1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/platform_device.h>
24 #include <linux/sysrq.h>
25 #include <linux/device.h>
26 #include <linux/tty.h>
27 #include <linux/tty_flip.h>
28 #include <linux/serial_core.h>
29 #include <linux/serial.h>
30 #include <linux/amba/bus.h>
31 #include <linux/amba/serial.h>
32 #include <linux/clk.h>
33 #include <linux/slab.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/scatterlist.h>
37 #include <linux/delay.h>
38 #include <linux/types.h>
39 #include <linux/of.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44 
45 #define UART_NR			14
46 
47 #define SERIAL_AMBA_MAJOR	204
48 #define SERIAL_AMBA_MINOR	64
49 #define SERIAL_AMBA_NR		UART_NR
50 
51 #define AMBA_ISR_PASS_LIMIT	256
52 
53 #define UART_DR_ERROR		(UART011_DR_OE | UART011_DR_BE | UART011_DR_PE | UART011_DR_FE)
54 #define UART_DUMMY_DR_RX	BIT(16)
55 
56 enum {
57 	REG_DR,
58 	REG_ST_DMAWM,
59 	REG_ST_TIMEOUT,
60 	REG_FR,
61 	REG_LCRH_RX,
62 	REG_LCRH_TX,
63 	REG_IBRD,
64 	REG_FBRD,
65 	REG_CR,
66 	REG_IFLS,
67 	REG_IMSC,
68 	REG_RIS,
69 	REG_MIS,
70 	REG_ICR,
71 	REG_DMACR,
72 	REG_ST_XFCR,
73 	REG_ST_XON1,
74 	REG_ST_XON2,
75 	REG_ST_XOFF1,
76 	REG_ST_XOFF2,
77 	REG_ST_ITCR,
78 	REG_ST_ITIP,
79 	REG_ST_ABCR,
80 	REG_ST_ABIMSC,
81 
82 	/* The size of the array - must be last */
83 	REG_ARRAY_SIZE,
84 };
85 
86 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
87 	[REG_DR] = UART01x_DR,
88 	[REG_FR] = UART01x_FR,
89 	[REG_LCRH_RX] = UART011_LCRH,
90 	[REG_LCRH_TX] = UART011_LCRH,
91 	[REG_IBRD] = UART011_IBRD,
92 	[REG_FBRD] = UART011_FBRD,
93 	[REG_CR] = UART011_CR,
94 	[REG_IFLS] = UART011_IFLS,
95 	[REG_IMSC] = UART011_IMSC,
96 	[REG_RIS] = UART011_RIS,
97 	[REG_MIS] = UART011_MIS,
98 	[REG_ICR] = UART011_ICR,
99 	[REG_DMACR] = UART011_DMACR,
100 };
101 
102 /* There is by now at least one vendor with differing details, so handle it */
103 struct vendor_data {
104 	const u16		*reg_offset;
105 	unsigned int		ifls;
106 	unsigned int		fr_busy;
107 	unsigned int		fr_dsr;
108 	unsigned int		fr_cts;
109 	unsigned int		fr_ri;
110 	unsigned int		inv_fr;
111 	bool			access_32b;
112 	bool			oversampling;
113 	bool			dma_threshold;
114 	bool			cts_event_workaround;
115 	bool			always_enabled;
116 	bool			fixed_options;
117 
118 	unsigned int (*get_fifosize)(struct amba_device *dev);
119 };
120 
get_fifosize_arm(struct amba_device * dev)121 static unsigned int get_fifosize_arm(struct amba_device *dev)
122 {
123 	return amba_rev(dev) < 3 ? 16 : 32;
124 }
125 
126 static struct vendor_data vendor_arm = {
127 	.reg_offset		= pl011_std_offsets,
128 	.ifls			= UART011_IFLS_RX4_8 | UART011_IFLS_TX4_8,
129 	.fr_busy		= UART01x_FR_BUSY,
130 	.fr_dsr			= UART01x_FR_DSR,
131 	.fr_cts			= UART01x_FR_CTS,
132 	.fr_ri			= UART011_FR_RI,
133 	.oversampling		= false,
134 	.dma_threshold		= false,
135 	.cts_event_workaround	= false,
136 	.always_enabled		= false,
137 	.fixed_options		= false,
138 	.get_fifosize		= get_fifosize_arm,
139 };
140 
141 static const struct vendor_data vendor_sbsa = {
142 	.reg_offset		= pl011_std_offsets,
143 	.fr_busy		= UART01x_FR_BUSY,
144 	.fr_dsr			= UART01x_FR_DSR,
145 	.fr_cts			= UART01x_FR_CTS,
146 	.fr_ri			= UART011_FR_RI,
147 	.access_32b		= true,
148 	.oversampling		= false,
149 	.dma_threshold		= false,
150 	.cts_event_workaround	= false,
151 	.always_enabled		= true,
152 	.fixed_options		= true,
153 };
154 
155 #ifdef CONFIG_ACPI_SPCR_TABLE
156 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
157 	.reg_offset		= pl011_std_offsets,
158 	.fr_busy		= UART011_FR_TXFE,
159 	.fr_dsr			= UART01x_FR_DSR,
160 	.fr_cts			= UART01x_FR_CTS,
161 	.fr_ri			= UART011_FR_RI,
162 	.inv_fr			= UART011_FR_TXFE,
163 	.access_32b		= true,
164 	.oversampling		= false,
165 	.dma_threshold		= false,
166 	.cts_event_workaround	= false,
167 	.always_enabled		= true,
168 	.fixed_options		= true,
169 };
170 #endif
171 
172 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
173 	[REG_DR] = UART01x_DR,
174 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
175 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
176 	[REG_FR] = UART01x_FR,
177 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
178 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
179 	[REG_IBRD] = UART011_IBRD,
180 	[REG_FBRD] = UART011_FBRD,
181 	[REG_CR] = UART011_CR,
182 	[REG_IFLS] = UART011_IFLS,
183 	[REG_IMSC] = UART011_IMSC,
184 	[REG_RIS] = UART011_RIS,
185 	[REG_MIS] = UART011_MIS,
186 	[REG_ICR] = UART011_ICR,
187 	[REG_DMACR] = UART011_DMACR,
188 	[REG_ST_XFCR] = ST_UART011_XFCR,
189 	[REG_ST_XON1] = ST_UART011_XON1,
190 	[REG_ST_XON2] = ST_UART011_XON2,
191 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
192 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
193 	[REG_ST_ITCR] = ST_UART011_ITCR,
194 	[REG_ST_ITIP] = ST_UART011_ITIP,
195 	[REG_ST_ABCR] = ST_UART011_ABCR,
196 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
197 };
198 
get_fifosize_st(struct amba_device * dev)199 static unsigned int get_fifosize_st(struct amba_device *dev)
200 {
201 	return 64;
202 }
203 
204 static struct vendor_data vendor_st = {
205 	.reg_offset		= pl011_st_offsets,
206 	.ifls			= UART011_IFLS_RX_HALF | UART011_IFLS_TX_HALF,
207 	.fr_busy		= UART01x_FR_BUSY,
208 	.fr_dsr			= UART01x_FR_DSR,
209 	.fr_cts			= UART01x_FR_CTS,
210 	.fr_ri			= UART011_FR_RI,
211 	.oversampling		= true,
212 	.dma_threshold		= true,
213 	.cts_event_workaround	= true,
214 	.always_enabled		= false,
215 	.fixed_options		= false,
216 	.get_fifosize		= get_fifosize_st,
217 };
218 
219 /* Deals with DMA transactions */
220 
221 struct pl011_dmabuf {
222 	dma_addr_t		dma;
223 	size_t			len;
224 	char			*buf;
225 };
226 
227 struct pl011_dmarx_data {
228 	struct dma_chan		*chan;
229 	struct completion	complete;
230 	bool			use_buf_b;
231 	struct pl011_dmabuf	dbuf_a;
232 	struct pl011_dmabuf	dbuf_b;
233 	dma_cookie_t		cookie;
234 	bool			running;
235 	struct timer_list	timer;
236 	unsigned int last_residue;
237 	unsigned long last_jiffies;
238 	bool auto_poll_rate;
239 	unsigned int poll_rate;
240 	unsigned int poll_timeout;
241 };
242 
243 struct pl011_dmatx_data {
244 	struct dma_chan		*chan;
245 	dma_addr_t		dma;
246 	size_t			len;
247 	char			*buf;
248 	bool			queued;
249 };
250 
251 enum pl011_rs485_tx_state {
252 	OFF,
253 	WAIT_AFTER_RTS,
254 	SEND,
255 	WAIT_AFTER_SEND,
256 };
257 
258 /*
259  * We wrap our port structure around the generic uart_port.
260  */
261 struct uart_amba_port {
262 	struct uart_port	port;
263 	const u16		*reg_offset;
264 	struct clk		*clk;
265 	const struct vendor_data *vendor;
266 	unsigned int		im;		/* interrupt mask */
267 	unsigned int		old_status;
268 	unsigned int		fifosize;	/* vendor-specific */
269 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
270 	char			type[12];
271 	ktime_t			rs485_tx_drain_interval; /* nano */
272 	enum pl011_rs485_tx_state	rs485_tx_state;
273 	struct hrtimer		trigger_start_tx;
274 	struct hrtimer		trigger_stop_tx;
275 #ifdef CONFIG_DMA_ENGINE
276 	/* DMA stuff */
277 	unsigned int		dmacr;		/* dma control reg */
278 	bool			using_tx_dma;
279 	bool			using_rx_dma;
280 	struct pl011_dmarx_data dmarx;
281 	struct pl011_dmatx_data	dmatx;
282 	bool			dma_probed;
283 #endif
284 };
285 
286 static unsigned int pl011_tx_empty(struct uart_port *port);
287 
pl011_reg_to_offset(const struct uart_amba_port * uap,unsigned int reg)288 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
289 					unsigned int reg)
290 {
291 	return uap->reg_offset[reg];
292 }
293 
pl011_read(const struct uart_amba_port * uap,unsigned int reg)294 static unsigned int pl011_read(const struct uart_amba_port *uap,
295 			       unsigned int reg)
296 {
297 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
298 
299 	return (uap->port.iotype == UPIO_MEM32) ?
300 		readl_relaxed(addr) : readw_relaxed(addr);
301 }
302 
pl011_write(unsigned int val,const struct uart_amba_port * uap,unsigned int reg)303 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
304 			unsigned int reg)
305 {
306 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
307 
308 	if (uap->port.iotype == UPIO_MEM32)
309 		writel_relaxed(val, addr);
310 	else
311 		writew_relaxed(val, addr);
312 }
313 
314 /*
315  * Reads up to 256 characters from the FIFO or until it's empty and
316  * inserts them into the TTY layer. Returns the number of characters
317  * read from the FIFO.
318  */
pl011_fifo_to_tty(struct uart_amba_port * uap)319 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
320 {
321 	unsigned int ch, fifotaken;
322 	int sysrq;
323 	u16 status;
324 	u8 flag;
325 
326 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
327 		status = pl011_read(uap, REG_FR);
328 		if (status & UART01x_FR_RXFE)
329 			break;
330 
331 		/* Take chars from the FIFO and update status */
332 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
333 		flag = TTY_NORMAL;
334 		uap->port.icount.rx++;
335 
336 		if (unlikely(ch & UART_DR_ERROR)) {
337 			if (ch & UART011_DR_BE) {
338 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
339 				uap->port.icount.brk++;
340 				if (uart_handle_break(&uap->port))
341 					continue;
342 			} else if (ch & UART011_DR_PE) {
343 				uap->port.icount.parity++;
344 			} else if (ch & UART011_DR_FE) {
345 				uap->port.icount.frame++;
346 			}
347 			if (ch & UART011_DR_OE)
348 				uap->port.icount.overrun++;
349 
350 			ch &= uap->port.read_status_mask;
351 
352 			if (ch & UART011_DR_BE)
353 				flag = TTY_BREAK;
354 			else if (ch & UART011_DR_PE)
355 				flag = TTY_PARITY;
356 			else if (ch & UART011_DR_FE)
357 				flag = TTY_FRAME;
358 		}
359 
360 		sysrq = uart_prepare_sysrq_char(&uap->port, ch & 255);
361 		if (!sysrq)
362 			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
363 	}
364 
365 	return fifotaken;
366 }
367 
368 /*
369  * All the DMA operation mode stuff goes inside this ifdef.
370  * This assumes that you have a generic DMA device interface,
371  * no custom DMA interfaces are supported.
372  */
373 #ifdef CONFIG_DMA_ENGINE
374 
375 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
376 
pl011_dmabuf_init(struct dma_chan * chan,struct pl011_dmabuf * db,enum dma_data_direction dir)377 static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db,
378 			     enum dma_data_direction dir)
379 {
380 	db->buf = dma_alloc_coherent(chan->device->dev, PL011_DMA_BUFFER_SIZE,
381 				     &db->dma, GFP_KERNEL);
382 	if (!db->buf)
383 		return -ENOMEM;
384 	db->len = PL011_DMA_BUFFER_SIZE;
385 
386 	return 0;
387 }
388 
pl011_dmabuf_free(struct dma_chan * chan,struct pl011_dmabuf * db,enum dma_data_direction dir)389 static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db,
390 			      enum dma_data_direction dir)
391 {
392 	if (db->buf) {
393 		dma_free_coherent(chan->device->dev,
394 				  PL011_DMA_BUFFER_SIZE, db->buf, db->dma);
395 	}
396 }
397 
pl011_dma_probe(struct uart_amba_port * uap)398 static void pl011_dma_probe(struct uart_amba_port *uap)
399 {
400 	/* DMA is the sole user of the platform data right now */
401 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
402 	struct device *dev = uap->port.dev;
403 	struct dma_slave_config tx_conf = {
404 		.dst_addr = uap->port.mapbase +
405 				 pl011_reg_to_offset(uap, REG_DR),
406 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
407 		.direction = DMA_MEM_TO_DEV,
408 		.dst_maxburst = uap->fifosize >> 1,
409 		.device_fc = false,
410 	};
411 	struct dma_chan *chan;
412 	dma_cap_mask_t mask;
413 
414 	uap->dma_probed = true;
415 	chan = dma_request_chan(dev, "tx");
416 	if (IS_ERR(chan)) {
417 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
418 			uap->dma_probed = false;
419 			return;
420 		}
421 
422 		/* We need platform data */
423 		if (!plat || !plat->dma_filter) {
424 			dev_dbg(uap->port.dev, "no DMA platform data\n");
425 			return;
426 		}
427 
428 		/* Try to acquire a generic DMA engine slave TX channel */
429 		dma_cap_zero(mask);
430 		dma_cap_set(DMA_SLAVE, mask);
431 
432 		chan = dma_request_channel(mask, plat->dma_filter,
433 					   plat->dma_tx_param);
434 		if (!chan) {
435 			dev_err(uap->port.dev, "no TX DMA channel!\n");
436 			return;
437 		}
438 	}
439 
440 	dmaengine_slave_config(chan, &tx_conf);
441 	uap->dmatx.chan = chan;
442 
443 	dev_info(uap->port.dev, "DMA channel TX %s\n",
444 		 dma_chan_name(uap->dmatx.chan));
445 
446 	/* Optionally make use of an RX channel as well */
447 	chan = dma_request_chan(dev, "rx");
448 
449 	if (IS_ERR(chan) && plat && plat->dma_rx_param) {
450 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
451 
452 		if (!chan) {
453 			dev_err(uap->port.dev, "no RX DMA channel!\n");
454 			return;
455 		}
456 	}
457 
458 	if (!IS_ERR(chan)) {
459 		struct dma_slave_config rx_conf = {
460 			.src_addr = uap->port.mapbase +
461 				pl011_reg_to_offset(uap, REG_DR),
462 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
463 			.direction = DMA_DEV_TO_MEM,
464 			.src_maxburst = uap->fifosize >> 2,
465 			.device_fc = false,
466 		};
467 		struct dma_slave_caps caps;
468 
469 		/*
470 		 * Some DMA controllers provide information on their capabilities.
471 		 * If the controller does, check for suitable residue processing
472 		 * otherwise assime all is well.
473 		 */
474 		if (dma_get_slave_caps(chan, &caps) == 0) {
475 			if (caps.residue_granularity ==
476 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
477 				dma_release_channel(chan);
478 				dev_info(uap->port.dev,
479 					 "RX DMA disabled - no residue processing\n");
480 				return;
481 			}
482 		}
483 		dmaengine_slave_config(chan, &rx_conf);
484 		uap->dmarx.chan = chan;
485 
486 		uap->dmarx.auto_poll_rate = false;
487 		if (plat && plat->dma_rx_poll_enable) {
488 			/* Set poll rate if specified. */
489 			if (plat->dma_rx_poll_rate) {
490 				uap->dmarx.auto_poll_rate = false;
491 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
492 			} else {
493 				/*
494 				 * 100 ms defaults to poll rate if not
495 				 * specified. This will be adjusted with
496 				 * the baud rate at set_termios.
497 				 */
498 				uap->dmarx.auto_poll_rate = true;
499 				uap->dmarx.poll_rate =  100;
500 			}
501 			/* 3 secs defaults poll_timeout if not specified. */
502 			if (plat->dma_rx_poll_timeout)
503 				uap->dmarx.poll_timeout =
504 					plat->dma_rx_poll_timeout;
505 			else
506 				uap->dmarx.poll_timeout = 3000;
507 		} else if (!plat && dev->of_node) {
508 			uap->dmarx.auto_poll_rate =
509 					of_property_read_bool(dev->of_node, "auto-poll");
510 			if (uap->dmarx.auto_poll_rate) {
511 				u32 x;
512 
513 				if (of_property_read_u32(dev->of_node, "poll-rate-ms", &x) == 0)
514 					uap->dmarx.poll_rate = x;
515 				else
516 					uap->dmarx.poll_rate = 100;
517 				if (of_property_read_u32(dev->of_node, "poll-timeout-ms", &x) == 0)
518 					uap->dmarx.poll_timeout = x;
519 				else
520 					uap->dmarx.poll_timeout = 3000;
521 			}
522 		}
523 		dev_info(uap->port.dev, "DMA channel RX %s\n",
524 			 dma_chan_name(uap->dmarx.chan));
525 	}
526 }
527 
pl011_dma_remove(struct uart_amba_port * uap)528 static void pl011_dma_remove(struct uart_amba_port *uap)
529 {
530 	if (uap->dmatx.chan)
531 		dma_release_channel(uap->dmatx.chan);
532 	if (uap->dmarx.chan)
533 		dma_release_channel(uap->dmarx.chan);
534 }
535 
536 /* Forward declare these for the refill routine */
537 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
538 static void pl011_start_tx_pio(struct uart_amba_port *uap);
539 
540 /*
541  * The current DMA TX buffer has been sent.
542  * Try to queue up another DMA buffer.
543  */
pl011_dma_tx_callback(void * data)544 static void pl011_dma_tx_callback(void *data)
545 {
546 	struct uart_amba_port *uap = data;
547 	struct tty_port *tport = &uap->port.state->port;
548 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
549 	unsigned long flags;
550 	u16 dmacr;
551 
552 	uart_port_lock_irqsave(&uap->port, &flags);
553 	if (uap->dmatx.queued)
554 		dma_unmap_single(dmatx->chan->device->dev, dmatx->dma,
555 				 dmatx->len, DMA_TO_DEVICE);
556 
557 	dmacr = uap->dmacr;
558 	uap->dmacr = dmacr & ~UART011_TXDMAE;
559 	pl011_write(uap->dmacr, uap, REG_DMACR);
560 
561 	/*
562 	 * If TX DMA was disabled, it means that we've stopped the DMA for
563 	 * some reason (eg, XOFF received, or we want to send an X-char.)
564 	 *
565 	 * Note: we need to be careful here of a potential race between DMA
566 	 * and the rest of the driver - if the driver disables TX DMA while
567 	 * a TX buffer completing, we must update the tx queued status to
568 	 * get further refills (hence we check dmacr).
569 	 */
570 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
571 	    kfifo_is_empty(&tport->xmit_fifo)) {
572 		uap->dmatx.queued = false;
573 		uart_port_unlock_irqrestore(&uap->port, flags);
574 		return;
575 	}
576 
577 	if (pl011_dma_tx_refill(uap) <= 0)
578 		/*
579 		 * We didn't queue a DMA buffer for some reason, but we
580 		 * have data pending to be sent.  Re-enable the TX IRQ.
581 		 */
582 		pl011_start_tx_pio(uap);
583 
584 	uart_port_unlock_irqrestore(&uap->port, flags);
585 }
586 
587 /*
588  * Try to refill the TX DMA buffer.
589  * Locking: called with port lock held and IRQs disabled.
590  * Returns:
591  *   1 if we queued up a TX DMA buffer.
592  *   0 if we didn't want to handle this by DMA
593  *  <0 on error
594  */
pl011_dma_tx_refill(struct uart_amba_port * uap)595 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
596 {
597 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
598 	struct dma_chan *chan = dmatx->chan;
599 	struct dma_device *dma_dev = chan->device;
600 	struct dma_async_tx_descriptor *desc;
601 	struct tty_port *tport = &uap->port.state->port;
602 	unsigned int count;
603 
604 	/*
605 	 * Try to avoid the overhead involved in using DMA if the
606 	 * transaction fits in the first half of the FIFO, by using
607 	 * the standard interrupt handling.  This ensures that we
608 	 * issue a uart_write_wakeup() at the appropriate time.
609 	 */
610 	count = kfifo_len(&tport->xmit_fifo);
611 	if (count < (uap->fifosize >> 1)) {
612 		uap->dmatx.queued = false;
613 		return 0;
614 	}
615 
616 	/*
617 	 * Bodge: don't send the last character by DMA, as this
618 	 * will prevent XON from notifying us to restart DMA.
619 	 */
620 	count -= 1;
621 
622 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
623 	if (count > PL011_DMA_BUFFER_SIZE)
624 		count = PL011_DMA_BUFFER_SIZE;
625 
626 	count = kfifo_out_peek(&tport->xmit_fifo, dmatx->buf, count);
627 	dmatx->len = count;
628 	dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count,
629 				    DMA_TO_DEVICE);
630 	if (dmatx->dma == DMA_MAPPING_ERROR) {
631 		uap->dmatx.queued = false;
632 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
633 		return -EBUSY;
634 	}
635 
636 	desc = dmaengine_prep_slave_single(chan, dmatx->dma, dmatx->len, DMA_MEM_TO_DEV,
637 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
638 	if (!desc) {
639 		dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE);
640 		uap->dmatx.queued = false;
641 		/*
642 		 * If DMA cannot be used right now, we complete this
643 		 * transaction via IRQ and let the TTY layer retry.
644 		 */
645 		dev_dbg(uap->port.dev, "TX DMA busy\n");
646 		return -EBUSY;
647 	}
648 
649 	/* Some data to go along to the callback */
650 	desc->callback = pl011_dma_tx_callback;
651 	desc->callback_param = uap;
652 
653 	/* All errors should happen at prepare time */
654 	dmaengine_submit(desc);
655 
656 	/* Fire the DMA transaction */
657 	dma_dev->device_issue_pending(chan);
658 
659 	uap->dmacr |= UART011_TXDMAE;
660 	pl011_write(uap->dmacr, uap, REG_DMACR);
661 	uap->dmatx.queued = true;
662 
663 	/*
664 	 * Now we know that DMA will fire, so advance the ring buffer
665 	 * with the stuff we just dispatched.
666 	 */
667 	uart_xmit_advance(&uap->port, count);
668 
669 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
670 		uart_write_wakeup(&uap->port);
671 
672 	return 1;
673 }
674 
675 /*
676  * We received a transmit interrupt without a pending X-char but with
677  * pending characters.
678  * Locking: called with port lock held and IRQs disabled.
679  * Returns:
680  *   false if we want to use PIO to transmit
681  *   true if we queued a DMA buffer
682  */
pl011_dma_tx_irq(struct uart_amba_port * uap)683 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
684 {
685 	if (!uap->using_tx_dma)
686 		return false;
687 
688 	/*
689 	 * If we already have a TX buffer queued, but received a
690 	 * TX interrupt, it will be because we've just sent an X-char.
691 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
692 	 */
693 	if (uap->dmatx.queued) {
694 		uap->dmacr |= UART011_TXDMAE;
695 		pl011_write(uap->dmacr, uap, REG_DMACR);
696 		uap->im &= ~UART011_TXIM;
697 		pl011_write(uap->im, uap, REG_IMSC);
698 		return true;
699 	}
700 
701 	/*
702 	 * We don't have a TX buffer queued, so try to queue one.
703 	 * If we successfully queued a buffer, mask the TX IRQ.
704 	 */
705 	if (pl011_dma_tx_refill(uap) > 0) {
706 		uap->im &= ~UART011_TXIM;
707 		pl011_write(uap->im, uap, REG_IMSC);
708 		return true;
709 	}
710 	return false;
711 }
712 
713 /*
714  * Stop the DMA transmit (eg, due to received XOFF).
715  * Locking: called with port lock held and IRQs disabled.
716  */
pl011_dma_tx_stop(struct uart_amba_port * uap)717 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
718 {
719 	if (uap->dmatx.queued) {
720 		uap->dmacr &= ~UART011_TXDMAE;
721 		pl011_write(uap->dmacr, uap, REG_DMACR);
722 	}
723 }
724 
725 /*
726  * Try to start a DMA transmit, or in the case of an XON/OFF
727  * character queued for send, try to get that character out ASAP.
728  * Locking: called with port lock held and IRQs disabled.
729  * Returns:
730  *   false if we want the TX IRQ to be enabled
731  *   true if we have a buffer queued
732  */
pl011_dma_tx_start(struct uart_amba_port * uap)733 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
734 {
735 	u16 dmacr;
736 
737 	if (!uap->using_tx_dma)
738 		return false;
739 
740 	if (!uap->port.x_char) {
741 		/* no X-char, try to push chars out in DMA mode */
742 		bool ret = true;
743 
744 		if (!uap->dmatx.queued) {
745 			if (pl011_dma_tx_refill(uap) > 0) {
746 				uap->im &= ~UART011_TXIM;
747 				pl011_write(uap->im, uap, REG_IMSC);
748 			} else {
749 				ret = false;
750 			}
751 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
752 			uap->dmacr |= UART011_TXDMAE;
753 			pl011_write(uap->dmacr, uap, REG_DMACR);
754 		}
755 		return ret;
756 	}
757 
758 	/*
759 	 * We have an X-char to send.  Disable DMA to prevent it loading
760 	 * the TX fifo, and then see if we can stuff it into the FIFO.
761 	 */
762 	dmacr = uap->dmacr;
763 	uap->dmacr &= ~UART011_TXDMAE;
764 	pl011_write(uap->dmacr, uap, REG_DMACR);
765 
766 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
767 		/*
768 		 * No space in the FIFO, so enable the transmit interrupt
769 		 * so we know when there is space.  Note that once we've
770 		 * loaded the character, we should just re-enable DMA.
771 		 */
772 		return false;
773 	}
774 
775 	pl011_write(uap->port.x_char, uap, REG_DR);
776 	uap->port.icount.tx++;
777 	uap->port.x_char = 0;
778 
779 	/* Success - restore the DMA state */
780 	uap->dmacr = dmacr;
781 	pl011_write(dmacr, uap, REG_DMACR);
782 
783 	return true;
784 }
785 
786 /*
787  * Flush the transmit buffer.
788  * Locking: called with port lock held and IRQs disabled.
789  */
pl011_dma_flush_buffer(struct uart_port * port)790 static void pl011_dma_flush_buffer(struct uart_port *port)
791 __releases(&uap->port.lock)
792 __acquires(&uap->port.lock)
793 {
794 	struct uart_amba_port *uap =
795 	    container_of(port, struct uart_amba_port, port);
796 
797 	if (!uap->using_tx_dma)
798 		return;
799 
800 	dmaengine_terminate_async(uap->dmatx.chan);
801 
802 	if (uap->dmatx.queued) {
803 		dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma,
804 				 uap->dmatx.len, DMA_TO_DEVICE);
805 		uap->dmatx.queued = false;
806 		uap->dmacr &= ~UART011_TXDMAE;
807 		pl011_write(uap->dmacr, uap, REG_DMACR);
808 	}
809 }
810 
811 static void pl011_dma_rx_callback(void *data);
812 
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)813 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
814 {
815 	struct dma_chan *rxchan = uap->dmarx.chan;
816 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
817 	struct dma_async_tx_descriptor *desc;
818 	struct pl011_dmabuf *dbuf;
819 
820 	if (!rxchan)
821 		return -EIO;
822 
823 	/* Start the RX DMA job */
824 	dbuf = uap->dmarx.use_buf_b ?
825 		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
826 	desc = dmaengine_prep_slave_single(rxchan, dbuf->dma, dbuf->len,
827 					   DMA_DEV_TO_MEM,
828 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
829 	/*
830 	 * If the DMA engine is busy and cannot prepare a
831 	 * channel, no big deal, the driver will fall back
832 	 * to interrupt mode as a result of this error code.
833 	 */
834 	if (!desc) {
835 		uap->dmarx.running = false;
836 		dmaengine_terminate_all(rxchan);
837 		return -EBUSY;
838 	}
839 
840 	/* Some data to go along to the callback */
841 	desc->callback = pl011_dma_rx_callback;
842 	desc->callback_param = uap;
843 	dmarx->cookie = dmaengine_submit(desc);
844 	dma_async_issue_pending(rxchan);
845 
846 	uap->dmacr |= UART011_RXDMAE;
847 	pl011_write(uap->dmacr, uap, REG_DMACR);
848 	uap->dmarx.running = true;
849 
850 	uap->im &= ~UART011_RXIM;
851 	pl011_write(uap->im, uap, REG_IMSC);
852 
853 	return 0;
854 }
855 
856 /*
857  * This is called when either the DMA job is complete, or
858  * the FIFO timeout interrupt occurred. This must be called
859  * with the port spinlock uap->port.lock held.
860  */
pl011_dma_rx_chars(struct uart_amba_port * uap,u32 pending,bool use_buf_b,bool readfifo)861 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
862 			       u32 pending, bool use_buf_b,
863 			       bool readfifo)
864 {
865 	struct tty_port *port = &uap->port.state->port;
866 	struct pl011_dmabuf *dbuf = use_buf_b ?
867 		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
868 	int dma_count = 0;
869 	u32 fifotaken = 0; /* only used for vdbg() */
870 
871 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
872 	int dmataken = 0;
873 
874 	if (uap->dmarx.poll_rate) {
875 		/* The data can be taken by polling */
876 		dmataken = dbuf->len - dmarx->last_residue;
877 		/* Recalculate the pending size */
878 		if (pending >= dmataken)
879 			pending -= dmataken;
880 	}
881 
882 	/* Pick the remain data from the DMA */
883 	if (pending) {
884 		/*
885 		 * First take all chars in the DMA pipe, then look in the FIFO.
886 		 * Note that tty_insert_flip_buf() tries to take as many chars
887 		 * as it can.
888 		 */
889 		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken, pending);
890 
891 		uap->port.icount.rx += dma_count;
892 		if (dma_count < pending)
893 			dev_warn(uap->port.dev,
894 				 "couldn't insert all characters (TTY is full?)\n");
895 	}
896 
897 	/* Reset the last_residue for Rx DMA poll */
898 	if (uap->dmarx.poll_rate)
899 		dmarx->last_residue = dbuf->len;
900 
901 	/*
902 	 * Only continue with trying to read the FIFO if all DMA chars have
903 	 * been taken first.
904 	 */
905 	if (dma_count == pending && readfifo) {
906 		/* Clear any error flags */
907 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
908 			    UART011_FEIS, uap, REG_ICR);
909 
910 		/*
911 		 * If we read all the DMA'd characters, and we had an
912 		 * incomplete buffer, that could be due to an rx error, or
913 		 * maybe we just timed out. Read any pending chars and check
914 		 * the error status.
915 		 *
916 		 * Error conditions will only occur in the FIFO, these will
917 		 * trigger an immediate interrupt and stop the DMA job, so we
918 		 * will always find the error in the FIFO, never in the DMA
919 		 * buffer.
920 		 */
921 		fifotaken = pl011_fifo_to_tty(uap);
922 	}
923 
924 	dev_vdbg(uap->port.dev,
925 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
926 		 dma_count, fifotaken);
927 	tty_flip_buffer_push(port);
928 }
929 
pl011_dma_rx_irq(struct uart_amba_port * uap)930 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
931 {
932 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
933 	struct dma_chan *rxchan = dmarx->chan;
934 	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
935 		&dmarx->dbuf_b : &dmarx->dbuf_a;
936 	size_t pending;
937 	struct dma_tx_state state;
938 	enum dma_status dmastat;
939 
940 	/*
941 	 * Pause the transfer so we can trust the current counter,
942 	 * do this before we pause the PL011 block, else we may
943 	 * overflow the FIFO.
944 	 */
945 	if (dmaengine_pause(rxchan))
946 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
947 	dmastat = rxchan->device->device_tx_status(rxchan,
948 						   dmarx->cookie, &state);
949 	if (dmastat != DMA_PAUSED)
950 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
951 
952 	/* Disable RX DMA - incoming data will wait in the FIFO */
953 	uap->dmacr &= ~UART011_RXDMAE;
954 	pl011_write(uap->dmacr, uap, REG_DMACR);
955 	uap->dmarx.running = false;
956 
957 	pending = dbuf->len - state.residue;
958 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
959 	/* Then we terminate the transfer - we now know our residue */
960 	dmaengine_terminate_all(rxchan);
961 
962 	/*
963 	 * This will take the chars we have so far and insert
964 	 * into the framework.
965 	 */
966 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
967 
968 	/* Switch buffer & re-trigger DMA job */
969 	dmarx->use_buf_b = !dmarx->use_buf_b;
970 	if (pl011_dma_rx_trigger_dma(uap)) {
971 		dev_dbg(uap->port.dev,
972 			"could not retrigger RX DMA job fall back to interrupt mode\n");
973 		uap->im |= UART011_RXIM;
974 		pl011_write(uap->im, uap, REG_IMSC);
975 	}
976 }
977 
pl011_dma_rx_callback(void * data)978 static void pl011_dma_rx_callback(void *data)
979 {
980 	struct uart_amba_port *uap = data;
981 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
982 	struct dma_chan *rxchan = dmarx->chan;
983 	bool lastbuf = dmarx->use_buf_b;
984 	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
985 		&dmarx->dbuf_b : &dmarx->dbuf_a;
986 	size_t pending;
987 	struct dma_tx_state state;
988 	int ret;
989 
990 	/*
991 	 * This completion interrupt occurs typically when the
992 	 * RX buffer is totally stuffed but no timeout has yet
993 	 * occurred. When that happens, we just want the RX
994 	 * routine to flush out the secondary DMA buffer while
995 	 * we immediately trigger the next DMA job.
996 	 */
997 	uart_port_lock_irq(&uap->port);
998 	/*
999 	 * Rx data can be taken by the UART interrupts during
1000 	 * the DMA irq handler. So we check the residue here.
1001 	 */
1002 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1003 	pending = dbuf->len - state.residue;
1004 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1005 	/* Then we terminate the transfer - we now know our residue */
1006 	dmaengine_terminate_all(rxchan);
1007 
1008 	uap->dmarx.running = false;
1009 	dmarx->use_buf_b = !lastbuf;
1010 	ret = pl011_dma_rx_trigger_dma(uap);
1011 
1012 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1013 	uart_unlock_and_check_sysrq(&uap->port);
1014 	/*
1015 	 * Do this check after we picked the DMA chars so we don't
1016 	 * get some IRQ immediately from RX.
1017 	 */
1018 	if (ret) {
1019 		dev_dbg(uap->port.dev,
1020 			"could not retrigger RX DMA job fall back to interrupt mode\n");
1021 		uap->im |= UART011_RXIM;
1022 		pl011_write(uap->im, uap, REG_IMSC);
1023 	}
1024 }
1025 
1026 /*
1027  * Stop accepting received characters, when we're shutting down or
1028  * suspending this port.
1029  * Locking: called with port lock held and IRQs disabled.
1030  */
pl011_dma_rx_stop(struct uart_amba_port * uap)1031 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1032 {
1033 	if (!uap->using_rx_dma)
1034 		return;
1035 
1036 	/* FIXME.  Just disable the DMA enable */
1037 	uap->dmacr &= ~UART011_RXDMAE;
1038 	pl011_write(uap->dmacr, uap, REG_DMACR);
1039 }
1040 
1041 /*
1042  * Timer handler for Rx DMA polling.
1043  * Every polling, It checks the residue in the dma buffer and transfer
1044  * data to the tty. Also, last_residue is updated for the next polling.
1045  */
pl011_dma_rx_poll(struct timer_list * t)1046 static void pl011_dma_rx_poll(struct timer_list *t)
1047 {
1048 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1049 	struct tty_port *port = &uap->port.state->port;
1050 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1051 	struct dma_chan *rxchan = uap->dmarx.chan;
1052 	unsigned long flags;
1053 	unsigned int dmataken = 0;
1054 	unsigned int size = 0;
1055 	struct pl011_dmabuf *dbuf;
1056 	int dma_count;
1057 	struct dma_tx_state state;
1058 
1059 	dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
1060 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1061 	if (likely(state.residue < dmarx->last_residue)) {
1062 		dmataken = dbuf->len - dmarx->last_residue;
1063 		size = dmarx->last_residue - state.residue;
1064 		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
1065 						   size);
1066 		if (dma_count == size)
1067 			dmarx->last_residue =  state.residue;
1068 		dmarx->last_jiffies = jiffies;
1069 	}
1070 	tty_flip_buffer_push(port);
1071 
1072 	/*
1073 	 * If no data is received in poll_timeout, the driver will fall back
1074 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1075 	 */
1076 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1077 			> uap->dmarx.poll_timeout) {
1078 		uart_port_lock_irqsave(&uap->port, &flags);
1079 		pl011_dma_rx_stop(uap);
1080 		uap->im |= UART011_RXIM;
1081 		pl011_write(uap->im, uap, REG_IMSC);
1082 		uart_port_unlock_irqrestore(&uap->port, flags);
1083 
1084 		uap->dmarx.running = false;
1085 		dmaengine_terminate_all(rxchan);
1086 		del_timer(&uap->dmarx.timer);
1087 	} else {
1088 		mod_timer(&uap->dmarx.timer,
1089 			  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1090 	}
1091 }
1092 
pl011_dma_startup(struct uart_amba_port * uap)1093 static void pl011_dma_startup(struct uart_amba_port *uap)
1094 {
1095 	int ret;
1096 
1097 	if (!uap->dma_probed)
1098 		pl011_dma_probe(uap);
1099 
1100 	if (!uap->dmatx.chan)
1101 		return;
1102 
1103 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1104 	if (!uap->dmatx.buf) {
1105 		uap->port.fifosize = uap->fifosize;
1106 		return;
1107 	}
1108 
1109 	uap->dmatx.len = PL011_DMA_BUFFER_SIZE;
1110 
1111 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1112 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1113 	uap->using_tx_dma = true;
1114 
1115 	if (!uap->dmarx.chan)
1116 		goto skip_rx;
1117 
1118 	/* Allocate and map DMA RX buffers */
1119 	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1120 				DMA_FROM_DEVICE);
1121 	if (ret) {
1122 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1123 			"RX buffer A", ret);
1124 		goto skip_rx;
1125 	}
1126 
1127 	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_b,
1128 				DMA_FROM_DEVICE);
1129 	if (ret) {
1130 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1131 			"RX buffer B", ret);
1132 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1133 				  DMA_FROM_DEVICE);
1134 		goto skip_rx;
1135 	}
1136 
1137 	uap->using_rx_dma = true;
1138 
1139 skip_rx:
1140 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1141 	uap->dmacr |= UART011_DMAONERR;
1142 	pl011_write(uap->dmacr, uap, REG_DMACR);
1143 
1144 	/*
1145 	 * ST Micro variants has some specific dma burst threshold
1146 	 * compensation. Set this to 16 bytes, so burst will only
1147 	 * be issued above/below 16 bytes.
1148 	 */
1149 	if (uap->vendor->dma_threshold)
1150 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1151 			    uap, REG_ST_DMAWM);
1152 
1153 	if (uap->using_rx_dma) {
1154 		if (pl011_dma_rx_trigger_dma(uap))
1155 			dev_dbg(uap->port.dev,
1156 				"could not trigger initial RX DMA job, fall back to interrupt mode\n");
1157 		if (uap->dmarx.poll_rate) {
1158 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1159 			mod_timer(&uap->dmarx.timer,
1160 				  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1161 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1162 			uap->dmarx.last_jiffies = jiffies;
1163 		}
1164 	}
1165 }
1166 
pl011_dma_shutdown(struct uart_amba_port * uap)1167 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1168 {
1169 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1170 		return;
1171 
1172 	/* Disable RX and TX DMA */
1173 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1174 		cpu_relax();
1175 
1176 	uart_port_lock_irq(&uap->port);
1177 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1178 	pl011_write(uap->dmacr, uap, REG_DMACR);
1179 	uart_port_unlock_irq(&uap->port);
1180 
1181 	if (uap->using_tx_dma) {
1182 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1183 		dmaengine_terminate_all(uap->dmatx.chan);
1184 		if (uap->dmatx.queued) {
1185 			dma_unmap_single(uap->dmatx.chan->device->dev,
1186 					 uap->dmatx.dma, uap->dmatx.len,
1187 					 DMA_TO_DEVICE);
1188 			uap->dmatx.queued = false;
1189 		}
1190 
1191 		kfree(uap->dmatx.buf);
1192 		uap->using_tx_dma = false;
1193 	}
1194 
1195 	if (uap->using_rx_dma) {
1196 		dmaengine_terminate_all(uap->dmarx.chan);
1197 		/* Clean up the RX DMA */
1198 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, DMA_FROM_DEVICE);
1199 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_b, DMA_FROM_DEVICE);
1200 		if (uap->dmarx.poll_rate)
1201 			del_timer_sync(&uap->dmarx.timer);
1202 		uap->using_rx_dma = false;
1203 	}
1204 }
1205 
pl011_dma_rx_available(struct uart_amba_port * uap)1206 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1207 {
1208 	return uap->using_rx_dma;
1209 }
1210 
pl011_dma_rx_running(struct uart_amba_port * uap)1211 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1212 {
1213 	return uap->using_rx_dma && uap->dmarx.running;
1214 }
1215 
1216 #else
1217 /* Blank functions if the DMA engine is not available */
pl011_dma_remove(struct uart_amba_port * uap)1218 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1219 {
1220 }
1221 
pl011_dma_startup(struct uart_amba_port * uap)1222 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1223 {
1224 }
1225 
pl011_dma_shutdown(struct uart_amba_port * uap)1226 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1227 {
1228 }
1229 
pl011_dma_tx_irq(struct uart_amba_port * uap)1230 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1231 {
1232 	return false;
1233 }
1234 
pl011_dma_tx_stop(struct uart_amba_port * uap)1235 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1236 {
1237 }
1238 
pl011_dma_tx_start(struct uart_amba_port * uap)1239 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1240 {
1241 	return false;
1242 }
1243 
pl011_dma_rx_irq(struct uart_amba_port * uap)1244 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1245 {
1246 }
1247 
pl011_dma_rx_stop(struct uart_amba_port * uap)1248 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1249 {
1250 }
1251 
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)1252 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1253 {
1254 	return -EIO;
1255 }
1256 
pl011_dma_rx_available(struct uart_amba_port * uap)1257 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1258 {
1259 	return false;
1260 }
1261 
pl011_dma_rx_running(struct uart_amba_port * uap)1262 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1263 {
1264 	return false;
1265 }
1266 
1267 #define pl011_dma_flush_buffer	NULL
1268 #endif
1269 
pl011_rs485_tx_stop(struct uart_amba_port * uap)1270 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1271 {
1272 	struct uart_port *port = &uap->port;
1273 	u32 cr;
1274 
1275 	if (uap->rs485_tx_state == SEND)
1276 		uap->rs485_tx_state = WAIT_AFTER_SEND;
1277 
1278 	if (uap->rs485_tx_state == WAIT_AFTER_SEND) {
1279 		/* Schedule hrtimer if tx queue not empty */
1280 		if (!pl011_tx_empty(port)) {
1281 			hrtimer_start(&uap->trigger_stop_tx,
1282 				      uap->rs485_tx_drain_interval,
1283 				      HRTIMER_MODE_REL);
1284 			return;
1285 		}
1286 		if (port->rs485.delay_rts_after_send > 0) {
1287 			hrtimer_start(&uap->trigger_stop_tx,
1288 				      ms_to_ktime(port->rs485.delay_rts_after_send),
1289 				      HRTIMER_MODE_REL);
1290 			return;
1291 		}
1292 		/* Continue without any delay */
1293 	} else if (uap->rs485_tx_state == WAIT_AFTER_RTS) {
1294 		hrtimer_try_to_cancel(&uap->trigger_start_tx);
1295 	}
1296 
1297 	cr = pl011_read(uap, REG_CR);
1298 
1299 	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1300 		cr &= ~UART011_CR_RTS;
1301 	else
1302 		cr |= UART011_CR_RTS;
1303 
1304 	/* Disable the transmitter and reenable the transceiver */
1305 	cr &= ~UART011_CR_TXE;
1306 	cr |= UART011_CR_RXE;
1307 	pl011_write(cr, uap, REG_CR);
1308 
1309 	uap->rs485_tx_state = OFF;
1310 }
1311 
pl011_stop_tx(struct uart_port * port)1312 static void pl011_stop_tx(struct uart_port *port)
1313 {
1314 	struct uart_amba_port *uap =
1315 	    container_of(port, struct uart_amba_port, port);
1316 
1317 	if (port->rs485.flags & SER_RS485_ENABLED &&
1318 	    uap->rs485_tx_state == WAIT_AFTER_RTS) {
1319 		pl011_rs485_tx_stop(uap);
1320 		return;
1321 	}
1322 
1323 	uap->im &= ~UART011_TXIM;
1324 	pl011_write(uap->im, uap, REG_IMSC);
1325 	pl011_dma_tx_stop(uap);
1326 
1327 	if (port->rs485.flags & SER_RS485_ENABLED &&
1328 	    uap->rs485_tx_state != OFF)
1329 		pl011_rs485_tx_stop(uap);
1330 }
1331 
1332 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1333 
1334 /* Start TX with programmed I/O only (no DMA) */
pl011_start_tx_pio(struct uart_amba_port * uap)1335 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1336 {
1337 	if (pl011_tx_chars(uap, false)) {
1338 		uap->im |= UART011_TXIM;
1339 		pl011_write(uap->im, uap, REG_IMSC);
1340 	}
1341 }
1342 
pl011_rs485_tx_start(struct uart_amba_port * uap)1343 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1344 {
1345 	struct uart_port *port = &uap->port;
1346 	u32 cr;
1347 
1348 	if (uap->rs485_tx_state == WAIT_AFTER_RTS) {
1349 		uap->rs485_tx_state = SEND;
1350 		return;
1351 	}
1352 	if (uap->rs485_tx_state == WAIT_AFTER_SEND) {
1353 		hrtimer_try_to_cancel(&uap->trigger_stop_tx);
1354 		uap->rs485_tx_state = SEND;
1355 		return;
1356 	}
1357 	/* uap->rs485_tx_state == OFF */
1358 	/* Enable transmitter */
1359 	cr = pl011_read(uap, REG_CR);
1360 	cr |= UART011_CR_TXE;
1361 	/* Disable receiver if half-duplex */
1362 	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1363 		cr &= ~UART011_CR_RXE;
1364 
1365 	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1366 		cr &= ~UART011_CR_RTS;
1367 	else
1368 		cr |= UART011_CR_RTS;
1369 
1370 	pl011_write(cr, uap, REG_CR);
1371 
1372 	if (port->rs485.delay_rts_before_send > 0) {
1373 		uap->rs485_tx_state = WAIT_AFTER_RTS;
1374 		hrtimer_start(&uap->trigger_start_tx,
1375 			      ms_to_ktime(port->rs485.delay_rts_before_send),
1376 			      HRTIMER_MODE_REL);
1377 	} else {
1378 		uap->rs485_tx_state = SEND;
1379 	}
1380 }
1381 
pl011_start_tx(struct uart_port * port)1382 static void pl011_start_tx(struct uart_port *port)
1383 {
1384 	struct uart_amba_port *uap =
1385 	    container_of(port, struct uart_amba_port, port);
1386 
1387 	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1388 	    uap->rs485_tx_state != SEND) {
1389 		pl011_rs485_tx_start(uap);
1390 		if (uap->rs485_tx_state == WAIT_AFTER_RTS)
1391 			return;
1392 	}
1393 
1394 	if (!pl011_dma_tx_start(uap))
1395 		pl011_start_tx_pio(uap);
1396 }
1397 
pl011_trigger_start_tx(struct hrtimer * t)1398 static enum hrtimer_restart pl011_trigger_start_tx(struct hrtimer *t)
1399 {
1400 	struct uart_amba_port *uap =
1401 	    container_of(t, struct uart_amba_port, trigger_start_tx);
1402 	unsigned long flags;
1403 
1404 	uart_port_lock_irqsave(&uap->port, &flags);
1405 	if (uap->rs485_tx_state == WAIT_AFTER_RTS)
1406 		pl011_start_tx(&uap->port);
1407 	uart_port_unlock_irqrestore(&uap->port, flags);
1408 
1409 	return HRTIMER_NORESTART;
1410 }
1411 
pl011_trigger_stop_tx(struct hrtimer * t)1412 static enum hrtimer_restart pl011_trigger_stop_tx(struct hrtimer *t)
1413 {
1414 	struct uart_amba_port *uap =
1415 	    container_of(t, struct uart_amba_port, trigger_stop_tx);
1416 	unsigned long flags;
1417 
1418 	uart_port_lock_irqsave(&uap->port, &flags);
1419 	if (uap->rs485_tx_state == WAIT_AFTER_SEND)
1420 		pl011_rs485_tx_stop(uap);
1421 	uart_port_unlock_irqrestore(&uap->port, flags);
1422 
1423 	return HRTIMER_NORESTART;
1424 }
1425 
pl011_stop_rx(struct uart_port * port)1426 static void pl011_stop_rx(struct uart_port *port)
1427 {
1428 	struct uart_amba_port *uap =
1429 	    container_of(port, struct uart_amba_port, port);
1430 
1431 	uap->im &= ~(UART011_RXIM | UART011_RTIM | UART011_FEIM |
1432 		     UART011_PEIM | UART011_BEIM | UART011_OEIM);
1433 	pl011_write(uap->im, uap, REG_IMSC);
1434 
1435 	pl011_dma_rx_stop(uap);
1436 }
1437 
pl011_throttle_rx(struct uart_port * port)1438 static void pl011_throttle_rx(struct uart_port *port)
1439 {
1440 	unsigned long flags;
1441 
1442 	uart_port_lock_irqsave(port, &flags);
1443 	pl011_stop_rx(port);
1444 	uart_port_unlock_irqrestore(port, flags);
1445 }
1446 
pl011_enable_ms(struct uart_port * port)1447 static void pl011_enable_ms(struct uart_port *port)
1448 {
1449 	struct uart_amba_port *uap =
1450 	    container_of(port, struct uart_amba_port, port);
1451 
1452 	uap->im |= UART011_RIMIM | UART011_CTSMIM | UART011_DCDMIM | UART011_DSRMIM;
1453 	pl011_write(uap->im, uap, REG_IMSC);
1454 }
1455 
pl011_rx_chars(struct uart_amba_port * uap)1456 static void pl011_rx_chars(struct uart_amba_port *uap)
1457 __releases(&uap->port.lock)
1458 __acquires(&uap->port.lock)
1459 {
1460 	pl011_fifo_to_tty(uap);
1461 
1462 	uart_port_unlock(&uap->port);
1463 	tty_flip_buffer_push(&uap->port.state->port);
1464 	/*
1465 	 * If we were temporarily out of DMA mode for a while,
1466 	 * attempt to switch back to DMA mode again.
1467 	 */
1468 	if (pl011_dma_rx_available(uap)) {
1469 		if (pl011_dma_rx_trigger_dma(uap)) {
1470 			dev_dbg(uap->port.dev,
1471 				"could not trigger RX DMA job fall back to interrupt mode again\n");
1472 			uap->im |= UART011_RXIM;
1473 			pl011_write(uap->im, uap, REG_IMSC);
1474 		} else {
1475 #ifdef CONFIG_DMA_ENGINE
1476 			/* Start Rx DMA poll */
1477 			if (uap->dmarx.poll_rate) {
1478 				uap->dmarx.last_jiffies = jiffies;
1479 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1480 				mod_timer(&uap->dmarx.timer,
1481 					  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1482 			}
1483 #endif
1484 		}
1485 	}
1486 	uart_port_lock(&uap->port);
1487 }
1488 
pl011_tx_char(struct uart_amba_port * uap,unsigned char c,bool from_irq)1489 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1490 			  bool from_irq)
1491 {
1492 	if (unlikely(!from_irq) &&
1493 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1494 		return false; /* unable to transmit character */
1495 
1496 	pl011_write(c, uap, REG_DR);
1497 	uap->port.icount.tx++;
1498 
1499 	return true;
1500 }
1501 
1502 /* Returns true if tx interrupts have to be (kept) enabled  */
pl011_tx_chars(struct uart_amba_port * uap,bool from_irq)1503 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1504 {
1505 	struct tty_port *tport = &uap->port.state->port;
1506 	int count = uap->fifosize >> 1;
1507 
1508 	if (uap->port.x_char) {
1509 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1510 			return true;
1511 		uap->port.x_char = 0;
1512 		--count;
1513 	}
1514 	if (kfifo_is_empty(&tport->xmit_fifo) || uart_tx_stopped(&uap->port)) {
1515 		pl011_stop_tx(&uap->port);
1516 		return false;
1517 	}
1518 
1519 	/* If we are using DMA mode, try to send some characters. */
1520 	if (pl011_dma_tx_irq(uap))
1521 		return true;
1522 
1523 	while (1) {
1524 		unsigned char c;
1525 
1526 		if (likely(from_irq) && count-- == 0)
1527 			break;
1528 
1529 		if (!kfifo_peek(&tport->xmit_fifo, &c))
1530 			break;
1531 
1532 		if (!pl011_tx_char(uap, c, from_irq))
1533 			break;
1534 
1535 		kfifo_skip(&tport->xmit_fifo);
1536 	}
1537 
1538 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
1539 		uart_write_wakeup(&uap->port);
1540 
1541 	if (kfifo_is_empty(&tport->xmit_fifo)) {
1542 		pl011_stop_tx(&uap->port);
1543 		return false;
1544 	}
1545 	return true;
1546 }
1547 
pl011_modem_status(struct uart_amba_port * uap)1548 static void pl011_modem_status(struct uart_amba_port *uap)
1549 {
1550 	unsigned int status, delta;
1551 
1552 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1553 
1554 	delta = status ^ uap->old_status;
1555 	uap->old_status = status;
1556 
1557 	if (!delta)
1558 		return;
1559 
1560 	if (delta & UART01x_FR_DCD)
1561 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1562 
1563 	if (delta & uap->vendor->fr_dsr)
1564 		uap->port.icount.dsr++;
1565 
1566 	if (delta & uap->vendor->fr_cts)
1567 		uart_handle_cts_change(&uap->port,
1568 				       status & uap->vendor->fr_cts);
1569 
1570 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1571 }
1572 
check_apply_cts_event_workaround(struct uart_amba_port * uap)1573 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1574 {
1575 	if (!uap->vendor->cts_event_workaround)
1576 		return;
1577 
1578 	/* workaround to make sure that all bits are unlocked.. */
1579 	pl011_write(0x00, uap, REG_ICR);
1580 
1581 	/*
1582 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1583 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1584 	 * so add 2 dummy reads
1585 	 */
1586 	pl011_read(uap, REG_ICR);
1587 	pl011_read(uap, REG_ICR);
1588 }
1589 
pl011_int(int irq,void * dev_id)1590 static irqreturn_t pl011_int(int irq, void *dev_id)
1591 {
1592 	struct uart_amba_port *uap = dev_id;
1593 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1594 	int handled = 0;
1595 
1596 	uart_port_lock(&uap->port);
1597 	status = pl011_read(uap, REG_RIS) & uap->im;
1598 	if (status) {
1599 		do {
1600 			check_apply_cts_event_workaround(uap);
1601 
1602 			pl011_write(status & ~(UART011_TXIS | UART011_RTIS | UART011_RXIS),
1603 				    uap, REG_ICR);
1604 
1605 			if (status & (UART011_RTIS | UART011_RXIS)) {
1606 				if (pl011_dma_rx_running(uap))
1607 					pl011_dma_rx_irq(uap);
1608 				else
1609 					pl011_rx_chars(uap);
1610 			}
1611 			if (status & (UART011_DSRMIS | UART011_DCDMIS |
1612 				      UART011_CTSMIS | UART011_RIMIS))
1613 				pl011_modem_status(uap);
1614 			if (status & UART011_TXIS)
1615 				pl011_tx_chars(uap, true);
1616 
1617 			if (pass_counter-- == 0)
1618 				break;
1619 
1620 			status = pl011_read(uap, REG_RIS) & uap->im;
1621 		} while (status != 0);
1622 		handled = 1;
1623 	}
1624 
1625 	uart_unlock_and_check_sysrq(&uap->port);
1626 
1627 	return IRQ_RETVAL(handled);
1628 }
1629 
pl011_tx_empty(struct uart_port * port)1630 static unsigned int pl011_tx_empty(struct uart_port *port)
1631 {
1632 	struct uart_amba_port *uap =
1633 	    container_of(port, struct uart_amba_port, port);
1634 
1635 	/* Allow feature register bits to be inverted to work around errata */
1636 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1637 
1638 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1639 							0 : TIOCSER_TEMT;
1640 }
1641 
pl011_maybe_set_bit(bool cond,unsigned int * ptr,unsigned int mask)1642 static void pl011_maybe_set_bit(bool cond, unsigned int *ptr, unsigned int mask)
1643 {
1644 	if (cond)
1645 		*ptr |= mask;
1646 }
1647 
pl011_get_mctrl(struct uart_port * port)1648 static unsigned int pl011_get_mctrl(struct uart_port *port)
1649 {
1650 	struct uart_amba_port *uap =
1651 	    container_of(port, struct uart_amba_port, port);
1652 	unsigned int result = 0;
1653 	unsigned int status = pl011_read(uap, REG_FR);
1654 
1655 	pl011_maybe_set_bit(status & UART01x_FR_DCD, &result, TIOCM_CAR);
1656 	pl011_maybe_set_bit(status & uap->vendor->fr_dsr, &result, TIOCM_DSR);
1657 	pl011_maybe_set_bit(status & uap->vendor->fr_cts, &result, TIOCM_CTS);
1658 	pl011_maybe_set_bit(status & uap->vendor->fr_ri, &result, TIOCM_RNG);
1659 
1660 	return result;
1661 }
1662 
pl011_assign_bit(bool cond,unsigned int * ptr,unsigned int mask)1663 static void pl011_assign_bit(bool cond, unsigned int *ptr, unsigned int mask)
1664 {
1665 	if (cond)
1666 		*ptr |= mask;
1667 	else
1668 		*ptr &= ~mask;
1669 }
1670 
pl011_set_mctrl(struct uart_port * port,unsigned int mctrl)1671 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1672 {
1673 	struct uart_amba_port *uap =
1674 	    container_of(port, struct uart_amba_port, port);
1675 	unsigned int cr;
1676 
1677 	cr = pl011_read(uap, REG_CR);
1678 
1679 	pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTS);
1680 	pl011_assign_bit(mctrl & TIOCM_DTR, &cr, UART011_CR_DTR);
1681 	pl011_assign_bit(mctrl & TIOCM_OUT1, &cr, UART011_CR_OUT1);
1682 	pl011_assign_bit(mctrl & TIOCM_OUT2, &cr, UART011_CR_OUT2);
1683 	pl011_assign_bit(mctrl & TIOCM_LOOP, &cr, UART011_CR_LBE);
1684 
1685 	if (port->status & UPSTAT_AUTORTS) {
1686 		/* We need to disable auto-RTS if we want to turn RTS off */
1687 		pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTSEN);
1688 	}
1689 
1690 	pl011_write(cr, uap, REG_CR);
1691 }
1692 
pl011_break_ctl(struct uart_port * port,int break_state)1693 static void pl011_break_ctl(struct uart_port *port, int break_state)
1694 {
1695 	struct uart_amba_port *uap =
1696 	    container_of(port, struct uart_amba_port, port);
1697 	unsigned long flags;
1698 	unsigned int lcr_h;
1699 
1700 	uart_port_lock_irqsave(&uap->port, &flags);
1701 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1702 	if (break_state == -1)
1703 		lcr_h |= UART01x_LCRH_BRK;
1704 	else
1705 		lcr_h &= ~UART01x_LCRH_BRK;
1706 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1707 	uart_port_unlock_irqrestore(&uap->port, flags);
1708 }
1709 
1710 #ifdef CONFIG_CONSOLE_POLL
1711 
pl011_quiesce_irqs(struct uart_port * port)1712 static void pl011_quiesce_irqs(struct uart_port *port)
1713 {
1714 	struct uart_amba_port *uap =
1715 	    container_of(port, struct uart_amba_port, port);
1716 
1717 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1718 	/*
1719 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1720 	 * we simply mask it. start_tx() will unmask it.
1721 	 *
1722 	 * Note we can race with start_tx(), and if the race happens, the
1723 	 * polling user might get another interrupt just after we clear it.
1724 	 * But it should be OK and can happen even w/o the race, e.g.
1725 	 * controller immediately got some new data and raised the IRQ.
1726 	 *
1727 	 * And whoever uses polling routines assumes that it manages the device
1728 	 * (including tx queue), so we're also fine with start_tx()'s caller
1729 	 * side.
1730 	 */
1731 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1732 		    REG_IMSC);
1733 }
1734 
pl011_get_poll_char(struct uart_port * port)1735 static int pl011_get_poll_char(struct uart_port *port)
1736 {
1737 	struct uart_amba_port *uap =
1738 	    container_of(port, struct uart_amba_port, port);
1739 	unsigned int status;
1740 
1741 	/*
1742 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1743 	 * debugger.
1744 	 */
1745 	pl011_quiesce_irqs(port);
1746 
1747 	status = pl011_read(uap, REG_FR);
1748 	if (status & UART01x_FR_RXFE)
1749 		return NO_POLL_CHAR;
1750 
1751 	return pl011_read(uap, REG_DR);
1752 }
1753 
pl011_put_poll_char(struct uart_port * port,unsigned char ch)1754 static void pl011_put_poll_char(struct uart_port *port, unsigned char ch)
1755 {
1756 	struct uart_amba_port *uap =
1757 	    container_of(port, struct uart_amba_port, port);
1758 
1759 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1760 		cpu_relax();
1761 
1762 	pl011_write(ch, uap, REG_DR);
1763 }
1764 
1765 #endif /* CONFIG_CONSOLE_POLL */
1766 
pl011_hwinit(struct uart_port * port)1767 static int pl011_hwinit(struct uart_port *port)
1768 {
1769 	struct uart_amba_port *uap =
1770 	    container_of(port, struct uart_amba_port, port);
1771 	int retval;
1772 
1773 	/* Optionaly enable pins to be muxed in and configured */
1774 	pinctrl_pm_select_default_state(port->dev);
1775 
1776 	/*
1777 	 * Try to enable the clock producer.
1778 	 */
1779 	retval = clk_prepare_enable(uap->clk);
1780 	if (retval)
1781 		return retval;
1782 
1783 	uap->port.uartclk = clk_get_rate(uap->clk);
1784 
1785 	/* Clear pending error and receive interrupts */
1786 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1787 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1788 		    uap, REG_ICR);
1789 
1790 	/*
1791 	 * Save interrupts enable mask, and enable RX interrupts in case if
1792 	 * the interrupt is used for NMI entry.
1793 	 */
1794 	uap->im = pl011_read(uap, REG_IMSC);
1795 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1796 
1797 	if (dev_get_platdata(uap->port.dev)) {
1798 		struct amba_pl011_data *plat;
1799 
1800 		plat = dev_get_platdata(uap->port.dev);
1801 		if (plat->init)
1802 			plat->init();
1803 	}
1804 	return 0;
1805 }
1806 
pl011_split_lcrh(const struct uart_amba_port * uap)1807 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1808 {
1809 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1810 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1811 }
1812 
pl011_write_lcr_h(struct uart_amba_port * uap,unsigned int lcr_h)1813 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1814 {
1815 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1816 	if (pl011_split_lcrh(uap)) {
1817 		int i;
1818 		/*
1819 		 * Wait 10 PCLKs before writing LCRH_TX register,
1820 		 * to get this delay write read only register 10 times
1821 		 */
1822 		for (i = 0; i < 10; ++i)
1823 			pl011_write(0xff, uap, REG_MIS);
1824 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1825 	}
1826 }
1827 
pl011_allocate_irq(struct uart_amba_port * uap)1828 static int pl011_allocate_irq(struct uart_amba_port *uap)
1829 {
1830 	pl011_write(uap->im, uap, REG_IMSC);
1831 
1832 	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1833 }
1834 
1835 /*
1836  * Enable interrupts, only timeouts when using DMA
1837  * if initial RX DMA job failed, start in interrupt mode
1838  * as well.
1839  */
pl011_enable_interrupts(struct uart_amba_port * uap)1840 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1841 {
1842 	unsigned long flags;
1843 	unsigned int i;
1844 
1845 	uart_port_lock_irqsave(&uap->port, &flags);
1846 
1847 	/* Clear out any spuriously appearing RX interrupts */
1848 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1849 
1850 	/*
1851 	 * RXIS is asserted only when the RX FIFO transitions from below
1852 	 * to above the trigger threshold.  If the RX FIFO is already
1853 	 * full to the threshold this can't happen and RXIS will now be
1854 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1855 	 */
1856 	for (i = 0; i < uap->fifosize * 2; ++i) {
1857 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1858 			break;
1859 
1860 		pl011_read(uap, REG_DR);
1861 	}
1862 
1863 	uap->im = UART011_RTIM;
1864 	if (!pl011_dma_rx_running(uap))
1865 		uap->im |= UART011_RXIM;
1866 	pl011_write(uap->im, uap, REG_IMSC);
1867 	uart_port_unlock_irqrestore(&uap->port, flags);
1868 }
1869 
pl011_unthrottle_rx(struct uart_port * port)1870 static void pl011_unthrottle_rx(struct uart_port *port)
1871 {
1872 	struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1873 	unsigned long flags;
1874 
1875 	uart_port_lock_irqsave(&uap->port, &flags);
1876 
1877 	uap->im = UART011_RTIM;
1878 	if (!pl011_dma_rx_running(uap))
1879 		uap->im |= UART011_RXIM;
1880 
1881 	pl011_write(uap->im, uap, REG_IMSC);
1882 
1883 #ifdef CONFIG_DMA_ENGINE
1884 	if (uap->using_rx_dma) {
1885 		uap->dmacr |= UART011_RXDMAE;
1886 		pl011_write(uap->dmacr, uap, REG_DMACR);
1887 	}
1888 #endif
1889 
1890 	uart_port_unlock_irqrestore(&uap->port, flags);
1891 }
1892 
pl011_startup(struct uart_port * port)1893 static int pl011_startup(struct uart_port *port)
1894 {
1895 	struct uart_amba_port *uap =
1896 	    container_of(port, struct uart_amba_port, port);
1897 	unsigned int cr;
1898 	int retval;
1899 
1900 	retval = pl011_hwinit(port);
1901 	if (retval)
1902 		goto clk_dis;
1903 
1904 	retval = pl011_allocate_irq(uap);
1905 	if (retval)
1906 		goto clk_dis;
1907 
1908 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1909 
1910 	uart_port_lock_irq(&uap->port);
1911 
1912 	cr = pl011_read(uap, REG_CR);
1913 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1914 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1915 
1916 	if (!(port->rs485.flags & SER_RS485_ENABLED))
1917 		cr |= UART011_CR_TXE;
1918 
1919 	pl011_write(cr, uap, REG_CR);
1920 
1921 	uart_port_unlock_irq(&uap->port);
1922 
1923 	/*
1924 	 * initialise the old status of the modem signals
1925 	 */
1926 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1927 
1928 	/* Startup DMA */
1929 	pl011_dma_startup(uap);
1930 
1931 	pl011_enable_interrupts(uap);
1932 
1933 	return 0;
1934 
1935  clk_dis:
1936 	clk_disable_unprepare(uap->clk);
1937 	return retval;
1938 }
1939 
sbsa_uart_startup(struct uart_port * port)1940 static int sbsa_uart_startup(struct uart_port *port)
1941 {
1942 	struct uart_amba_port *uap =
1943 		container_of(port, struct uart_amba_port, port);
1944 	int retval;
1945 
1946 	retval = pl011_hwinit(port);
1947 	if (retval)
1948 		return retval;
1949 
1950 	retval = pl011_allocate_irq(uap);
1951 	if (retval)
1952 		return retval;
1953 
1954 	/* The SBSA UART does not support any modem status lines. */
1955 	uap->old_status = 0;
1956 
1957 	pl011_enable_interrupts(uap);
1958 
1959 	return 0;
1960 }
1961 
pl011_shutdown_channel(struct uart_amba_port * uap,unsigned int lcrh)1962 static void pl011_shutdown_channel(struct uart_amba_port *uap, unsigned int lcrh)
1963 {
1964 	unsigned long val;
1965 
1966 	val = pl011_read(uap, lcrh);
1967 	val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1968 	pl011_write(val, uap, lcrh);
1969 }
1970 
1971 /*
1972  * disable the port. It should not disable RTS and DTR.
1973  * Also RTS and DTR state should be preserved to restore
1974  * it during startup().
1975  */
pl011_disable_uart(struct uart_amba_port * uap)1976 static void pl011_disable_uart(struct uart_amba_port *uap)
1977 {
1978 	unsigned int cr;
1979 
1980 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1981 	uart_port_lock_irq(&uap->port);
1982 	cr = pl011_read(uap, REG_CR);
1983 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1984 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1985 	pl011_write(cr, uap, REG_CR);
1986 	uart_port_unlock_irq(&uap->port);
1987 
1988 	/*
1989 	 * disable break condition and fifos
1990 	 */
1991 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1992 	if (pl011_split_lcrh(uap))
1993 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1994 }
1995 
pl011_disable_interrupts(struct uart_amba_port * uap)1996 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1997 {
1998 	uart_port_lock_irq(&uap->port);
1999 
2000 	/* mask all interrupts and clear all pending ones */
2001 	uap->im = 0;
2002 	pl011_write(uap->im, uap, REG_IMSC);
2003 	pl011_write(0xffff, uap, REG_ICR);
2004 
2005 	uart_port_unlock_irq(&uap->port);
2006 }
2007 
pl011_shutdown(struct uart_port * port)2008 static void pl011_shutdown(struct uart_port *port)
2009 {
2010 	struct uart_amba_port *uap =
2011 		container_of(port, struct uart_amba_port, port);
2012 
2013 	pl011_disable_interrupts(uap);
2014 
2015 	pl011_dma_shutdown(uap);
2016 
2017 	if ((port->rs485.flags & SER_RS485_ENABLED && uap->rs485_tx_state != OFF))
2018 		pl011_rs485_tx_stop(uap);
2019 
2020 	free_irq(uap->port.irq, uap);
2021 
2022 	pl011_disable_uart(uap);
2023 
2024 	/*
2025 	 * Shut down the clock producer
2026 	 */
2027 	clk_disable_unprepare(uap->clk);
2028 	/* Optionally let pins go into sleep states */
2029 	pinctrl_pm_select_sleep_state(port->dev);
2030 
2031 	if (dev_get_platdata(uap->port.dev)) {
2032 		struct amba_pl011_data *plat;
2033 
2034 		plat = dev_get_platdata(uap->port.dev);
2035 		if (plat->exit)
2036 			plat->exit();
2037 	}
2038 
2039 	if (uap->port.ops->flush_buffer)
2040 		uap->port.ops->flush_buffer(port);
2041 }
2042 
sbsa_uart_shutdown(struct uart_port * port)2043 static void sbsa_uart_shutdown(struct uart_port *port)
2044 {
2045 	struct uart_amba_port *uap =
2046 		container_of(port, struct uart_amba_port, port);
2047 
2048 	pl011_disable_interrupts(uap);
2049 
2050 	free_irq(uap->port.irq, uap);
2051 
2052 	if (uap->port.ops->flush_buffer)
2053 		uap->port.ops->flush_buffer(port);
2054 }
2055 
2056 static void
pl011_setup_status_masks(struct uart_port * port,struct ktermios * termios)2057 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2058 {
2059 	port->read_status_mask = UART011_DR_OE | 255;
2060 	if (termios->c_iflag & INPCK)
2061 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2062 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2063 		port->read_status_mask |= UART011_DR_BE;
2064 
2065 	/*
2066 	 * Characters to ignore
2067 	 */
2068 	port->ignore_status_mask = 0;
2069 	if (termios->c_iflag & IGNPAR)
2070 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2071 	if (termios->c_iflag & IGNBRK) {
2072 		port->ignore_status_mask |= UART011_DR_BE;
2073 		/*
2074 		 * If we're ignoring parity and break indicators,
2075 		 * ignore overruns too (for real raw support).
2076 		 */
2077 		if (termios->c_iflag & IGNPAR)
2078 			port->ignore_status_mask |= UART011_DR_OE;
2079 	}
2080 
2081 	/*
2082 	 * Ignore all characters if CREAD is not set.
2083 	 */
2084 	if ((termios->c_cflag & CREAD) == 0)
2085 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
2086 }
2087 
2088 static void
pl011_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)2089 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2090 		  const struct ktermios *old)
2091 {
2092 	struct uart_amba_port *uap =
2093 	    container_of(port, struct uart_amba_port, port);
2094 	unsigned int lcr_h, old_cr;
2095 	unsigned long flags;
2096 	unsigned int baud, quot, clkdiv;
2097 	unsigned int bits;
2098 
2099 	if (uap->vendor->oversampling)
2100 		clkdiv = 8;
2101 	else
2102 		clkdiv = 16;
2103 
2104 	/*
2105 	 * Ask the core to calculate the divisor for us.
2106 	 */
2107 	baud = uart_get_baud_rate(port, termios, old, 0,
2108 				  port->uartclk / clkdiv);
2109 #ifdef CONFIG_DMA_ENGINE
2110 	/*
2111 	 * Adjust RX DMA polling rate with baud rate if not specified.
2112 	 */
2113 	if (uap->dmarx.auto_poll_rate)
2114 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2115 #endif
2116 
2117 	if (baud > port->uartclk / 16)
2118 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2119 	else
2120 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2121 
2122 	switch (termios->c_cflag & CSIZE) {
2123 	case CS5:
2124 		lcr_h = UART01x_LCRH_WLEN_5;
2125 		break;
2126 	case CS6:
2127 		lcr_h = UART01x_LCRH_WLEN_6;
2128 		break;
2129 	case CS7:
2130 		lcr_h = UART01x_LCRH_WLEN_7;
2131 		break;
2132 	default: // CS8
2133 		lcr_h = UART01x_LCRH_WLEN_8;
2134 		break;
2135 	}
2136 	if (termios->c_cflag & CSTOPB)
2137 		lcr_h |= UART01x_LCRH_STP2;
2138 	if (termios->c_cflag & PARENB) {
2139 		lcr_h |= UART01x_LCRH_PEN;
2140 		if (!(termios->c_cflag & PARODD))
2141 			lcr_h |= UART01x_LCRH_EPS;
2142 		if (termios->c_cflag & CMSPAR)
2143 			lcr_h |= UART011_LCRH_SPS;
2144 	}
2145 	if (uap->fifosize > 1)
2146 		lcr_h |= UART01x_LCRH_FEN;
2147 
2148 	bits = tty_get_frame_size(termios->c_cflag);
2149 
2150 	uart_port_lock_irqsave(port, &flags);
2151 
2152 	/*
2153 	 * Update the per-port timeout.
2154 	 */
2155 	uart_update_timeout(port, termios->c_cflag, baud);
2156 
2157 	/*
2158 	 * Calculate the approximated time it takes to transmit one character
2159 	 * with the given baud rate. We use this as the poll interval when we
2160 	 * wait for the tx queue to empty.
2161 	 */
2162 	uap->rs485_tx_drain_interval = ns_to_ktime(DIV_ROUND_UP(bits * NSEC_PER_SEC, baud));
2163 
2164 	pl011_setup_status_masks(port, termios);
2165 
2166 	if (UART_ENABLE_MS(port, termios->c_cflag))
2167 		pl011_enable_ms(port);
2168 
2169 	if (port->rs485.flags & SER_RS485_ENABLED)
2170 		termios->c_cflag &= ~CRTSCTS;
2171 
2172 	old_cr = pl011_read(uap, REG_CR);
2173 
2174 	if (termios->c_cflag & CRTSCTS) {
2175 		if (old_cr & UART011_CR_RTS)
2176 			old_cr |= UART011_CR_RTSEN;
2177 
2178 		old_cr |= UART011_CR_CTSEN;
2179 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2180 	} else {
2181 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2182 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2183 	}
2184 
2185 	if (uap->vendor->oversampling) {
2186 		if (baud > port->uartclk / 16)
2187 			old_cr |= ST_UART011_CR_OVSFACT;
2188 		else
2189 			old_cr &= ~ST_UART011_CR_OVSFACT;
2190 	}
2191 
2192 	/*
2193 	 * Workaround for the ST Micro oversampling variants to
2194 	 * increase the bitrate slightly, by lowering the divisor,
2195 	 * to avoid delayed sampling of start bit at high speeds,
2196 	 * else we see data corruption.
2197 	 */
2198 	if (uap->vendor->oversampling) {
2199 		if (baud >= 3000000 && baud < 3250000 && quot > 1)
2200 			quot -= 1;
2201 		else if (baud > 3250000 && quot > 2)
2202 			quot -= 2;
2203 	}
2204 	/* Set baud rate */
2205 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2206 	pl011_write(quot >> 6, uap, REG_IBRD);
2207 
2208 	/*
2209 	 * ----------v----------v----------v----------v-----
2210 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2211 	 * REG_FBRD & REG_IBRD.
2212 	 * ----------^----------^----------^----------^-----
2213 	 */
2214 	pl011_write_lcr_h(uap, lcr_h);
2215 
2216 	/*
2217 	 * Receive was disabled by pl011_disable_uart during shutdown.
2218 	 * Need to reenable receive if you need to use a tty_driver
2219 	 * returns from tty_find_polling_driver() after a port shutdown.
2220 	 */
2221 	old_cr |= UART011_CR_RXE;
2222 	pl011_write(old_cr, uap, REG_CR);
2223 
2224 	uart_port_unlock_irqrestore(port, flags);
2225 }
2226 
2227 static void
sbsa_uart_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)2228 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2229 		      const struct ktermios *old)
2230 {
2231 	struct uart_amba_port *uap =
2232 	    container_of(port, struct uart_amba_port, port);
2233 	unsigned long flags;
2234 
2235 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2236 
2237 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2238 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2239 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2240 	termios->c_cflag |= CS8 | CLOCAL;
2241 
2242 	uart_port_lock_irqsave(port, &flags);
2243 	uart_update_timeout(port, CS8, uap->fixed_baud);
2244 	pl011_setup_status_masks(port, termios);
2245 	uart_port_unlock_irqrestore(port, flags);
2246 }
2247 
pl011_type(struct uart_port * port)2248 static const char *pl011_type(struct uart_port *port)
2249 {
2250 	struct uart_amba_port *uap =
2251 	    container_of(port, struct uart_amba_port, port);
2252 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2253 }
2254 
2255 /*
2256  * Configure/autoconfigure the port.
2257  */
pl011_config_port(struct uart_port * port,int flags)2258 static void pl011_config_port(struct uart_port *port, int flags)
2259 {
2260 	if (flags & UART_CONFIG_TYPE)
2261 		port->type = PORT_AMBA;
2262 }
2263 
2264 /*
2265  * verify the new serial_struct (for TIOCSSERIAL).
2266  */
pl011_verify_port(struct uart_port * port,struct serial_struct * ser)2267 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2268 {
2269 	int ret = 0;
2270 
2271 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2272 		ret = -EINVAL;
2273 	if (ser->irq < 0 || ser->irq >= irq_get_nr_irqs())
2274 		ret = -EINVAL;
2275 	if (ser->baud_base < 9600)
2276 		ret = -EINVAL;
2277 	if (port->mapbase != (unsigned long)ser->iomem_base)
2278 		ret = -EINVAL;
2279 	return ret;
2280 }
2281 
pl011_rs485_config(struct uart_port * port,struct ktermios * termios,struct serial_rs485 * rs485)2282 static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2283 			      struct serial_rs485 *rs485)
2284 {
2285 	struct uart_amba_port *uap =
2286 		container_of(port, struct uart_amba_port, port);
2287 
2288 	if (port->rs485.flags & SER_RS485_ENABLED)
2289 		pl011_rs485_tx_stop(uap);
2290 
2291 	/* Make sure auto RTS is disabled */
2292 	if (rs485->flags & SER_RS485_ENABLED) {
2293 		u32 cr = pl011_read(uap, REG_CR);
2294 
2295 		cr &= ~UART011_CR_RTSEN;
2296 		pl011_write(cr, uap, REG_CR);
2297 		port->status &= ~UPSTAT_AUTORTS;
2298 	}
2299 
2300 	return 0;
2301 }
2302 
2303 static const struct uart_ops amba_pl011_pops = {
2304 	.tx_empty	= pl011_tx_empty,
2305 	.set_mctrl	= pl011_set_mctrl,
2306 	.get_mctrl	= pl011_get_mctrl,
2307 	.stop_tx	= pl011_stop_tx,
2308 	.start_tx	= pl011_start_tx,
2309 	.stop_rx	= pl011_stop_rx,
2310 	.throttle	= pl011_throttle_rx,
2311 	.unthrottle	= pl011_unthrottle_rx,
2312 	.enable_ms	= pl011_enable_ms,
2313 	.break_ctl	= pl011_break_ctl,
2314 	.startup	= pl011_startup,
2315 	.shutdown	= pl011_shutdown,
2316 	.flush_buffer	= pl011_dma_flush_buffer,
2317 	.set_termios	= pl011_set_termios,
2318 	.type		= pl011_type,
2319 	.config_port	= pl011_config_port,
2320 	.verify_port	= pl011_verify_port,
2321 #ifdef CONFIG_CONSOLE_POLL
2322 	.poll_init     = pl011_hwinit,
2323 	.poll_get_char = pl011_get_poll_char,
2324 	.poll_put_char = pl011_put_poll_char,
2325 #endif
2326 };
2327 
sbsa_uart_set_mctrl(struct uart_port * port,unsigned int mctrl)2328 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2329 {
2330 }
2331 
sbsa_uart_get_mctrl(struct uart_port * port)2332 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2333 {
2334 	return 0;
2335 }
2336 
2337 static const struct uart_ops sbsa_uart_pops = {
2338 	.tx_empty	= pl011_tx_empty,
2339 	.set_mctrl	= sbsa_uart_set_mctrl,
2340 	.get_mctrl	= sbsa_uart_get_mctrl,
2341 	.stop_tx	= pl011_stop_tx,
2342 	.start_tx	= pl011_start_tx,
2343 	.stop_rx	= pl011_stop_rx,
2344 	.startup	= sbsa_uart_startup,
2345 	.shutdown	= sbsa_uart_shutdown,
2346 	.set_termios	= sbsa_uart_set_termios,
2347 	.type		= pl011_type,
2348 	.config_port	= pl011_config_port,
2349 	.verify_port	= pl011_verify_port,
2350 #ifdef CONFIG_CONSOLE_POLL
2351 	.poll_init     = pl011_hwinit,
2352 	.poll_get_char = pl011_get_poll_char,
2353 	.poll_put_char = pl011_put_poll_char,
2354 #endif
2355 };
2356 
2357 static struct uart_amba_port *amba_ports[UART_NR];
2358 
2359 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2360 
pl011_console_putchar(struct uart_port * port,unsigned char ch)2361 static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2362 {
2363 	struct uart_amba_port *uap =
2364 	    container_of(port, struct uart_amba_port, port);
2365 
2366 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2367 		cpu_relax();
2368 	pl011_write(ch, uap, REG_DR);
2369 }
2370 
2371 static void
pl011_console_write(struct console * co,const char * s,unsigned int count)2372 pl011_console_write(struct console *co, const char *s, unsigned int count)
2373 {
2374 	struct uart_amba_port *uap = amba_ports[co->index];
2375 	unsigned int old_cr = 0, new_cr;
2376 	unsigned long flags;
2377 	int locked = 1;
2378 
2379 	clk_enable(uap->clk);
2380 
2381 	if (oops_in_progress)
2382 		locked = uart_port_trylock_irqsave(&uap->port, &flags);
2383 	else
2384 		uart_port_lock_irqsave(&uap->port, &flags);
2385 
2386 	/*
2387 	 *	First save the CR then disable the interrupts
2388 	 */
2389 	if (!uap->vendor->always_enabled) {
2390 		old_cr = pl011_read(uap, REG_CR);
2391 		new_cr = old_cr & ~UART011_CR_CTSEN;
2392 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2393 		pl011_write(new_cr, uap, REG_CR);
2394 	}
2395 
2396 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2397 
2398 	/*
2399 	 *	Finally, wait for transmitter to become empty and restore the
2400 	 *	TCR. Allow feature register bits to be inverted to work around
2401 	 *	errata.
2402 	 */
2403 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2404 						& uap->vendor->fr_busy)
2405 		cpu_relax();
2406 	if (!uap->vendor->always_enabled)
2407 		pl011_write(old_cr, uap, REG_CR);
2408 
2409 	if (locked)
2410 		uart_port_unlock_irqrestore(&uap->port, flags);
2411 
2412 	clk_disable(uap->clk);
2413 }
2414 
pl011_console_get_options(struct uart_amba_port * uap,int * baud,int * parity,int * bits)2415 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2416 				      int *parity, int *bits)
2417 {
2418 	unsigned int lcr_h, ibrd, fbrd;
2419 
2420 	if (!(pl011_read(uap, REG_CR) & UART01x_CR_UARTEN))
2421 		return;
2422 
2423 	lcr_h = pl011_read(uap, REG_LCRH_TX);
2424 
2425 	*parity = 'n';
2426 	if (lcr_h & UART01x_LCRH_PEN) {
2427 		if (lcr_h & UART01x_LCRH_EPS)
2428 			*parity = 'e';
2429 		else
2430 			*parity = 'o';
2431 	}
2432 
2433 	if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2434 		*bits = 7;
2435 	else
2436 		*bits = 8;
2437 
2438 	ibrd = pl011_read(uap, REG_IBRD);
2439 	fbrd = pl011_read(uap, REG_FBRD);
2440 
2441 	*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2442 
2443 	if (uap->vendor->oversampling &&
2444 	    (pl011_read(uap, REG_CR) & ST_UART011_CR_OVSFACT))
2445 		*baud *= 2;
2446 }
2447 
pl011_console_setup(struct console * co,char * options)2448 static int pl011_console_setup(struct console *co, char *options)
2449 {
2450 	struct uart_amba_port *uap;
2451 	int baud = 38400;
2452 	int bits = 8;
2453 	int parity = 'n';
2454 	int flow = 'n';
2455 	int ret;
2456 
2457 	/*
2458 	 * Check whether an invalid uart number has been specified, and
2459 	 * if so, search for the first available port that does have
2460 	 * console support.
2461 	 */
2462 	if (co->index >= UART_NR)
2463 		co->index = 0;
2464 	uap = amba_ports[co->index];
2465 	if (!uap)
2466 		return -ENODEV;
2467 
2468 	/* Allow pins to be muxed in and configured */
2469 	pinctrl_pm_select_default_state(uap->port.dev);
2470 
2471 	ret = clk_prepare(uap->clk);
2472 	if (ret)
2473 		return ret;
2474 
2475 	if (dev_get_platdata(uap->port.dev)) {
2476 		struct amba_pl011_data *plat;
2477 
2478 		plat = dev_get_platdata(uap->port.dev);
2479 		if (plat->init)
2480 			plat->init();
2481 	}
2482 
2483 	uap->port.uartclk = clk_get_rate(uap->clk);
2484 
2485 	if (uap->vendor->fixed_options) {
2486 		baud = uap->fixed_baud;
2487 	} else {
2488 		if (options)
2489 			uart_parse_options(options,
2490 					   &baud, &parity, &bits, &flow);
2491 		else
2492 			pl011_console_get_options(uap, &baud, &parity, &bits);
2493 	}
2494 
2495 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2496 }
2497 
2498 /**
2499  *	pl011_console_match - non-standard console matching
2500  *	@co:	  registering console
2501  *	@name:	  name from console command line
2502  *	@idx:	  index from console command line
2503  *	@options: ptr to option string from console command line
2504  *
2505  *	Only attempts to match console command lines of the form:
2506  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2507  *	    console=pl011,0x<addr>[,<options>]
2508  *	This form is used to register an initial earlycon boot console and
2509  *	replace it with the amba_console at pl011 driver init.
2510  *
2511  *	Performs console setup for a match (as required by interface)
2512  *	If no <options> are specified, then assume the h/w is already setup.
2513  *
2514  *	Returns 0 if console matches; otherwise non-zero to use default matching
2515  */
pl011_console_match(struct console * co,char * name,int idx,char * options)2516 static int pl011_console_match(struct console *co, char *name, int idx,
2517 			       char *options)
2518 {
2519 	unsigned char iotype;
2520 	resource_size_t addr;
2521 	int i;
2522 
2523 	/*
2524 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2525 	 * have a distinct console name, so make sure we check for that.
2526 	 * The actual implementation of the erratum occurs in the probe
2527 	 * function.
2528 	 */
2529 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2530 		return -ENODEV;
2531 
2532 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2533 		return -ENODEV;
2534 
2535 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2536 		return -ENODEV;
2537 
2538 	/* try to match the port specified on the command line */
2539 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2540 		struct uart_port *port;
2541 
2542 		if (!amba_ports[i])
2543 			continue;
2544 
2545 		port = &amba_ports[i]->port;
2546 
2547 		if (port->mapbase != addr)
2548 			continue;
2549 
2550 		co->index = i;
2551 		uart_port_set_cons(port, co);
2552 		return pl011_console_setup(co, options);
2553 	}
2554 
2555 	return -ENODEV;
2556 }
2557 
2558 static struct uart_driver amba_reg;
2559 static struct console amba_console = {
2560 	.name		= "ttyAMA",
2561 	.write		= pl011_console_write,
2562 	.device		= uart_console_device,
2563 	.setup		= pl011_console_setup,
2564 	.match		= pl011_console_match,
2565 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2566 	.index		= -1,
2567 	.data		= &amba_reg,
2568 };
2569 
2570 #define AMBA_CONSOLE	(&amba_console)
2571 
qdf2400_e44_putc(struct uart_port * port,unsigned char c)2572 static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2573 {
2574 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2575 		cpu_relax();
2576 	writel(c, port->membase + UART01x_DR);
2577 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2578 		cpu_relax();
2579 }
2580 
qdf2400_e44_early_write(struct console * con,const char * s,unsigned int n)2581 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned int n)
2582 {
2583 	struct earlycon_device *dev = con->data;
2584 
2585 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2586 }
2587 
pl011_putc(struct uart_port * port,unsigned char c)2588 static void pl011_putc(struct uart_port *port, unsigned char c)
2589 {
2590 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2591 		cpu_relax();
2592 	if (port->iotype == UPIO_MEM32)
2593 		writel(c, port->membase + UART01x_DR);
2594 	else
2595 		writeb(c, port->membase + UART01x_DR);
2596 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2597 		cpu_relax();
2598 }
2599 
pl011_early_write(struct console * con,const char * s,unsigned int n)2600 static void pl011_early_write(struct console *con, const char *s, unsigned int n)
2601 {
2602 	struct earlycon_device *dev = con->data;
2603 
2604 	uart_console_write(&dev->port, s, n, pl011_putc);
2605 }
2606 
2607 #ifdef CONFIG_CONSOLE_POLL
pl011_getc(struct uart_port * port)2608 static int pl011_getc(struct uart_port *port)
2609 {
2610 	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2611 		return NO_POLL_CHAR;
2612 
2613 	if (port->iotype == UPIO_MEM32)
2614 		return readl(port->membase + UART01x_DR);
2615 	else
2616 		return readb(port->membase + UART01x_DR);
2617 }
2618 
pl011_early_read(struct console * con,char * s,unsigned int n)2619 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2620 {
2621 	struct earlycon_device *dev = con->data;
2622 	int ch, num_read = 0;
2623 
2624 	while (num_read < n) {
2625 		ch = pl011_getc(&dev->port);
2626 		if (ch == NO_POLL_CHAR)
2627 			break;
2628 
2629 		s[num_read++] = ch;
2630 	}
2631 
2632 	return num_read;
2633 }
2634 #else
2635 #define pl011_early_read NULL
2636 #endif
2637 
2638 /*
2639  * On non-ACPI systems, earlycon is enabled by specifying
2640  * "earlycon=pl011,<address>" on the kernel command line.
2641  *
2642  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2643  * by specifying only "earlycon" on the command line.  Because it requires
2644  * SPCR, the console starts after ACPI is parsed, which is later than a
2645  * traditional early console.
2646  *
2647  * To get the traditional early console that starts before ACPI is parsed,
2648  * specify the full "earlycon=pl011,<address>" option.
2649  */
pl011_early_console_setup(struct earlycon_device * device,const char * opt)2650 static int __init pl011_early_console_setup(struct earlycon_device *device,
2651 					    const char *opt)
2652 {
2653 	if (!device->port.membase)
2654 		return -ENODEV;
2655 
2656 	device->con->write = pl011_early_write;
2657 	device->con->read = pl011_early_read;
2658 
2659 	return 0;
2660 }
2661 
2662 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2663 
2664 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2665 
2666 /*
2667  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2668  * Erratum 44, traditional earlycon can be enabled by specifying
2669  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2670  *
2671  * Alternatively, you can just specify "earlycon", and the early console
2672  * will be enabled with the information from the SPCR table.  In this
2673  * case, the SPCR code will detect the need for the E44 work-around,
2674  * and set the console name to "qdf2400_e44".
2675  */
2676 static int __init
qdf2400_e44_early_console_setup(struct earlycon_device * device,const char * opt)2677 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2678 				const char *opt)
2679 {
2680 	if (!device->port.membase)
2681 		return -ENODEV;
2682 
2683 	device->con->write = qdf2400_e44_early_write;
2684 	return 0;
2685 }
2686 
2687 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2688 
2689 #else
2690 #define AMBA_CONSOLE	NULL
2691 #endif
2692 
2693 static struct uart_driver amba_reg = {
2694 	.owner			= THIS_MODULE,
2695 	.driver_name		= "ttyAMA",
2696 	.dev_name		= "ttyAMA",
2697 	.major			= SERIAL_AMBA_MAJOR,
2698 	.minor			= SERIAL_AMBA_MINOR,
2699 	.nr			= UART_NR,
2700 	.cons			= AMBA_CONSOLE,
2701 };
2702 
pl011_probe_dt_alias(int index,struct device * dev)2703 static int pl011_probe_dt_alias(int index, struct device *dev)
2704 {
2705 	struct device_node *np;
2706 	static bool seen_dev_with_alias;
2707 	static bool seen_dev_without_alias;
2708 	int ret = index;
2709 
2710 	if (!IS_ENABLED(CONFIG_OF))
2711 		return ret;
2712 
2713 	np = dev->of_node;
2714 	if (!np)
2715 		return ret;
2716 
2717 	ret = of_alias_get_id(np, "serial");
2718 	if (ret < 0) {
2719 		seen_dev_without_alias = true;
2720 		ret = index;
2721 	} else {
2722 		seen_dev_with_alias = true;
2723 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret]) {
2724 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2725 			ret = index;
2726 		}
2727 	}
2728 
2729 	if (seen_dev_with_alias && seen_dev_without_alias)
2730 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2731 
2732 	return ret;
2733 }
2734 
2735 /* unregisters the driver also if no more ports are left */
pl011_unregister_port(struct uart_amba_port * uap)2736 static void pl011_unregister_port(struct uart_amba_port *uap)
2737 {
2738 	int i;
2739 	bool busy = false;
2740 
2741 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2742 		if (amba_ports[i] == uap)
2743 			amba_ports[i] = NULL;
2744 		else if (amba_ports[i])
2745 			busy = true;
2746 	}
2747 	pl011_dma_remove(uap);
2748 	if (!busy)
2749 		uart_unregister_driver(&amba_reg);
2750 }
2751 
pl011_find_free_port(void)2752 static int pl011_find_free_port(void)
2753 {
2754 	int i;
2755 
2756 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2757 		if (!amba_ports[i])
2758 			return i;
2759 
2760 	return -EBUSY;
2761 }
2762 
pl011_setup_port(struct device * dev,struct uart_amba_port * uap,struct resource * mmiobase,int index)2763 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2764 			    struct resource *mmiobase, int index)
2765 {
2766 	void __iomem *base;
2767 	int ret;
2768 
2769 	base = devm_ioremap_resource(dev, mmiobase);
2770 	if (IS_ERR(base))
2771 		return PTR_ERR(base);
2772 
2773 	index = pl011_probe_dt_alias(index, dev);
2774 
2775 	uap->port.dev = dev;
2776 	uap->port.mapbase = mmiobase->start;
2777 	uap->port.membase = base;
2778 	uap->port.fifosize = uap->fifosize;
2779 	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2780 	uap->port.flags = UPF_BOOT_AUTOCONF;
2781 	uap->port.line = index;
2782 
2783 	ret = uart_get_rs485_mode(&uap->port);
2784 	if (ret)
2785 		return ret;
2786 
2787 	amba_ports[index] = uap;
2788 
2789 	return 0;
2790 }
2791 
pl011_register_port(struct uart_amba_port * uap)2792 static int pl011_register_port(struct uart_amba_port *uap)
2793 {
2794 	int ret, i;
2795 
2796 	/* Ensure interrupts from this UART are masked and cleared */
2797 	pl011_write(0, uap, REG_IMSC);
2798 	pl011_write(0xffff, uap, REG_ICR);
2799 
2800 	if (!amba_reg.state) {
2801 		ret = uart_register_driver(&amba_reg);
2802 		if (ret < 0) {
2803 			dev_err(uap->port.dev,
2804 				"Failed to register AMBA-PL011 driver\n");
2805 			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2806 				if (amba_ports[i] == uap)
2807 					amba_ports[i] = NULL;
2808 			return ret;
2809 		}
2810 	}
2811 
2812 	ret = uart_add_one_port(&amba_reg, &uap->port);
2813 	if (ret)
2814 		pl011_unregister_port(uap);
2815 
2816 	return ret;
2817 }
2818 
2819 static const struct serial_rs485 pl011_rs485_supported = {
2820 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2821 		 SER_RS485_RX_DURING_TX,
2822 	.delay_rts_before_send = 1,
2823 	.delay_rts_after_send = 1,
2824 };
2825 
pl011_probe(struct amba_device * dev,const struct amba_id * id)2826 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2827 {
2828 	struct uart_amba_port *uap;
2829 	struct vendor_data *vendor = id->data;
2830 	int portnr, ret;
2831 	u32 val;
2832 
2833 	portnr = pl011_find_free_port();
2834 	if (portnr < 0)
2835 		return portnr;
2836 
2837 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2838 			   GFP_KERNEL);
2839 	if (!uap)
2840 		return -ENOMEM;
2841 
2842 	uap->clk = devm_clk_get(&dev->dev, NULL);
2843 	if (IS_ERR(uap->clk))
2844 		return PTR_ERR(uap->clk);
2845 
2846 	uap->reg_offset = vendor->reg_offset;
2847 	uap->vendor = vendor;
2848 	uap->fifosize = vendor->get_fifosize(dev);
2849 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2850 	uap->port.irq = dev->irq[0];
2851 	uap->port.ops = &amba_pl011_pops;
2852 	uap->port.rs485_config = pl011_rs485_config;
2853 	uap->port.rs485_supported = pl011_rs485_supported;
2854 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2855 
2856 	if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2857 		switch (val) {
2858 		case 1:
2859 			uap->port.iotype = UPIO_MEM;
2860 			break;
2861 		case 4:
2862 			uap->port.iotype = UPIO_MEM32;
2863 			break;
2864 		default:
2865 			dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2866 				 val);
2867 			return -EINVAL;
2868 		}
2869 	}
2870 
2871 	hrtimer_init(&uap->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2872 	hrtimer_init(&uap->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2873 	uap->trigger_start_tx.function = pl011_trigger_start_tx;
2874 	uap->trigger_stop_tx.function = pl011_trigger_stop_tx;
2875 
2876 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2877 	if (ret)
2878 		return ret;
2879 
2880 	amba_set_drvdata(dev, uap);
2881 
2882 	return pl011_register_port(uap);
2883 }
2884 
pl011_remove(struct amba_device * dev)2885 static void pl011_remove(struct amba_device *dev)
2886 {
2887 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2888 
2889 	uart_remove_one_port(&amba_reg, &uap->port);
2890 	pl011_unregister_port(uap);
2891 }
2892 
2893 #ifdef CONFIG_PM_SLEEP
pl011_suspend(struct device * dev)2894 static int pl011_suspend(struct device *dev)
2895 {
2896 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2897 
2898 	if (!uap)
2899 		return -EINVAL;
2900 
2901 	return uart_suspend_port(&amba_reg, &uap->port);
2902 }
2903 
pl011_resume(struct device * dev)2904 static int pl011_resume(struct device *dev)
2905 {
2906 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2907 
2908 	if (!uap)
2909 		return -EINVAL;
2910 
2911 	return uart_resume_port(&amba_reg, &uap->port);
2912 }
2913 #endif
2914 
2915 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2916 
2917 #ifdef CONFIG_ACPI_SPCR_TABLE
qpdf2400_erratum44_workaround(struct device * dev,struct uart_amba_port * uap)2918 static void qpdf2400_erratum44_workaround(struct device *dev,
2919 					  struct uart_amba_port *uap)
2920 {
2921 	if (!qdf2400_e44_present)
2922 		return;
2923 
2924 	dev_info(dev, "working around QDF2400 SoC erratum 44\n");
2925 	uap->vendor = &vendor_qdt_qdf2400_e44;
2926 }
2927 #else
qpdf2400_erratum44_workaround(struct device * dev,struct uart_amba_port * uap)2928 static void qpdf2400_erratum44_workaround(struct device *dev,
2929 					  struct uart_amba_port *uap)
2930 { /* empty */ }
2931 #endif
2932 
sbsa_uart_probe(struct platform_device * pdev)2933 static int sbsa_uart_probe(struct platform_device *pdev)
2934 {
2935 	struct uart_amba_port *uap;
2936 	struct resource *r;
2937 	int portnr, ret;
2938 	int baudrate;
2939 
2940 	/*
2941 	 * Check the mandatory baud rate parameter in the DT node early
2942 	 * so that we can easily exit with the error.
2943 	 */
2944 	if (pdev->dev.of_node) {
2945 		struct device_node *np = pdev->dev.of_node;
2946 
2947 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2948 		if (ret)
2949 			return ret;
2950 	} else {
2951 		baudrate = 115200;
2952 	}
2953 
2954 	portnr = pl011_find_free_port();
2955 	if (portnr < 0)
2956 		return portnr;
2957 
2958 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2959 			   GFP_KERNEL);
2960 	if (!uap)
2961 		return -ENOMEM;
2962 
2963 	ret = platform_get_irq(pdev, 0);
2964 	if (ret < 0)
2965 		return ret;
2966 	uap->port.irq	= ret;
2967 
2968 	uap->vendor = &vendor_sbsa;
2969 	qpdf2400_erratum44_workaround(&pdev->dev, uap);
2970 
2971 	uap->reg_offset	= uap->vendor->reg_offset;
2972 	uap->fifosize	= 32;
2973 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2974 	uap->port.ops	= &sbsa_uart_pops;
2975 	uap->fixed_baud = baudrate;
2976 
2977 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2978 
2979 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2980 
2981 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2982 	if (ret)
2983 		return ret;
2984 
2985 	platform_set_drvdata(pdev, uap);
2986 
2987 	return pl011_register_port(uap);
2988 }
2989 
sbsa_uart_remove(struct platform_device * pdev)2990 static void sbsa_uart_remove(struct platform_device *pdev)
2991 {
2992 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2993 
2994 	uart_remove_one_port(&amba_reg, &uap->port);
2995 	pl011_unregister_port(uap);
2996 }
2997 
2998 static const struct of_device_id sbsa_uart_of_match[] = {
2999 	{ .compatible = "arm,sbsa-uart", },
3000 	{},
3001 };
3002 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
3003 
3004 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
3005 	{ "ARMH0011", 0 },
3006 	{ "ARMHB000", 0 },
3007 	{},
3008 };
3009 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
3010 
3011 static struct platform_driver arm_sbsa_uart_platform_driver = {
3012 	.probe		= sbsa_uart_probe,
3013 	.remove		= sbsa_uart_remove,
3014 	.driver	= {
3015 		.name	= "sbsa-uart",
3016 		.pm	= &pl011_dev_pm_ops,
3017 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
3018 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
3019 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
3020 	},
3021 };
3022 
3023 static const struct amba_id pl011_ids[] = {
3024 	{
3025 		.id	= 0x00041011,
3026 		.mask	= 0x000fffff,
3027 		.data	= &vendor_arm,
3028 	},
3029 	{
3030 		.id	= 0x00380802,
3031 		.mask	= 0x00ffffff,
3032 		.data	= &vendor_st,
3033 	},
3034 	{ 0, 0 },
3035 };
3036 
3037 MODULE_DEVICE_TABLE(amba, pl011_ids);
3038 
3039 static struct amba_driver pl011_driver = {
3040 	.drv = {
3041 		.name	= "uart-pl011",
3042 		.pm	= &pl011_dev_pm_ops,
3043 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
3044 	},
3045 	.id_table	= pl011_ids,
3046 	.probe		= pl011_probe,
3047 	.remove		= pl011_remove,
3048 };
3049 
pl011_init(void)3050 static int __init pl011_init(void)
3051 {
3052 	pr_info("Serial: AMBA PL011 UART driver\n");
3053 
3054 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3055 		pr_warn("could not register SBSA UART platform driver\n");
3056 	return amba_driver_register(&pl011_driver);
3057 }
3058 
pl011_exit(void)3059 static void __exit pl011_exit(void)
3060 {
3061 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3062 	amba_driver_unregister(&pl011_driver);
3063 }
3064 
3065 /*
3066  * While this can be a module, if builtin it's most likely the console
3067  * So let's leave module_exit but move module_init to an earlier place
3068  */
3069 arch_initcall(pl011_init);
3070 module_exit(pl011_exit);
3071 
3072 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3073 MODULE_DESCRIPTION("ARM AMBA serial port driver");
3074 MODULE_LICENSE("GPL");
3075