1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * OMAP Remote Processor driver
4 *
5 * Copyright (C) 2011-2020 Texas Instruments Incorporated - http://www.ti.com/
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <[email protected]>
9 * Brian Swetland <[email protected]>
10 * Fernando Guzman Lugo <[email protected]>
11 * Mark Grosen <[email protected]>
12 * Suman Anna <[email protected]>
13 * Hari Kanigeri <[email protected]>
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/clk.h>
19 #include <linux/clk/ti.h>
20 #include <linux/err.h>
21 #include <linux/io.h>
22 #include <linux/of.h>
23 #include <linux/of_platform.h>
24 #include <linux/of_reserved_mem.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/interrupt.h>
29 #include <linux/remoteproc.h>
30 #include <linux/mailbox_client.h>
31 #include <linux/omap-iommu.h>
32 #include <linux/omap-mailbox.h>
33 #include <linux/regmap.h>
34 #include <linux/mfd/syscon.h>
35 #include <linux/reset.h>
36 #include <clocksource/timer-ti-dm.h>
37
38 #include <linux/platform_data/dmtimer-omap.h>
39
40 #ifdef CONFIG_ARM_DMA_USE_IOMMU
41 #include <asm/dma-iommu.h>
42 #endif
43
44 #include "omap_remoteproc.h"
45 #include "remoteproc_internal.h"
46
47 /* default auto-suspend delay (ms) */
48 #define DEFAULT_AUTOSUSPEND_DELAY 10000
49
50 /**
51 * struct omap_rproc_boot_data - boot data structure for the DSP omap rprocs
52 * @syscon: regmap handle for the system control configuration module
53 * @boot_reg: boot register offset within the @syscon regmap
54 * @boot_reg_shift: bit-field shift required for the boot address value in
55 * @boot_reg
56 */
57 struct omap_rproc_boot_data {
58 struct regmap *syscon;
59 unsigned int boot_reg;
60 unsigned int boot_reg_shift;
61 };
62
63 /**
64 * struct omap_rproc_mem - internal memory structure
65 * @cpu_addr: MPU virtual address of the memory region
66 * @bus_addr: bus address used to access the memory region
67 * @dev_addr: device address of the memory region from DSP view
68 * @size: size of the memory region
69 */
70 struct omap_rproc_mem {
71 void __iomem *cpu_addr;
72 phys_addr_t bus_addr;
73 u32 dev_addr;
74 size_t size;
75 };
76
77 /**
78 * struct omap_rproc_timer - data structure for a timer used by a omap rproc
79 * @odt: timer pointer
80 * @timer_ops: OMAP dmtimer ops for @odt timer
81 * @irq: timer irq
82 */
83 struct omap_rproc_timer {
84 struct omap_dm_timer *odt;
85 const struct omap_dm_timer_ops *timer_ops;
86 int irq;
87 };
88
89 /**
90 * struct omap_rproc - omap remote processor state
91 * @mbox: mailbox channel handle
92 * @client: mailbox client to request the mailbox channel
93 * @boot_data: boot data structure for setting processor boot address
94 * @mem: internal memory regions data
95 * @num_mems: number of internal memory regions
96 * @num_timers: number of rproc timer(s)
97 * @num_wd_timers: number of rproc watchdog timers
98 * @timers: timer(s) info used by rproc
99 * @autosuspend_delay: auto-suspend delay value to be used for runtime pm
100 * @need_resume: if true a resume is needed in the system resume callback
101 * @rproc: rproc handle
102 * @reset: reset handle
103 * @pm_comp: completion primitive to sync for suspend response
104 * @fck: functional clock for the remoteproc
105 * @suspend_acked: state machine flag to store the suspend request ack
106 */
107 struct omap_rproc {
108 struct mbox_chan *mbox;
109 struct mbox_client client;
110 struct omap_rproc_boot_data *boot_data;
111 struct omap_rproc_mem *mem;
112 int num_mems;
113 int num_timers;
114 int num_wd_timers;
115 struct omap_rproc_timer *timers;
116 int autosuspend_delay;
117 bool need_resume;
118 struct rproc *rproc;
119 struct reset_control *reset;
120 struct completion pm_comp;
121 struct clk *fck;
122 bool suspend_acked;
123 };
124
125 /**
126 * struct omap_rproc_mem_data - memory definitions for an omap remote processor
127 * @name: name for this memory entry
128 * @dev_addr: device address for the memory entry
129 */
130 struct omap_rproc_mem_data {
131 const char *name;
132 const u32 dev_addr;
133 };
134
135 /**
136 * struct omap_rproc_dev_data - device data for the omap remote processor
137 * @device_name: device name of the remote processor
138 * @mems: memory definitions for this remote processor
139 */
140 struct omap_rproc_dev_data {
141 const char *device_name;
142 const struct omap_rproc_mem_data *mems;
143 };
144
145 /**
146 * omap_rproc_request_timer() - request a timer for a remoteproc
147 * @dev: device requesting the timer
148 * @np: device node pointer to the desired timer
149 * @timer: handle to a struct omap_rproc_timer to return the timer handle
150 *
151 * This helper function is used primarily to request a timer associated with
152 * a remoteproc. The returned handle is stored in the .odt field of the
153 * @timer structure passed in, and is used to invoke other timer specific
154 * ops (like starting a timer either during device initialization or during
155 * a resume operation, or for stopping/freeing a timer).
156 *
157 * Return: 0 on success, otherwise an appropriate failure
158 */
omap_rproc_request_timer(struct device * dev,struct device_node * np,struct omap_rproc_timer * timer)159 static int omap_rproc_request_timer(struct device *dev, struct device_node *np,
160 struct omap_rproc_timer *timer)
161 {
162 int ret;
163
164 timer->odt = timer->timer_ops->request_by_node(np);
165 if (!timer->odt) {
166 dev_err(dev, "request for timer node %p failed\n", np);
167 return -EBUSY;
168 }
169
170 ret = timer->timer_ops->set_source(timer->odt, OMAP_TIMER_SRC_SYS_CLK);
171 if (ret) {
172 dev_err(dev, "error setting OMAP_TIMER_SRC_SYS_CLK as source for timer node %p\n",
173 np);
174 timer->timer_ops->free(timer->odt);
175 return ret;
176 }
177
178 /* clean counter, remoteproc code will set the value */
179 timer->timer_ops->set_load(timer->odt, 0);
180
181 return 0;
182 }
183
184 /**
185 * omap_rproc_start_timer() - start a timer for a remoteproc
186 * @timer: handle to a OMAP rproc timer
187 *
188 * This helper function is used to start a timer associated with a remoteproc,
189 * obtained using the request_timer ops. The helper function needs to be
190 * invoked by the driver to start the timer (during device initialization)
191 * or to just resume the timer.
192 *
193 * Return: 0 on success, otherwise a failure as returned by DMTimer ops
194 */
omap_rproc_start_timer(struct omap_rproc_timer * timer)195 static inline int omap_rproc_start_timer(struct omap_rproc_timer *timer)
196 {
197 return timer->timer_ops->start(timer->odt);
198 }
199
200 /**
201 * omap_rproc_stop_timer() - stop a timer for a remoteproc
202 * @timer: handle to a OMAP rproc timer
203 *
204 * This helper function is used to disable a timer associated with a
205 * remoteproc, and needs to be called either during a device shutdown
206 * or suspend operation. The separate helper function allows the driver
207 * to just stop a timer without having to release the timer during a
208 * suspend operation.
209 *
210 * Return: 0 on success, otherwise a failure as returned by DMTimer ops
211 */
omap_rproc_stop_timer(struct omap_rproc_timer * timer)212 static inline int omap_rproc_stop_timer(struct omap_rproc_timer *timer)
213 {
214 return timer->timer_ops->stop(timer->odt);
215 }
216
217 /**
218 * omap_rproc_release_timer() - release a timer for a remoteproc
219 * @timer: handle to a OMAP rproc timer
220 *
221 * This helper function is used primarily to release a timer associated
222 * with a remoteproc. The dmtimer will be available for other clients to
223 * use once released.
224 *
225 * Return: 0 on success, otherwise a failure as returned by DMTimer ops
226 */
omap_rproc_release_timer(struct omap_rproc_timer * timer)227 static inline int omap_rproc_release_timer(struct omap_rproc_timer *timer)
228 {
229 return timer->timer_ops->free(timer->odt);
230 }
231
232 /**
233 * omap_rproc_get_timer_irq() - get the irq for a timer
234 * @timer: handle to a OMAP rproc timer
235 *
236 * This function is used to get the irq associated with a watchdog timer. The
237 * function is called by the OMAP remoteproc driver to register a interrupt
238 * handler to handle watchdog events on the remote processor.
239 *
240 * Return: irq id on success, otherwise a failure as returned by DMTimer ops
241 */
omap_rproc_get_timer_irq(struct omap_rproc_timer * timer)242 static inline int omap_rproc_get_timer_irq(struct omap_rproc_timer *timer)
243 {
244 return timer->timer_ops->get_irq(timer->odt);
245 }
246
247 /**
248 * omap_rproc_ack_timer_irq() - acknowledge a timer irq
249 * @timer: handle to a OMAP rproc timer
250 *
251 * This function is used to clear the irq associated with a watchdog timer.
252 * The function is called by the OMAP remoteproc upon a watchdog event on the
253 * remote processor to clear the interrupt status of the watchdog timer.
254 */
omap_rproc_ack_timer_irq(struct omap_rproc_timer * timer)255 static inline void omap_rproc_ack_timer_irq(struct omap_rproc_timer *timer)
256 {
257 timer->timer_ops->write_status(timer->odt, OMAP_TIMER_INT_OVERFLOW);
258 }
259
260 /**
261 * omap_rproc_watchdog_isr() - Watchdog ISR handler for remoteproc device
262 * @irq: IRQ number associated with a watchdog timer
263 * @data: IRQ handler data
264 *
265 * This ISR routine executes the required necessary low-level code to
266 * acknowledge a watchdog timer interrupt. There can be multiple watchdog
267 * timers associated with a rproc (like IPUs which have 2 watchdog timers,
268 * one per Cortex M3/M4 core), so a lookup has to be performed to identify
269 * the timer to acknowledge its interrupt.
270 *
271 * The function also invokes rproc_report_crash to report the watchdog event
272 * to the remoteproc driver core, to trigger a recovery.
273 *
274 * Return: IRQ_HANDLED on success, otherwise IRQ_NONE
275 */
omap_rproc_watchdog_isr(int irq,void * data)276 static irqreturn_t omap_rproc_watchdog_isr(int irq, void *data)
277 {
278 struct rproc *rproc = data;
279 struct omap_rproc *oproc = rproc->priv;
280 struct device *dev = rproc->dev.parent;
281 struct omap_rproc_timer *timers = oproc->timers;
282 struct omap_rproc_timer *wd_timer = NULL;
283 int num_timers = oproc->num_timers + oproc->num_wd_timers;
284 int i;
285
286 for (i = oproc->num_timers; i < num_timers; i++) {
287 if (timers[i].irq > 0 && irq == timers[i].irq) {
288 wd_timer = &timers[i];
289 break;
290 }
291 }
292
293 if (!wd_timer) {
294 dev_err(dev, "invalid timer\n");
295 return IRQ_NONE;
296 }
297
298 omap_rproc_ack_timer_irq(wd_timer);
299
300 rproc_report_crash(rproc, RPROC_WATCHDOG);
301
302 return IRQ_HANDLED;
303 }
304
305 /**
306 * omap_rproc_enable_timers() - enable the timers for a remoteproc
307 * @rproc: handle of a remote processor
308 * @configure: boolean flag used to acquire and configure the timer handle
309 *
310 * This function is used primarily to enable the timers associated with
311 * a remoteproc. The configure flag is provided to allow the driver
312 * to either acquire and start a timer (during device initialization) or
313 * to just start a timer (during a resume operation).
314 *
315 * Return: 0 on success, otherwise an appropriate failure
316 */
omap_rproc_enable_timers(struct rproc * rproc,bool configure)317 static int omap_rproc_enable_timers(struct rproc *rproc, bool configure)
318 {
319 int i;
320 int ret = 0;
321 struct platform_device *tpdev;
322 struct dmtimer_platform_data *tpdata;
323 const struct omap_dm_timer_ops *timer_ops;
324 struct omap_rproc *oproc = rproc->priv;
325 struct omap_rproc_timer *timers = oproc->timers;
326 struct device *dev = rproc->dev.parent;
327 struct device_node *np = NULL;
328 int num_timers = oproc->num_timers + oproc->num_wd_timers;
329
330 if (!num_timers)
331 return 0;
332
333 if (!configure)
334 goto start_timers;
335
336 for (i = 0; i < num_timers; i++) {
337 if (i < oproc->num_timers)
338 np = of_parse_phandle(dev->of_node, "ti,timers", i);
339 else
340 np = of_parse_phandle(dev->of_node,
341 "ti,watchdog-timers",
342 (i - oproc->num_timers));
343 if (!np) {
344 ret = -ENXIO;
345 dev_err(dev, "device node lookup for timer at index %d failed: %d\n",
346 i < oproc->num_timers ? i :
347 i - oproc->num_timers, ret);
348 goto free_timers;
349 }
350
351 tpdev = of_find_device_by_node(np);
352 if (!tpdev) {
353 ret = -ENODEV;
354 dev_err(dev, "could not get timer platform device\n");
355 goto put_node;
356 }
357
358 tpdata = dev_get_platdata(&tpdev->dev);
359 put_device(&tpdev->dev);
360 if (!tpdata) {
361 ret = -EINVAL;
362 dev_err(dev, "dmtimer pdata structure NULL\n");
363 goto put_node;
364 }
365
366 timer_ops = tpdata->timer_ops;
367 if (!timer_ops || !timer_ops->request_by_node ||
368 !timer_ops->set_source || !timer_ops->set_load ||
369 !timer_ops->free || !timer_ops->start ||
370 !timer_ops->stop || !timer_ops->get_irq ||
371 !timer_ops->write_status) {
372 ret = -EINVAL;
373 dev_err(dev, "device does not have required timer ops\n");
374 goto put_node;
375 }
376
377 timers[i].irq = -1;
378 timers[i].timer_ops = timer_ops;
379 ret = omap_rproc_request_timer(dev, np, &timers[i]);
380 if (ret) {
381 dev_err(dev, "request for timer %p failed: %d\n", np,
382 ret);
383 goto put_node;
384 }
385 of_node_put(np);
386
387 if (i >= oproc->num_timers) {
388 timers[i].irq = omap_rproc_get_timer_irq(&timers[i]);
389 if (timers[i].irq < 0) {
390 dev_err(dev, "get_irq for timer %p failed: %d\n",
391 np, timers[i].irq);
392 ret = -EBUSY;
393 goto free_timers;
394 }
395
396 ret = request_irq(timers[i].irq,
397 omap_rproc_watchdog_isr, IRQF_SHARED,
398 "rproc-wdt", rproc);
399 if (ret) {
400 dev_err(dev, "error requesting irq for timer %p\n",
401 np);
402 omap_rproc_release_timer(&timers[i]);
403 timers[i].odt = NULL;
404 timers[i].timer_ops = NULL;
405 timers[i].irq = -1;
406 goto free_timers;
407 }
408 }
409 }
410
411 start_timers:
412 for (i = 0; i < num_timers; i++) {
413 ret = omap_rproc_start_timer(&timers[i]);
414 if (ret) {
415 dev_err(dev, "start timer %p failed failed: %d\n", np,
416 ret);
417 break;
418 }
419 }
420 if (ret) {
421 while (i >= 0) {
422 omap_rproc_stop_timer(&timers[i]);
423 i--;
424 }
425 goto put_node;
426 }
427 return 0;
428
429 put_node:
430 if (configure)
431 of_node_put(np);
432 free_timers:
433 while (i--) {
434 if (i >= oproc->num_timers)
435 free_irq(timers[i].irq, rproc);
436 omap_rproc_release_timer(&timers[i]);
437 timers[i].odt = NULL;
438 timers[i].timer_ops = NULL;
439 timers[i].irq = -1;
440 }
441
442 return ret;
443 }
444
445 /**
446 * omap_rproc_disable_timers() - disable the timers for a remoteproc
447 * @rproc: handle of a remote processor
448 * @configure: boolean flag used to release the timer handle
449 *
450 * This function is used primarily to disable the timers associated with
451 * a remoteproc. The configure flag is provided to allow the driver
452 * to either stop and release a timer (during device shutdown) or to just
453 * stop a timer (during a suspend operation).
454 *
455 * Return: 0 on success or no timers
456 */
omap_rproc_disable_timers(struct rproc * rproc,bool configure)457 static int omap_rproc_disable_timers(struct rproc *rproc, bool configure)
458 {
459 int i;
460 struct omap_rproc *oproc = rproc->priv;
461 struct omap_rproc_timer *timers = oproc->timers;
462 int num_timers = oproc->num_timers + oproc->num_wd_timers;
463
464 if (!num_timers)
465 return 0;
466
467 for (i = 0; i < num_timers; i++) {
468 omap_rproc_stop_timer(&timers[i]);
469 if (configure) {
470 if (i >= oproc->num_timers)
471 free_irq(timers[i].irq, rproc);
472 omap_rproc_release_timer(&timers[i]);
473 timers[i].odt = NULL;
474 timers[i].timer_ops = NULL;
475 timers[i].irq = -1;
476 }
477 }
478
479 return 0;
480 }
481
482 /**
483 * omap_rproc_mbox_callback() - inbound mailbox message handler
484 * @client: mailbox client pointer used for requesting the mailbox channel
485 * @data: mailbox payload
486 *
487 * This handler is invoked by omap's mailbox driver whenever a mailbox
488 * message is received. Usually, the mailbox payload simply contains
489 * the index of the virtqueue that is kicked by the remote processor,
490 * and we let remoteproc core handle it.
491 *
492 * In addition to virtqueue indices, we also have some out-of-band values
493 * that indicates different events. Those values are deliberately very
494 * big so they don't coincide with virtqueue indices.
495 */
omap_rproc_mbox_callback(struct mbox_client * client,void * data)496 static void omap_rproc_mbox_callback(struct mbox_client *client, void *data)
497 {
498 struct omap_rproc *oproc = container_of(client, struct omap_rproc,
499 client);
500 struct device *dev = oproc->rproc->dev.parent;
501 const char *name = oproc->rproc->name;
502 u32 msg = (u32)data;
503
504 dev_dbg(dev, "mbox msg: 0x%x\n", msg);
505
506 switch (msg) {
507 case RP_MBOX_CRASH:
508 /*
509 * remoteproc detected an exception, notify the rproc core.
510 * The remoteproc core will handle the recovery.
511 */
512 dev_err(dev, "omap rproc %s crashed\n", name);
513 rproc_report_crash(oproc->rproc, RPROC_FATAL_ERROR);
514 break;
515 case RP_MBOX_ECHO_REPLY:
516 dev_info(dev, "received echo reply from %s\n", name);
517 break;
518 case RP_MBOX_SUSPEND_ACK:
519 case RP_MBOX_SUSPEND_CANCEL:
520 oproc->suspend_acked = msg == RP_MBOX_SUSPEND_ACK;
521 complete(&oproc->pm_comp);
522 break;
523 default:
524 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
525 return;
526 if (msg > oproc->rproc->max_notifyid) {
527 dev_dbg(dev, "dropping unknown message 0x%x", msg);
528 return;
529 }
530 /* msg contains the index of the triggered vring */
531 if (rproc_vq_interrupt(oproc->rproc, msg) == IRQ_NONE)
532 dev_dbg(dev, "no message was found in vqid %d\n", msg);
533 }
534 }
535
536 /* kick a virtqueue */
omap_rproc_kick(struct rproc * rproc,int vqid)537 static void omap_rproc_kick(struct rproc *rproc, int vqid)
538 {
539 struct omap_rproc *oproc = rproc->priv;
540 struct device *dev = rproc->dev.parent;
541 int ret;
542
543 /* wake up the rproc before kicking it */
544 ret = pm_runtime_get_sync(dev);
545 if (WARN_ON(ret < 0)) {
546 dev_err(dev, "pm_runtime_get_sync() failed during kick, ret = %d\n",
547 ret);
548 pm_runtime_put_noidle(dev);
549 return;
550 }
551
552 /* send the index of the triggered virtqueue in the mailbox payload */
553 ret = mbox_send_message(oproc->mbox, (void *)vqid);
554 if (ret < 0)
555 dev_err(dev, "failed to send mailbox message, status = %d\n",
556 ret);
557
558 pm_runtime_mark_last_busy(dev);
559 pm_runtime_put_autosuspend(dev);
560 }
561
562 /**
563 * omap_rproc_write_dsp_boot_addr() - set boot address for DSP remote processor
564 * @rproc: handle of a remote processor
565 *
566 * Set boot address for a supported DSP remote processor.
567 *
568 * Return: 0 on success, or -EINVAL if boot address is not aligned properly
569 */
omap_rproc_write_dsp_boot_addr(struct rproc * rproc)570 static int omap_rproc_write_dsp_boot_addr(struct rproc *rproc)
571 {
572 struct device *dev = rproc->dev.parent;
573 struct omap_rproc *oproc = rproc->priv;
574 struct omap_rproc_boot_data *bdata = oproc->boot_data;
575 u32 offset = bdata->boot_reg;
576 u32 value;
577 u32 mask;
578
579 if (rproc->bootaddr & (SZ_1K - 1)) {
580 dev_err(dev, "invalid boot address 0x%llx, must be aligned on a 1KB boundary\n",
581 rproc->bootaddr);
582 return -EINVAL;
583 }
584
585 value = rproc->bootaddr >> bdata->boot_reg_shift;
586 mask = ~(SZ_1K - 1) >> bdata->boot_reg_shift;
587
588 return regmap_update_bits(bdata->syscon, offset, mask, value);
589 }
590
591 /*
592 * Power up the remote processor.
593 *
594 * This function will be invoked only after the firmware for this rproc
595 * was loaded, parsed successfully, and all of its resource requirements
596 * were met.
597 */
omap_rproc_start(struct rproc * rproc)598 static int omap_rproc_start(struct rproc *rproc)
599 {
600 struct omap_rproc *oproc = rproc->priv;
601 struct device *dev = rproc->dev.parent;
602 int ret;
603 struct mbox_client *client = &oproc->client;
604
605 if (oproc->boot_data) {
606 ret = omap_rproc_write_dsp_boot_addr(rproc);
607 if (ret)
608 return ret;
609 }
610
611 client->dev = dev;
612 client->tx_done = NULL;
613 client->rx_callback = omap_rproc_mbox_callback;
614 client->tx_block = false;
615 client->knows_txdone = false;
616
617 oproc->mbox = mbox_request_channel(client, 0);
618 if (IS_ERR(oproc->mbox)) {
619 ret = -EBUSY;
620 dev_err(dev, "mbox_request_channel failed: %ld\n",
621 PTR_ERR(oproc->mbox));
622 return ret;
623 }
624
625 /*
626 * Ping the remote processor. this is only for sanity-sake;
627 * there is no functional effect whatsoever.
628 *
629 * Note that the reply will _not_ arrive immediately: this message
630 * will wait in the mailbox fifo until the remote processor is booted.
631 */
632 ret = mbox_send_message(oproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
633 if (ret < 0) {
634 dev_err(dev, "mbox_send_message failed: %d\n", ret);
635 goto put_mbox;
636 }
637
638 ret = omap_rproc_enable_timers(rproc, true);
639 if (ret) {
640 dev_err(dev, "omap_rproc_enable_timers failed: %d\n", ret);
641 goto put_mbox;
642 }
643
644 ret = reset_control_deassert(oproc->reset);
645 if (ret) {
646 dev_err(dev, "reset control deassert failed: %d\n", ret);
647 goto disable_timers;
648 }
649
650 /*
651 * remote processor is up, so update the runtime pm status and
652 * enable the auto-suspend. The device usage count is incremented
653 * manually for balancing it for auto-suspend
654 */
655 pm_runtime_set_active(dev);
656 pm_runtime_use_autosuspend(dev);
657 pm_runtime_get_noresume(dev);
658 pm_runtime_enable(dev);
659 pm_runtime_mark_last_busy(dev);
660 pm_runtime_put_autosuspend(dev);
661
662 return 0;
663
664 disable_timers:
665 omap_rproc_disable_timers(rproc, true);
666 put_mbox:
667 mbox_free_channel(oproc->mbox);
668 return ret;
669 }
670
671 /* power off the remote processor */
omap_rproc_stop(struct rproc * rproc)672 static int omap_rproc_stop(struct rproc *rproc)
673 {
674 struct device *dev = rproc->dev.parent;
675 struct omap_rproc *oproc = rproc->priv;
676 int ret;
677
678 /*
679 * cancel any possible scheduled runtime suspend by incrementing
680 * the device usage count, and resuming the device. The remoteproc
681 * also needs to be woken up if suspended, to avoid the remoteproc
682 * OS to continue to remember any context that it has saved, and
683 * avoid potential issues in misindentifying a subsequent device
684 * reboot as a power restore boot
685 */
686 ret = pm_runtime_get_sync(dev);
687 if (ret < 0) {
688 pm_runtime_put_noidle(dev);
689 return ret;
690 }
691
692 ret = reset_control_assert(oproc->reset);
693 if (ret)
694 goto out;
695
696 ret = omap_rproc_disable_timers(rproc, true);
697 if (ret)
698 goto enable_device;
699
700 mbox_free_channel(oproc->mbox);
701
702 /*
703 * update the runtime pm states and status now that the remoteproc
704 * has stopped
705 */
706 pm_runtime_disable(dev);
707 pm_runtime_dont_use_autosuspend(dev);
708 pm_runtime_put_noidle(dev);
709 pm_runtime_set_suspended(dev);
710
711 return 0;
712
713 enable_device:
714 reset_control_deassert(oproc->reset);
715 out:
716 /* schedule the next auto-suspend */
717 pm_runtime_mark_last_busy(dev);
718 pm_runtime_put_autosuspend(dev);
719 return ret;
720 }
721
722 /**
723 * omap_rproc_da_to_va() - internal memory translation helper
724 * @rproc: remote processor to apply the address translation for
725 * @da: device address to translate
726 * @len: length of the memory buffer
727 *
728 * Custom function implementing the rproc .da_to_va ops to provide address
729 * translation (device address to kernel virtual address) for internal RAMs
730 * present in a DSP or IPU device). The translated addresses can be used
731 * either by the remoteproc core for loading, or by any rpmsg bus drivers.
732 *
733 * Return: translated virtual address in kernel memory space on success,
734 * or NULL on failure.
735 */
omap_rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)736 static void *omap_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
737 {
738 struct omap_rproc *oproc = rproc->priv;
739 int i;
740 u32 offset;
741
742 if (len <= 0)
743 return NULL;
744
745 if (!oproc->num_mems)
746 return NULL;
747
748 for (i = 0; i < oproc->num_mems; i++) {
749 if (da >= oproc->mem[i].dev_addr && da + len <=
750 oproc->mem[i].dev_addr + oproc->mem[i].size) {
751 offset = da - oproc->mem[i].dev_addr;
752 /* __force to make sparse happy with type conversion */
753 return (__force void *)(oproc->mem[i].cpu_addr +
754 offset);
755 }
756 }
757
758 return NULL;
759 }
760
761 static const struct rproc_ops omap_rproc_ops = {
762 .start = omap_rproc_start,
763 .stop = omap_rproc_stop,
764 .kick = omap_rproc_kick,
765 .da_to_va = omap_rproc_da_to_va,
766 };
767
768 #ifdef CONFIG_PM
_is_rproc_in_standby(struct omap_rproc * oproc)769 static bool _is_rproc_in_standby(struct omap_rproc *oproc)
770 {
771 return ti_clk_is_in_standby(oproc->fck);
772 }
773
774 /* 1 sec is long enough time to let the remoteproc side suspend the device */
775 #define DEF_SUSPEND_TIMEOUT 1000
_omap_rproc_suspend(struct rproc * rproc,bool auto_suspend)776 static int _omap_rproc_suspend(struct rproc *rproc, bool auto_suspend)
777 {
778 struct device *dev = rproc->dev.parent;
779 struct omap_rproc *oproc = rproc->priv;
780 unsigned long to = msecs_to_jiffies(DEF_SUSPEND_TIMEOUT);
781 unsigned long ta = jiffies + to;
782 u32 suspend_msg = auto_suspend ?
783 RP_MBOX_SUSPEND_AUTO : RP_MBOX_SUSPEND_SYSTEM;
784 int ret;
785
786 reinit_completion(&oproc->pm_comp);
787 oproc->suspend_acked = false;
788 ret = mbox_send_message(oproc->mbox, (void *)suspend_msg);
789 if (ret < 0) {
790 dev_err(dev, "PM mbox_send_message failed: %d\n", ret);
791 return ret;
792 }
793
794 ret = wait_for_completion_timeout(&oproc->pm_comp, to);
795 if (!oproc->suspend_acked)
796 return -EBUSY;
797
798 /*
799 * The remoteproc side is returning the ACK message before saving the
800 * context, because the context saving is performed within a SYS/BIOS
801 * function, and it cannot have any inter-dependencies against the IPC
802 * layer. Also, as the SYS/BIOS needs to preserve properly the processor
803 * register set, sending this ACK or signalling the completion of the
804 * context save through a shared memory variable can never be the
805 * absolute last thing to be executed on the remoteproc side, and the
806 * MPU cannot use the ACK message as a sync point to put the remoteproc
807 * into reset. The only way to ensure that the remote processor has
808 * completed saving the context is to check that the module has reached
809 * STANDBY state (after saving the context, the SYS/BIOS executes the
810 * appropriate target-specific WFI instruction causing the module to
811 * enter STANDBY).
812 */
813 while (!_is_rproc_in_standby(oproc)) {
814 if (time_after(jiffies, ta))
815 return -ETIME;
816 schedule();
817 }
818
819 ret = reset_control_assert(oproc->reset);
820 if (ret) {
821 dev_err(dev, "reset assert during suspend failed %d\n", ret);
822 return ret;
823 }
824
825 ret = omap_rproc_disable_timers(rproc, false);
826 if (ret) {
827 dev_err(dev, "disabling timers during suspend failed %d\n",
828 ret);
829 goto enable_device;
830 }
831
832 /*
833 * IOMMUs would have to be disabled specifically for runtime suspend.
834 * They are handled automatically through System PM callbacks for
835 * regular system suspend
836 */
837 if (auto_suspend) {
838 ret = omap_iommu_domain_deactivate(rproc->domain);
839 if (ret) {
840 dev_err(dev, "iommu domain deactivate failed %d\n",
841 ret);
842 goto enable_timers;
843 }
844 }
845
846 return 0;
847
848 enable_timers:
849 /* ignore errors on re-enabling code */
850 omap_rproc_enable_timers(rproc, false);
851 enable_device:
852 reset_control_deassert(oproc->reset);
853 return ret;
854 }
855
_omap_rproc_resume(struct rproc * rproc,bool auto_suspend)856 static int _omap_rproc_resume(struct rproc *rproc, bool auto_suspend)
857 {
858 struct device *dev = rproc->dev.parent;
859 struct omap_rproc *oproc = rproc->priv;
860 int ret;
861
862 /*
863 * IOMMUs would have to be enabled specifically for runtime resume.
864 * They would have been already enabled automatically through System
865 * PM callbacks for regular system resume
866 */
867 if (auto_suspend) {
868 ret = omap_iommu_domain_activate(rproc->domain);
869 if (ret) {
870 dev_err(dev, "omap_iommu activate failed %d\n", ret);
871 goto out;
872 }
873 }
874
875 /* boot address could be lost after suspend, so restore it */
876 if (oproc->boot_data) {
877 ret = omap_rproc_write_dsp_boot_addr(rproc);
878 if (ret) {
879 dev_err(dev, "boot address restore failed %d\n", ret);
880 goto suspend_iommu;
881 }
882 }
883
884 ret = omap_rproc_enable_timers(rproc, false);
885 if (ret) {
886 dev_err(dev, "enabling timers during resume failed %d\n", ret);
887 goto suspend_iommu;
888 }
889
890 ret = reset_control_deassert(oproc->reset);
891 if (ret) {
892 dev_err(dev, "reset deassert during resume failed %d\n", ret);
893 goto disable_timers;
894 }
895
896 return 0;
897
898 disable_timers:
899 omap_rproc_disable_timers(rproc, false);
900 suspend_iommu:
901 if (auto_suspend)
902 omap_iommu_domain_deactivate(rproc->domain);
903 out:
904 return ret;
905 }
906
omap_rproc_suspend(struct device * dev)907 static int __maybe_unused omap_rproc_suspend(struct device *dev)
908 {
909 struct rproc *rproc = dev_get_drvdata(dev);
910 struct omap_rproc *oproc = rproc->priv;
911 int ret = 0;
912
913 mutex_lock(&rproc->lock);
914 if (rproc->state == RPROC_OFFLINE)
915 goto out;
916
917 if (rproc->state == RPROC_SUSPENDED)
918 goto out;
919
920 if (rproc->state != RPROC_RUNNING) {
921 ret = -EBUSY;
922 goto out;
923 }
924
925 ret = _omap_rproc_suspend(rproc, false);
926 if (ret) {
927 dev_err(dev, "suspend failed %d\n", ret);
928 goto out;
929 }
930
931 /*
932 * remoteproc is running at the time of system suspend, so remember
933 * it so as to wake it up during system resume
934 */
935 oproc->need_resume = true;
936 rproc->state = RPROC_SUSPENDED;
937
938 out:
939 mutex_unlock(&rproc->lock);
940 return ret;
941 }
942
omap_rproc_resume(struct device * dev)943 static int __maybe_unused omap_rproc_resume(struct device *dev)
944 {
945 struct rproc *rproc = dev_get_drvdata(dev);
946 struct omap_rproc *oproc = rproc->priv;
947 int ret = 0;
948
949 mutex_lock(&rproc->lock);
950 if (rproc->state == RPROC_OFFLINE)
951 goto out;
952
953 if (rproc->state != RPROC_SUSPENDED) {
954 ret = -EBUSY;
955 goto out;
956 }
957
958 /*
959 * remoteproc was auto-suspended at the time of system suspend,
960 * so no need to wake-up the processor (leave it in suspended
961 * state, will be woken up during a subsequent runtime_resume)
962 */
963 if (!oproc->need_resume)
964 goto out;
965
966 ret = _omap_rproc_resume(rproc, false);
967 if (ret) {
968 dev_err(dev, "resume failed %d\n", ret);
969 goto out;
970 }
971
972 oproc->need_resume = false;
973 rproc->state = RPROC_RUNNING;
974
975 pm_runtime_mark_last_busy(dev);
976 out:
977 mutex_unlock(&rproc->lock);
978 return ret;
979 }
980
omap_rproc_runtime_suspend(struct device * dev)981 static int omap_rproc_runtime_suspend(struct device *dev)
982 {
983 struct rproc *rproc = dev_get_drvdata(dev);
984 struct omap_rproc *oproc = rproc->priv;
985 int ret;
986
987 mutex_lock(&rproc->lock);
988 if (rproc->state == RPROC_CRASHED) {
989 dev_dbg(dev, "rproc cannot be runtime suspended when crashed!\n");
990 ret = -EBUSY;
991 goto out;
992 }
993
994 if (WARN_ON(rproc->state != RPROC_RUNNING)) {
995 dev_err(dev, "rproc cannot be runtime suspended when not running!\n");
996 ret = -EBUSY;
997 goto out;
998 }
999
1000 /*
1001 * do not even attempt suspend if the remote processor is not
1002 * idled for runtime auto-suspend
1003 */
1004 if (!_is_rproc_in_standby(oproc)) {
1005 ret = -EBUSY;
1006 goto abort;
1007 }
1008
1009 ret = _omap_rproc_suspend(rproc, true);
1010 if (ret)
1011 goto abort;
1012
1013 rproc->state = RPROC_SUSPENDED;
1014 mutex_unlock(&rproc->lock);
1015 return 0;
1016
1017 abort:
1018 pm_runtime_mark_last_busy(dev);
1019 out:
1020 mutex_unlock(&rproc->lock);
1021 return ret;
1022 }
1023
omap_rproc_runtime_resume(struct device * dev)1024 static int omap_rproc_runtime_resume(struct device *dev)
1025 {
1026 struct rproc *rproc = dev_get_drvdata(dev);
1027 int ret;
1028
1029 mutex_lock(&rproc->lock);
1030 if (WARN_ON(rproc->state != RPROC_SUSPENDED)) {
1031 dev_err(dev, "rproc cannot be runtime resumed if not suspended! state=%d\n",
1032 rproc->state);
1033 ret = -EBUSY;
1034 goto out;
1035 }
1036
1037 ret = _omap_rproc_resume(rproc, true);
1038 if (ret) {
1039 dev_err(dev, "runtime resume failed %d\n", ret);
1040 goto out;
1041 }
1042
1043 rproc->state = RPROC_RUNNING;
1044 out:
1045 mutex_unlock(&rproc->lock);
1046 return ret;
1047 }
1048 #endif /* CONFIG_PM */
1049
1050 static const struct omap_rproc_mem_data ipu_mems[] = {
1051 { .name = "l2ram", .dev_addr = 0x20000000 },
1052 { },
1053 };
1054
1055 static const struct omap_rproc_mem_data dra7_dsp_mems[] = {
1056 { .name = "l2ram", .dev_addr = 0x800000 },
1057 { .name = "l1pram", .dev_addr = 0xe00000 },
1058 { .name = "l1dram", .dev_addr = 0xf00000 },
1059 { },
1060 };
1061
1062 static const struct omap_rproc_dev_data omap4_dsp_dev_data = {
1063 .device_name = "dsp",
1064 };
1065
1066 static const struct omap_rproc_dev_data omap4_ipu_dev_data = {
1067 .device_name = "ipu",
1068 .mems = ipu_mems,
1069 };
1070
1071 static const struct omap_rproc_dev_data omap5_dsp_dev_data = {
1072 .device_name = "dsp",
1073 };
1074
1075 static const struct omap_rproc_dev_data omap5_ipu_dev_data = {
1076 .device_name = "ipu",
1077 .mems = ipu_mems,
1078 };
1079
1080 static const struct omap_rproc_dev_data dra7_dsp_dev_data = {
1081 .device_name = "dsp",
1082 .mems = dra7_dsp_mems,
1083 };
1084
1085 static const struct omap_rproc_dev_data dra7_ipu_dev_data = {
1086 .device_name = "ipu",
1087 .mems = ipu_mems,
1088 };
1089
1090 static const struct of_device_id omap_rproc_of_match[] = {
1091 {
1092 .compatible = "ti,omap4-dsp",
1093 .data = &omap4_dsp_dev_data,
1094 },
1095 {
1096 .compatible = "ti,omap4-ipu",
1097 .data = &omap4_ipu_dev_data,
1098 },
1099 {
1100 .compatible = "ti,omap5-dsp",
1101 .data = &omap5_dsp_dev_data,
1102 },
1103 {
1104 .compatible = "ti,omap5-ipu",
1105 .data = &omap5_ipu_dev_data,
1106 },
1107 {
1108 .compatible = "ti,dra7-dsp",
1109 .data = &dra7_dsp_dev_data,
1110 },
1111 {
1112 .compatible = "ti,dra7-ipu",
1113 .data = &dra7_ipu_dev_data,
1114 },
1115 {
1116 /* end */
1117 },
1118 };
1119 MODULE_DEVICE_TABLE(of, omap_rproc_of_match);
1120
omap_rproc_get_firmware(struct platform_device * pdev)1121 static const char *omap_rproc_get_firmware(struct platform_device *pdev)
1122 {
1123 const char *fw_name;
1124 int ret;
1125
1126 ret = of_property_read_string(pdev->dev.of_node, "firmware-name",
1127 &fw_name);
1128 if (ret)
1129 return ERR_PTR(ret);
1130
1131 return fw_name;
1132 }
1133
omap_rproc_get_boot_data(struct platform_device * pdev,struct rproc * rproc)1134 static int omap_rproc_get_boot_data(struct platform_device *pdev,
1135 struct rproc *rproc)
1136 {
1137 struct device_node *np = pdev->dev.of_node;
1138 struct omap_rproc *oproc = rproc->priv;
1139 const struct omap_rproc_dev_data *data;
1140
1141 data = of_device_get_match_data(&pdev->dev);
1142 if (!data)
1143 return -ENODEV;
1144
1145 if (!of_property_read_bool(np, "ti,bootreg"))
1146 return 0;
1147
1148 oproc->boot_data = devm_kzalloc(&pdev->dev, sizeof(*oproc->boot_data),
1149 GFP_KERNEL);
1150 if (!oproc->boot_data)
1151 return -ENOMEM;
1152
1153 oproc->boot_data->syscon =
1154 syscon_regmap_lookup_by_phandle(np, "ti,bootreg");
1155 if (IS_ERR(oproc->boot_data->syscon))
1156 return PTR_ERR(oproc->boot_data->syscon);
1157
1158 if (of_property_read_u32_index(np, "ti,bootreg", 1,
1159 &oproc->boot_data->boot_reg)) {
1160 dev_err(&pdev->dev, "couldn't get the boot register\n");
1161 return -EINVAL;
1162 }
1163
1164 of_property_read_u32_index(np, "ti,bootreg", 2,
1165 &oproc->boot_data->boot_reg_shift);
1166
1167 return 0;
1168 }
1169
omap_rproc_of_get_internal_memories(struct platform_device * pdev,struct rproc * rproc)1170 static int omap_rproc_of_get_internal_memories(struct platform_device *pdev,
1171 struct rproc *rproc)
1172 {
1173 struct omap_rproc *oproc = rproc->priv;
1174 struct device *dev = &pdev->dev;
1175 const struct omap_rproc_dev_data *data;
1176 struct resource *res;
1177 int num_mems;
1178 int i;
1179
1180 data = of_device_get_match_data(dev);
1181 if (!data)
1182 return -ENODEV;
1183
1184 if (!data->mems)
1185 return 0;
1186
1187 num_mems = of_property_count_elems_of_size(dev->of_node, "reg",
1188 sizeof(u32)) / 2;
1189
1190 oproc->mem = devm_kcalloc(dev, num_mems, sizeof(*oproc->mem),
1191 GFP_KERNEL);
1192 if (!oproc->mem)
1193 return -ENOMEM;
1194
1195 for (i = 0; data->mems[i].name; i++) {
1196 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1197 data->mems[i].name);
1198 if (!res) {
1199 dev_err(dev, "no memory defined for %s\n",
1200 data->mems[i].name);
1201 return -ENOMEM;
1202 }
1203 oproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res);
1204 if (IS_ERR(oproc->mem[i].cpu_addr)) {
1205 dev_err(dev, "failed to parse and map %s memory\n",
1206 data->mems[i].name);
1207 return PTR_ERR(oproc->mem[i].cpu_addr);
1208 }
1209 oproc->mem[i].bus_addr = res->start;
1210 oproc->mem[i].dev_addr = data->mems[i].dev_addr;
1211 oproc->mem[i].size = resource_size(res);
1212
1213 dev_dbg(dev, "memory %8s: bus addr %pa size 0x%x va %pK da 0x%x\n",
1214 data->mems[i].name, &oproc->mem[i].bus_addr,
1215 oproc->mem[i].size, oproc->mem[i].cpu_addr,
1216 oproc->mem[i].dev_addr);
1217 }
1218 oproc->num_mems = num_mems;
1219
1220 return 0;
1221 }
1222
1223 #ifdef CONFIG_OMAP_REMOTEPROC_WATCHDOG
omap_rproc_count_wdog_timers(struct device * dev)1224 static int omap_rproc_count_wdog_timers(struct device *dev)
1225 {
1226 struct device_node *np = dev->of_node;
1227 int ret;
1228
1229 ret = of_count_phandle_with_args(np, "ti,watchdog-timers", NULL);
1230 if (ret <= 0) {
1231 dev_dbg(dev, "device does not have watchdog timers, status = %d\n",
1232 ret);
1233 ret = 0;
1234 }
1235
1236 return ret;
1237 }
1238 #else
omap_rproc_count_wdog_timers(struct device * dev)1239 static int omap_rproc_count_wdog_timers(struct device *dev)
1240 {
1241 return 0;
1242 }
1243 #endif
1244
omap_rproc_of_get_timers(struct platform_device * pdev,struct rproc * rproc)1245 static int omap_rproc_of_get_timers(struct platform_device *pdev,
1246 struct rproc *rproc)
1247 {
1248 struct device_node *np = pdev->dev.of_node;
1249 struct omap_rproc *oproc = rproc->priv;
1250 struct device *dev = &pdev->dev;
1251 int num_timers;
1252
1253 /*
1254 * Timer nodes are directly used in client nodes as phandles, so
1255 * retrieve the count using appropriate size
1256 */
1257 oproc->num_timers = of_count_phandle_with_args(np, "ti,timers", NULL);
1258 if (oproc->num_timers <= 0) {
1259 dev_dbg(dev, "device does not have timers, status = %d\n",
1260 oproc->num_timers);
1261 oproc->num_timers = 0;
1262 }
1263
1264 oproc->num_wd_timers = omap_rproc_count_wdog_timers(dev);
1265
1266 num_timers = oproc->num_timers + oproc->num_wd_timers;
1267 if (num_timers) {
1268 oproc->timers = devm_kcalloc(dev, num_timers,
1269 sizeof(*oproc->timers),
1270 GFP_KERNEL);
1271 if (!oproc->timers)
1272 return -ENOMEM;
1273
1274 dev_dbg(dev, "device has %d tick timers and %d watchdog timers\n",
1275 oproc->num_timers, oproc->num_wd_timers);
1276 }
1277
1278 return 0;
1279 }
1280
omap_rproc_mem_release(void * data)1281 static void omap_rproc_mem_release(void *data)
1282 {
1283 struct device *dev = data;
1284
1285 of_reserved_mem_device_release(dev);
1286 }
1287
omap_rproc_probe(struct platform_device * pdev)1288 static int omap_rproc_probe(struct platform_device *pdev)
1289 {
1290 struct device_node *np = pdev->dev.of_node;
1291 struct omap_rproc *oproc;
1292 struct rproc *rproc;
1293 const char *firmware;
1294 int ret;
1295 struct reset_control *reset;
1296
1297 if (!np) {
1298 dev_err(&pdev->dev, "only DT-based devices are supported\n");
1299 return -ENODEV;
1300 }
1301
1302 reset = devm_reset_control_array_get_exclusive(&pdev->dev);
1303 if (IS_ERR(reset))
1304 return PTR_ERR(reset);
1305
1306 firmware = omap_rproc_get_firmware(pdev);
1307 if (IS_ERR(firmware))
1308 return PTR_ERR(firmware);
1309
1310 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1311 if (ret) {
1312 dev_err(&pdev->dev, "dma_set_coherent_mask: %d\n", ret);
1313 return ret;
1314 }
1315
1316 rproc = devm_rproc_alloc(&pdev->dev, dev_name(&pdev->dev), &omap_rproc_ops,
1317 firmware, sizeof(*oproc));
1318 if (!rproc)
1319 return -ENOMEM;
1320
1321 oproc = rproc->priv;
1322 oproc->rproc = rproc;
1323 oproc->reset = reset;
1324 /* All existing OMAP IPU and DSP processors have an MMU */
1325 rproc->has_iommu = true;
1326
1327 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1328 /*
1329 * Throw away the ARM DMA mapping that we'll never use, so it doesn't
1330 * interfere with the core rproc->domain and we get the right DMA ops.
1331 */
1332 if (pdev->dev.archdata.mapping) {
1333 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(&pdev->dev);
1334
1335 arm_iommu_detach_device(&pdev->dev);
1336 arm_iommu_release_mapping(mapping);
1337 }
1338 #endif
1339
1340 ret = omap_rproc_of_get_internal_memories(pdev, rproc);
1341 if (ret)
1342 return ret;
1343
1344 ret = omap_rproc_get_boot_data(pdev, rproc);
1345 if (ret)
1346 return ret;
1347
1348 ret = omap_rproc_of_get_timers(pdev, rproc);
1349 if (ret)
1350 return ret;
1351
1352 init_completion(&oproc->pm_comp);
1353 oproc->autosuspend_delay = DEFAULT_AUTOSUSPEND_DELAY;
1354
1355 of_property_read_u32(pdev->dev.of_node, "ti,autosuspend-delay-ms",
1356 &oproc->autosuspend_delay);
1357
1358 pm_runtime_set_autosuspend_delay(&pdev->dev, oproc->autosuspend_delay);
1359
1360 oproc->fck = devm_clk_get(&pdev->dev, 0);
1361 if (IS_ERR(oproc->fck))
1362 return PTR_ERR(oproc->fck);
1363
1364 ret = of_reserved_mem_device_init(&pdev->dev);
1365 if (ret) {
1366 dev_warn(&pdev->dev, "device does not have specific CMA pool.\n");
1367 dev_warn(&pdev->dev, "Typically this should be provided,\n");
1368 dev_warn(&pdev->dev, "only omit if you know what you are doing.\n");
1369 }
1370 ret = devm_add_action_or_reset(&pdev->dev, omap_rproc_mem_release, &pdev->dev);
1371 if (ret)
1372 return ret;
1373
1374 platform_set_drvdata(pdev, rproc);
1375
1376 ret = devm_rproc_add(&pdev->dev, rproc);
1377 if (ret)
1378 return ret;
1379
1380 return 0;
1381 }
1382
1383 static const struct dev_pm_ops omap_rproc_pm_ops = {
1384 SET_SYSTEM_SLEEP_PM_OPS(omap_rproc_suspend, omap_rproc_resume)
1385 SET_RUNTIME_PM_OPS(omap_rproc_runtime_suspend,
1386 omap_rproc_runtime_resume, NULL)
1387 };
1388
1389 static struct platform_driver omap_rproc_driver = {
1390 .probe = omap_rproc_probe,
1391 .driver = {
1392 .name = "omap-rproc",
1393 .pm = &omap_rproc_pm_ops,
1394 .of_match_table = omap_rproc_of_match,
1395 },
1396 };
1397
1398 module_platform_driver(omap_rproc_driver);
1399
1400 MODULE_LICENSE("GPL v2");
1401 MODULE_DESCRIPTION("OMAP Remote Processor control driver");
1402