1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <[email protected]>
7  */
8 #include <linux/dmaengine.h>
9 #include <linux/iopoll.h>
10 #include <linux/pm_runtime.h>
11 #include <linux/spi/spi.h>
12 #include <linux/spi/spi-mem.h>
13 #include <linux/sched/task_stack.h>
14 
15 #include "internals.h"
16 
17 #define SPI_MEM_MAX_BUSWIDTH		8
18 
19 /**
20  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
21  *					  memory operation
22  * @ctlr: the SPI controller requesting this dma_map()
23  * @op: the memory operation containing the buffer to map
24  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
25  *	 function
26  *
27  * Some controllers might want to do DMA on the data buffer embedded in @op.
28  * This helper prepares everything for you and provides a ready-to-use
29  * sg_table. This function is not intended to be called from spi drivers.
30  * Only SPI controller drivers should use it.
31  * Note that the caller must ensure the memory region pointed by
32  * op->data.buf.{in,out} is DMA-able before calling this function.
33  *
34  * Return: 0 in case of success, a negative error code otherwise.
35  */
spi_controller_dma_map_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)36 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
37 				       const struct spi_mem_op *op,
38 				       struct sg_table *sgt)
39 {
40 	struct device *dmadev;
41 
42 	if (!op->data.nbytes)
43 		return -EINVAL;
44 
45 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
46 		dmadev = ctlr->dma_tx->device->dev;
47 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
48 		dmadev = ctlr->dma_rx->device->dev;
49 	else
50 		dmadev = ctlr->dev.parent;
51 
52 	if (!dmadev)
53 		return -EINVAL;
54 
55 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
56 			   op->data.dir == SPI_MEM_DATA_IN ?
57 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
58 }
59 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
60 
61 /**
62  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
63  *					    memory operation
64  * @ctlr: the SPI controller requesting this dma_unmap()
65  * @op: the memory operation containing the buffer to unmap
66  * @sgt: a pointer to an sg_table previously initialized by
67  *	 spi_controller_dma_map_mem_op_data()
68  *
69  * Some controllers might want to do DMA on the data buffer embedded in @op.
70  * This helper prepares things so that the CPU can access the
71  * op->data.buf.{in,out} buffer again.
72  *
73  * This function is not intended to be called from SPI drivers. Only SPI
74  * controller drivers should use it.
75  *
76  * This function should be called after the DMA operation has finished and is
77  * only valid if the previous spi_controller_dma_map_mem_op_data() call
78  * returned 0.
79  *
80  * Return: 0 in case of success, a negative error code otherwise.
81  */
spi_controller_dma_unmap_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)82 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
83 					  const struct spi_mem_op *op,
84 					  struct sg_table *sgt)
85 {
86 	struct device *dmadev;
87 
88 	if (!op->data.nbytes)
89 		return;
90 
91 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
92 		dmadev = ctlr->dma_tx->device->dev;
93 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
94 		dmadev = ctlr->dma_rx->device->dev;
95 	else
96 		dmadev = ctlr->dev.parent;
97 
98 	spi_unmap_buf(ctlr, dmadev, sgt,
99 		      op->data.dir == SPI_MEM_DATA_IN ?
100 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
101 }
102 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
103 
spi_check_buswidth_req(struct spi_mem * mem,u8 buswidth,bool tx)104 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
105 {
106 	u32 mode = mem->spi->mode;
107 
108 	switch (buswidth) {
109 	case 1:
110 		return 0;
111 
112 	case 2:
113 		if ((tx &&
114 		     (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
115 		    (!tx &&
116 		     (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
117 			return 0;
118 
119 		break;
120 
121 	case 4:
122 		if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
123 		    (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
124 			return 0;
125 
126 		break;
127 
128 	case 8:
129 		if ((tx && (mode & SPI_TX_OCTAL)) ||
130 		    (!tx && (mode & SPI_RX_OCTAL)))
131 			return 0;
132 
133 		break;
134 
135 	default:
136 		break;
137 	}
138 
139 	return -ENOTSUPP;
140 }
141 
spi_mem_check_buswidth(struct spi_mem * mem,const struct spi_mem_op * op)142 static bool spi_mem_check_buswidth(struct spi_mem *mem,
143 				   const struct spi_mem_op *op)
144 {
145 	if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
146 		return false;
147 
148 	if (op->addr.nbytes &&
149 	    spi_check_buswidth_req(mem, op->addr.buswidth, true))
150 		return false;
151 
152 	if (op->dummy.nbytes &&
153 	    spi_check_buswidth_req(mem, op->dummy.buswidth, true))
154 		return false;
155 
156 	if (op->data.dir != SPI_MEM_NO_DATA &&
157 	    spi_check_buswidth_req(mem, op->data.buswidth,
158 				   op->data.dir == SPI_MEM_DATA_OUT))
159 		return false;
160 
161 	return true;
162 }
163 
spi_mem_default_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)164 bool spi_mem_default_supports_op(struct spi_mem *mem,
165 				 const struct spi_mem_op *op)
166 {
167 	struct spi_controller *ctlr = mem->spi->controller;
168 	bool op_is_dtr =
169 		op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr;
170 
171 	if (op_is_dtr) {
172 		if (!spi_mem_controller_is_capable(ctlr, dtr))
173 			return false;
174 
175 		if (op->data.swap16 && !spi_mem_controller_is_capable(ctlr, swap16))
176 			return false;
177 
178 		if (op->cmd.nbytes != 2)
179 			return false;
180 	} else {
181 		if (op->cmd.nbytes != 1)
182 			return false;
183 	}
184 
185 	if (op->data.ecc) {
186 		if (!spi_mem_controller_is_capable(ctlr, ecc))
187 			return false;
188 	}
189 
190 	if (op->max_freq && mem->spi->controller->min_speed_hz &&
191 	    op->max_freq < mem->spi->controller->min_speed_hz)
192 		return false;
193 
194 	if (op->max_freq &&
195 	    op->max_freq < mem->spi->max_speed_hz) {
196 		if (!spi_mem_controller_is_capable(ctlr, per_op_freq))
197 			return false;
198 	}
199 
200 	return spi_mem_check_buswidth(mem, op);
201 }
202 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
203 
spi_mem_buswidth_is_valid(u8 buswidth)204 static bool spi_mem_buswidth_is_valid(u8 buswidth)
205 {
206 	if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
207 		return false;
208 
209 	return true;
210 }
211 
spi_mem_check_op(const struct spi_mem_op * op)212 static int spi_mem_check_op(const struct spi_mem_op *op)
213 {
214 	if (!op->cmd.buswidth || !op->cmd.nbytes)
215 		return -EINVAL;
216 
217 	if ((op->addr.nbytes && !op->addr.buswidth) ||
218 	    (op->dummy.nbytes && !op->dummy.buswidth) ||
219 	    (op->data.nbytes && !op->data.buswidth))
220 		return -EINVAL;
221 
222 	if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
223 	    !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
224 	    !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
225 	    !spi_mem_buswidth_is_valid(op->data.buswidth))
226 		return -EINVAL;
227 
228 	/* Buffers must be DMA-able. */
229 	if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_IN &&
230 			 object_is_on_stack(op->data.buf.in)))
231 		return -EINVAL;
232 
233 	if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_OUT &&
234 			 object_is_on_stack(op->data.buf.out)))
235 		return -EINVAL;
236 
237 	return 0;
238 }
239 
spi_mem_internal_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)240 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
241 					 const struct spi_mem_op *op)
242 {
243 	struct spi_controller *ctlr = mem->spi->controller;
244 
245 	if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
246 		return ctlr->mem_ops->supports_op(mem, op);
247 
248 	return spi_mem_default_supports_op(mem, op);
249 }
250 
251 /**
252  * spi_mem_supports_op() - Check if a memory device and the controller it is
253  *			   connected to support a specific memory operation
254  * @mem: the SPI memory
255  * @op: the memory operation to check
256  *
257  * Some controllers are only supporting Single or Dual IOs, others might only
258  * support specific opcodes, or it can even be that the controller and device
259  * both support Quad IOs but the hardware prevents you from using it because
260  * only 2 IO lines are connected.
261  *
262  * This function checks whether a specific operation is supported.
263  *
264  * Return: true if @op is supported, false otherwise.
265  */
spi_mem_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)266 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
267 {
268 	if (spi_mem_check_op(op))
269 		return false;
270 
271 	return spi_mem_internal_supports_op(mem, op);
272 }
273 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
274 
spi_mem_access_start(struct spi_mem * mem)275 static int spi_mem_access_start(struct spi_mem *mem)
276 {
277 	struct spi_controller *ctlr = mem->spi->controller;
278 
279 	/*
280 	 * Flush the message queue before executing our SPI memory
281 	 * operation to prevent preemption of regular SPI transfers.
282 	 */
283 	spi_flush_queue(ctlr);
284 
285 	if (ctlr->auto_runtime_pm) {
286 		int ret;
287 
288 		ret = pm_runtime_resume_and_get(ctlr->dev.parent);
289 		if (ret < 0) {
290 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
291 				ret);
292 			return ret;
293 		}
294 	}
295 
296 	mutex_lock(&ctlr->bus_lock_mutex);
297 	mutex_lock(&ctlr->io_mutex);
298 
299 	return 0;
300 }
301 
spi_mem_access_end(struct spi_mem * mem)302 static void spi_mem_access_end(struct spi_mem *mem)
303 {
304 	struct spi_controller *ctlr = mem->spi->controller;
305 
306 	mutex_unlock(&ctlr->io_mutex);
307 	mutex_unlock(&ctlr->bus_lock_mutex);
308 
309 	if (ctlr->auto_runtime_pm)
310 		pm_runtime_put(ctlr->dev.parent);
311 }
312 
spi_mem_add_op_stats(struct spi_statistics __percpu * pcpu_stats,const struct spi_mem_op * op,int exec_op_ret)313 static void spi_mem_add_op_stats(struct spi_statistics __percpu *pcpu_stats,
314 				 const struct spi_mem_op *op, int exec_op_ret)
315 {
316 	struct spi_statistics *stats;
317 	u64 len, l2len;
318 
319 	get_cpu();
320 	stats = this_cpu_ptr(pcpu_stats);
321 	u64_stats_update_begin(&stats->syncp);
322 
323 	/*
324 	 * We do not have the concept of messages or transfers. Let's consider
325 	 * that one operation is equivalent to one message and one transfer.
326 	 */
327 	u64_stats_inc(&stats->messages);
328 	u64_stats_inc(&stats->transfers);
329 
330 	/* Use the sum of all lengths as bytes count and histogram value. */
331 	len = op->cmd.nbytes + op->addr.nbytes;
332 	len += op->dummy.nbytes + op->data.nbytes;
333 	u64_stats_add(&stats->bytes, len);
334 	l2len = min(fls(len), SPI_STATISTICS_HISTO_SIZE) - 1;
335 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
336 
337 	/* Only account for data bytes as transferred bytes. */
338 	if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
339 		u64_stats_add(&stats->bytes_tx, op->data.nbytes);
340 	if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
341 		u64_stats_add(&stats->bytes_rx, op->data.nbytes);
342 
343 	/*
344 	 * A timeout is not an error, following the same behavior as
345 	 * spi_transfer_one_message().
346 	 */
347 	if (exec_op_ret == -ETIMEDOUT)
348 		u64_stats_inc(&stats->timedout);
349 	else if (exec_op_ret)
350 		u64_stats_inc(&stats->errors);
351 
352 	u64_stats_update_end(&stats->syncp);
353 	put_cpu();
354 }
355 
356 /**
357  * spi_mem_exec_op() - Execute a memory operation
358  * @mem: the SPI memory
359  * @op: the memory operation to execute
360  *
361  * Executes a memory operation.
362  *
363  * This function first checks that @op is supported and then tries to execute
364  * it.
365  *
366  * Return: 0 in case of success, a negative error code otherwise.
367  */
spi_mem_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)368 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
369 {
370 	unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
371 	struct spi_controller *ctlr = mem->spi->controller;
372 	struct spi_transfer xfers[4] = { };
373 	struct spi_message msg;
374 	u8 *tmpbuf;
375 	int ret;
376 
377 	/* Make sure the operation frequency is correct before going futher */
378 	spi_mem_adjust_op_freq(mem, (struct spi_mem_op *)op);
379 
380 	ret = spi_mem_check_op(op);
381 	if (ret)
382 		return ret;
383 
384 	if (!spi_mem_internal_supports_op(mem, op))
385 		return -EOPNOTSUPP;
386 
387 	if (ctlr->mem_ops && ctlr->mem_ops->exec_op && !spi_get_csgpiod(mem->spi, 0)) {
388 		ret = spi_mem_access_start(mem);
389 		if (ret)
390 			return ret;
391 
392 		ret = ctlr->mem_ops->exec_op(mem, op);
393 
394 		spi_mem_access_end(mem);
395 
396 		/*
397 		 * Some controllers only optimize specific paths (typically the
398 		 * read path) and expect the core to use the regular SPI
399 		 * interface in other cases.
400 		 */
401 		if (!ret || (ret != -ENOTSUPP && ret != -EOPNOTSUPP)) {
402 			spi_mem_add_op_stats(ctlr->pcpu_statistics, op, ret);
403 			spi_mem_add_op_stats(mem->spi->pcpu_statistics, op, ret);
404 
405 			return ret;
406 		}
407 	}
408 
409 	tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
410 
411 	/*
412 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
413 	 * we're guaranteed that this buffer is DMA-able, as required by the
414 	 * SPI layer.
415 	 */
416 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
417 	if (!tmpbuf)
418 		return -ENOMEM;
419 
420 	spi_message_init(&msg);
421 
422 	tmpbuf[0] = op->cmd.opcode;
423 	xfers[xferpos].tx_buf = tmpbuf;
424 	xfers[xferpos].len = op->cmd.nbytes;
425 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
426 	xfers[xferpos].speed_hz = op->max_freq;
427 	spi_message_add_tail(&xfers[xferpos], &msg);
428 	xferpos++;
429 	totalxferlen++;
430 
431 	if (op->addr.nbytes) {
432 		int i;
433 
434 		for (i = 0; i < op->addr.nbytes; i++)
435 			tmpbuf[i + 1] = op->addr.val >>
436 					(8 * (op->addr.nbytes - i - 1));
437 
438 		xfers[xferpos].tx_buf = tmpbuf + 1;
439 		xfers[xferpos].len = op->addr.nbytes;
440 		xfers[xferpos].tx_nbits = op->addr.buswidth;
441 		xfers[xferpos].speed_hz = op->max_freq;
442 		spi_message_add_tail(&xfers[xferpos], &msg);
443 		xferpos++;
444 		totalxferlen += op->addr.nbytes;
445 	}
446 
447 	if (op->dummy.nbytes) {
448 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
449 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
450 		xfers[xferpos].len = op->dummy.nbytes;
451 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
452 		xfers[xferpos].dummy_data = 1;
453 		xfers[xferpos].speed_hz = op->max_freq;
454 		spi_message_add_tail(&xfers[xferpos], &msg);
455 		xferpos++;
456 		totalxferlen += op->dummy.nbytes;
457 	}
458 
459 	if (op->data.nbytes) {
460 		if (op->data.dir == SPI_MEM_DATA_IN) {
461 			xfers[xferpos].rx_buf = op->data.buf.in;
462 			xfers[xferpos].rx_nbits = op->data.buswidth;
463 		} else {
464 			xfers[xferpos].tx_buf = op->data.buf.out;
465 			xfers[xferpos].tx_nbits = op->data.buswidth;
466 		}
467 
468 		xfers[xferpos].len = op->data.nbytes;
469 		xfers[xferpos].speed_hz = op->max_freq;
470 		spi_message_add_tail(&xfers[xferpos], &msg);
471 		xferpos++;
472 		totalxferlen += op->data.nbytes;
473 	}
474 
475 	ret = spi_sync(mem->spi, &msg);
476 
477 	kfree(tmpbuf);
478 
479 	if (ret)
480 		return ret;
481 
482 	if (msg.actual_length != totalxferlen)
483 		return -EIO;
484 
485 	return 0;
486 }
487 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
488 
489 /**
490  * spi_mem_get_name() - Return the SPI mem device name to be used by the
491  *			upper layer if necessary
492  * @mem: the SPI memory
493  *
494  * This function allows SPI mem users to retrieve the SPI mem device name.
495  * It is useful if the upper layer needs to expose a custom name for
496  * compatibility reasons.
497  *
498  * Return: a string containing the name of the memory device to be used
499  *	   by the SPI mem user
500  */
spi_mem_get_name(struct spi_mem * mem)501 const char *spi_mem_get_name(struct spi_mem *mem)
502 {
503 	return mem->name;
504 }
505 EXPORT_SYMBOL_GPL(spi_mem_get_name);
506 
507 /**
508  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
509  *			      match controller limitations
510  * @mem: the SPI memory
511  * @op: the operation to adjust
512  *
513  * Some controllers have FIFO limitations and must split a data transfer
514  * operation into multiple ones, others require a specific alignment for
515  * optimized accesses. This function allows SPI mem drivers to split a single
516  * operation into multiple sub-operations when required.
517  *
518  * Return: a negative error code if the controller can't properly adjust @op,
519  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
520  *	   can't be handled in a single step.
521  */
spi_mem_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)522 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
523 {
524 	struct spi_controller *ctlr = mem->spi->controller;
525 	size_t len;
526 
527 	if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
528 		return ctlr->mem_ops->adjust_op_size(mem, op);
529 
530 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
531 		len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
532 
533 		if (len > spi_max_transfer_size(mem->spi))
534 			return -EINVAL;
535 
536 		op->data.nbytes = min3((size_t)op->data.nbytes,
537 				       spi_max_transfer_size(mem->spi),
538 				       spi_max_message_size(mem->spi) -
539 				       len);
540 		if (!op->data.nbytes)
541 			return -EINVAL;
542 	}
543 
544 	return 0;
545 }
546 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
547 
548 /**
549  * spi_mem_adjust_op_freq() - Adjust the frequency of a SPI mem operation to
550  *			      match controller, PCB and chip limitations
551  * @mem: the SPI memory
552  * @op: the operation to adjust
553  *
554  * Some chips have per-op frequency limitations and must adapt the maximum
555  * speed. This function allows SPI mem drivers to set @op->max_freq to the
556  * maximum supported value.
557  */
spi_mem_adjust_op_freq(struct spi_mem * mem,struct spi_mem_op * op)558 void spi_mem_adjust_op_freq(struct spi_mem *mem, struct spi_mem_op *op)
559 {
560 	if (!op->max_freq || op->max_freq > mem->spi->max_speed_hz)
561 		op->max_freq = mem->spi->max_speed_hz;
562 }
563 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_freq);
564 
565 /**
566  * spi_mem_calc_op_duration() - Derives the theoretical length (in ns) of an
567  *			        operation. This helps finding the best variant
568  *			        among a list of possible choices.
569  * @op: the operation to benchmark
570  *
571  * Some chips have per-op frequency limitations, PCBs usually have their own
572  * limitations as well, and controllers can support dual, quad or even octal
573  * modes, sometimes in DTR. All these combinations make it impossible to
574  * statically list the best combination for all situations. If we want something
575  * accurate, all these combinations should be rated (eg. with a time estimate)
576  * and the best pick should be taken based on these calculations.
577  *
578  * Returns a ns estimate for the time this op would take.
579  */
spi_mem_calc_op_duration(struct spi_mem_op * op)580 u64 spi_mem_calc_op_duration(struct spi_mem_op *op)
581 {
582 	u64 ncycles = 0;
583 	u32 ns_per_cycles;
584 
585 	ns_per_cycles = 1000000000 / op->max_freq;
586 	ncycles += ((op->cmd.nbytes * 8) / op->cmd.buswidth) / (op->cmd.dtr ? 2 : 1);
587 	ncycles += ((op->addr.nbytes * 8) / op->addr.buswidth) / (op->addr.dtr ? 2 : 1);
588 	ncycles += ((op->dummy.nbytes * 8) / op->dummy.buswidth) / (op->dummy.dtr ? 2 : 1);
589 	ncycles += ((op->data.nbytes * 8) / op->data.buswidth) / (op->data.dtr ? 2 : 1);
590 
591 	return ncycles * ns_per_cycles;
592 }
593 EXPORT_SYMBOL_GPL(spi_mem_calc_op_duration);
594 
spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,void * buf)595 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
596 				      u64 offs, size_t len, void *buf)
597 {
598 	struct spi_mem_op op = desc->info.op_tmpl;
599 	int ret;
600 
601 	op.addr.val = desc->info.offset + offs;
602 	op.data.buf.in = buf;
603 	op.data.nbytes = len;
604 	ret = spi_mem_adjust_op_size(desc->mem, &op);
605 	if (ret)
606 		return ret;
607 
608 	ret = spi_mem_exec_op(desc->mem, &op);
609 	if (ret)
610 		return ret;
611 
612 	return op.data.nbytes;
613 }
614 
spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,const void * buf)615 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
616 				       u64 offs, size_t len, const void *buf)
617 {
618 	struct spi_mem_op op = desc->info.op_tmpl;
619 	int ret;
620 
621 	op.addr.val = desc->info.offset + offs;
622 	op.data.buf.out = buf;
623 	op.data.nbytes = len;
624 	ret = spi_mem_adjust_op_size(desc->mem, &op);
625 	if (ret)
626 		return ret;
627 
628 	ret = spi_mem_exec_op(desc->mem, &op);
629 	if (ret)
630 		return ret;
631 
632 	return op.data.nbytes;
633 }
634 
635 /**
636  * spi_mem_dirmap_create() - Create a direct mapping descriptor
637  * @mem: SPI mem device this direct mapping should be created for
638  * @info: direct mapping information
639  *
640  * This function is creating a direct mapping descriptor which can then be used
641  * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
642  * If the SPI controller driver does not support direct mapping, this function
643  * falls back to an implementation using spi_mem_exec_op(), so that the caller
644  * doesn't have to bother implementing a fallback on his own.
645  *
646  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
647  */
648 struct spi_mem_dirmap_desc *
spi_mem_dirmap_create(struct spi_mem * mem,const struct spi_mem_dirmap_info * info)649 spi_mem_dirmap_create(struct spi_mem *mem,
650 		      const struct spi_mem_dirmap_info *info)
651 {
652 	struct spi_controller *ctlr = mem->spi->controller;
653 	struct spi_mem_dirmap_desc *desc;
654 	int ret = -ENOTSUPP;
655 
656 	/* Make sure the number of address cycles is between 1 and 8 bytes. */
657 	if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
658 		return ERR_PTR(-EINVAL);
659 
660 	/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
661 	if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
662 		return ERR_PTR(-EINVAL);
663 
664 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
665 	if (!desc)
666 		return ERR_PTR(-ENOMEM);
667 
668 	desc->mem = mem;
669 	desc->info = *info;
670 	if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
671 		ret = ctlr->mem_ops->dirmap_create(desc);
672 
673 	if (ret) {
674 		desc->nodirmap = true;
675 		if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
676 			ret = -EOPNOTSUPP;
677 		else
678 			ret = 0;
679 	}
680 
681 	if (ret) {
682 		kfree(desc);
683 		return ERR_PTR(ret);
684 	}
685 
686 	return desc;
687 }
688 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
689 
690 /**
691  * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
692  * @desc: the direct mapping descriptor to destroy
693  *
694  * This function destroys a direct mapping descriptor previously created by
695  * spi_mem_dirmap_create().
696  */
spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc * desc)697 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
698 {
699 	struct spi_controller *ctlr = desc->mem->spi->controller;
700 
701 	if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
702 		ctlr->mem_ops->dirmap_destroy(desc);
703 
704 	kfree(desc);
705 }
706 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
707 
devm_spi_mem_dirmap_release(struct device * dev,void * res)708 static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
709 {
710 	struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
711 
712 	spi_mem_dirmap_destroy(desc);
713 }
714 
715 /**
716  * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
717  *				  it to a device
718  * @dev: device the dirmap desc will be attached to
719  * @mem: SPI mem device this direct mapping should be created for
720  * @info: direct mapping information
721  *
722  * devm_ variant of the spi_mem_dirmap_create() function. See
723  * spi_mem_dirmap_create() for more details.
724  *
725  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
726  */
727 struct spi_mem_dirmap_desc *
devm_spi_mem_dirmap_create(struct device * dev,struct spi_mem * mem,const struct spi_mem_dirmap_info * info)728 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
729 			   const struct spi_mem_dirmap_info *info)
730 {
731 	struct spi_mem_dirmap_desc **ptr, *desc;
732 
733 	ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
734 			   GFP_KERNEL);
735 	if (!ptr)
736 		return ERR_PTR(-ENOMEM);
737 
738 	desc = spi_mem_dirmap_create(mem, info);
739 	if (IS_ERR(desc)) {
740 		devres_free(ptr);
741 	} else {
742 		*ptr = desc;
743 		devres_add(dev, ptr);
744 	}
745 
746 	return desc;
747 }
748 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
749 
devm_spi_mem_dirmap_match(struct device * dev,void * res,void * data)750 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
751 {
752 	struct spi_mem_dirmap_desc **ptr = res;
753 
754 	if (WARN_ON(!ptr || !*ptr))
755 		return 0;
756 
757 	return *ptr == data;
758 }
759 
760 /**
761  * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
762  *				   to a device
763  * @dev: device the dirmap desc is attached to
764  * @desc: the direct mapping descriptor to destroy
765  *
766  * devm_ variant of the spi_mem_dirmap_destroy() function. See
767  * spi_mem_dirmap_destroy() for more details.
768  */
devm_spi_mem_dirmap_destroy(struct device * dev,struct spi_mem_dirmap_desc * desc)769 void devm_spi_mem_dirmap_destroy(struct device *dev,
770 				 struct spi_mem_dirmap_desc *desc)
771 {
772 	devres_release(dev, devm_spi_mem_dirmap_release,
773 		       devm_spi_mem_dirmap_match, desc);
774 }
775 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
776 
777 /**
778  * spi_mem_dirmap_read() - Read data through a direct mapping
779  * @desc: direct mapping descriptor
780  * @offs: offset to start reading from. Note that this is not an absolute
781  *	  offset, but the offset within the direct mapping which already has
782  *	  its own offset
783  * @len: length in bytes
784  * @buf: destination buffer. This buffer must be DMA-able
785  *
786  * This function reads data from a memory device using a direct mapping
787  * previously instantiated with spi_mem_dirmap_create().
788  *
789  * Return: the amount of data read from the memory device or a negative error
790  * code. Note that the returned size might be smaller than @len, and the caller
791  * is responsible for calling spi_mem_dirmap_read() again when that happens.
792  */
spi_mem_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,void * buf)793 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
794 			    u64 offs, size_t len, void *buf)
795 {
796 	struct spi_controller *ctlr = desc->mem->spi->controller;
797 	ssize_t ret;
798 
799 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
800 		return -EINVAL;
801 
802 	if (!len)
803 		return 0;
804 
805 	if (desc->nodirmap) {
806 		ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
807 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
808 		ret = spi_mem_access_start(desc->mem);
809 		if (ret)
810 			return ret;
811 
812 		ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
813 
814 		spi_mem_access_end(desc->mem);
815 	} else {
816 		ret = -ENOTSUPP;
817 	}
818 
819 	return ret;
820 }
821 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
822 
823 /**
824  * spi_mem_dirmap_write() - Write data through a direct mapping
825  * @desc: direct mapping descriptor
826  * @offs: offset to start writing from. Note that this is not an absolute
827  *	  offset, but the offset within the direct mapping which already has
828  *	  its own offset
829  * @len: length in bytes
830  * @buf: source buffer. This buffer must be DMA-able
831  *
832  * This function writes data to a memory device using a direct mapping
833  * previously instantiated with spi_mem_dirmap_create().
834  *
835  * Return: the amount of data written to the memory device or a negative error
836  * code. Note that the returned size might be smaller than @len, and the caller
837  * is responsible for calling spi_mem_dirmap_write() again when that happens.
838  */
spi_mem_dirmap_write(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,const void * buf)839 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
840 			     u64 offs, size_t len, const void *buf)
841 {
842 	struct spi_controller *ctlr = desc->mem->spi->controller;
843 	ssize_t ret;
844 
845 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
846 		return -EINVAL;
847 
848 	if (!len)
849 		return 0;
850 
851 	if (desc->nodirmap) {
852 		ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
853 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
854 		ret = spi_mem_access_start(desc->mem);
855 		if (ret)
856 			return ret;
857 
858 		ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
859 
860 		spi_mem_access_end(desc->mem);
861 	} else {
862 		ret = -ENOTSUPP;
863 	}
864 
865 	return ret;
866 }
867 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
868 
to_spi_mem_drv(struct device_driver * drv)869 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
870 {
871 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
872 }
873 
spi_mem_read_status(struct spi_mem * mem,const struct spi_mem_op * op,u16 * status)874 static int spi_mem_read_status(struct spi_mem *mem,
875 			       const struct spi_mem_op *op,
876 			       u16 *status)
877 {
878 	const u8 *bytes = (u8 *)op->data.buf.in;
879 	int ret;
880 
881 	ret = spi_mem_exec_op(mem, op);
882 	if (ret)
883 		return ret;
884 
885 	if (op->data.nbytes > 1)
886 		*status = ((u16)bytes[0] << 8) | bytes[1];
887 	else
888 		*status = bytes[0];
889 
890 	return 0;
891 }
892 
893 /**
894  * spi_mem_poll_status() - Poll memory device status
895  * @mem: SPI memory device
896  * @op: the memory operation to execute
897  * @mask: status bitmask to ckeck
898  * @match: (status & mask) expected value
899  * @initial_delay_us: delay in us before starting to poll
900  * @polling_delay_us: time to sleep between reads in us
901  * @timeout_ms: timeout in milliseconds
902  *
903  * This function polls a status register and returns when
904  * (status & mask) == match or when the timeout has expired.
905  *
906  * Return: 0 in case of success, -ETIMEDOUT in case of error,
907  *         -EOPNOTSUPP if not supported.
908  */
spi_mem_poll_status(struct spi_mem * mem,const struct spi_mem_op * op,u16 mask,u16 match,unsigned long initial_delay_us,unsigned long polling_delay_us,u16 timeout_ms)909 int spi_mem_poll_status(struct spi_mem *mem,
910 			const struct spi_mem_op *op,
911 			u16 mask, u16 match,
912 			unsigned long initial_delay_us,
913 			unsigned long polling_delay_us,
914 			u16 timeout_ms)
915 {
916 	struct spi_controller *ctlr = mem->spi->controller;
917 	int ret = -EOPNOTSUPP;
918 	int read_status_ret;
919 	u16 status;
920 
921 	if (op->data.nbytes < 1 || op->data.nbytes > 2 ||
922 	    op->data.dir != SPI_MEM_DATA_IN)
923 		return -EINVAL;
924 
925 	if (ctlr->mem_ops && ctlr->mem_ops->poll_status && !spi_get_csgpiod(mem->spi, 0)) {
926 		ret = spi_mem_access_start(mem);
927 		if (ret)
928 			return ret;
929 
930 		ret = ctlr->mem_ops->poll_status(mem, op, mask, match,
931 						 initial_delay_us, polling_delay_us,
932 						 timeout_ms);
933 
934 		spi_mem_access_end(mem);
935 	}
936 
937 	if (ret == -EOPNOTSUPP) {
938 		if (!spi_mem_supports_op(mem, op))
939 			return ret;
940 
941 		if (initial_delay_us < 10)
942 			udelay(initial_delay_us);
943 		else
944 			usleep_range((initial_delay_us >> 2) + 1,
945 				     initial_delay_us);
946 
947 		ret = read_poll_timeout(spi_mem_read_status, read_status_ret,
948 					(read_status_ret || ((status) & mask) == match),
949 					polling_delay_us, timeout_ms * 1000, false, mem,
950 					op, &status);
951 		if (read_status_ret)
952 			return read_status_ret;
953 	}
954 
955 	return ret;
956 }
957 EXPORT_SYMBOL_GPL(spi_mem_poll_status);
958 
spi_mem_probe(struct spi_device * spi)959 static int spi_mem_probe(struct spi_device *spi)
960 {
961 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
962 	struct spi_controller *ctlr = spi->controller;
963 	struct spi_mem *mem;
964 
965 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
966 	if (!mem)
967 		return -ENOMEM;
968 
969 	mem->spi = spi;
970 
971 	if (ctlr->mem_ops && ctlr->mem_ops->get_name)
972 		mem->name = ctlr->mem_ops->get_name(mem);
973 	else
974 		mem->name = dev_name(&spi->dev);
975 
976 	if (IS_ERR_OR_NULL(mem->name))
977 		return PTR_ERR_OR_ZERO(mem->name);
978 
979 	spi_set_drvdata(spi, mem);
980 
981 	return memdrv->probe(mem);
982 }
983 
spi_mem_remove(struct spi_device * spi)984 static void spi_mem_remove(struct spi_device *spi)
985 {
986 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
987 	struct spi_mem *mem = spi_get_drvdata(spi);
988 
989 	if (memdrv->remove)
990 		memdrv->remove(mem);
991 }
992 
spi_mem_shutdown(struct spi_device * spi)993 static void spi_mem_shutdown(struct spi_device *spi)
994 {
995 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
996 	struct spi_mem *mem = spi_get_drvdata(spi);
997 
998 	if (memdrv->shutdown)
999 		memdrv->shutdown(mem);
1000 }
1001 
1002 /**
1003  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
1004  * @memdrv: the SPI memory driver to register
1005  * @owner: the owner of this driver
1006  *
1007  * Registers a SPI memory driver.
1008  *
1009  * Return: 0 in case of success, a negative error core otherwise.
1010  */
1011 
spi_mem_driver_register_with_owner(struct spi_mem_driver * memdrv,struct module * owner)1012 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
1013 				       struct module *owner)
1014 {
1015 	memdrv->spidrv.probe = spi_mem_probe;
1016 	memdrv->spidrv.remove = spi_mem_remove;
1017 	memdrv->spidrv.shutdown = spi_mem_shutdown;
1018 
1019 	return __spi_register_driver(owner, &memdrv->spidrv);
1020 }
1021 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
1022 
1023 /**
1024  * spi_mem_driver_unregister() - Unregister a SPI memory driver
1025  * @memdrv: the SPI memory driver to unregister
1026  *
1027  * Unregisters a SPI memory driver.
1028  */
spi_mem_driver_unregister(struct spi_mem_driver * memdrv)1029 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
1030 {
1031 	spi_unregister_driver(&memdrv->spidrv);
1032 }
1033 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
1034