1 // SPDX-License-Identifier: GPL-2.0
2 // LPC interface for ChromeOS Embedded Controller
3 //
4 // Copyright (C) 2012-2015 Google, Inc
5 //
6 // This driver uses the ChromeOS EC byte-level message-based protocol for
7 // communicating the keyboard state (which keys are pressed) from a keyboard EC
8 // to the AP over some bus (such as i2c, lpc, spi). The EC does debouncing,
9 // but everything else (including deghosting) is done here. The main
10 // motivation for this is to keep the EC firmware as simple as possible, since
11 // it cannot be easily upgraded and EC flash/IRAM space is relatively
12 // expensive.
13
14 #include <linux/acpi.h>
15 #include <linux/dmi.h>
16 #include <linux/delay.h>
17 #include <linux/io.h>
18 #include <linux/interrupt.h>
19 #include <linux/kobject.h>
20 #include <linux/module.h>
21 #include <linux/platform_data/cros_ec_commands.h>
22 #include <linux/platform_data/cros_ec_proto.h>
23 #include <linux/platform_device.h>
24 #include <linux/printk.h>
25 #include <linux/reboot.h>
26 #include <linux/suspend.h>
27
28 #include "cros_ec.h"
29 #include "cros_ec_lpc_mec.h"
30
31 #define DRV_NAME "cros_ec_lpcs"
32 #define ACPI_DRV_NAME "GOOG0004"
33 #define FRMW_ACPI_DRV_NAME "FRMWC004"
34
35 /* True if ACPI device is present */
36 static bool cros_ec_lpc_acpi_device_found;
37
38 /*
39 * Indicates that lpc_driver_data.quirk_mmio_memory_base should
40 * be used as the base port for EC mapped memory.
41 */
42 #define CROS_EC_LPC_QUIRK_REMAP_MEMORY BIT(0)
43 /*
44 * Indicates that lpc_driver_data.quirk_acpi_id should be used to find
45 * the ACPI device.
46 */
47 #define CROS_EC_LPC_QUIRK_ACPI_ID BIT(1)
48 /*
49 * Indicates that lpc_driver_data.quirk_aml_mutex_name should be used
50 * to find an AML mutex to protect access to Microchip EC.
51 */
52 #define CROS_EC_LPC_QUIRK_AML_MUTEX BIT(2)
53
54 /**
55 * struct lpc_driver_data - driver data attached to a DMI device ID to indicate
56 * hardware quirks.
57 * @quirks: a bitfield composed of quirks from CROS_EC_LPC_QUIRK_*
58 * @quirk_mmio_memory_base: The first I/O port addressing EC mapped memory (used
59 * when quirk ...REMAP_MEMORY is set.)
60 * @quirk_acpi_id: An ACPI HID to be used to find the ACPI device.
61 * @quirk_aml_mutex_name: The name of an AML mutex to be used to protect access
62 * to Microchip EC.
63 */
64 struct lpc_driver_data {
65 u32 quirks;
66 u16 quirk_mmio_memory_base;
67 const char *quirk_acpi_id;
68 const char *quirk_aml_mutex_name;
69 };
70
71 /**
72 * struct cros_ec_lpc - LPC device-specific data
73 * @mmio_memory_base: The first I/O port addressing EC mapped memory.
74 * @base: For EC supporting memory mapping, base address of the mapped region.
75 * @mem32: Information about the memory mapped register region, if present.
76 * @read: Copy length bytes from EC address offset into buffer dest.
77 * Returns a negative error code on error, or the 8-bit checksum
78 * of all bytes read.
79 * @write: Copy length bytes from buffer msg into EC address offset.
80 * Returns a negative error code on error, or the 8-bit checksum
81 * of all bytes written.
82 */
83 struct cros_ec_lpc {
84 u16 mmio_memory_base;
85 void __iomem *base;
86 struct acpi_resource_fixed_memory32 mem32;
87 int (*read)(struct cros_ec_lpc *ec_lpc, unsigned int offset,
88 unsigned int length, u8 *dest);
89 int (*write)(struct cros_ec_lpc *ec_lpc, unsigned int offset,
90 unsigned int length, const u8 *msg);
91 };
92
93 /*
94 * A generic instance of the read function of struct lpc_driver_ops, used for
95 * the LPC EC.
96 */
cros_ec_lpc_read_bytes(struct cros_ec_lpc * _,unsigned int offset,unsigned int length,u8 * dest)97 static int cros_ec_lpc_read_bytes(struct cros_ec_lpc *_, unsigned int offset, unsigned int length,
98 u8 *dest)
99 {
100 u8 sum = 0;
101 int i;
102
103 for (i = 0; i < length; ++i) {
104 dest[i] = inb(offset + i);
105 sum += dest[i];
106 }
107
108 /* Return checksum of all bytes read */
109 return sum;
110 }
111
112 /*
113 * A generic instance of the write function of struct lpc_driver_ops, used for
114 * the LPC EC.
115 */
cros_ec_lpc_write_bytes(struct cros_ec_lpc * _,unsigned int offset,unsigned int length,const u8 * msg)116 static int cros_ec_lpc_write_bytes(struct cros_ec_lpc *_, unsigned int offset, unsigned int length,
117 const u8 *msg)
118 {
119 u8 sum = 0;
120 int i;
121
122 for (i = 0; i < length; ++i) {
123 outb(msg[i], offset + i);
124 sum += msg[i];
125 }
126
127 /* Return checksum of all bytes written */
128 return sum;
129 }
130
131 /*
132 * An instance of the read function of struct lpc_driver_ops, used for the
133 * MEC variant of LPC EC.
134 */
cros_ec_lpc_mec_read_bytes(struct cros_ec_lpc * ec_lpc,unsigned int offset,unsigned int length,u8 * dest)135 static int cros_ec_lpc_mec_read_bytes(struct cros_ec_lpc *ec_lpc, unsigned int offset,
136 unsigned int length, u8 *dest)
137 {
138 int in_range = cros_ec_lpc_mec_in_range(offset, length);
139
140 if (in_range < 0)
141 return in_range;
142
143 return in_range ?
144 cros_ec_lpc_io_bytes_mec(MEC_IO_READ,
145 offset - EC_HOST_CMD_REGION0,
146 length, dest) :
147 cros_ec_lpc_read_bytes(ec_lpc, offset, length, dest);
148 }
149
150 /*
151 * An instance of the write function of struct lpc_driver_ops, used for the
152 * MEC variant of LPC EC.
153 */
cros_ec_lpc_mec_write_bytes(struct cros_ec_lpc * ec_lpc,unsigned int offset,unsigned int length,const u8 * msg)154 static int cros_ec_lpc_mec_write_bytes(struct cros_ec_lpc *ec_lpc, unsigned int offset,
155 unsigned int length, const u8 *msg)
156 {
157 int in_range = cros_ec_lpc_mec_in_range(offset, length);
158
159 if (in_range < 0)
160 return in_range;
161
162 return in_range ?
163 cros_ec_lpc_io_bytes_mec(MEC_IO_WRITE,
164 offset - EC_HOST_CMD_REGION0,
165 length, (u8 *)msg) :
166 cros_ec_lpc_write_bytes(ec_lpc, offset, length, msg);
167 }
168
cros_ec_lpc_direct_read(struct cros_ec_lpc * ec_lpc,unsigned int offset,unsigned int length,u8 * dest)169 static int cros_ec_lpc_direct_read(struct cros_ec_lpc *ec_lpc, unsigned int offset,
170 unsigned int length, u8 *dest)
171 {
172 int sum = 0;
173 int i;
174
175 if (offset < EC_HOST_CMD_REGION0 || offset > EC_LPC_ADDR_MEMMAP +
176 EC_MEMMAP_SIZE) {
177 return cros_ec_lpc_read_bytes(ec_lpc, offset, length, dest);
178 }
179
180 for (i = 0; i < length; ++i) {
181 dest[i] = readb(ec_lpc->base + offset - EC_HOST_CMD_REGION0 + i);
182 sum += dest[i];
183 }
184
185 /* Return checksum of all bytes read */
186 return sum;
187 }
188
cros_ec_lpc_direct_write(struct cros_ec_lpc * ec_lpc,unsigned int offset,unsigned int length,const u8 * msg)189 static int cros_ec_lpc_direct_write(struct cros_ec_lpc *ec_lpc, unsigned int offset,
190 unsigned int length, const u8 *msg)
191 {
192 int sum = 0;
193 int i;
194
195 if (offset < EC_HOST_CMD_REGION0 || offset > EC_LPC_ADDR_MEMMAP +
196 EC_MEMMAP_SIZE) {
197 return cros_ec_lpc_write_bytes(ec_lpc, offset, length, msg);
198 }
199
200 for (i = 0; i < length; ++i) {
201 writeb(msg[i], ec_lpc->base + offset - EC_HOST_CMD_REGION0 + i);
202 sum += msg[i];
203 }
204
205 /* Return checksum of all bytes written */
206 return sum;
207 }
208
ec_response_timed_out(struct cros_ec_lpc * ec_lpc)209 static int ec_response_timed_out(struct cros_ec_lpc *ec_lpc)
210 {
211 unsigned long one_second = jiffies + HZ;
212 u8 data;
213 int ret;
214
215 usleep_range(200, 300);
216 do {
217 ret = ec_lpc->read(ec_lpc, EC_LPC_ADDR_HOST_CMD, 1, &data);
218 if (ret < 0)
219 return ret;
220 if (!(data & EC_LPC_STATUS_BUSY_MASK))
221 return 0;
222 usleep_range(100, 200);
223 } while (time_before(jiffies, one_second));
224
225 return 1;
226 }
227
cros_ec_pkt_xfer_lpc(struct cros_ec_device * ec,struct cros_ec_command * msg)228 static int cros_ec_pkt_xfer_lpc(struct cros_ec_device *ec,
229 struct cros_ec_command *msg)
230 {
231 struct cros_ec_lpc *ec_lpc = ec->priv;
232 struct ec_host_response response;
233 u8 sum;
234 int ret = 0;
235 u8 *dout;
236
237 ret = cros_ec_prepare_tx(ec, msg);
238 if (ret < 0)
239 goto done;
240
241 /* Write buffer */
242 ret = ec_lpc->write(ec_lpc, EC_LPC_ADDR_HOST_PACKET, ret, ec->dout);
243 if (ret < 0)
244 goto done;
245
246 /* Here we go */
247 sum = EC_COMMAND_PROTOCOL_3;
248 ret = ec_lpc->write(ec_lpc, EC_LPC_ADDR_HOST_CMD, 1, &sum);
249 if (ret < 0)
250 goto done;
251
252 ret = ec_response_timed_out(ec_lpc);
253 if (ret < 0)
254 goto done;
255 if (ret) {
256 dev_warn(ec->dev, "EC response timed out\n");
257 ret = -EIO;
258 goto done;
259 }
260
261 /* Check result */
262 ret = ec_lpc->read(ec_lpc, EC_LPC_ADDR_HOST_DATA, 1, &sum);
263 if (ret < 0)
264 goto done;
265 msg->result = ret;
266 ret = cros_ec_check_result(ec, msg);
267 if (ret)
268 goto done;
269
270 /* Read back response */
271 dout = (u8 *)&response;
272 ret = ec_lpc->read(ec_lpc, EC_LPC_ADDR_HOST_PACKET, sizeof(response),
273 dout);
274 if (ret < 0)
275 goto done;
276 sum = ret;
277
278 msg->result = response.result;
279
280 if (response.data_len > msg->insize) {
281 dev_err(ec->dev,
282 "packet too long (%d bytes, expected %d)",
283 response.data_len, msg->insize);
284 ret = -EMSGSIZE;
285 goto done;
286 }
287
288 /* Read response and process checksum */
289 ret = ec_lpc->read(ec_lpc, EC_LPC_ADDR_HOST_PACKET +
290 sizeof(response), response.data_len,
291 msg->data);
292 if (ret < 0)
293 goto done;
294 sum += ret;
295
296 if (sum) {
297 dev_err(ec->dev,
298 "bad packet checksum %02x\n",
299 response.checksum);
300 ret = -EBADMSG;
301 goto done;
302 }
303
304 /* Return actual amount of data received */
305 ret = response.data_len;
306 done:
307 return ret;
308 }
309
cros_ec_cmd_xfer_lpc(struct cros_ec_device * ec,struct cros_ec_command * msg)310 static int cros_ec_cmd_xfer_lpc(struct cros_ec_device *ec,
311 struct cros_ec_command *msg)
312 {
313 struct cros_ec_lpc *ec_lpc = ec->priv;
314 struct ec_lpc_host_args args;
315 u8 sum;
316 int ret = 0;
317
318 if (msg->outsize > EC_PROTO2_MAX_PARAM_SIZE ||
319 msg->insize > EC_PROTO2_MAX_PARAM_SIZE) {
320 dev_err(ec->dev,
321 "invalid buffer sizes (out %d, in %d)\n",
322 msg->outsize, msg->insize);
323 return -EINVAL;
324 }
325
326 /* Now actually send the command to the EC and get the result */
327 args.flags = EC_HOST_ARGS_FLAG_FROM_HOST;
328 args.command_version = msg->version;
329 args.data_size = msg->outsize;
330
331 /* Initialize checksum */
332 sum = msg->command + args.flags + args.command_version + args.data_size;
333
334 /* Copy data and update checksum */
335 ret = ec_lpc->write(ec_lpc, EC_LPC_ADDR_HOST_PARAM, msg->outsize,
336 msg->data);
337 if (ret < 0)
338 goto done;
339 sum += ret;
340
341 /* Finalize checksum and write args */
342 args.checksum = sum;
343 ret = ec_lpc->write(ec_lpc, EC_LPC_ADDR_HOST_ARGS, sizeof(args),
344 (u8 *)&args);
345 if (ret < 0)
346 goto done;
347
348 /* Here we go */
349 sum = msg->command;
350 ret = ec_lpc->write(ec_lpc, EC_LPC_ADDR_HOST_CMD, 1, &sum);
351 if (ret < 0)
352 goto done;
353
354 ret = ec_response_timed_out(ec_lpc);
355 if (ret < 0)
356 goto done;
357 if (ret) {
358 dev_warn(ec->dev, "EC response timed out\n");
359 ret = -EIO;
360 goto done;
361 }
362
363 /* Check result */
364 ret = ec_lpc->read(ec_lpc, EC_LPC_ADDR_HOST_DATA, 1, &sum);
365 if (ret < 0)
366 goto done;
367 msg->result = ret;
368 ret = cros_ec_check_result(ec, msg);
369 if (ret)
370 goto done;
371
372 /* Read back args */
373 ret = ec_lpc->read(ec_lpc, EC_LPC_ADDR_HOST_ARGS, sizeof(args), (u8 *)&args);
374 if (ret < 0)
375 goto done;
376
377 if (args.data_size > msg->insize) {
378 dev_err(ec->dev,
379 "packet too long (%d bytes, expected %d)",
380 args.data_size, msg->insize);
381 ret = -ENOSPC;
382 goto done;
383 }
384
385 /* Start calculating response checksum */
386 sum = msg->command + args.flags + args.command_version + args.data_size;
387
388 /* Read response and update checksum */
389 ret = ec_lpc->read(ec_lpc, EC_LPC_ADDR_HOST_PARAM, args.data_size,
390 msg->data);
391 if (ret < 0)
392 goto done;
393 sum += ret;
394
395 /* Verify checksum */
396 if (args.checksum != sum) {
397 dev_err(ec->dev,
398 "bad packet checksum, expected %02x, got %02x\n",
399 args.checksum, sum);
400 ret = -EBADMSG;
401 goto done;
402 }
403
404 /* Return actual amount of data received */
405 ret = args.data_size;
406 done:
407 return ret;
408 }
409
410 /* Returns num bytes read, or negative on error. Doesn't need locking. */
cros_ec_lpc_readmem(struct cros_ec_device * ec,unsigned int offset,unsigned int bytes,void * dest)411 static int cros_ec_lpc_readmem(struct cros_ec_device *ec, unsigned int offset,
412 unsigned int bytes, void *dest)
413 {
414 struct cros_ec_lpc *ec_lpc = ec->priv;
415 int i = offset;
416 char *s = dest;
417 int cnt = 0;
418 int ret;
419
420 if (offset >= EC_MEMMAP_SIZE - bytes)
421 return -EINVAL;
422
423 /* fixed length */
424 if (bytes) {
425 ret = ec_lpc->read(ec_lpc, ec_lpc->mmio_memory_base + offset, bytes, s);
426 if (ret < 0)
427 return ret;
428 return bytes;
429 }
430
431 /* string */
432 for (; i < EC_MEMMAP_SIZE; i++, s++) {
433 ret = ec_lpc->read(ec_lpc, ec_lpc->mmio_memory_base + i, 1, s);
434 if (ret < 0)
435 return ret;
436 cnt++;
437 if (!*s)
438 break;
439 }
440
441 return cnt;
442 }
443
cros_ec_lpc_acpi_notify(acpi_handle device,u32 value,void * data)444 static void cros_ec_lpc_acpi_notify(acpi_handle device, u32 value, void *data)
445 {
446 static const char *env[] = { "ERROR=PANIC", NULL };
447 struct cros_ec_device *ec_dev = data;
448 bool ec_has_more_events;
449 int ret;
450
451 ec_dev->last_event_time = cros_ec_get_time_ns();
452
453 if (value == ACPI_NOTIFY_CROS_EC_PANIC) {
454 dev_emerg(ec_dev->dev, "CrOS EC Panic Reported. Shutdown is imminent!");
455 blocking_notifier_call_chain(&ec_dev->panic_notifier, 0, ec_dev);
456 kobject_uevent_env(&ec_dev->dev->kobj, KOBJ_CHANGE, (char **)env);
457 /* Begin orderly shutdown. EC will force reset after a short period. */
458 hw_protection_shutdown("CrOS EC Panic", -1);
459 /* Do not query for other events after a panic is reported */
460 return;
461 }
462
463 if (value == ACPI_NOTIFY_CROS_EC_MKBP && ec_dev->mkbp_event_supported)
464 do {
465 ret = cros_ec_get_next_event(ec_dev, NULL,
466 &ec_has_more_events);
467 if (ret > 0)
468 blocking_notifier_call_chain(
469 &ec_dev->event_notifier, 0,
470 ec_dev);
471 } while (ec_has_more_events);
472
473 if (value == ACPI_NOTIFY_DEVICE_WAKE)
474 pm_system_wakeup();
475 }
476
cros_ec_lpc_parse_device(acpi_handle handle,u32 level,void * context,void ** retval)477 static acpi_status cros_ec_lpc_parse_device(acpi_handle handle, u32 level,
478 void *context, void **retval)
479 {
480 *(struct acpi_device **)context = acpi_fetch_acpi_dev(handle);
481 return AE_CTRL_TERMINATE;
482 }
483
cros_ec_lpc_get_device(const char * id)484 static struct acpi_device *cros_ec_lpc_get_device(const char *id)
485 {
486 struct acpi_device *adev = NULL;
487 acpi_status status = acpi_get_devices(id, cros_ec_lpc_parse_device,
488 &adev, NULL);
489 if (ACPI_FAILURE(status)) {
490 pr_warn(DRV_NAME ": Looking for %s failed\n", id);
491 return NULL;
492 }
493
494 return adev;
495 }
496
cros_ec_lpc_resources(struct acpi_resource * res,void * data)497 static acpi_status cros_ec_lpc_resources(struct acpi_resource *res, void *data)
498 {
499 struct cros_ec_lpc *ec_lpc = data;
500
501 switch (res->type) {
502 case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
503 ec_lpc->mem32 = res->data.fixed_memory32;
504 break;
505 default:
506 break;
507 }
508 return AE_OK;
509 }
510
cros_ec_lpc_probe(struct platform_device * pdev)511 static int cros_ec_lpc_probe(struct platform_device *pdev)
512 {
513 struct device *dev = &pdev->dev;
514 struct acpi_device *adev;
515 acpi_status status;
516 struct cros_ec_device *ec_dev;
517 struct cros_ec_lpc *ec_lpc;
518 const struct lpc_driver_data *driver_data;
519 u8 buf[2] = {};
520 int irq, ret;
521 u32 quirks;
522
523 ec_lpc = devm_kzalloc(dev, sizeof(*ec_lpc), GFP_KERNEL);
524 if (!ec_lpc)
525 return -ENOMEM;
526
527 ec_lpc->mmio_memory_base = EC_LPC_ADDR_MEMMAP;
528
529 driver_data = platform_get_drvdata(pdev);
530 if (!driver_data)
531 driver_data = acpi_device_get_match_data(dev);
532
533 if (driver_data) {
534 quirks = driver_data->quirks;
535
536 if (quirks)
537 dev_info(dev, "loaded with quirks %8.08x\n", quirks);
538
539 if (quirks & CROS_EC_LPC_QUIRK_REMAP_MEMORY)
540 ec_lpc->mmio_memory_base = driver_data->quirk_mmio_memory_base;
541
542 if (quirks & CROS_EC_LPC_QUIRK_ACPI_ID) {
543 adev = cros_ec_lpc_get_device(driver_data->quirk_acpi_id);
544 if (!adev) {
545 dev_err(dev, "failed to get ACPI device '%s'",
546 driver_data->quirk_acpi_id);
547 return -ENODEV;
548 }
549 ACPI_COMPANION_SET(dev, adev);
550 }
551
552 if (quirks & CROS_EC_LPC_QUIRK_AML_MUTEX) {
553 const char *name = driver_data->quirk_aml_mutex_name;
554 ret = cros_ec_lpc_mec_acpi_mutex(ACPI_COMPANION(dev), name);
555 if (ret) {
556 dev_err(dev, "failed to get AML mutex '%s'", name);
557 return ret;
558 }
559 dev_info(dev, "got AML mutex '%s'", name);
560 }
561 }
562 adev = ACPI_COMPANION(dev);
563 if (adev) {
564 /*
565 * Retrieve the resource information in the CRS register, if available.
566 */
567 status = acpi_walk_resources(adev->handle, METHOD_NAME__CRS,
568 cros_ec_lpc_resources, ec_lpc);
569 if (ACPI_SUCCESS(status) && ec_lpc->mem32.address_length) {
570 ec_lpc->base = devm_ioremap(dev,
571 ec_lpc->mem32.address,
572 ec_lpc->mem32.address_length);
573 if (!ec_lpc->base)
574 return -EINVAL;
575
576 ec_lpc->read = cros_ec_lpc_direct_read;
577 ec_lpc->write = cros_ec_lpc_direct_write;
578 }
579 }
580 if (!ec_lpc->read) {
581 /*
582 * The Framework Laptop (and possibly other non-ChromeOS devices)
583 * only exposes the eight I/O ports that are required for the Microchip EC.
584 * Requesting a larger reservation will fail.
585 */
586 if (!devm_request_region(dev, EC_HOST_CMD_REGION0,
587 EC_HOST_CMD_MEC_REGION_SIZE, dev_name(dev))) {
588 dev_err(dev, "couldn't reserve MEC region\n");
589 return -EBUSY;
590 }
591
592 cros_ec_lpc_mec_init(EC_HOST_CMD_REGION0,
593 EC_LPC_ADDR_MEMMAP + EC_MEMMAP_SIZE);
594
595 /*
596 * Read the mapped ID twice, the first one is assuming the
597 * EC is a Microchip Embedded Controller (MEC) variant, if the
598 * protocol fails, fallback to the non MEC variant and try to
599 * read again the ID.
600 */
601 ec_lpc->read = cros_ec_lpc_mec_read_bytes;
602 ec_lpc->write = cros_ec_lpc_mec_write_bytes;
603 }
604 ret = ec_lpc->read(ec_lpc, EC_LPC_ADDR_MEMMAP + EC_MEMMAP_ID, 2, buf);
605 if (ret < 0)
606 return ret;
607 if (buf[0] != 'E' || buf[1] != 'C') {
608 if (!devm_request_region(dev, ec_lpc->mmio_memory_base, EC_MEMMAP_SIZE,
609 dev_name(dev))) {
610 dev_err(dev, "couldn't reserve memmap region\n");
611 return -EBUSY;
612 }
613
614 /* Re-assign read/write operations for the non MEC variant */
615 ec_lpc->read = cros_ec_lpc_read_bytes;
616 ec_lpc->write = cros_ec_lpc_write_bytes;
617 ret = ec_lpc->read(ec_lpc, ec_lpc->mmio_memory_base + EC_MEMMAP_ID, 2,
618 buf);
619 if (ret < 0)
620 return ret;
621 if (buf[0] != 'E' || buf[1] != 'C') {
622 dev_err(dev, "EC ID not detected\n");
623 return -ENODEV;
624 }
625
626 /* Reserve the remaining I/O ports required by the non-MEC protocol. */
627 if (!devm_request_region(dev, EC_HOST_CMD_REGION0 + EC_HOST_CMD_MEC_REGION_SIZE,
628 EC_HOST_CMD_REGION_SIZE - EC_HOST_CMD_MEC_REGION_SIZE,
629 dev_name(dev))) {
630 dev_err(dev, "couldn't reserve remainder of region0\n");
631 return -EBUSY;
632 }
633 if (!devm_request_region(dev, EC_HOST_CMD_REGION1,
634 EC_HOST_CMD_REGION_SIZE, dev_name(dev))) {
635 dev_err(dev, "couldn't reserve region1\n");
636 return -EBUSY;
637 }
638 }
639
640 ec_dev = devm_kzalloc(dev, sizeof(*ec_dev), GFP_KERNEL);
641 if (!ec_dev)
642 return -ENOMEM;
643
644 platform_set_drvdata(pdev, ec_dev);
645 ec_dev->dev = dev;
646 ec_dev->phys_name = dev_name(dev);
647 ec_dev->cmd_xfer = cros_ec_cmd_xfer_lpc;
648 ec_dev->pkt_xfer = cros_ec_pkt_xfer_lpc;
649 ec_dev->cmd_readmem = cros_ec_lpc_readmem;
650 ec_dev->din_size = sizeof(struct ec_host_response) +
651 sizeof(struct ec_response_get_protocol_info);
652 ec_dev->dout_size = sizeof(struct ec_host_request) + sizeof(struct ec_params_rwsig_action);
653 ec_dev->priv = ec_lpc;
654
655 /*
656 * Some boards do not have an IRQ allotted for cros_ec_lpc,
657 * which makes ENXIO an expected (and safe) scenario.
658 */
659 irq = platform_get_irq_optional(pdev, 0);
660 if (irq > 0)
661 ec_dev->irq = irq;
662 else if (irq != -ENXIO) {
663 dev_err(dev, "couldn't retrieve IRQ number (%d)\n", irq);
664 return irq;
665 }
666
667 ret = cros_ec_register(ec_dev);
668 if (ret) {
669 dev_err(dev, "couldn't register ec_dev (%d)\n", ret);
670 return ret;
671 }
672
673 /*
674 * Connect a notify handler to process MKBP messages if we have a
675 * companion ACPI device.
676 */
677 if (adev) {
678 status = acpi_install_notify_handler(adev->handle,
679 ACPI_ALL_NOTIFY,
680 cros_ec_lpc_acpi_notify,
681 ec_dev);
682 if (ACPI_FAILURE(status))
683 dev_warn(dev, "Failed to register notifier %08x\n",
684 status);
685 }
686
687 return 0;
688 }
689
cros_ec_lpc_remove(struct platform_device * pdev)690 static void cros_ec_lpc_remove(struct platform_device *pdev)
691 {
692 struct cros_ec_device *ec_dev = platform_get_drvdata(pdev);
693 struct acpi_device *adev;
694
695 adev = ACPI_COMPANION(&pdev->dev);
696 if (adev)
697 acpi_remove_notify_handler(adev->handle, ACPI_ALL_NOTIFY,
698 cros_ec_lpc_acpi_notify);
699
700 cros_ec_unregister(ec_dev);
701 }
702
703 static const struct lpc_driver_data framework_laptop_npcx_lpc_driver_data __initconst = {
704 .quirks = CROS_EC_LPC_QUIRK_REMAP_MEMORY,
705 .quirk_mmio_memory_base = 0xE00,
706 };
707
708 static const struct lpc_driver_data framework_laptop_mec_lpc_driver_data __initconst = {
709 .quirks = CROS_EC_LPC_QUIRK_ACPI_ID|CROS_EC_LPC_QUIRK_AML_MUTEX,
710 .quirk_acpi_id = "PNP0C09",
711 .quirk_aml_mutex_name = "ECMT",
712 };
713
714 static const struct acpi_device_id cros_ec_lpc_acpi_device_ids[] = {
715 { ACPI_DRV_NAME, 0 },
716 { FRMW_ACPI_DRV_NAME, (kernel_ulong_t)&framework_laptop_npcx_lpc_driver_data },
717 { }
718 };
719 MODULE_DEVICE_TABLE(acpi, cros_ec_lpc_acpi_device_ids);
720
721 static const struct dmi_system_id cros_ec_lpc_dmi_table[] __initconst = {
722 {
723 /*
724 * Today all Chromebooks/boxes ship with Google_* as version and
725 * coreboot as bios vendor. No other systems with this
726 * combination are known to date.
727 */
728 .matches = {
729 DMI_MATCH(DMI_BIOS_VENDOR, "coreboot"),
730 DMI_MATCH(DMI_BIOS_VERSION, "Google_"),
731 },
732 },
733 {
734 /*
735 * If the box is running custom coreboot firmware then the
736 * DMI BIOS version string will not be matched by "Google_",
737 * but the system vendor string will still be matched by
738 * "GOOGLE".
739 */
740 .matches = {
741 DMI_MATCH(DMI_BIOS_VENDOR, "coreboot"),
742 DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"),
743 },
744 },
745 {
746 /* x86-link, the Chromebook Pixel. */
747 .matches = {
748 DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"),
749 DMI_MATCH(DMI_PRODUCT_NAME, "Link"),
750 },
751 },
752 {
753 /* x86-samus, the Chromebook Pixel 2. */
754 .matches = {
755 DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"),
756 DMI_MATCH(DMI_PRODUCT_NAME, "Samus"),
757 },
758 },
759 {
760 /* x86-peppy, the Acer C720 Chromebook. */
761 .matches = {
762 DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
763 DMI_MATCH(DMI_PRODUCT_NAME, "Peppy"),
764 },
765 },
766 {
767 /* x86-glimmer, the Lenovo Thinkpad Yoga 11e. */
768 .matches = {
769 DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"),
770 DMI_MATCH(DMI_PRODUCT_NAME, "Glimmer"),
771 },
772 },
773 /* A small number of non-Chromebook/box machines also use the ChromeOS EC */
774 {
775 /* Framework Laptop (11th Gen Intel Core) */
776 .matches = {
777 DMI_MATCH(DMI_SYS_VENDOR, "Framework"),
778 DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "Laptop"),
779 },
780 .driver_data = (void *)&framework_laptop_mec_lpc_driver_data,
781 },
782 {
783 /* Framework Laptop (12th Gen Intel Core) */
784 .matches = {
785 DMI_MATCH(DMI_SYS_VENDOR, "Framework"),
786 DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "Laptop (12th Gen Intel Core)"),
787 },
788 .driver_data = (void *)&framework_laptop_mec_lpc_driver_data,
789 },
790 {
791 /* Framework Laptop (13th Gen Intel Core) */
792 .matches = {
793 DMI_MATCH(DMI_SYS_VENDOR, "Framework"),
794 DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "Laptop (13th Gen Intel Core)"),
795 },
796 .driver_data = (void *)&framework_laptop_mec_lpc_driver_data,
797 },
798 {
799 /*
800 * All remaining Framework Laptop models (13 AMD Ryzen, 16 AMD
801 * Ryzen, Intel Core Ultra)
802 */
803 .matches = {
804 DMI_MATCH(DMI_SYS_VENDOR, "Framework"),
805 DMI_MATCH(DMI_PRODUCT_FAMILY, "Laptop"),
806 },
807 .driver_data = (void *)&framework_laptop_npcx_lpc_driver_data,
808 },
809 { /* sentinel */ }
810 };
811 MODULE_DEVICE_TABLE(dmi, cros_ec_lpc_dmi_table);
812
813 #ifdef CONFIG_PM_SLEEP
cros_ec_lpc_prepare(struct device * dev)814 static int cros_ec_lpc_prepare(struct device *dev)
815 {
816 struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
817 return cros_ec_suspend_prepare(ec_dev);
818 }
819
cros_ec_lpc_complete(struct device * dev)820 static void cros_ec_lpc_complete(struct device *dev)
821 {
822 struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
823 cros_ec_resume_complete(ec_dev);
824 }
825
cros_ec_lpc_suspend_late(struct device * dev)826 static int cros_ec_lpc_suspend_late(struct device *dev)
827 {
828 struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
829
830 return cros_ec_suspend_late(ec_dev);
831 }
832
cros_ec_lpc_resume_early(struct device * dev)833 static int cros_ec_lpc_resume_early(struct device *dev)
834 {
835 struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
836
837 return cros_ec_resume_early(ec_dev);
838 }
839 #endif
840
841 static const struct dev_pm_ops cros_ec_lpc_pm_ops = {
842 #ifdef CONFIG_PM_SLEEP
843 .prepare = cros_ec_lpc_prepare,
844 .complete = cros_ec_lpc_complete,
845 #endif
846 SET_LATE_SYSTEM_SLEEP_PM_OPS(cros_ec_lpc_suspend_late, cros_ec_lpc_resume_early)
847 };
848
849 static struct platform_driver cros_ec_lpc_driver = {
850 .driver = {
851 .name = DRV_NAME,
852 .acpi_match_table = cros_ec_lpc_acpi_device_ids,
853 .pm = &cros_ec_lpc_pm_ops,
854 /*
855 * ACPI child devices may probe before us, and they racily
856 * check our drvdata pointer. Force synchronous probe until
857 * those races are resolved.
858 */
859 .probe_type = PROBE_FORCE_SYNCHRONOUS,
860 },
861 .probe = cros_ec_lpc_probe,
862 .remove = cros_ec_lpc_remove,
863 };
864
865 static struct platform_device cros_ec_lpc_device = {
866 .name = DRV_NAME
867 };
868
cros_ec_lpc_init(void)869 static int __init cros_ec_lpc_init(void)
870 {
871 int ret;
872 const struct dmi_system_id *dmi_match;
873
874 cros_ec_lpc_acpi_device_found = !!cros_ec_lpc_get_device(ACPI_DRV_NAME) ||
875 !!cros_ec_lpc_get_device(FRMW_ACPI_DRV_NAME);
876
877 dmi_match = dmi_first_match(cros_ec_lpc_dmi_table);
878
879 if (!cros_ec_lpc_acpi_device_found && !dmi_match) {
880 pr_err(DRV_NAME ": unsupported system.\n");
881 return -ENODEV;
882 }
883
884 /* Register the driver */
885 ret = platform_driver_register(&cros_ec_lpc_driver);
886 if (ret) {
887 pr_err(DRV_NAME ": can't register driver: %d\n", ret);
888 return ret;
889 }
890
891 if (!cros_ec_lpc_acpi_device_found) {
892 /* Pass the DMI match's driver data down to the platform device */
893 platform_set_drvdata(&cros_ec_lpc_device, dmi_match->driver_data);
894
895 /* Register the device, and it'll get hooked up automatically */
896 ret = platform_device_register(&cros_ec_lpc_device);
897 if (ret) {
898 pr_err(DRV_NAME ": can't register device: %d\n", ret);
899 platform_driver_unregister(&cros_ec_lpc_driver);
900 }
901 }
902
903 return ret;
904 }
905
cros_ec_lpc_exit(void)906 static void __exit cros_ec_lpc_exit(void)
907 {
908 if (!cros_ec_lpc_acpi_device_found)
909 platform_device_unregister(&cros_ec_lpc_device);
910 platform_driver_unregister(&cros_ec_lpc_driver);
911 }
912
913 module_init(cros_ec_lpc_init);
914 module_exit(cros_ec_lpc_exit);
915
916 MODULE_LICENSE("GPL");
917 MODULE_DESCRIPTION("ChromeOS EC LPC driver");
918