return loops;
248 }
249
zs_line_drain(struct zs_port * zport,int irq)250 static int zs_line_drain(struct zs_port *zport, int irq)
251 {
252 struct zs_scc *scc = zport->scc;
253 int loops = 10000;
254
255 while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
256 zs_spin_unlock_cond_irq(&scc->zlock, irq);
257 udelay(2);
258 zs_spin_lock_cond_irq(&scc->zlock, irq);
259 }
260 return loops;
261 }
262
263
load_zsregs(struct zs_port * zport,u8 * regs,int irq)264 static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
265 {
266 /* Let the current transmission finish. */
267 zs_line_drain(zport, irq);
268 /* Load 'em up. */
269 write_zsreg(zport, R3, regs[3] & ~RxENABLE);
270 write_zsreg(zport, R5, regs[5] & ~TxENAB);
271 write_zsreg(zport, R4, regs[4]);
272 write_zsreg(zport, R9, regs[9]);
273 write_zsreg(zport, R1, regs[1]);
274 write_zsreg(zport, R2, regs[2]);
275 write_zsreg(zport, R10, regs[10]);
276 write_zsreg(zport, R14, regs[14] & ~BRENABL);
277 write_zsreg(zport, R11, regs[11]);
278 write_zsreg(zport, R12, regs[12]);
279 write_zsreg(zport, R13, regs[13]);
280 write_zsreg(zport, R14, regs[14]);
281 write_zsreg(zport, R15, regs[15]);
282 if (regs[3] & RxENABLE)
283 write_zsreg(zport, R3, regs[3]);
284 if (regs[5] & TxENAB)
285 write_zsreg(zport, R5, regs[5]);
286 return;
287 }
288
289
290 /*
291 * Status handling routines.
292 */
293
294 /*
295 * zs_tx_empty() -- get the transmitter empty status
296 *
297 * Purpose: Let user call ioctl() to get info when the UART physically
298 * is emptied. On bus types like RS485, the transmitter must
299 * release the bus after transmitting. This must be done when
300 * the transmit shift register is empty, not be done when the
301 * transmit holding register is empty. This functionality
302 * allows an RS485 driver to be written in user space.
303 */
zs_tx_empty(struct uart_port * uport)304 static unsigned int zs_tx_empty(struct uart_port *uport)
305 {
306 struct zs_port *zport = to_zport(uport);
307 struct zs_scc *scc = zport->scc;
308 unsigned long flags;
309 u8 status;
310
311 spin_lock_irqsave(&scc->zlock, flags);
312 status = read_zsreg(zport, R1);
313 spin_unlock_irqrestore(&scc->zlock, flags);
314
315 return status & ALL_SNT ? TIOCSER_TEMT : 0;
316 }
317
zs_raw_get_ab_mctrl(struct zs_port * zport_a,struct zs_port * zport_b)318 static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
319 struct zs_port *zport_b)
320 {
321 u8 status_a, status_b;
322 unsigned int mctrl;
323
324 status_a = read_zsreg(zport_a, R0);
325 status_b = read_zsreg(zport_b, R0);
326
327 mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
328 ((status_b & DCD) ? TIOCM_CAR : 0) |
329 ((status_a & DCD) ? TIOCM_RNG : 0) |
330 ((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
331
332 return mctrl;
333 }
334
zs_raw_get_mctrl(struct zs_port * zport)335 static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
336 {
337 struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
338
339 return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
340 }
341
zs_raw_xor_mctrl(struct zs_port * zport)342 static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
343 {
344 struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
345 unsigned int mmask, mctrl, delta;
346 u8 mask_a, mask_b;
347
348 if (zport == zport_a)
349 return 0;
350
351 mask_a = zport_a->regs[15];
352 mask_b = zport->regs[15];
353
354 mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
355 ((mask_b & DCDIE) ? TIOCM_CAR : 0) |
356 ((mask_a & DCDIE) ? TIOCM_RNG : 0) |
357 ((mask_a & SYNCIE) ? TIOCM_DSR : 0);
358
359 mctrl = zport->mctrl;
360 if (mmask) {
361 mctrl &= ~mmask;
362 mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
363 }
364
365 delta = mctrl ^ zport->mctrl;
366 if (delta)
367 zport->mctrl = mctrl;
368
369 return delta;
370 }
371
zs_get_mctrl(struct uart_port * uport)372 static unsigned int zs_get_mctrl(struct uart_port *uport)
373 {
374 struct zs_port *zport = to_zport(uport);
375 struct zs_scc *scc = zport->scc;
376 unsigned int mctrl;
377
378 spin_lock(&scc->zlock);
379 mctrl = zs_raw_get_mctrl(zport);
380 spin_unlock(&scc->zlock);
381
382 return mctrl;
383 }
384
zs_set_mctrl(struct uart_port * uport,unsigned int mctrl)385 static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
386 {
387 struct zs_port *zport = to_zport(uport);
388 struct zs_scc *scc = zport->scc;
389 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
390 u8 oldloop, newloop;
391
392 spin_lock(&scc->zlock);
393 if (zport != zport_a) {
394 if (mctrl & TIOCM_DTR)
395 zport_a->regs[5] |= DTR;
396 else
397 zport_a->regs[5] &= ~DTR;
398 if (mctrl & TIOCM_RTS)
399 zport_a->regs[5] |= RTS;
400 else
401 zport_a->regs[5] &= ~RTS;
402 write_zsreg(zport_a, R5, zport_a->regs[5]);
403 }
404
405 /* Rarely modified, so don't poke at hardware unless necessary. */
406 oldloop = zport->regs[14];
407 newloop = oldloop;
408 if (mctrl & TIOCM_LOOP)
409 newloop |= LOOPBAK;
410 else
411 newloop &= ~LOOPBAK;
412 if (newloop != oldloop) {
413 zport->regs[14] = newloop;
414 write_zsreg(zport, R14, zport->regs[14]);
415 }
416 spin_unlock(&scc->zlock);
417 }
418
zs_raw_stop_tx(struct zs_port * zport)419 static void zs_raw_stop_tx(struct zs_port *zport)
420 {
421 write_zsreg(zport, R0, RES_Tx_P);
422 zport->tx_stopped = 1;
423 }
424
zs_stop_tx(struct uart_port * uport)425 static void zs_stop_tx(struct uart_port *uport)
426 {
427 struct zs_port *zport = to_zport(uport);
428 struct zs_scc *scc = zport->scc;
429
430 spin_lock(&scc->zlock);
431 zs_raw_stop_tx(zport);
432 spin_unlock(&scc->zlock);
433 }
434
435 static void zs_raw_transmit_chars(struct zs_port *);
436
zs_start_tx(struct uart_port * uport)437 static void zs_start_tx(struct uart_port *uport)
438 {
439 struct zs_port *zport = to_zport(uport);
440 struct zs_scc *scc = zport->scc;
441
442 spin_lock(&scc->zlock);
443 if (zport->tx_stopped) {
444 zs_transmit_drain(zport, 0);
445 zport->tx_stopped = 0;
446 zs_raw_transmit_chars(zport);
447 }
448 spin_unlock(&scc->zlock);
449 }
450
zs_stop_rx(struct uart_port * uport)451 static void zs_stop_rx(struct uart_port *uport)
452 {
453 struct zs_port *zport = to_zport(uport);
454 struct zs_scc *scc = zport->scc;
455 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
456
457 spin_lock(&scc->zlock);
458 zport->regs[15] &= ~BRKIE;
459 zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
460 zport->regs[1] |= RxINT_DISAB;
461
462 if (zport != zport_a) {
463 /* A-side DCD tracks RI and SYNC tracks DSR. */
464 zport_a->regs[15] &= ~(DCDIE | SYNCIE);
465 write_zsreg(zport_a, R15, zport_a->regs[15]);
466 if (!(zport_a->regs[15] & BRKIE)) {
467 zport_a->regs[1] &= ~EXT_INT_ENAB;
468 write_zsreg(zport_a, R1, zport_a->regs[1]);
469 }
470
471 /* This-side DCD tracks DCD and CTS tracks CTS. */
472 zport->regs[15] &= ~(DCDIE | CTSIE);
473 zport->regs[1] &= ~EXT_INT_ENAB;
474 } else {
475 /* DCD tracks RI and SYNC tracks DSR for the B side. */
476 if (!(zport->regs[15] & (DCDIE | SYNCIE)))
477 zport->regs[1] &= ~EXT_INT_ENAB;
478 }
479
480 write_zsreg(zport, R15, zport->regs[15]);
481 write_zsreg(zport, R1, zport->regs[1]);
482 spin_unlock(&scc->zlock);
483 }
484
zs_enable_ms(struct uart_port * uport)485 static void zs_enable_ms(struct uart_port *uport)
486 {
487 struct zs_port *zport = to_zport(uport);
488 struct zs_scc *scc = zport->scc;
489 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
490
491 if (zport == zport_a)
492 return;
493
494 spin_lock(&scc->zlock);
495
496 /* Clear Ext interrupts if not being handled already. */
497 if (!(zport_a->regs[1] & EXT_INT_ENAB))
498 write_zsreg(zport_a, R0, RES_EXT_INT);
499
500 /* A-side DCD tracks RI and SYNC tracks DSR. */
501 zport_a->regs[1] |= EXT_INT_ENAB;
502 zport_a->regs[15] |= DCDIE | SYNCIE;
503
504 /* This-side DCD tracks DCD and CTS tracks CTS. */
505 zport->regs[15] |= DCDIE | CTSIE;
506
507 zs_raw_xor_mctrl(zport);
508
509 write_zsreg(zport_a, R1, zport_a->regs[1]);
510 write_zsreg(zport_a, R15, zport_a->regs[15]);
511 write_zsreg(zport, R15, zport->regs[15]);
512 spin_unlock(&scc->zlock);
513 }
514
zs_break_ctl(struct uart_port * uport,int break_state)515 static void zs_break_ctl(struct uart_port *uport, int break_state)
516 {
517 struct zs_port *zport = to_zport(uport);
518 struct zs_scc *scc = zport->scc;
519 unsigned long flags;
520
521 spin_lock_irqsave(&scc->zlock, flags);
522 if (break_state == -1)
523 zport->regs[5] |= SND_BRK;
524 else
525 zport->regs[5] &= ~SND_BRK;
526 write_zsreg(zport, R5, zport->regs[5]);
527 spin_unlock_irqrestore(&scc->zlock, flags);
528 }
529
530
531 /*
532 * Interrupt handling routines.
533 */
534 #define Rx_BRK 0x0100 /* BREAK event software flag. */
535 #define Rx_SYS 0x0200 /* SysRq event software flag. */
536
zs_receive_chars(struct zs_port * zport)537 static void zs_receive_chars(struct zs_port *zport)
538 {
539 struct uart_port *uport = &zport->port;
540 struct zs_scc *scc = zport->scc;
541 struct uart_icount *icount;
542 unsigned int avail, status;
543 int count;
544 u8 ch, flag;
545
546 for (count = 16; count; count--) {
547 spin_lock(&scc->zlock);
548 avail = read_zsreg(zport, R0) & Rx_CH_AV;
549 spin_unlock(&scc->zlock);
550 if (!avail)
551 break;
552
553 spin_lock(&scc->zlock);
554 status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
555 ch = read_zsdata(zport);
556 spin_unlock(&scc->zlock);
557
558 flag = TTY_NORMAL;
559
560 icount = &uport->icount;
561 icount->rx++;
562
563 /* Handle the null char got when BREAK is removed. */
564 if (!ch)
565 status |= zport->tty_break;
566 if (unlikely(status &
567 (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
568 zport->tty_break = 0;
569
570 /* Reset the error indication. */
571 if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
572 spin_lock(&scc->zlock);
573 write_zsreg(zport, R0, ERR_RES);
574 spin_unlock(&scc->zlock);
575 }
576
577 if (status & (Rx_SYS | Rx_BRK)) {
578 icount->brk++;
579 /* SysRq discards the null char. */
580 if (status & Rx_SYS)
581 continue;
582 } else if (status & FRM_ERR)
583 icount->frame++;
584 else if (status & PAR_ERR)
585 icount->parity++;
586 if (status & Rx_OVR)
587 icount->overrun++;
588
589 status &= uport->read_status_mask;
590 if (status & Rx_BRK)
591 flag = TTY_BREAK;
592 else if (status & FRM_ERR)
593 flag = TTY_FRAME;
594 else if (status & PAR_ERR)
595 flag = TTY_PARITY;
596 }
597
598 if (uart_handle_sysrq_char(uport, ch))
599 continue;
600
601 uart_insert_char(uport, status, Rx_OVR, ch, flag);
602 }
603
604 tty_flip_buffer_push(&uport->state->port);
605 }
606
zs_raw_transmit_chars(struct zs_port * zport)607 static void zs_raw_transmit_chars(struct zs_port *zport)
608 {
609 struct tty_port *tport = &zport->port.state->port;
610 unsigned char ch;
611
612 /* XON/XOFF chars. */
613 if (zport->port.x_char) {
614 write_zsdata(zport, zport->port.x_char);
615 zport->port.icount.tx++;
616 zport->port.x_char = 0;
617 return;
618 }
619
620 /* If nothing to do or stopped or hardware stopped. */
621 if (uart_tx_stopped(&zport->port) ||
622 !uart_fifo_get(&zport->port, &ch)) {
623 zs_raw_stop_tx(zport);
624 return;
625 }
626
627 /* Send char. */
628 write_zsdata(zport, ch);
629
630 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
631 uart_write_wakeup(&zport->port);
632
633 /* Are we are done? */
634 if (kfifo_is_empty(&tport->xmit_fifo))
635 zs_raw_stop_tx(zport);
636 }
637
zs_transmit_chars(struct zs_port * zport)638 static void zs_transmit_chars(struct zs_port *zport)
639 {
640 struct zs_scc *scc = zport->scc;
641
642 spin_lock(&scc->zlock);
643 zs_raw_transmit_chars(zport);
644 spin_unlock(&scc->zlock);
645 }
646
zs_status_handle(struct zs_port * zport,struct zs_port * zport_a)647 static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
648 {
649 struct uart_port *uport = &zport->port;
650 struct zs_scc *scc = zport->scc;
651 unsigned int delta;
652 u8 status, brk;
653
654 spin_lock(&scc->zlock);
655
656 /* Get status from Read Register 0. */
657 status = read_zsreg(zport, R0);
658
659 if (zport->regs[15] & BRKIE) {
660 brk = status & BRK_ABRT;
661 if (brk && !zport->brk) {
662 spin_unlock(&scc->zlock);
663 if (uart_handle_break(uport))
664 zport->tty_break = Rx_SYS;
665 else
666 zport->tty_break = Rx_BRK;
667 spin_lock(&scc->zlock);
668 }
669 zport->brk = brk;
670 }
671
672 if (zport != zport_a) {
673 delta = zs_raw_xor_mctrl(zport);
674 spin_unlock(&scc->zlock);
675
676 if (delta & TIOCM_CTS)
677 uart_handle_cts_change(uport,
678 zport->mctrl & TIOCM_CTS);
679 if (delta & TIOCM_CAR)
680 uart_handle_dcd_change(uport,
681 zport->mctrl & TIOCM_CAR);
682 if (delta & TIOCM_RNG)
683 uport->icount.dsr++;
684 if (delta & TIOCM_DSR)
685 uport->icount.rng++;
686
687 if (delta)
688 wake_up_interruptible(&uport->state->port.delta_msr_wait);
689
690 spin_lock(&scc->zlock);
691 }
692
693 /* Clear the status condition... */
694 write_zsreg(zport, R0, RES_EXT_INT);
695
696 spin_unlock(&scc->zlock);
697 }
698
699 /*
700 * This is the Z85C30 driver's generic interrupt routine.
701 */
zs_interrupt(int irq,void * dev_id)702 static irqreturn_t zs_interrupt(int irq, void *dev_id)
703 {
704 struct zs_scc *scc = dev_id;
705 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
706 struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
707 irqreturn_t status = IRQ_NONE;
708 u8 zs_intreg;
709 int count;
710
711 /*
712 * NOTE: The read register 3, which holds the irq status,
713 * does so for both channels on each chip. Although
714 * the status value itself must be read from the A
715 * channel and is only valid when read from channel A.
716 * Yes... broken hardware...
717 */
718 for (count = 16; count; count--) {
719 spin_lock(&scc->zlock);
720 zs_intreg = read_zsreg(zport_a, R3);
721 spin_unlock(&scc->zlock);
722 if (!zs_intreg)
723 break;
724
725 /*
726 * We do not like losing characters, so we prioritise
727 * interrupt sources a little bit differently than
728 * the SCC would, was it allowed to.
729 */
730 if (zs_intreg & CHBRxIP)
731 zs_receive_chars(zport_b);
732 if (zs_intreg & CHARxIP)
733 zs_receive_chars(zport_a);
734 if (zs_intreg & CHBEXT)
735 zs_status_handle(zport_b, zport_a);
736 if (zs_intreg & CHAEXT)
737 zs_status_handle(zport_a, zport_a);
738 if (zs_intreg & CHBTxIP)
739 zs_transmit_chars(zport_b);
740 if (zs_intreg & CHATxIP)
741 zs_transmit_chars(zport_a);
742
743 status = IRQ_HANDLED;
744 }
745
746 return status;
747 }
748
749
750 /*
751 * Finally, routines used to initialize the serial port.
752 */
zs_startup(struct uart_port * uport)753 static int zs_startup(struct uart_port *uport)
754 {
755 struct zs_port *zport = to_zport(uport);
756 struct zs_scc *scc = zport->scc;
757 unsigned long flags;
758 int irq_guard;
759 int ret;
760
761 irq_guard = atomic_add_return(1, &scc->irq_guard);
762 if (irq_guard == 1) {
763 ret = request_irq(zport->port.irq, zs_interrupt,
764 IRQF_SHARED, "scc", scc);
765 if (ret) {
766 atomic_add(-1, &scc->irq_guard);
767 printk(KERN_ERR "zs: can't get irq %d\n",
768 zport->port.irq);
769 return ret;
770 }
771 }
772
773 spin_lock_irqsave(&scc->zlock, flags);
774
775 /* Clear the receive FIFO. */
776 zs_receive_drain(zport);
777
778 /* Clear the interrupt registers. */
779 write_zsreg(zport, R0, ERR_RES);
780 write_zsreg(zport, R0, RES_Tx_P);
781 /* But Ext only if not being handled already. */
782 if (!(zport->regs[1] & EXT_INT_ENAB))
783 write_zsreg(zport, R0, RES_EXT_INT);
784
785 /* Finally, enable sequencing and interrupts. */
786 zport->regs[1] &= ~RxINT_MASK;
787 zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
788 zport->regs[3] |= RxENABLE;
789 zport->regs[15] |= BRKIE;
790 write_zsreg(zport, R1, zport->regs[1]);
791 write_zsreg(zport, R3, zport->regs[3]);
792 write_zsreg(zport, R5, zport->regs[5]);
793 write_zsreg(zport, R15, zport->regs[15]);
794
795 /* Record the current state of RR0. */
796 zport->mctrl = zs_raw_get_mctrl(zport);
797 zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
798
799 zport->tx_stopped = 1;
800
801 spin_unlock_irqrestore(&scc->zlock, flags);
802
803 return 0;
804 }
805
zs_shutdown(struct uart_port * uport)806 static void zs_shutdown(struct uart_port *uport)
807 {
808 struct zs_port *zport = to_zport(uport);
809 struct zs_scc *scc = zport->scc;
810 unsigned long flags;
811 int irq_guard;
812
813 spin_lock_irqsave(&scc->zlock, flags);
814
815 zport->regs[3] &= ~RxENABLE;
816 write_zsreg(zport, R5, zport->regs[5]);
817 write_zsreg(zport, R3, zport->regs[3]);
818
819 spin_unlock_irqrestore(&scc->zlock, flags);
820
821 irq_guard = atomic_add_return(-1, &scc->irq_guard);
822 if (!irq_guard)
823 free_irq(zport->port.irq, scc);
824 }
825
826
zs_reset(struct zs_port * zport)827 static void zs_reset(struct zs_port *zport)
828 {
829 struct zs_scc *scc = zport->scc;
830 int irq;
831 unsigned long flags;
832
833 spin_lock_irqsave(&scc->zlock, flags);
834 irq = !irqs_disabled_flags(flags);
835 if (!scc->initialised) {
836 /* Reset the pointer first, just in case... */
837 read_zsreg(zport, R0);
838 /* And let the current transmission finish. */
839 zs_line_drain(zport, irq);
840 write_zsreg(zport, R9, FHWRES);
841 udelay(10);
842 write_zsreg(zport, R9, 0);
843 scc->initialised = 1;
844 }
845 load_zsregs(zport, zport->regs, irq);
846 spin_unlock_irqrestore(&scc->zlock, flags);
847 }
848
zs_set_termios(struct uart_port * uport,struct ktermios * termios,const struct ktermios * old_termios)849 static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
850 const struct ktermios *old_termios)
851 {
852 struct zs_port *zport = to_zport(uport);
853 struct zs_scc *scc = zport->scc;
854 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
855 int irq;
856 unsigned int baud, brg;
857 unsigned long flags;
858
859 spin_lock_irqsave(&scc->zlock, flags);
860 irq = !irqs_disabled_flags(flags);
861
862 /* Byte size. */
863 zport->regs[3] &= ~RxNBITS_MASK;
864 zport->regs[5] &= ~TxNBITS_MASK;
865 switch (termios->c_cflag & CSIZE) {
866 case CS5:
867 zport->regs[3] |= Rx5;
868 zport->regs[5] |= Tx5;
869 break;
870 case CS6:
871 zport->regs[3] |= Rx6;
872 zport->regs[5] |= Tx6;
873 break;
874 case CS7:
875 zport->regs[3] |= Rx7;
876 zport->regs[5] |= Tx7;
877 break;
878 case CS8:
879 default:
880 zport->regs[3] |= Rx8;
881 zport->regs[5] |= Tx8;
882 break;
883 }
884
885 /* Parity and stop bits. */
886 zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
887 if (termios->c_cflag & CSTOPB)
888 zport->regs[4] |= SB2;
889 else
890 zport->regs[4] |= SB1;
891 if (termios->c_cflag & PARENB)
892 zport->regs[4] |= PAR_ENA;
893 if (!(termios->c_cflag & PARODD))
894 zport->regs[4] |= PAR_EVEN;
895 switch (zport->clk_mode) {
896 case 64:
897 zport->regs[4] |= X64CLK;
898 break;
899 case 32:
900 zport->regs[4] |= X32CLK;
901 break;
902 case 16:
903 zport->regs[4] |= X16CLK;
904 break;
905 case 1:
906 zport->regs[4] |= X1CLK;
907 break;
908 default:
909 BUG();
910 }
911
912 baud = uart_get_baud_rate(uport, termios, old_termios, 0,
913 uport->uartclk / zport->clk_mode / 4);
914
915 brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
916 zport->regs[12] = brg & 0xff;
917 zport->regs[13] = (brg >> 8) & 0xff;
918
919 uart_update_timeout(uport, termios->c_cflag, baud);
920
921 uport->read_status_mask = Rx_OVR;
922 if (termios->c_iflag & INPCK)
923 uport->read_status_mask |= FRM_ERR | PAR_ERR;
924 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
925 uport->read_status_mask |= Rx_BRK;
926
927 uport->ignore_status_mask = 0;
928 if (termios->c_iflag & IGNPAR)
929 uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
930 if (termios->c_iflag & IGNBRK) {
931 uport->ignore_status_mask |= Rx_BRK;
932 if (termios->c_iflag & IGNPAR)
933 uport->ignore_status_mask |= Rx_OVR;
934 }
935
936 if (termios->c_cflag & CREAD)
937 zport->regs[3] |= RxENABLE;
938 else
939 zport->regs[3] &= ~RxENABLE;
940
941 if (zport != zport_a) {
942 if (!(termios->c_cflag & CLOCAL)) {
943 zport->regs[15] |= DCDIE;
944 } else
945 zport->regs[15] &= ~DCDIE;
946 if (termios->c_cflag & CRTSCTS) {
947 zport->regs[15] |= CTSIE;
948 } else
949 zport->regs[15] &= ~CTSIE;
950 zs_raw_xor_mctrl(zport);
951 }
952
953 /* Load up the new values. */
954 load_zsregs(zport, zport->regs, irq);
955
956 spin_unlock_irqrestore(&scc->zlock, flags);
957 }
958
959 /*
960 * Hack alert!
961 * Required solely so that the initial PROM-based console
962 * works undisturbed in parallel with this one.
963 */
zs_pm(struct uart_port * uport,unsigned int state,unsigned int oldstate)964 static void zs_pm(struct uart_port *uport, unsigned int state,
965 unsigned int oldstate)
966 {
967 struct zs_port *zport = to_zport(uport);
968
969 if (state < 3)
970 zport->regs[5] |= TxENAB;
971 else
972 zport->regs[5] &= ~TxENAB;
973 write_zsreg(zport, R5, zport->regs[5]);
974 }
975
976
zs_type(struct uart_port * uport)977 static const char *zs_type(struct uart_port *uport)
978 {
979 return "Z85C30 SCC";
980 }
981
zs_release_port(struct uart_port * uport)982 static void zs_release_port(struct uart_port *uport)
983 {
984 iounmap(uport->membase);
985 uport->membase = NULL;
986 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
987 }
988
zs_map_port(struct uart_port * uport)989 static int zs_map_port(struct uart_port *uport)
990 {
991 if (!uport->membase)
992 uport->membase = ioremap(uport->mapbase,
993 ZS_CHAN_IO_SIZE);
994 if (!uport->membase) {
995 printk(KERN_ERR "zs: Cannot map MMIO\n");
996 return -ENOMEM;
997 }
998 return 0;
999 }
1000
zs_request_port(struct uart_port * uport)1001 static int zs_request_port(struct uart_port *uport)
1002 {
1003 int ret;
1004
1005 if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1006 printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1007 return -EBUSY;
1008 }
1009 ret = zs_map_port(uport);
1010 if (ret) {
1011 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1012 return ret;
1013 }
1014 return 0;
1015 }
1016
zs_config_port(struct uart_port * uport,int flags)1017 static void zs_config_port(struct uart_port *uport, int flags)
1018 {
1019 struct zs_port *zport = to_zport(uport);
1020
1021 if (flags & UART_CONFIG_TYPE) {
1022 if (zs_request_port(uport))
1023 return;
1024
1025 uport->type = PORT_ZS;
1026
1027 zs_reset(zport);
1028 }
1029 }
1030
zs_verify_port(struct uart_port * uport,struct serial_struct * ser)1031 static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1032 {
1033 struct zs_port *zport = to_zport(uport);
1034 int ret = 0;
1035
1036 if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1037 ret = -EINVAL;
1038 if (ser->irq != uport->irq)
1039 ret = -EINVAL;
1040 if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1041 ret = -EINVAL;
1042 return ret;
1043 }
1044
1045
1046 static const struct uart_ops zs_ops = {
1047 .tx_empty = zs_tx_empty,
1048 .set_mctrl = zs_set_mctrl,
1049 .get_mctrl = zs_get_mctrl,
1050 .stop_tx = zs_stop_tx,
1051 .start_tx = zs_start_tx,
1052 .stop_rx = zs_stop_rx,
1053 .enable_ms = zs_enable_ms,
1054 .break_ctl = zs_break_ctl,
1055 .startup = zs_startup,
1056 .shutdown = zs_shutdown,
1057 .set_termios = zs_set_termios,
1058 .pm = zs_pm,
1059 .type = zs_type,
1060 .release_port = zs_release_port,
1061 .request_port = zs_request_port,
1062 .config_port = zs_config_port,
1063 .verify_port = zs_verify_port,
1064 };
1065
1066 /*
1067 * Initialize Z85C30 port structures.
1068 */
zs_probe_sccs(void)1069 static int __init zs_probe_sccs(void)
1070 {
1071 static int probed;
1072 struct zs_parms zs_parms;
1073 int chip, side, irq;
1074 int n_chips = 0;
1075 int i;
1076
1077 if (probed)
1078 return 0;
1079
1080 irq = dec_interrupt[DEC_IRQ_SCC0];
1081 if (irq >= 0) {
1082 zs_parms.scc[n_chips] = IOASIC_SCC0;
1083 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1084 n_chips++;
1085 }
1086 irq = dec_interrupt[DEC_IRQ_SCC1];
1087 if (irq >= 0) {
1088 zs_parms.scc[n_chips] = IOASIC_SCC1;
1089 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1090 n_chips++;
1091 }
1092 if (!n_chips)
1093 return -ENXIO;
1094
1095 probed = 1;
1096
1097 for (chip = 0; chip < n_chips; chip++) {
1098 spin_lock_init(&zs_sccs[chip].zlock);
1099 for (side = 0; side < ZS_NUM_CHAN; side++) {
1100 struct zs_port *zport = &zs_sccs[chip].zport[side];
1101 struct uart_port *uport = &zport->port;
1102
1103 zport->scc = &zs_sccs[chip];
1104 zport->clk_mode = 16;
1105
1106 uport->has_sysrq = IS_ENABLED(CONFIG_SERIAL_ZS_CONSOLE);
1107 uport->irq = zs_parms.irq[chip];
1108 uport->uartclk = ZS_CLOCK;
1109 uport->fifosize = 1;
1110 uport->iotype = UPIO_MEM;
1111 uport->flags = UPF_BOOT_AUTOCONF;
1112 uport->ops = &zs_ops;
1113 uport->line = chip * ZS_NUM_CHAN + side;
1114 uport->mapbase = dec_kn_slot_base +
1115 zs_parms.scc[chip] +
1116 (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1117
1118 for (i = 0; i < ZS_NUM_REGS; i++)
1119 zport->regs[i] = zs_init_regs[i];
1120 }
1121 }
1122
1123 return 0;
1124 }
1125
1126
1127 #ifdef CONFIG_SERIAL_ZS_CONSOLE
zs_console_putchar(struct uart_port * uport,unsigned char ch)1128 static void zs_console_putchar(struct uart_port *uport, unsigned char ch)
1129 {
1130 struct zs_port *zport = to_zport(uport);
1131 struct zs_scc *scc = zport->scc;
1132 int irq;
1133 unsigned long flags;
1134
1135 spin_lock_irqsave(&scc->zlock, flags);
1136 irq = !irqs_disabled_flags(flags);
1137 if (zs_transmit_drain(zport, irq))
1138 write_zsdata(zport, ch);
1139 spin_unlock_irqrestore(&scc->zlock, flags);
1140 }
1141
1142 /*
1143 * Print a string to the serial port trying not to disturb
1144 * any possible real use of the port...
1145 */
zs_console_write(struct console * co,const char * s,unsigned int count)1146 static void zs_console_write(struct console *co, const char *s,
1147 unsigned int count)
1148 {
1149 int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1150 struct zs_port *zport = &zs_sccs[chip].zport[side];
1151 struct zs_scc *scc = zport->scc;
1152 unsigned long flags;
1153 u8 txint, txenb;
1154 int irq;
1155
1156 /* Disable transmit interrupts and enable the transmitter. */
1157 spin_lock_irqsave(&scc->zlock, flags);
1158 txint = zport->regs[1];
1159 txenb = zport->regs[5];
1160 if (txint & TxINT_ENAB) {
1161 zport->regs[1] = txint & ~TxINT_ENAB;
1162 write_zsreg(zport, R1, zport->regs[1]);
1163 }
1164 if (!(txenb & TxENAB)) {
1165 zport->regs[5] = txenb | TxENAB;
1166 write_zsreg(zport, R5, zport->regs[5]);
1167 }
1168 spin_unlock_irqrestore(&scc->zlock, flags);
1169
1170 uart_console_write(&zport->port, s, count, zs_console_putchar);
1171
1172 /* Restore transmit interrupts and the transmitter enable. */
1173 spin_lock_irqsave(&scc->zlock, flags);
1174 irq = !irqs_disabled_flags(flags);
1175 zs_line_drain(zport, irq);
1176 if (!(txenb & TxENAB)) {
1177 zport->regs[5] &= ~TxENAB;
1178 write_zsreg(zport, R5, zport->regs[5]);
1179 }
1180 if (txint & TxINT_ENAB) {
1181 zport->regs[1] |= TxINT_ENAB;
1182 write_zsreg(zport, R1, zport->regs[1]);
1183
1184 /* Resume any transmission as the TxIP bit won't be set. */
1185 if (!zport->tx_stopped)
1186 zs_raw_transmit_chars(zport);
1187 }
1188 spin_unlock_irqrestore(&scc->zlock, flags);
1189 }
1190
1191 /*
1192 * Setup serial console baud/bits/parity. We do two things here:
1193 * - construct a cflag setting for the first uart_open()
1194 * - initialise the serial port
1195 * Return non-zero if we didn't find a serial port.
1196 */
zs_console_setup(struct console * co,char * options)1197 static int __init zs_console_setup(struct console *co, char *options)
1198 {
1199 int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1200 struct zs_port *zport = &zs_sccs[chip].zport[side];
1201 struct uart_port *uport = &zport->port;
1202 int baud = 9600;
1203 int bits = 8;
1204 int parity = 'n';
1205 int flow = 'n';
1206 int ret;
1207
1208 ret = zs_map_port(uport);
1209 if (ret)
1210 return ret;
1211
1212 zs_reset(zport);
1213 zs_pm(uport, 0, -1);
1214
1215 if (options)
1216 uart_parse_options(options, &baud, &parity, &bits, &flow);
1217 return uart_set_options(uport, co, baud, parity, bits, flow);
1218 }
1219
1220 static struct uart_driver zs_reg;
1221 static struct console zs_console = {
1222 .name = "ttyS",
1223 .write = zs_console_write,
1224 .device = uart_console_device,
1225 .setup = zs_console_setup,
1226 .flags = CON_PRINTBUFFER,
1227 .index = -1,
1228 .data = &zs_reg,
1229 };
1230
1231 /*
1232 * Register console.
1233 */
zs_serial_console_init(void)1234 static int __init zs_serial_console_init(void)
1235 {
1236 int ret;
1237
1238 ret = zs_probe_sccs();
1239 if (ret)
1240 return ret;
1241 register_console(&zs_console);
1242
1243 return 0;
1244 }
1245
1246 console_initcall(zs_serial_console_init);
1247
1248 #define SERIAL_ZS_CONSOLE &zs_console
1249 #else
1250 #define SERIAL_ZS_CONSOLE NULL
1251 #endif /* CONFIG_SERIAL_ZS_CONSOLE */
1252
1253 static struct uart_driver zs_reg = {
1254 .owner = THIS_MODULE,
1255 .driver_name = "serial",
1256 .dev_name = "ttyS",
1257 .major = TTY_MAJOR,
1258 .minor = 64,
1259 .nr = ZS_NUM_SCCS * ZS_NUM_CHAN,
1260 .cons = SERIAL_ZS_CONSOLE,
1261 };
1262
1263 /* zs_init inits the driver. */
zs_init(void)1264 static int __init zs_init(void)
1265 {
1266 int i, ret;
1267
1268 pr_info("%s%s\n", zs_name, zs_version);
1269
1270 /* Find out how many Z85C30 SCCs we have. */
1271 ret = zs_probe_sccs();
1272 if (ret)
1273 return ret;
1274
1275 ret = uart_register_driver(&zs_reg);
1276 if (ret)
1277 return ret;
1278
1279 for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1280 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1281 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1282 struct uart_port *uport = &zport->port;
1283
1284 if (zport->scc)
1285 uart_add_one_port(&zs_reg, uport);
1286 }
1287
1288 return 0;
1289 }
1290
zs_exit(void)1291 static void __exit zs_exit(void)
1292 {
1293 int i;
1294
1295 for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1296 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1297 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1298 struct uart_port *uport = &zport->port;
1299
1300 if (zport->scc)
1301 uart_remove_one_port(&zs_reg, uport);
1302 }
1303
1304 uart_unregister_driver(&zs_reg);
1305 }
1306
1307 module_init(zs_init);
1308 module_exit(zs_exit);
1309