1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2023 MediaTek Inc.
4  * Author: Balsam CHIHI <[email protected]>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/delay.h>
10 #include <linux/debugfs.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/reset.h>
19 #include <linux/thermal.h>
20 #include <dt-bindings/thermal/mediatek,lvts-thermal.h>
21 
22 #include "../thermal_hwmon.h"
23 
24 #define LVTS_MONCTL0(__base)	(__base + 0x0000)
25 #define LVTS_MONCTL1(__base)	(__base + 0x0004)
26 #define LVTS_MONCTL2(__base)	(__base + 0x0008)
27 #define LVTS_MONINT(__base)		(__base + 0x000C)
28 #define LVTS_MONINTSTS(__base)	(__base + 0x0010)
29 #define LVTS_MONIDET0(__base)	(__base + 0x0014)
30 #define LVTS_MONIDET1(__base)	(__base + 0x0018)
31 #define LVTS_MONIDET2(__base)	(__base + 0x001C)
32 #define LVTS_MONIDET3(__base)	(__base + 0x0020)
33 #define LVTS_H2NTHRE(__base)	(__base + 0x0024)
34 #define LVTS_HTHRE(__base)		(__base + 0x0028)
35 #define LVTS_OFFSETH(__base)	(__base + 0x0030)
36 #define LVTS_OFFSETL(__base)	(__base + 0x0034)
37 #define LVTS_MSRCTL0(__base)	(__base + 0x0038)
38 #define LVTS_MSRCTL1(__base)	(__base + 0x003C)
39 #define LVTS_TSSEL(__base)		(__base + 0x0040)
40 #define LVTS_CALSCALE(__base)	(__base + 0x0048)
41 #define LVTS_ID(__base)			(__base + 0x004C)
42 #define LVTS_CONFIG(__base)		(__base + 0x0050)
43 #define LVTS_EDATA00(__base)	(__base + 0x0054)
44 #define LVTS_EDATA01(__base)	(__base + 0x0058)
45 #define LVTS_EDATA02(__base)	(__base + 0x005C)
46 #define LVTS_EDATA03(__base)	(__base + 0x0060)
47 #define LVTS_MSR0(__base)		(__base + 0x0090)
48 #define LVTS_MSR1(__base)		(__base + 0x0094)
49 #define LVTS_MSR2(__base)		(__base + 0x0098)
50 #define LVTS_MSR3(__base)		(__base + 0x009C)
51 #define LVTS_IMMD0(__base)		(__base + 0x00A0)
52 #define LVTS_IMMD1(__base)		(__base + 0x00A4)
53 #define LVTS_IMMD2(__base)		(__base + 0x00A8)
54 #define LVTS_IMMD3(__base)		(__base + 0x00AC)
55 #define LVTS_PROTCTL(__base)	(__base + 0x00C0)
56 #define LVTS_PROTTA(__base)		(__base + 0x00C4)
57 #define LVTS_PROTTB(__base)		(__base + 0x00C8)
58 #define LVTS_PROTTC(__base)		(__base + 0x00CC)
59 #define LVTS_CLKEN(__base)		(__base + 0x00E4)
60 
61 #define LVTS_PERIOD_UNIT			0
62 #define LVTS_GROUP_INTERVAL			0
63 #define LVTS_FILTER_INTERVAL		0
64 #define LVTS_SENSOR_INTERVAL		0
65 #define LVTS_HW_FILTER				0x0
66 #define LVTS_TSSEL_CONF				0x13121110
67 #define LVTS_CALSCALE_CONF			0x300
68 #define LVTS_MONINT_CONF			0x0300318C
69 
70 #define LVTS_MONINT_OFFSET_SENSOR0		0xC
71 #define LVTS_MONINT_OFFSET_SENSOR1		0x180
72 #define LVTS_MONINT_OFFSET_SENSOR2		0x3000
73 #define LVTS_MONINT_OFFSET_SENSOR3		0x3000000
74 
75 #define LVTS_INT_SENSOR0			0x0009001F
76 #define LVTS_INT_SENSOR1			0x001203E0
77 #define LVTS_INT_SENSOR2			0x00247C00
78 #define LVTS_INT_SENSOR3			0x1FC00000
79 
80 #define LVTS_SENSOR_MAX				4
81 #define LVTS_GOLDEN_TEMP_MAX		62
82 #define LVTS_GOLDEN_TEMP_DEFAULT	50
83 #define LVTS_COEFF_A_MT8195			-250460
84 #define LVTS_COEFF_B_MT8195			250460
85 #define LVTS_COEFF_A_MT7988			-204650
86 #define LVTS_COEFF_B_MT7988			204650
87 
88 #define LVTS_MSR_IMMEDIATE_MODE		0
89 #define LVTS_MSR_FILTERED_MODE		1
90 
91 #define LVTS_MSR_READ_TIMEOUT_US	400
92 #define LVTS_MSR_READ_WAIT_US		(LVTS_MSR_READ_TIMEOUT_US / 2)
93 
94 #define LVTS_MINIMUM_THRESHOLD		20000
95 
96 static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
97 static int golden_temp_offset;
98 
99 struct lvts_sensor_data {
100 	int dt_id;
101 	u8 cal_offsets[3];
102 };
103 
104 struct lvts_ctrl_data {
105 	struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
106 	u8 valid_sensor_mask;
107 	int offset;
108 	int mode;
109 };
110 
111 #define VALID_SENSOR_MAP(s0, s1, s2, s3) \
112 	.valid_sensor_mask = (((s0) ? BIT(0) : 0) | \
113 			      ((s1) ? BIT(1) : 0) | \
114 			      ((s2) ? BIT(2) : 0) | \
115 			      ((s3) ? BIT(3) : 0))
116 
117 #define lvts_for_each_valid_sensor(i, lvts_ctrl) \
118 	for ((i) = 0; (i) < LVTS_SENSOR_MAX; (i)++) \
119 		if (!((lvts_ctrl)->valid_sensor_mask & BIT(i))) \
120 			continue; \
121 		else
122 
123 struct lvts_data {
124 	const struct lvts_ctrl_data *lvts_ctrl;
125 	int num_lvts_ctrl;
126 	int temp_factor;
127 	int temp_offset;
128 	int gt_calib_bit_offset;
129 	unsigned int def_calibration;
130 };
131 
132 struct lvts_sensor {
133 	struct thermal_zone_device *tz;
134 	void __iomem *msr;
135 	void __iomem *base;
136 	int id;
137 	int dt_id;
138 	int low_thresh;
139 	int high_thresh;
140 };
141 
142 struct lvts_ctrl {
143 	struct lvts_sensor sensors[LVTS_SENSOR_MAX];
144 	const struct lvts_data *lvts_data;
145 	u32 calibration[LVTS_SENSOR_MAX];
146 	u8 valid_sensor_mask;
147 	int mode;
148 	void __iomem *base;
149 	int low_thresh;
150 	int high_thresh;
151 };
152 
153 struct lvts_domain {
154 	struct lvts_ctrl *lvts_ctrl;
155 	struct reset_control *reset;
156 	struct clk *clk;
157 	int num_lvts_ctrl;
158 	void __iomem *base;
159 	size_t calib_len;
160 	u8 *calib;
161 #ifdef CONFIG_DEBUG_FS
162 	struct dentry *dom_dentry;
163 #endif
164 };
165 
166 #ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
167 
168 #define LVTS_DEBUG_FS_REGS(__reg)		\
169 {						\
170 	.name = __stringify(__reg),		\
171 	.offset = __reg(0),			\
172 }
173 
174 static const struct debugfs_reg32 lvts_regs[] = {
175 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
176 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
177 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
178 	LVTS_DEBUG_FS_REGS(LVTS_MONINT),
179 	LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
180 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
181 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
182 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
183 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
184 	LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
185 	LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
186 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
187 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
188 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
189 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
190 	LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
191 	LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
192 	LVTS_DEBUG_FS_REGS(LVTS_ID),
193 	LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
194 	LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
195 	LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
196 	LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
197 	LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
198 	LVTS_DEBUG_FS_REGS(LVTS_MSR0),
199 	LVTS_DEBUG_FS_REGS(LVTS_MSR1),
200 	LVTS_DEBUG_FS_REGS(LVTS_MSR2),
201 	LVTS_DEBUG_FS_REGS(LVTS_MSR3),
202 	LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
203 	LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
204 	LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
205 	LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
206 	LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
207 	LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
208 	LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
209 	LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
210 	LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
211 };
212 
lvts_debugfs_init(struct device * dev,struct lvts_domain * lvts_td)213 static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
214 {
215 	struct debugfs_regset32 *regset;
216 	struct lvts_ctrl *lvts_ctrl;
217 	struct dentry *dentry;
218 	char name[64];
219 	int i;
220 
221 	lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
222 	if (IS_ERR(lvts_td->dom_dentry))
223 		return 0;
224 
225 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
226 
227 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
228 
229 		sprintf(name, "controller%d", i);
230 		dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
231 		if (IS_ERR(dentry))
232 			continue;
233 
234 		regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
235 		if (!regset)
236 			continue;
237 
238 		regset->base = lvts_ctrl->base;
239 		regset->regs = lvts_regs;
240 		regset->nregs = ARRAY_SIZE(lvts_regs);
241 
242 		debugfs_create_regset32("registers", 0400, dentry, regset);
243 	}
244 
245 	return 0;
246 }
247 
lvts_debugfs_exit(struct lvts_domain * lvts_td)248 static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
249 {
250 	debugfs_remove_recursive(lvts_td->dom_dentry);
251 }
252 
253 #else
254 
lvts_debugfs_init(struct device * dev,struct lvts_domain * lvts_td)255 static inline int lvts_debugfs_init(struct device *dev,
256 				    struct lvts_domain *lvts_td)
257 {
258 	return 0;
259 }
260 
lvts_debugfs_exit(struct lvts_domain * lvts_td)261 static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }
262 
263 #endif
264 
lvts_raw_to_temp(u32 raw_temp,int temp_factor)265 static int lvts_raw_to_temp(u32 raw_temp, int temp_factor)
266 {
267 	int temperature;
268 
269 	temperature = ((s64)(raw_temp & 0xFFFF) * temp_factor) >> 14;
270 	temperature += golden_temp_offset;
271 
272 	return temperature;
273 }
274 
lvts_temp_to_raw(int temperature,int temp_factor)275 static u32 lvts_temp_to_raw(int temperature, int temp_factor)
276 {
277 	u32 raw_temp = ((s64)(golden_temp_offset - temperature)) << 14;
278 
279 	raw_temp = div_s64(raw_temp, -temp_factor);
280 
281 	return raw_temp;
282 }
283 
lvts_get_temp(struct thermal_zone_device * tz,int * temp)284 static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
285 {
286 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
287 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
288 						   sensors[lvts_sensor->id]);
289 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
290 	void __iomem *msr = lvts_sensor->msr;
291 	u32 value;
292 	int rc;
293 
294 	/*
295 	 * Measurement registers:
296 	 *
297 	 * LVTS_MSR[0-3] / LVTS_IMMD[0-3]
298 	 *
299 	 * Bits:
300 	 *
301 	 * 32-17: Unused
302 	 * 16	: Valid temperature
303 	 * 15-0	: Raw temperature
304 	 */
305 	rc = readl_poll_timeout(msr, value, value & BIT(16),
306 				LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US);
307 
308 	/*
309 	 * As the thermal zone temperature will read before the
310 	 * hardware sensor is fully initialized, we have to check the
311 	 * validity of the temperature returned when reading the
312 	 * measurement register. The thermal controller will set the
313 	 * valid bit temperature only when it is totally initialized.
314 	 *
315 	 * Otherwise, we may end up with garbage values out of the
316 	 * functionning temperature and directly jump to a system
317 	 * shutdown.
318 	 */
319 	if (rc)
320 		return -EAGAIN;
321 
322 	*temp = lvts_raw_to_temp(value & 0xFFFF, lvts_data->temp_factor);
323 
324 	return 0;
325 }
326 
lvts_update_irq_mask(struct lvts_ctrl * lvts_ctrl)327 static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl)
328 {
329 	static const u32 masks[] = {
330 		LVTS_MONINT_OFFSET_SENSOR0,
331 		LVTS_MONINT_OFFSET_SENSOR1,
332 		LVTS_MONINT_OFFSET_SENSOR2,
333 		LVTS_MONINT_OFFSET_SENSOR3,
334 	};
335 	u32 value = 0;
336 	int i;
337 
338 	value = readl(LVTS_MONINT(lvts_ctrl->base));
339 
340 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
341 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
342 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
343 			value |= masks[i];
344 		else
345 			value &= ~masks[i];
346 	}
347 
348 	writel(value, LVTS_MONINT(lvts_ctrl->base));
349 }
350 
lvts_should_update_thresh(struct lvts_ctrl * lvts_ctrl,int high)351 static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high)
352 {
353 	int i;
354 
355 	if (high > lvts_ctrl->high_thresh)
356 		return true;
357 
358 	lvts_for_each_valid_sensor(i, lvts_ctrl)
359 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
360 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
361 			return false;
362 
363 	return true;
364 }
365 
lvts_set_trips(struct thermal_zone_device * tz,int low,int high)366 static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
367 {
368 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
369 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
370 						   sensors[lvts_sensor->id]);
371 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
372 	void __iomem *base = lvts_sensor->base;
373 	u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD,
374 				       lvts_data->temp_factor);
375 	u32 raw_high = lvts_temp_to_raw(high, lvts_data->temp_factor);
376 	bool should_update_thresh;
377 
378 	lvts_sensor->low_thresh = low;
379 	lvts_sensor->high_thresh = high;
380 
381 	should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high);
382 	if (should_update_thresh) {
383 		lvts_ctrl->high_thresh = high;
384 		lvts_ctrl->low_thresh = low;
385 	}
386 	lvts_update_irq_mask(lvts_ctrl);
387 
388 	if (!should_update_thresh)
389 		return 0;
390 
391 	/*
392 	 * Low offset temperature threshold
393 	 *
394 	 * LVTS_OFFSETL
395 	 *
396 	 * Bits:
397 	 *
398 	 * 14-0 : Raw temperature for threshold
399 	 */
400 	pr_debug("%s: Setting low limit temperature interrupt: %d\n",
401 		 thermal_zone_device_type(tz), low);
402 	writel(raw_low, LVTS_OFFSETL(base));
403 
404 	/*
405 	 * High offset temperature threshold
406 	 *
407 	 * LVTS_OFFSETH
408 	 *
409 	 * Bits:
410 	 *
411 	 * 14-0 : Raw temperature for threshold
412 	 */
413 	pr_debug("%s: Setting high limit temperature interrupt: %d\n",
414 		 thermal_zone_device_type(tz), high);
415 	writel(raw_high, LVTS_OFFSETH(base));
416 
417 	return 0;
418 }
419 
lvts_ctrl_irq_handler(struct lvts_ctrl * lvts_ctrl)420 static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
421 {
422 	irqreturn_t iret = IRQ_NONE;
423 	u32 value;
424 	static const u32 masks[] = {
425 		LVTS_INT_SENSOR0,
426 		LVTS_INT_SENSOR1,
427 		LVTS_INT_SENSOR2,
428 		LVTS_INT_SENSOR3
429 	};
430 	int i;
431 
432 	/*
433 	 * Interrupt monitoring status
434 	 *
435 	 * LVTS_MONINTST
436 	 *
437 	 * Bits:
438 	 *
439 	 * 31 : Interrupt for stage 3
440 	 * 30 : Interrupt for stage 2
441 	 * 29 : Interrupt for state 1
442 	 * 28 : Interrupt using filter on sensor 3
443 	 *
444 	 * 27 : Interrupt using immediate on sensor 3
445 	 * 26 : Interrupt normal to hot on sensor 3
446 	 * 25 : Interrupt high offset on sensor 3
447 	 * 24 : Interrupt low offset on sensor 3
448 	 *
449 	 * 23 : Interrupt hot threshold on sensor 3
450 	 * 22 : Interrupt cold threshold on sensor 3
451 	 * 21 : Interrupt using filter on sensor 2
452 	 * 20 : Interrupt using filter on sensor 1
453 	 *
454 	 * 19 : Interrupt using filter on sensor 0
455 	 * 18 : Interrupt using immediate on sensor 2
456 	 * 17 : Interrupt using immediate on sensor 1
457 	 * 16 : Interrupt using immediate on sensor 0
458 	 *
459 	 * 15 : Interrupt device access timeout interrupt
460 	 * 14 : Interrupt normal to hot on sensor 2
461 	 * 13 : Interrupt high offset interrupt on sensor 2
462 	 * 12 : Interrupt low offset interrupt on sensor 2
463 	 *
464 	 * 11 : Interrupt hot threshold on sensor 2
465 	 * 10 : Interrupt cold threshold on sensor 2
466 	 *  9 : Interrupt normal to hot on sensor 1
467 	 *  8 : Interrupt high offset interrupt on sensor 1
468 	 *
469 	 *  7 : Interrupt low offset interrupt on sensor 1
470 	 *  6 : Interrupt hot threshold on sensor 1
471 	 *  5 : Interrupt cold threshold on sensor 1
472 	 *  4 : Interrupt normal to hot on sensor 0
473 	 *
474 	 *  3 : Interrupt high offset interrupt on sensor 0
475 	 *  2 : Interrupt low offset interrupt on sensor 0
476 	 *  1 : Interrupt hot threshold on sensor 0
477 	 *  0 : Interrupt cold threshold on sensor 0
478 	 *
479 	 * We are interested in the sensor(s) responsible of the
480 	 * interrupt event. We update the thermal framework with the
481 	 * thermal zone associated with the sensor. The framework will
482 	 * take care of the rest whatever the kind of interrupt, we
483 	 * are only interested in which sensor raised the interrupt.
484 	 *
485 	 * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
486 	 *                  => 0x1FC00000
487 	 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
488 	 *                  => 0x00247C00
489 	 * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000
490 	 *                  => 0X001203E0
491 	 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
492 	 *                  => 0x0009001F
493 	 */
494 	value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
495 
496 	/*
497 	 * Let's figure out which sensors raised the interrupt
498 	 *
499 	 * NOTE: the masks array must be ordered with the index
500 	 * corresponding to the sensor id eg. index=0, mask for
501 	 * sensor0.
502 	 */
503 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
504 
505 		if (!(value & masks[i]))
506 			continue;
507 
508 		thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
509 					   THERMAL_TRIP_VIOLATED);
510 		iret = IRQ_HANDLED;
511 	}
512 
513 	/*
514 	 * Write back to clear the interrupt status (W1C)
515 	 */
516 	writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
517 
518 	return iret;
519 }
520 
521 /*
522  * Temperature interrupt handler. Even if the driver supports more
523  * interrupt modes, we use the interrupt when the temperature crosses
524  * the hot threshold the way up and the way down (modulo the
525  * hysteresis).
526  *
527  * Each thermal domain has a couple of interrupts, one for hardware
528  * reset and another one for all the thermal events happening on the
529  * different sensors.
530  *
531  * The interrupt is configured for thermal events when crossing the
532  * hot temperature limit. At each interrupt, we check in every
533  * controller if there is an interrupt pending.
534  */
lvts_irq_handler(int irq,void * data)535 static irqreturn_t lvts_irq_handler(int irq, void *data)
536 {
537 	struct lvts_domain *lvts_td = data;
538 	irqreturn_t aux, iret = IRQ_NONE;
539 	int i;
540 
541 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
542 
543 		aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]);
544 		if (aux != IRQ_HANDLED)
545 			continue;
546 
547 		iret = IRQ_HANDLED;
548 	}
549 
550 	return iret;
551 }
552 
553 static struct thermal_zone_device_ops lvts_ops = {
554 	.get_temp = lvts_get_temp,
555 	.set_trips = lvts_set_trips,
556 };
557 
lvts_sensor_init(struct device * dev,struct lvts_ctrl * lvts_ctrl,const struct lvts_ctrl_data * lvts_ctrl_data)558 static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
559 					const struct lvts_ctrl_data *lvts_ctrl_data)
560 {
561 	struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
562 
563 	void __iomem *msr_regs[] = {
564 		LVTS_MSR0(lvts_ctrl->base),
565 		LVTS_MSR1(lvts_ctrl->base),
566 		LVTS_MSR2(lvts_ctrl->base),
567 		LVTS_MSR3(lvts_ctrl->base)
568 	};
569 
570 	void __iomem *imm_regs[] = {
571 		LVTS_IMMD0(lvts_ctrl->base),
572 		LVTS_IMMD1(lvts_ctrl->base),
573 		LVTS_IMMD2(lvts_ctrl->base),
574 		LVTS_IMMD3(lvts_ctrl->base)
575 	};
576 
577 	int i;
578 
579 	lvts_for_each_valid_sensor(i, lvts_ctrl_data) {
580 
581 		int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
582 
583 		/*
584 		 * At this point, we don't know which id matches which
585 		 * sensor. Let's set arbitrally the id from the index.
586 		 */
587 		lvts_sensor[i].id = i;
588 
589 		/*
590 		 * The thermal zone registration will set the trip
591 		 * point interrupt in the thermal controller
592 		 * register. But this one will be reset in the
593 		 * initialization after. So we need to post pone the
594 		 * thermal zone creation after the controller is
595 		 * setup. For this reason, we store the device tree
596 		 * node id from the data in the sensor structure
597 		 */
598 		lvts_sensor[i].dt_id = dt_id;
599 
600 		/*
601 		 * We assign the base address of the thermal
602 		 * controller as a back pointer. So it will be
603 		 * accessible from the different thermal framework ops
604 		 * as we pass the lvts_sensor pointer as thermal zone
605 		 * private data.
606 		 */
607 		lvts_sensor[i].base = lvts_ctrl->base;
608 
609 		/*
610 		 * Each sensor has its own register address to read from.
611 		 */
612 		lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
613 			imm_regs[i] : msr_regs[i];
614 
615 		lvts_sensor[i].low_thresh = INT_MIN;
616 		lvts_sensor[i].high_thresh = INT_MIN;
617 	};
618 
619 	lvts_ctrl->valid_sensor_mask = lvts_ctrl_data->valid_sensor_mask;
620 
621 	return 0;
622 }
623 
624 /*
625  * The efuse blob values follows the sensor enumeration per thermal
626  * controller. The decoding of the stream is as follow:
627  *
628  * MT8192 :
629  * Stream index map for MCU Domain mt8192 :
630  *
631  * <-----mcu-tc#0-----> <-----sensor#0----->        <-----sensor#1----->
632  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09 | 0x0A | 0x0B
633  *
634  * <-----sensor#2----->        <-----sensor#3----->
635  *  0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12 | 0x13
636  *
637  * <-----sensor#4----->        <-----sensor#5----->        <-----sensor#6----->        <-----sensor#7----->
638  *  0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21 | 0x22 | 0x23
639  *
640  * Stream index map for AP Domain mt8192 :
641  *
642  * <-----sensor#0----->        <-----sensor#1----->
643  *  0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A | 0x2B
644  *
645  * <-----sensor#2----->        <-----sensor#3----->
646  *  0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
647  *
648  * <-----sensor#4----->        <-----sensor#5----->
649  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B
650  *
651  * <-----sensor#6----->        <-----sensor#7----->        <-----sensor#8----->
652  *  0x3C | 0x3D | 0x3E | 0x3F | 0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47
653  *
654  * MT8195 :
655  * Stream index map for MCU Domain mt8195 :
656  *
657  * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1----->
658  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09
659  *
660  * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3----->
661  *  0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12
662  *
663  * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7----->
664  *  0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21
665  *
666  * Stream index map for AP Domain mt8195 :
667  *
668  * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1----->
669  *  0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A
670  *
671  * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3----->
672  *  0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
673  *
674  * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6----->
675  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F
676  *
677  * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8----->
678  *  0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48
679  *
680  * Note: In some cases, values don't strictly follow a little endian ordering.
681  * The data description gives byte offsets constituting each calibration value
682  * for each sensor.
683  */
lvts_calibration_init(struct device * dev,struct lvts_ctrl * lvts_ctrl,const struct lvts_ctrl_data * lvts_ctrl_data,u8 * efuse_calibration,size_t calib_len)684 static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
685 					const struct lvts_ctrl_data *lvts_ctrl_data,
686 					u8 *efuse_calibration,
687 					size_t calib_len)
688 {
689 	int i;
690 	u32 gt;
691 
692 	/* A zero value for gt means that device has invalid efuse data */
693 	gt = (((u32 *)efuse_calibration)[0] >> lvts_ctrl->lvts_data->gt_calib_bit_offset) & 0xff;
694 
695 	lvts_for_each_valid_sensor(i, lvts_ctrl_data) {
696 		const struct lvts_sensor_data *sensor =
697 					&lvts_ctrl_data->lvts_sensor[i];
698 
699 		if (sensor->cal_offsets[0] >= calib_len ||
700 		    sensor->cal_offsets[1] >= calib_len ||
701 		    sensor->cal_offsets[2] >= calib_len)
702 			return -EINVAL;
703 
704 		if (gt) {
705 			lvts_ctrl->calibration[i] =
706 				(efuse_calibration[sensor->cal_offsets[0]] << 0) +
707 				(efuse_calibration[sensor->cal_offsets[1]] << 8) +
708 				(efuse_calibration[sensor->cal_offsets[2]] << 16);
709 		} else if (lvts_ctrl->lvts_data->def_calibration) {
710 			lvts_ctrl->calibration[i] = lvts_ctrl->lvts_data->def_calibration;
711 		} else {
712 			dev_err(dev, "efuse contains invalid calibration data and no default given.\n");
713 			return -ENODATA;
714 		}
715 	}
716 
717 	return 0;
718 }
719 
720 /*
721  * The efuse bytes stream can be split into different chunk of
722  * nvmems. This function reads and concatenate those into a single
723  * buffer so it can be read sequentially when initializing the
724  * calibration data.
725  */
lvts_calibration_read(struct device * dev,struct lvts_domain * lvts_td,const struct lvts_data * lvts_data)726 static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
727 					const struct lvts_data *lvts_data)
728 {
729 	struct device_node *np = dev_of_node(dev);
730 	struct nvmem_cell *cell;
731 	struct property *prop;
732 	const char *cell_name;
733 
734 	of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
735 		size_t len;
736 		u8 *efuse;
737 
738 		cell = of_nvmem_cell_get(np, cell_name);
739 		if (IS_ERR(cell)) {
740 			dev_err(dev, "Failed to get cell '%s'\n", cell_name);
741 			return PTR_ERR(cell);
742 		}
743 
744 		efuse = nvmem_cell_read(cell, &len);
745 
746 		nvmem_cell_put(cell);
747 
748 		if (IS_ERR(efuse)) {
749 			dev_err(dev, "Failed to read cell '%s'\n", cell_name);
750 			return PTR_ERR(efuse);
751 		}
752 
753 		lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
754 					       lvts_td->calib_len + len, GFP_KERNEL);
755 		if (!lvts_td->calib) {
756 			kfree(efuse);
757 			return -ENOMEM;
758 		}
759 
760 		memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
761 
762 		lvts_td->calib_len += len;
763 
764 		kfree(efuse);
765 	}
766 
767 	return 0;
768 }
769 
lvts_golden_temp_init(struct device * dev,u8 * calib,const struct lvts_data * lvts_data)770 static int lvts_golden_temp_init(struct device *dev, u8 *calib,
771 				 const struct lvts_data *lvts_data)
772 {
773 	u32 gt;
774 
775 	/*
776 	 * The golden temp information is contained in the first 32-bit
777 	 * word  of efuse data at a specific bit offset.
778 	 */
779 	gt = (((u32 *)calib)[0] >> lvts_data->gt_calib_bit_offset) & 0xff;
780 
781 	/* A zero value for gt means that device has invalid efuse data */
782 	if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
783 		golden_temp = gt;
784 
785 	golden_temp_offset = golden_temp * 500 + lvts_data->temp_offset;
786 
787 	dev_info(dev, "%sgolden temp=%d\n", gt ? "" : "fake ", golden_temp);
788 
789 	return 0;
790 }
791 
lvts_ctrl_init(struct device * dev,struct lvts_domain * lvts_td,const struct lvts_data * lvts_data)792 static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
793 					const struct lvts_data *lvts_data)
794 {
795 	size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
796 	struct lvts_ctrl *lvts_ctrl;
797 	int i, ret;
798 
799 	/*
800 	 * Create the calibration bytes stream from efuse data
801 	 */
802 	ret = lvts_calibration_read(dev, lvts_td, lvts_data);
803 	if (ret)
804 		return ret;
805 
806 	ret = lvts_golden_temp_init(dev, lvts_td->calib, lvts_data);
807 	if (ret)
808 		return ret;
809 
810 	lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
811 	if (!lvts_ctrl)
812 		return -ENOMEM;
813 
814 	for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
815 
816 		lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
817 		lvts_ctrl[i].lvts_data = lvts_data;
818 
819 		ret = lvts_sensor_init(dev, &lvts_ctrl[i],
820 				       &lvts_data->lvts_ctrl[i]);
821 		if (ret)
822 			return ret;
823 
824 		ret = lvts_calibration_init(dev, &lvts_ctrl[i],
825 					    &lvts_data->lvts_ctrl[i],
826 					    lvts_td->calib,
827 					    lvts_td->calib_len);
828 		if (ret)
829 			return ret;
830 
831 		/*
832 		 * The mode the ctrl will use to read the temperature
833 		 * (filtered or immediate)
834 		 */
835 		lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
836 
837 		lvts_ctrl[i].low_thresh = INT_MIN;
838 		lvts_ctrl[i].high_thresh = INT_MIN;
839 	}
840 
841 	/*
842 	 * We no longer need the efuse bytes stream, let's free it
843 	 */
844 	devm_kfree(dev, lvts_td->calib);
845 
846 	lvts_td->lvts_ctrl = lvts_ctrl;
847 	lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
848 
849 	return 0;
850 }
851 
lvts_ctrl_monitor_enable(struct device * dev,struct lvts_ctrl * lvts_ctrl,bool enable)852 static void lvts_ctrl_monitor_enable(struct device *dev, struct lvts_ctrl *lvts_ctrl, bool enable)
853 {
854 	/*
855 	 * Bitmaps to enable each sensor on filtered mode in the MONCTL0
856 	 * register.
857 	 */
858 	static const u8 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
859 	u32 sensor_map = 0;
860 	int i;
861 
862 	if (lvts_ctrl->mode != LVTS_MSR_FILTERED_MODE)
863 		return;
864 
865 	if (enable) {
866 		lvts_for_each_valid_sensor(i, lvts_ctrl)
867 			sensor_map |= sensor_filt_bitmap[i];
868 	}
869 
870 	/*
871 	 * Bits:
872 	 *      9: Single point access flow
873 	 *    0-3: Enable sensing point 0-3
874 	 */
875 	writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
876 }
877 
878 /*
879  * At this point the configuration register is the only place in the
880  * driver where we write multiple values. Per hardware constraint,
881  * each write in the configuration register must be separated by a
882  * delay of 2 us.
883  */
lvts_write_config(struct lvts_ctrl * lvts_ctrl,u32 * cmds,int nr_cmds)884 static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
885 {
886 	int i;
887 
888 	/*
889 	 * Configuration register
890 	 */
891 	for (i = 0; i < nr_cmds; i++) {
892 		writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
893 		usleep_range(2, 4);
894 	}
895 }
896 
lvts_irq_init(struct lvts_ctrl * lvts_ctrl)897 static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
898 {
899 	/*
900 	 * LVTS_PROTCTL : Thermal Protection Sensor Selection
901 	 *
902 	 * Bits:
903 	 *
904 	 * 19-18 : Sensor to base the protection on
905 	 * 17-16 : Strategy:
906 	 *         00 : Average of 4 sensors
907 	 *         01 : Max of 4 sensors
908 	 *         10 : Selected sensor with bits 19-18
909 	 *         11 : Reserved
910 	 */
911 
912 	/*
913 	 * LVTS_PROTTA : Stage 1 temperature threshold
914 	 * LVTS_PROTTB : Stage 2 temperature threshold
915 	 * LVTS_PROTTC : Stage 3 temperature threshold
916 	 *
917 	 * Bits:
918 	 *
919 	 * 14-0: Raw temperature threshold
920 	 *
921 	 * writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
922 	 * writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
923 	 * writel(0x0, LVTS_PROTTC(lvts_ctrl->base));
924 	 */
925 
926 	/*
927 	 * LVTS_MONINT : Interrupt configuration register
928 	 *
929 	 * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
930 	 * register, except we set the bits to enable the interrupt.
931 	 */
932 	writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));
933 
934 	return 0;
935 }
936 
lvts_domain_reset(struct device * dev,struct reset_control * reset)937 static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
938 {
939 	int ret;
940 
941 	ret = reset_control_assert(reset);
942 	if (ret)
943 		return ret;
944 
945 	return reset_control_deassert(reset);
946 }
947 
948 /*
949  * Enable or disable the clocks of a specified thermal controller
950  */
lvts_ctrl_set_enable(struct lvts_ctrl * lvts_ctrl,int enable)951 static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
952 {
953 	/*
954 	 * LVTS_CLKEN : Internal LVTS clock
955 	 *
956 	 * Bits:
957 	 *
958 	 * 0 : enable / disable clock
959 	 */
960 	writel(enable, LVTS_CLKEN(lvts_ctrl->base));
961 
962 	return 0;
963 }
964 
lvts_ctrl_connect(struct device * dev,struct lvts_ctrl * lvts_ctrl)965 static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
966 {
967 	u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };
968 
969 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
970 
971 	/*
972 	 * LVTS_ID : Get ID and status of the thermal controller
973 	 *
974 	 * Bits:
975 	 *
976 	 * 0-5	: thermal controller id
977 	 *   7	: thermal controller connection is valid
978 	 */
979 	id = readl(LVTS_ID(lvts_ctrl->base));
980 	if (!(id & BIT(7)))
981 		return -EIO;
982 
983 	return 0;
984 }
985 
lvts_ctrl_initialize(struct device * dev,struct lvts_ctrl * lvts_ctrl)986 static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
987 {
988 	/*
989 	 * Write device mask: 0xC1030000
990 	 */
991 	u32 cmds[] = {
992 		0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
993 		0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
994 		0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
995 		0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
996 	};
997 
998 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
999 
1000 	return 0;
1001 }
1002 
lvts_ctrl_calibrate(struct device * dev,struct lvts_ctrl * lvts_ctrl)1003 static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1004 {
1005 	int i;
1006 	void __iomem *lvts_edata[] = {
1007 		LVTS_EDATA00(lvts_ctrl->base),
1008 		LVTS_EDATA01(lvts_ctrl->base),
1009 		LVTS_EDATA02(lvts_ctrl->base),
1010 		LVTS_EDATA03(lvts_ctrl->base)
1011 	};
1012 
1013 	/*
1014 	 * LVTS_EDATA0X : Efuse calibration reference value for sensor X
1015 	 *
1016 	 * Bits:
1017 	 *
1018 	 * 20-0 : Efuse value for normalization data
1019 	 */
1020 	for (i = 0; i < LVTS_SENSOR_MAX; i++)
1021 		writel(lvts_ctrl->calibration[i], lvts_edata[i]);
1022 
1023 	return 0;
1024 }
1025 
lvts_ctrl_configure(struct device * dev,struct lvts_ctrl * lvts_ctrl)1026 static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1027 {
1028 	u32 value;
1029 
1030 	/*
1031 	 * LVTS_TSSEL : Sensing point index numbering
1032 	 *
1033 	 * Bits:
1034 	 *
1035 	 * 31-24: ADC Sense 3
1036 	 * 23-16: ADC Sense 2
1037 	 * 15-8	: ADC Sense 1
1038 	 * 7-0	: ADC Sense 0
1039 	 */
1040 	value = LVTS_TSSEL_CONF;
1041 	writel(value, LVTS_TSSEL(lvts_ctrl->base));
1042 
1043 	/*
1044 	 * LVTS_CALSCALE : ADC voltage round
1045 	 */
1046 	value = 0x300;
1047 	value = LVTS_CALSCALE_CONF;
1048 
1049 	/*
1050 	 * LVTS_MSRCTL0 : Sensor filtering strategy
1051 	 *
1052 	 * Filters:
1053 	 *
1054 	 * 000 : One sample
1055 	 * 001 : Avg 2 samples
1056 	 * 010 : 4 samples, drop min and max, avg 2 samples
1057 	 * 011 : 6 samples, drop min and max, avg 4 samples
1058 	 * 100 : 10 samples, drop min and max, avg 8 samples
1059 	 * 101 : 18 samples, drop min and max, avg 16 samples
1060 	 *
1061 	 * Bits:
1062 	 *
1063 	 * 0-2  : Sensor0 filter
1064 	 * 3-5  : Sensor1 filter
1065 	 * 6-8  : Sensor2 filter
1066 	 * 9-11 : Sensor3 filter
1067 	 */
1068 	value = LVTS_HW_FILTER << 9 |  LVTS_HW_FILTER << 6 |
1069 			LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
1070 	writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
1071 
1072 	/*
1073 	 * LVTS_MONCTL1 : Period unit and group interval configuration
1074 	 *
1075 	 * The clock source of LVTS thermal controller is 26MHz.
1076 	 *
1077 	 * The period unit is a time base for all the interval delays
1078 	 * specified in the registers. By default we use 12. The time
1079 	 * conversion is done by multiplying by 256 and 1/26.10^6
1080 	 *
1081 	 * An interval delay multiplied by the period unit gives the
1082 	 * duration in seconds.
1083 	 *
1084 	 * - Filter interval delay is a delay between two samples of
1085 	 * the same sensor.
1086 	 *
1087 	 * - Sensor interval delay is a delay between two samples of
1088 	 * different sensors.
1089 	 *
1090 	 * - Group interval delay is a delay between different rounds.
1091 	 *
1092 	 * For example:
1093 	 *     If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
1094 	 *     and two sensors, TS1 and TS2, are in a LVTS thermal controller
1095 	 *     and then
1096 	 *     Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
1097 	 *     Filter interval delay = 1 * Period unit = 118.149us
1098 	 *     Sensor interval delay = 2 * Period unit = 236.298us
1099 	 *     Group interval delay = 1 * Period unit = 118.149us
1100 	 *
1101 	 *     TS1    TS1 ... TS1    TS2    TS2 ... TS2    TS1...
1102 	 *        <--> Filter interval delay
1103 	 *                       <--> Sensor interval delay
1104 	 *                                             <--> Group interval delay
1105 	 * Bits:
1106 	 *      29 - 20 : Group interval
1107 	 *      16 - 13 : Send a single interrupt when crossing the hot threshold (1)
1108 	 *                or an interrupt everytime the hot threshold is crossed (0)
1109 	 *       9 - 0  : Period unit
1110 	 *
1111 	 */
1112 	value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
1113 	writel(value, LVTS_MONCTL1(lvts_ctrl->base));
1114 
1115 	/*
1116 	 * LVTS_MONCTL2 : Filtering and sensor interval
1117 	 *
1118 	 * Bits:
1119 	 *
1120 	 *      25-16 : Interval unit in PERIOD_UNIT between sample on
1121 	 *              the same sensor, filter interval
1122 	 *       9-0  : Interval unit in PERIOD_UNIT between each sensor
1123 	 *
1124 	 */
1125 	value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
1126 	writel(value, LVTS_MONCTL2(lvts_ctrl->base));
1127 
1128 	return lvts_irq_init(lvts_ctrl);
1129 }
1130 
lvts_ctrl_start(struct device * dev,struct lvts_ctrl * lvts_ctrl)1131 static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1132 {
1133 	struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
1134 	struct thermal_zone_device *tz;
1135 	u32 sensor_map = 0;
1136 	int i;
1137 	/*
1138 	 * Bitmaps to enable each sensor on immediate and filtered modes, as
1139 	 * described in MSRCTL1 and MONCTL0 registers below, respectively.
1140 	 */
1141 	u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) };
1142 	u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
1143 
1144 	u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ?
1145 			     sensor_imm_bitmap : sensor_filt_bitmap;
1146 
1147 	lvts_for_each_valid_sensor(i, lvts_ctrl) {
1148 
1149 		int dt_id = lvts_sensors[i].dt_id;
1150 
1151 		tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
1152 						   &lvts_ops);
1153 		if (IS_ERR(tz)) {
1154 			/*
1155 			 * This thermal zone is not described in the
1156 			 * device tree. It is not an error from the
1157 			 * thermal OF code POV, we just continue.
1158 			 */
1159 			if (PTR_ERR(tz) == -ENODEV)
1160 				continue;
1161 
1162 			return PTR_ERR(tz);
1163 		}
1164 
1165 		devm_thermal_add_hwmon_sysfs(dev, tz);
1166 
1167 		/*
1168 		 * The thermal zone pointer will be needed in the
1169 		 * interrupt handler, we store it in the sensor
1170 		 * structure. The thermal domain structure will be
1171 		 * passed to the interrupt handler private data as the
1172 		 * interrupt is shared for all the controller
1173 		 * belonging to the thermal domain.
1174 		 */
1175 		lvts_sensors[i].tz = tz;
1176 
1177 		/*
1178 		 * This sensor was correctly associated with a thermal
1179 		 * zone, let's set the corresponding bit in the sensor
1180 		 * map, so we can enable the temperature monitoring in
1181 		 * the hardware thermal controller.
1182 		 */
1183 		sensor_map |= sensor_bitmap[i];
1184 	}
1185 
1186 	/*
1187 	 * The initialization of the thermal zones give us
1188 	 * which sensor point to enable. If any thermal zone
1189 	 * was not described in the device tree, it won't be
1190 	 * enabled here in the sensor map.
1191 	 */
1192 	if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
1193 		/*
1194 		 * LVTS_MSRCTL1 : Measurement control
1195 		 *
1196 		 * Bits:
1197 		 *
1198 		 * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
1199 		 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
1200 		 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
1201 		 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
1202 		 *
1203 		 * That configuration will ignore the filtering and the delays
1204 		 * introduced in MONCTL1 and MONCTL2
1205 		 */
1206 		writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base));
1207 	} else {
1208 		/*
1209 		 * Bits:
1210 		 *      9: Single point access flow
1211 		 *    0-3: Enable sensing point 0-3
1212 		 */
1213 		writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
1214 	}
1215 
1216 	return 0;
1217 }
1218 
lvts_domain_init(struct device * dev,struct lvts_domain * lvts_td,const struct lvts_data * lvts_data)1219 static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
1220 					const struct lvts_data *lvts_data)
1221 {
1222 	struct lvts_ctrl *lvts_ctrl;
1223 	int i, ret;
1224 
1225 	ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
1226 	if (ret)
1227 		return ret;
1228 
1229 	ret = lvts_domain_reset(dev, lvts_td->reset);
1230 	if (ret) {
1231 		dev_dbg(dev, "Failed to reset domain");
1232 		return ret;
1233 	}
1234 
1235 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1236 
1237 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
1238 
1239 		/*
1240 		 * Initialization steps:
1241 		 *
1242 		 * - Enable the clock
1243 		 * - Connect to the LVTS
1244 		 * - Initialize the LVTS
1245 		 * - Prepare the calibration data
1246 		 * - Select monitored sensors
1247 		 * [ Configure sampling ]
1248 		 * [ Configure the interrupt ]
1249 		 * - Start measurement
1250 		 */
1251 		ret = lvts_ctrl_set_enable(lvts_ctrl, true);
1252 		if (ret) {
1253 			dev_dbg(dev, "Failed to enable LVTS clock");
1254 			return ret;
1255 		}
1256 
1257 		ret = lvts_ctrl_connect(dev, lvts_ctrl);
1258 		if (ret) {
1259 			dev_dbg(dev, "Failed to connect to LVTS controller");
1260 			return ret;
1261 		}
1262 
1263 		ret = lvts_ctrl_initialize(dev, lvts_ctrl);
1264 		if (ret) {
1265 			dev_dbg(dev, "Failed to initialize controller");
1266 			return ret;
1267 		}
1268 
1269 		ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
1270 		if (ret) {
1271 			dev_dbg(dev, "Failed to calibrate controller");
1272 			return ret;
1273 		}
1274 
1275 		ret = lvts_ctrl_configure(dev, lvts_ctrl);
1276 		if (ret) {
1277 			dev_dbg(dev, "Failed to configure controller");
1278 			return ret;
1279 		}
1280 
1281 		ret = lvts_ctrl_start(dev, lvts_ctrl);
1282 		if (ret) {
1283 			dev_dbg(dev, "Failed to start controller");
1284 			return ret;
1285 		}
1286 	}
1287 
1288 	return lvts_debugfs_init(dev, lvts_td);
1289 }
1290 
lvts_probe(struct platform_device * pdev)1291 static int lvts_probe(struct platform_device *pdev)
1292 {
1293 	const struct lvts_data *lvts_data;
1294 	struct lvts_domain *lvts_td;
1295 	struct device *dev = &pdev->dev;
1296 	struct resource *res;
1297 	int irq, ret;
1298 
1299 	lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
1300 	if (!lvts_td)
1301 		return -ENOMEM;
1302 
1303 	lvts_data = of_device_get_match_data(dev);
1304 	if (!lvts_data)
1305 		return -ENODEV;
1306 
1307 	lvts_td->clk = devm_clk_get_enabled(dev, NULL);
1308 	if (IS_ERR(lvts_td->clk))
1309 		return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
1310 
1311 	res = platform_get_mem_or_io(pdev, 0);
1312 	if (!res)
1313 		return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
1314 
1315 	lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1316 	if (IS_ERR(lvts_td->base))
1317 		return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
1318 
1319 	lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
1320 	if (IS_ERR(lvts_td->reset))
1321 		return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
1322 
1323 	irq = platform_get_irq(pdev, 0);
1324 	if (irq < 0)
1325 		return irq;
1326 
1327 	golden_temp_offset = lvts_data->temp_offset;
1328 
1329 	ret = lvts_domain_init(dev, lvts_td, lvts_data);
1330 	if (ret)
1331 		return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
1332 
1333 	/*
1334 	 * At this point the LVTS is initialized and enabled. We can
1335 	 * safely enable the interrupt.
1336 	 */
1337 	ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
1338 					IRQF_ONESHOT, dev_name(dev), lvts_td);
1339 	if (ret)
1340 		return dev_err_probe(dev, ret, "Failed to request interrupt\n");
1341 
1342 	platform_set_drvdata(pdev, lvts_td);
1343 
1344 	return 0;
1345 }
1346 
lvts_remove(struct platform_device * pdev)1347 static void lvts_remove(struct platform_device *pdev)
1348 {
1349 	struct lvts_domain *lvts_td;
1350 	int i;
1351 
1352 	lvts_td = platform_get_drvdata(pdev);
1353 
1354 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1355 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1356 
1357 	lvts_debugfs_exit(lvts_td);
1358 }
1359 
1360 static const struct lvts_ctrl_data mt7988_lvts_ap_data_ctrl[] = {
1361 	{
1362 		.lvts_sensor = {
1363 			{ .dt_id = MT7988_CPU_0,
1364 			  .cal_offsets = { 0x00, 0x01, 0x02 } },
1365 			{ .dt_id = MT7988_CPU_1,
1366 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1367 			{ .dt_id = MT7988_ETH2P5G_0,
1368 			  .cal_offsets = { 0x08, 0x09, 0x0a } },
1369 			{ .dt_id = MT7988_ETH2P5G_1,
1370 			  .cal_offsets = { 0x0c, 0x0d, 0x0e } }
1371 		},
1372 		VALID_SENSOR_MAP(1, 1, 1, 1),
1373 		.offset = 0x0,
1374 	},
1375 	{
1376 		.lvts_sensor = {
1377 			{ .dt_id = MT7988_TOPS_0,
1378 			   .cal_offsets = { 0x14, 0x15, 0x16 } },
1379 			{ .dt_id = MT7988_TOPS_1,
1380 			   .cal_offsets = { 0x18, 0x19, 0x1a } },
1381 			{ .dt_id = MT7988_ETHWARP_0,
1382 			   .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1383 			{ .dt_id = MT7988_ETHWARP_1,
1384 			   .cal_offsets = { 0x20, 0x21, 0x22 } }
1385 		},
1386 		VALID_SENSOR_MAP(1, 1, 1, 1),
1387 		.offset = 0x100,
1388 	}
1389 };
1390 
lvts_suspend(struct device * dev)1391 static int lvts_suspend(struct device *dev)
1392 {
1393 	struct lvts_domain *lvts_td;
1394 	int i;
1395 
1396 	lvts_td = dev_get_drvdata(dev);
1397 
1398 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1399 		lvts_ctrl_monitor_enable(dev, &lvts_td->lvts_ctrl[i], false);
1400 		usleep_range(100, 200);
1401 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1402 	}
1403 
1404 	clk_disable_unprepare(lvts_td->clk);
1405 
1406 	return 0;
1407 }
1408 
lvts_resume(struct device * dev)1409 static int lvts_resume(struct device *dev)
1410 {
1411 	struct lvts_domain *lvts_td;
1412 	int i, ret;
1413 
1414 	lvts_td = dev_get_drvdata(dev);
1415 
1416 	ret = clk_prepare_enable(lvts_td->clk);
1417 	if (ret)
1418 		return ret;
1419 
1420 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1421 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], true);
1422 		usleep_range(100, 200);
1423 		lvts_ctrl_monitor_enable(dev, &lvts_td->lvts_ctrl[i], true);
1424 	}
1425 
1426 	return 0;
1427 }
1428 
1429 /*
1430  * The MT8186 calibration data is stored as packed 3-byte little-endian
1431  * values using a weird layout that makes sense only when viewed as a 32-bit
1432  * hexadecimal word dump. Let's suppose SxBy where x = sensor number and
1433  * y = byte number where the LSB is y=0. We then have:
1434  *
1435  *   [S0B2-S0B1-S0B0-S1B2] [S1B1-S1B0-S2B2-S2B1] [S2B0-S3B2-S3B1-S3B0]
1436  *
1437  * However, when considering a byte stream, those appear as follows:
1438  *
1439  *   [S1B2] [S0B0[ [S0B1] [S0B2] [S2B1] [S2B2] [S1B0] [S1B1] [S3B0] [S3B1] [S3B2] [S2B0]
1440  *
1441  * Hence the rather confusing offsets provided below.
1442  */
1443 static const struct lvts_ctrl_data mt8186_lvts_data_ctrl[] = {
1444 	{
1445 		.lvts_sensor = {
1446 			{ .dt_id = MT8186_LITTLE_CPU0,
1447 			  .cal_offsets = { 5, 6, 7 } },
1448 			{ .dt_id = MT8186_LITTLE_CPU1,
1449 			  .cal_offsets = { 10, 11, 4 } },
1450 			{ .dt_id = MT8186_LITTLE_CPU2,
1451 			  .cal_offsets = { 15, 8, 9 } },
1452 			{ .dt_id = MT8186_CAM,
1453 			  .cal_offsets = { 12, 13, 14 } }
1454 		},
1455 		VALID_SENSOR_MAP(1, 1, 1, 1),
1456 		.offset = 0x0,
1457 	},
1458 	{
1459 		.lvts_sensor = {
1460 			{ .dt_id = MT8186_BIG_CPU0,
1461 			  .cal_offsets = { 22, 23, 16 } },
1462 			{ .dt_id = MT8186_BIG_CPU1,
1463 			  .cal_offsets = { 27, 20, 21 } }
1464 		},
1465 		VALID_SENSOR_MAP(1, 1, 0, 0),
1466 		.offset = 0x100,
1467 	},
1468 	{
1469 		.lvts_sensor = {
1470 			{ .dt_id = MT8186_NNA,
1471 			  .cal_offsets = { 29, 30, 31 } },
1472 			{ .dt_id = MT8186_ADSP,
1473 			  .cal_offsets = { 34, 35, 28 } },
1474 			{ .dt_id = MT8186_GPU,
1475 			  .cal_offsets = { 39, 32, 33 } }
1476 		},
1477 		VALID_SENSOR_MAP(1, 1, 1, 0),
1478 		.offset = 0x200,
1479 	}
1480 };
1481 
1482 static const struct lvts_ctrl_data mt8188_lvts_mcu_data_ctrl[] = {
1483 	{
1484 		.lvts_sensor = {
1485 			{ .dt_id = MT8188_MCU_LITTLE_CPU0,
1486 			  .cal_offsets = { 22, 23, 24 } },
1487 			{ .dt_id = MT8188_MCU_LITTLE_CPU1,
1488 			  .cal_offsets = { 25, 26, 27 } },
1489 			{ .dt_id = MT8188_MCU_LITTLE_CPU2,
1490 			  .cal_offsets = { 28, 29, 30 } },
1491 			{ .dt_id = MT8188_MCU_LITTLE_CPU3,
1492 			  .cal_offsets = { 31, 32, 33 } },
1493 		},
1494 		VALID_SENSOR_MAP(1, 1, 1, 1),
1495 		.offset = 0x0,
1496 	},
1497 	{
1498 		.lvts_sensor = {
1499 			{ .dt_id = MT8188_MCU_BIG_CPU0,
1500 			  .cal_offsets = { 34, 35, 36 } },
1501 			{ .dt_id = MT8188_MCU_BIG_CPU1,
1502 			  .cal_offsets = { 37, 38, 39 } },
1503 		},
1504 		VALID_SENSOR_MAP(1, 1, 0, 0),
1505 		.offset = 0x100,
1506 	}
1507 };
1508 
1509 static const struct lvts_ctrl_data mt8188_lvts_ap_data_ctrl[] = {
1510 	{
1511 		.lvts_sensor = {
1512 
1513 			{ /* unused */ },
1514 			{ .dt_id = MT8188_AP_APU,
1515 			  .cal_offsets = { 40, 41, 42 } },
1516 		},
1517 		VALID_SENSOR_MAP(0, 1, 0, 0),
1518 		.offset = 0x0,
1519 	},
1520 	{
1521 		.lvts_sensor = {
1522 			{ .dt_id = MT8188_AP_GPU0,
1523 			  .cal_offsets = { 43, 44, 45 } },
1524 			{ .dt_id = MT8188_AP_GPU1,
1525 			  .cal_offsets = { 46, 47, 48 } },
1526 			{ .dt_id = MT8188_AP_ADSP,
1527 			  .cal_offsets = { 49, 50, 51 } },
1528 		},
1529 		VALID_SENSOR_MAP(1, 1, 1, 0),
1530 		.offset = 0x100,
1531 	},
1532 	{
1533 		.lvts_sensor = {
1534 			{ .dt_id = MT8188_AP_VDO,
1535 			  .cal_offsets = { 52, 53, 54 } },
1536 			{ .dt_id = MT8188_AP_INFRA,
1537 			  .cal_offsets = { 55, 56, 57 } },
1538 		},
1539 		VALID_SENSOR_MAP(1, 1, 0, 0),
1540 		.offset = 0x200,
1541 	},
1542 	{
1543 		.lvts_sensor = {
1544 			{ .dt_id = MT8188_AP_CAM1,
1545 			  .cal_offsets = { 58, 59, 60 } },
1546 			{ .dt_id = MT8188_AP_CAM2,
1547 			  .cal_offsets = { 61, 62, 63 } },
1548 		},
1549 		VALID_SENSOR_MAP(1, 1, 0, 0),
1550 		.offset = 0x300,
1551 	}
1552 };
1553 
1554 static const struct lvts_ctrl_data mt8192_lvts_mcu_data_ctrl[] = {
1555 	{
1556 		.lvts_sensor = {
1557 			{ .dt_id = MT8192_MCU_BIG_CPU0,
1558 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1559 			{ .dt_id = MT8192_MCU_BIG_CPU1,
1560 			  .cal_offsets = { 0x08, 0x09, 0x0a } }
1561 		},
1562 		VALID_SENSOR_MAP(1, 1, 0, 0),
1563 		.offset = 0x0,
1564 		.mode = LVTS_MSR_FILTERED_MODE,
1565 	},
1566 	{
1567 		.lvts_sensor = {
1568 			{ .dt_id = MT8192_MCU_BIG_CPU2,
1569 			  .cal_offsets = { 0x0c, 0x0d, 0x0e } },
1570 			{ .dt_id = MT8192_MCU_BIG_CPU3,
1571 			  .cal_offsets = { 0x10, 0x11, 0x12 } }
1572 		},
1573 		VALID_SENSOR_MAP(1, 1, 0, 0),
1574 		.offset = 0x100,
1575 		.mode = LVTS_MSR_FILTERED_MODE,
1576 	},
1577 	{
1578 		.lvts_sensor = {
1579 			{ .dt_id = MT8192_MCU_LITTLE_CPU0,
1580 			  .cal_offsets = { 0x14, 0x15, 0x16 } },
1581 			{ .dt_id = MT8192_MCU_LITTLE_CPU1,
1582 			  .cal_offsets = { 0x18, 0x19, 0x1a } },
1583 			{ .dt_id = MT8192_MCU_LITTLE_CPU2,
1584 			  .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1585 			{ .dt_id = MT8192_MCU_LITTLE_CPU3,
1586 			  .cal_offsets = { 0x20, 0x21, 0x22 } }
1587 		},
1588 		VALID_SENSOR_MAP(1, 1, 1, 1),
1589 		.offset = 0x200,
1590 		.mode = LVTS_MSR_FILTERED_MODE,
1591 	}
1592 };
1593 
1594 static const struct lvts_ctrl_data mt8192_lvts_ap_data_ctrl[] = {
1595 	{
1596 		.lvts_sensor = {
1597 			{ .dt_id = MT8192_AP_VPU0,
1598 			  .cal_offsets = { 0x24, 0x25, 0x26 } },
1599 			{ .dt_id = MT8192_AP_VPU1,
1600 			  .cal_offsets = { 0x28, 0x29, 0x2a } }
1601 		},
1602 		VALID_SENSOR_MAP(1, 1, 0, 0),
1603 		.offset = 0x0,
1604 	},
1605 	{
1606 		.lvts_sensor = {
1607 			{ .dt_id = MT8192_AP_GPU0,
1608 			  .cal_offsets = { 0x2c, 0x2d, 0x2e } },
1609 			{ .dt_id = MT8192_AP_GPU1,
1610 			  .cal_offsets = { 0x30, 0x31, 0x32 } }
1611 		},
1612 		VALID_SENSOR_MAP(1, 1, 0, 0),
1613 		.offset = 0x100,
1614 	},
1615 	{
1616 		.lvts_sensor = {
1617 			{ .dt_id = MT8192_AP_INFRA,
1618 			  .cal_offsets = { 0x34, 0x35, 0x36 } },
1619 			{ .dt_id = MT8192_AP_CAM,
1620 			  .cal_offsets = { 0x38, 0x39, 0x3a } },
1621 		},
1622 		VALID_SENSOR_MAP(1, 1, 0, 0),
1623 		.offset = 0x200,
1624 	},
1625 	{
1626 		.lvts_sensor = {
1627 			{ .dt_id = MT8192_AP_MD0,
1628 			  .cal_offsets = { 0x3c, 0x3d, 0x3e } },
1629 			{ .dt_id = MT8192_AP_MD1,
1630 			  .cal_offsets = { 0x40, 0x41, 0x42 } },
1631 			{ .dt_id = MT8192_AP_MD2,
1632 			  .cal_offsets = { 0x44, 0x45, 0x46 } }
1633 		},
1634 		VALID_SENSOR_MAP(1, 1, 1, 0),
1635 		.offset = 0x300,
1636 	}
1637 };
1638 
1639 static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = {
1640 	{
1641 		.lvts_sensor = {
1642 			{ .dt_id = MT8195_MCU_BIG_CPU0,
1643 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1644 			{ .dt_id = MT8195_MCU_BIG_CPU1,
1645 			  .cal_offsets = { 0x07, 0x08, 0x09 } }
1646 		},
1647 		VALID_SENSOR_MAP(1, 1, 0, 0),
1648 		.offset = 0x0,
1649 	},
1650 	{
1651 		.lvts_sensor = {
1652 			{ .dt_id = MT8195_MCU_BIG_CPU2,
1653 			  .cal_offsets = { 0x0d, 0x0e, 0x0f } },
1654 			{ .dt_id = MT8195_MCU_BIG_CPU3,
1655 			  .cal_offsets = { 0x10, 0x11, 0x12 } }
1656 		},
1657 		VALID_SENSOR_MAP(1, 1, 0, 0),
1658 		.offset = 0x100,
1659 	},
1660 	{
1661 		.lvts_sensor = {
1662 			{ .dt_id = MT8195_MCU_LITTLE_CPU0,
1663 			  .cal_offsets = { 0x16, 0x17, 0x18 } },
1664 			{ .dt_id = MT8195_MCU_LITTLE_CPU1,
1665 			  .cal_offsets = { 0x19, 0x1a, 0x1b } },
1666 			{ .dt_id = MT8195_MCU_LITTLE_CPU2,
1667 			  .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1668 			{ .dt_id = MT8195_MCU_LITTLE_CPU3,
1669 			  .cal_offsets = { 0x1f, 0x20, 0x21 } }
1670 		},
1671 		VALID_SENSOR_MAP(1, 1, 1, 1),
1672 		.offset = 0x200,
1673 	}
1674 };
1675 
1676 static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = {
1677 	{
1678 		.lvts_sensor = {
1679 			{ .dt_id = MT8195_AP_VPU0,
1680 			  .cal_offsets = { 0x25, 0x26, 0x27 } },
1681 			{ .dt_id = MT8195_AP_VPU1,
1682 			  .cal_offsets = { 0x28, 0x29, 0x2a } }
1683 		},
1684 		VALID_SENSOR_MAP(1, 1, 0, 0),
1685 		.offset = 0x0,
1686 	},
1687 	{
1688 		.lvts_sensor = {
1689 			{ .dt_id = MT8195_AP_GPU0,
1690 			  .cal_offsets = { 0x2e, 0x2f, 0x30 } },
1691 			{ .dt_id = MT8195_AP_GPU1,
1692 			  .cal_offsets = { 0x31, 0x32, 0x33 } }
1693 		},
1694 		VALID_SENSOR_MAP(1, 1, 0, 0),
1695 		.offset = 0x100,
1696 	},
1697 	{
1698 		.lvts_sensor = {
1699 			{ .dt_id = MT8195_AP_VDEC,
1700 			  .cal_offsets = { 0x37, 0x38, 0x39 } },
1701 			{ .dt_id = MT8195_AP_IMG,
1702 			  .cal_offsets = { 0x3a, 0x3b, 0x3c } },
1703 			{ .dt_id = MT8195_AP_INFRA,
1704 			  .cal_offsets = { 0x3d, 0x3e, 0x3f } }
1705 		},
1706 		VALID_SENSOR_MAP(1, 1, 1, 0),
1707 		.offset = 0x200,
1708 	},
1709 	{
1710 		.lvts_sensor = {
1711 			{ .dt_id = MT8195_AP_CAM0,
1712 			  .cal_offsets = { 0x43, 0x44, 0x45 } },
1713 			{ .dt_id = MT8195_AP_CAM1,
1714 			  .cal_offsets = { 0x46, 0x47, 0x48 } }
1715 		},
1716 		VALID_SENSOR_MAP(1, 1, 0, 0),
1717 		.offset = 0x300,
1718 	}
1719 };
1720 
1721 static const struct lvts_data mt7988_lvts_ap_data = {
1722 	.lvts_ctrl	= mt7988_lvts_ap_data_ctrl,
1723 	.num_lvts_ctrl	= ARRAY_SIZE(mt7988_lvts_ap_data_ctrl),
1724 	.temp_factor	= LVTS_COEFF_A_MT7988,
1725 	.temp_offset	= LVTS_COEFF_B_MT7988,
1726 	.gt_calib_bit_offset = 24,
1727 };
1728 
1729 static const struct lvts_data mt8186_lvts_data = {
1730 	.lvts_ctrl	= mt8186_lvts_data_ctrl,
1731 	.num_lvts_ctrl	= ARRAY_SIZE(mt8186_lvts_data_ctrl),
1732 	.temp_factor	= LVTS_COEFF_A_MT7988,
1733 	.temp_offset	= LVTS_COEFF_B_MT7988,
1734 	.gt_calib_bit_offset = 24,
1735 	.def_calibration = 19000,
1736 };
1737 
1738 static const struct lvts_data mt8188_lvts_mcu_data = {
1739 	.lvts_ctrl	= mt8188_lvts_mcu_data_ctrl,
1740 	.num_lvts_ctrl	= ARRAY_SIZE(mt8188_lvts_mcu_data_ctrl),
1741 	.temp_factor	= LVTS_COEFF_A_MT8195,
1742 	.temp_offset	= LVTS_COEFF_B_MT8195,
1743 	.gt_calib_bit_offset = 20,
1744 	.def_calibration = 35000,
1745 };
1746 
1747 static const struct lvts_data mt8188_lvts_ap_data = {
1748 	.lvts_ctrl	= mt8188_lvts_ap_data_ctrl,
1749 	.num_lvts_ctrl	= ARRAY_SIZE(mt8188_lvts_ap_data_ctrl),
1750 	.temp_factor	= LVTS_COEFF_A_MT8195,
1751 	.temp_offset	= LVTS_COEFF_B_MT8195,
1752 	.gt_calib_bit_offset = 20,
1753 	.def_calibration = 35000,
1754 };
1755 
1756 static const struct lvts_data mt8192_lvts_mcu_data = {
1757 	.lvts_ctrl	= mt8192_lvts_mcu_data_ctrl,
1758 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_mcu_data_ctrl),
1759 	.temp_factor	= LVTS_COEFF_A_MT8195,
1760 	.temp_offset	= LVTS_COEFF_B_MT8195,
1761 	.gt_calib_bit_offset = 24,
1762 	.def_calibration = 35000,
1763 };
1764 
1765 static const struct lvts_data mt8192_lvts_ap_data = {
1766 	.lvts_ctrl	= mt8192_lvts_ap_data_ctrl,
1767 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_ap_data_ctrl),
1768 	.temp_factor	= LVTS_COEFF_A_MT8195,
1769 	.temp_offset	= LVTS_COEFF_B_MT8195,
1770 	.gt_calib_bit_offset = 24,
1771 	.def_calibration = 35000,
1772 };
1773 
1774 static const struct lvts_data mt8195_lvts_mcu_data = {
1775 	.lvts_ctrl	= mt8195_lvts_mcu_data_ctrl,
1776 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl),
1777 	.temp_factor	= LVTS_COEFF_A_MT8195,
1778 	.temp_offset	= LVTS_COEFF_B_MT8195,
1779 	.gt_calib_bit_offset = 24,
1780 	.def_calibration = 35000,
1781 };
1782 
1783 static const struct lvts_data mt8195_lvts_ap_data = {
1784 	.lvts_ctrl	= mt8195_lvts_ap_data_ctrl,
1785 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_ap_data_ctrl),
1786 	.temp_factor	= LVTS_COEFF_A_MT8195,
1787 	.temp_offset	= LVTS_COEFF_B_MT8195,
1788 	.gt_calib_bit_offset = 24,
1789 	.def_calibration = 35000,
1790 };
1791 
1792 static const struct of_device_id lvts_of_match[] = {
1793 	{ .compatible = "mediatek,mt7988-lvts-ap", .data = &mt7988_lvts_ap_data },
1794 	{ .compatible = "mediatek,mt8186-lvts", .data = &mt8186_lvts_data },
1795 	{ .compatible = "mediatek,mt8188-lvts-mcu", .data = &mt8188_lvts_mcu_data },
1796 	{ .compatible = "mediatek,mt8188-lvts-ap", .data = &mt8188_lvts_ap_data },
1797 	{ .compatible = "mediatek,mt8192-lvts-mcu", .data = &mt8192_lvts_mcu_data },
1798 	{ .compatible = "mediatek,mt8192-lvts-ap", .data = &mt8192_lvts_ap_data },
1799 	{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
1800 	{ .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data },
1801 	{},
1802 };
1803 MODULE_DEVICE_TABLE(of, lvts_of_match);
1804 
1805 static const struct dev_pm_ops lvts_pm_ops = {
1806 	NOIRQ_SYSTEM_SLEEP_PM_OPS(lvts_suspend, lvts_resume)
1807 };
1808 
1809 static struct platform_driver lvts_driver = {
1810 	.probe = lvts_probe,
1811 	.remove = lvts_remove,
1812 	.driver = {
1813 		.name = "mtk-lvts-thermal",
1814 		.of_match_table = lvts_of_match,
1815 		.pm = &lvts_pm_ops,
1816 	},
1817 };
1818 module_platform_driver(lvts_driver);
1819 
1820 MODULE_AUTHOR("Balsam CHIHI <[email protected]>");
1821 MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
1822 MODULE_LICENSE("GPL");
1823