1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Perf support for the Statistical Profiling Extension, introduced as
4 * part of ARMv8.2.
5 *
6 * Copyright (C) 2016 ARM Limited
7 *
8 * Author: Will Deacon <[email protected]>
9 */
10
11 #define PMUNAME "arm_spe"
12 #define DRVNAME PMUNAME "_pmu"
13 #define pr_fmt(fmt) DRVNAME ": " fmt
14
15 #include <linux/bitfield.h>
16 #include <linux/bitops.h>
17 #include <linux/bug.h>
18 #include <linux/capability.h>
19 #include <linux/cpuhotplug.h>
20 #include <linux/cpumask.h>
21 #include <linux/device.h>
22 #include <linux/errno.h>
23 #include <linux/interrupt.h>
24 #include <linux/irq.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41
42 /*
43 * Cache if the event is allowed to trace Context information.
44 * This allows us to perform the check, i.e, perf_allow_kernel(),
45 * in the context of the event owner, once, during the event_init().
46 */
47 #define SPE_PMU_HW_FLAGS_CX 0x00001
48
49 static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX);
50
set_spe_event_has_cx(struct perf_event * event)51 static void set_spe_event_has_cx(struct perf_event *event)
52 {
53 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && !perf_allow_kernel(&event->attr))
54 event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
55 }
56
get_spe_event_has_cx(struct perf_event * event)57 static bool get_spe_event_has_cx(struct perf_event *event)
58 {
59 return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
60 }
61
62 #define ARM_SPE_BUF_PAD_BYTE 0
63
64 struct arm_spe_pmu_buf {
65 int nr_pages;
66 bool snapshot;
67 void *base;
68 };
69
70 struct arm_spe_pmu {
71 struct pmu pmu;
72 struct platform_device *pdev;
73 cpumask_t supported_cpus;
74 struct hlist_node hotplug_node;
75
76 int irq; /* PPI */
77 u16 pmsver;
78 u16 min_period;
79 u16 counter_sz;
80
81 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
82 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
83 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
84 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
85 #define SPE_PMU_FEAT_LDS (1UL << 4)
86 #define SPE_PMU_FEAT_ERND (1UL << 5)
87 #define SPE_PMU_FEAT_INV_FILT_EVT (1UL << 6)
88 #define SPE_PMU_FEAT_DISCARD (1UL << 7)
89 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
90 u64 features;
91
92 u16 max_record_sz;
93 u16 align;
94 struct perf_output_handle __percpu *handle;
95 };
96
97 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
98
99 /* Convert a free-running index from perf into an SPE buffer offset */
100 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
101
102 /* Keep track of our dynamic hotplug state */
103 static enum cpuhp_state arm_spe_pmu_online;
104
105 enum arm_spe_pmu_buf_fault_action {
106 SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
107 SPE_PMU_BUF_FAULT_ACT_FATAL,
108 SPE_PMU_BUF_FAULT_ACT_OK,
109 };
110
111 /* This sysfs gunk was really good fun to write. */
112 enum arm_spe_pmu_capabilities {
113 SPE_PMU_CAP_ARCH_INST = 0,
114 SPE_PMU_CAP_ERND,
115 SPE_PMU_CAP_FEAT_MAX,
116 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
117 SPE_PMU_CAP_MIN_IVAL,
118 };
119
120 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
121 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
122 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND,
123 };
124
arm_spe_pmu_cap_get(struct arm_spe_pmu * spe_pmu,int cap)125 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
126 {
127 if (cap < SPE_PMU_CAP_FEAT_MAX)
128 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
129
130 switch (cap) {
131 case SPE_PMU_CAP_CNT_SZ:
132 return spe_pmu->counter_sz;
133 case SPE_PMU_CAP_MIN_IVAL:
134 return spe_pmu->min_period;
135 default:
136 WARN(1, "unknown cap %d\n", cap);
137 }
138
139 return 0;
140 }
141
arm_spe_pmu_cap_show(struct device * dev,struct device_attribute * attr,char * buf)142 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
143 struct device_attribute *attr,
144 char *buf)
145 {
146 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
147 struct dev_ext_attribute *ea =
148 container_of(attr, struct dev_ext_attribute, attr);
149 int cap = (long)ea->var;
150
151 return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
152 }
153
154 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
155 &((struct dev_ext_attribute[]) { \
156 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
157 })[0].attr.attr
158
159 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
160 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
161
162 static struct attribute *arm_spe_pmu_cap_attr[] = {
163 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
164 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
165 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
166 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
167 NULL,
168 };
169
170 static const struct attribute_group arm_spe_pmu_cap_group = {
171 .name = "caps",
172 .attrs = arm_spe_pmu_cap_attr,
173 };
174
175 /* User ABI */
176 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
177 #define ATTR_CFG_FLD_ts_enable_LO 0
178 #define ATTR_CFG_FLD_ts_enable_HI 0
179 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
180 #define ATTR_CFG_FLD_pa_enable_LO 1
181 #define ATTR_CFG_FLD_pa_enable_HI 1
182 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
183 #define ATTR_CFG_FLD_pct_enable_LO 2
184 #define ATTR_CFG_FLD_pct_enable_HI 2
185 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
186 #define ATTR_CFG_FLD_jitter_LO 16
187 #define ATTR_CFG_FLD_jitter_HI 16
188 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
189 #define ATTR_CFG_FLD_branch_filter_LO 32
190 #define ATTR_CFG_FLD_branch_filter_HI 32
191 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
192 #define ATTR_CFG_FLD_load_filter_LO 33
193 #define ATTR_CFG_FLD_load_filter_HI 33
194 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
195 #define ATTR_CFG_FLD_store_filter_LO 34
196 #define ATTR_CFG_FLD_store_filter_HI 34
197 #define ATTR_CFG_FLD_discard_CFG config /* PMBLIMITR_EL1.FM = DISCARD */
198 #define ATTR_CFG_FLD_discard_LO 35
199 #define ATTR_CFG_FLD_discard_HI 35
200
201 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
202 #define ATTR_CFG_FLD_event_filter_LO 0
203 #define ATTR_CFG_FLD_event_filter_HI 63
204
205 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
206 #define ATTR_CFG_FLD_min_latency_LO 0
207 #define ATTR_CFG_FLD_min_latency_HI 11
208
209 #define ATTR_CFG_FLD_inv_event_filter_CFG config3 /* PMSNEVFR_EL1 */
210 #define ATTR_CFG_FLD_inv_event_filter_LO 0
211 #define ATTR_CFG_FLD_inv_event_filter_HI 63
212
213 GEN_PMU_FORMAT_ATTR(ts_enable);
214 GEN_PMU_FORMAT_ATTR(pa_enable);
215 GEN_PMU_FORMAT_ATTR(pct_enable);
216 GEN_PMU_FORMAT_ATTR(jitter);
217 GEN_PMU_FORMAT_ATTR(branch_filter);
218 GEN_PMU_FORMAT_ATTR(load_filter);
219 GEN_PMU_FORMAT_ATTR(store_filter);
220 GEN_PMU_FORMAT_ATTR(event_filter);
221 GEN_PMU_FORMAT_ATTR(inv_event_filter);
222 GEN_PMU_FORMAT_ATTR(min_latency);
223 GEN_PMU_FORMAT_ATTR(discard);
224
225 static struct attribute *arm_spe_pmu_formats_attr[] = {
226 &format_attr_ts_enable.attr,
227 &format_attr_pa_enable.attr,
228 &format_attr_pct_enable.attr,
229 &format_attr_jitter.attr,
230 &format_attr_branch_filter.attr,
231 &format_attr_load_filter.attr,
232 &format_attr_store_filter.attr,
233 &format_attr_event_filter.attr,
234 &format_attr_inv_event_filter.attr,
235 &format_attr_min_latency.attr,
236 &format_attr_discard.attr,
237 NULL,
238 };
239
arm_spe_pmu_format_attr_is_visible(struct kobject * kobj,struct attribute * attr,int unused)240 static umode_t arm_spe_pmu_format_attr_is_visible(struct kobject *kobj,
241 struct attribute *attr,
242 int unused)
243 {
244 struct device *dev = kobj_to_dev(kobj);
245 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
246
247 if (attr == &format_attr_discard.attr && !(spe_pmu->features & SPE_PMU_FEAT_DISCARD))
248 return 0;
249
250 if (attr == &format_attr_inv_event_filter.attr && !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
251 return 0;
252
253 return attr->mode;
254 }
255
256 static const struct attribute_group arm_spe_pmu_format_group = {
257 .name = "format",
258 .is_visible = arm_spe_pmu_format_attr_is_visible,
259 .attrs = arm_spe_pmu_formats_attr,
260 };
261
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)262 static ssize_t cpumask_show(struct device *dev,
263 struct device_attribute *attr, char *buf)
264 {
265 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
266
267 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
268 }
269 static DEVICE_ATTR_RO(cpumask);
270
271 static struct attribute *arm_spe_pmu_attrs[] = {
272 &dev_attr_cpumask.attr,
273 NULL,
274 };
275
276 static const struct attribute_group arm_spe_pmu_group = {
277 .attrs = arm_spe_pmu_attrs,
278 };
279
280 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
281 &arm_spe_pmu_group,
282 &arm_spe_pmu_cap_group,
283 &arm_spe_pmu_format_group,
284 NULL,
285 };
286
287 /* Convert between user ABI and register values */
arm_spe_event_to_pmscr(struct perf_event * event)288 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
289 {
290 struct perf_event_attr *attr = &event->attr;
291 u64 reg = 0;
292
293 reg |= FIELD_PREP(PMSCR_EL1_TS, ATTR_CFG_GET_FLD(attr, ts_enable));
294 reg |= FIELD_PREP(PMSCR_EL1_PA, ATTR_CFG_GET_FLD(attr, pa_enable));
295 reg |= FIELD_PREP(PMSCR_EL1_PCT, ATTR_CFG_GET_FLD(attr, pct_enable));
296
297 if (!attr->exclude_user)
298 reg |= PMSCR_EL1_E0SPE;
299
300 if (!attr->exclude_kernel)
301 reg |= PMSCR_EL1_E1SPE;
302
303 if (get_spe_event_has_cx(event))
304 reg |= PMSCR_EL1_CX;
305
306 return reg;
307 }
308
arm_spe_event_sanitise_period(struct perf_event * event)309 static void arm_spe_event_sanitise_period(struct perf_event *event)
310 {
311 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
312 u64 period = event->hw.sample_period;
313 u64 max_period = PMSIRR_EL1_INTERVAL_MASK;
314
315 if (period < spe_pmu->min_period)
316 period = spe_pmu->min_period;
317 else if (period > max_period)
318 period = max_period;
319 else
320 period &= max_period;
321
322 event->hw.sample_period = period;
323 }
324
arm_spe_event_to_pmsirr(struct perf_event * event)325 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
326 {
327 struct perf_event_attr *attr = &event->attr;
328 u64 reg = 0;
329
330 arm_spe_event_sanitise_period(event);
331
332 reg |= FIELD_PREP(PMSIRR_EL1_RND, ATTR_CFG_GET_FLD(attr, jitter));
333 reg |= event->hw.sample_period;
334
335 return reg;
336 }
337
arm_spe_event_to_pmsfcr(struct perf_event * event)338 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
339 {
340 struct perf_event_attr *attr = &event->attr;
341 u64 reg = 0;
342
343 reg |= FIELD_PREP(PMSFCR_EL1_LD, ATTR_CFG_GET_FLD(attr, load_filter));
344 reg |= FIELD_PREP(PMSFCR_EL1_ST, ATTR_CFG_GET_FLD(attr, store_filter));
345 reg |= FIELD_PREP(PMSFCR_EL1_B, ATTR_CFG_GET_FLD(attr, branch_filter));
346
347 if (reg)
348 reg |= PMSFCR_EL1_FT;
349
350 if (ATTR_CFG_GET_FLD(attr, event_filter))
351 reg |= PMSFCR_EL1_FE;
352
353 if (ATTR_CFG_GET_FLD(attr, inv_event_filter))
354 reg |= PMSFCR_EL1_FnE;
355
356 if (ATTR_CFG_GET_FLD(attr, min_latency))
357 reg |= PMSFCR_EL1_FL;
358
359 return reg;
360 }
361
arm_spe_event_to_pmsevfr(struct perf_event * event)362 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
363 {
364 struct perf_event_attr *attr = &event->attr;
365 return ATTR_CFG_GET_FLD(attr, event_filter);
366 }
367
arm_spe_event_to_pmsnevfr(struct perf_event * event)368 static u64 arm_spe_event_to_pmsnevfr(struct perf_event *event)
369 {
370 struct perf_event_attr *attr = &event->attr;
371 return ATTR_CFG_GET_FLD(attr, inv_event_filter);
372 }
373
arm_spe_event_to_pmslatfr(struct perf_event * event)374 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
375 {
376 struct perf_event_attr *attr = &event->attr;
377 return FIELD_PREP(PMSLATFR_EL1_MINLAT, ATTR_CFG_GET_FLD(attr, min_latency));
378 }
379
arm_spe_pmu_pad_buf(struct perf_output_handle * handle,int len)380 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
381 {
382 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
383 u64 head = PERF_IDX2OFF(handle->head, buf);
384
385 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
386 if (!buf->snapshot)
387 perf_aux_output_skip(handle, len);
388 }
389
arm_spe_pmu_next_snapshot_off(struct perf_output_handle * handle)390 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
391 {
392 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
393 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
394 u64 head = PERF_IDX2OFF(handle->head, buf);
395 u64 limit = buf->nr_pages * PAGE_SIZE;
396
397 /*
398 * The trace format isn't parseable in reverse, so clamp
399 * the limit to half of the buffer size in snapshot mode
400 * so that the worst case is half a buffer of records, as
401 * opposed to a single record.
402 */
403 if (head < limit >> 1)
404 limit >>= 1;
405
406 /*
407 * If we're within max_record_sz of the limit, we must
408 * pad, move the head index and recompute the limit.
409 */
410 if (limit - head < spe_pmu->max_record_sz) {
411 arm_spe_pmu_pad_buf(handle, limit - head);
412 handle->head = PERF_IDX2OFF(limit, buf);
413 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
414 }
415
416 return limit;
417 }
418
__arm_spe_pmu_next_off(struct perf_output_handle * handle)419 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
420 {
421 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
422 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
423 const u64 bufsize = buf->nr_pages * PAGE_SIZE;
424 u64 limit = bufsize;
425 u64 head, tail, wakeup;
426
427 /*
428 * The head can be misaligned for two reasons:
429 *
430 * 1. The hardware left PMBPTR pointing to the first byte after
431 * a record when generating a buffer management event.
432 *
433 * 2. We used perf_aux_output_skip to consume handle->size bytes
434 * and CIRC_SPACE was used to compute the size, which always
435 * leaves one entry free.
436 *
437 * Deal with this by padding to the next alignment boundary and
438 * moving the head index. If we run out of buffer space, we'll
439 * reduce handle->size to zero and end up reporting truncation.
440 */
441 head = PERF_IDX2OFF(handle->head, buf);
442 if (!IS_ALIGNED(head, spe_pmu->align)) {
443 unsigned long delta = roundup(head, spe_pmu->align) - head;
444
445 delta = min(delta, handle->size);
446 arm_spe_pmu_pad_buf(handle, delta);
447 head = PERF_IDX2OFF(handle->head, buf);
448 }
449
450 /* If we've run out of free space, then nothing more to do */
451 if (!handle->size)
452 goto no_space;
453
454 /* Compute the tail and wakeup indices now that we've aligned head */
455 tail = PERF_IDX2OFF(handle->head + handle->size, buf);
456 wakeup = PERF_IDX2OFF(handle->wakeup, buf);
457
458 /*
459 * Avoid clobbering unconsumed data. We know we have space, so
460 * if we see head == tail we know that the buffer is empty. If
461 * head > tail, then there's nothing to clobber prior to
462 * wrapping.
463 */
464 if (head < tail)
465 limit = round_down(tail, PAGE_SIZE);
466
467 /*
468 * Wakeup may be arbitrarily far into the future. If it's not in
469 * the current generation, either we'll wrap before hitting it,
470 * or it's in the past and has been handled already.
471 *
472 * If there's a wakeup before we wrap, arrange to be woken up by
473 * the page boundary following it. Keep the tail boundary if
474 * that's lower.
475 */
476 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
477 limit = min(limit, round_up(wakeup, PAGE_SIZE));
478
479 if (limit > head)
480 return limit;
481
482 arm_spe_pmu_pad_buf(handle, handle->size);
483 no_space:
484 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
485 perf_aux_output_end(handle, 0);
486 return 0;
487 }
488
arm_spe_pmu_next_off(struct perf_output_handle * handle)489 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
490 {
491 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
492 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
493 u64 limit = __arm_spe_pmu_next_off(handle);
494 u64 head = PERF_IDX2OFF(handle->head, buf);
495
496 /*
497 * If the head has come too close to the end of the buffer,
498 * then pad to the end and recompute the limit.
499 */
500 if (limit && (limit - head < spe_pmu->max_record_sz)) {
501 arm_spe_pmu_pad_buf(handle, limit - head);
502 limit = __arm_spe_pmu_next_off(handle);
503 }
504
505 return limit;
506 }
507
arm_spe_perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)508 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
509 struct perf_event *event)
510 {
511 u64 base, limit;
512 struct arm_spe_pmu_buf *buf;
513
514 if (ATTR_CFG_GET_FLD(&event->attr, discard)) {
515 limit = FIELD_PREP(PMBLIMITR_EL1_FM, PMBLIMITR_EL1_FM_DISCARD);
516 limit |= PMBLIMITR_EL1_E;
517 goto out_write_limit;
518 }
519
520 /* Start a new aux session */
521 buf = perf_aux_output_begin(handle, event);
522 if (!buf) {
523 event->hw.state |= PERF_HES_STOPPED;
524 /*
525 * We still need to clear the limit pointer, since the
526 * profiler might only be disabled by virtue of a fault.
527 */
528 limit = 0;
529 goto out_write_limit;
530 }
531
532 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
533 : arm_spe_pmu_next_off(handle);
534 if (limit)
535 limit |= PMBLIMITR_EL1_E;
536
537 limit += (u64)buf->base;
538 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
539 write_sysreg_s(base, SYS_PMBPTR_EL1);
540
541 out_write_limit:
542 write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
543 }
544
arm_spe_perf_aux_output_end(struct perf_output_handle * handle)545 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
546 {
547 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
548 u64 offset, size;
549
550 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
551 size = offset - PERF_IDX2OFF(handle->head, buf);
552
553 if (buf->snapshot)
554 handle->head = offset;
555
556 perf_aux_output_end(handle, size);
557 }
558
arm_spe_pmu_disable_and_drain_local(void)559 static void arm_spe_pmu_disable_and_drain_local(void)
560 {
561 /* Disable profiling at EL0 and EL1 */
562 write_sysreg_s(0, SYS_PMSCR_EL1);
563 isb();
564
565 /* Drain any buffered data */
566 psb_csync();
567 dsb(nsh);
568
569 /* Disable the profiling buffer */
570 write_sysreg_s(0, SYS_PMBLIMITR_EL1);
571 isb();
572 }
573
574 /* IRQ handling */
575 static enum arm_spe_pmu_buf_fault_action
arm_spe_pmu_buf_get_fault_act(struct perf_output_handle * handle)576 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
577 {
578 const char *err_str;
579 u64 pmbsr;
580 enum arm_spe_pmu_buf_fault_action ret;
581
582 /*
583 * Ensure new profiling data is visible to the CPU and any external
584 * aborts have been resolved.
585 */
586 psb_csync();
587 dsb(nsh);
588
589 /* Ensure hardware updates to PMBPTR_EL1 are visible */
590 isb();
591
592 /* Service required? */
593 pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
594 if (!FIELD_GET(PMBSR_EL1_S, pmbsr))
595 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
596
597 /*
598 * If we've lost data, disable profiling and also set the PARTIAL
599 * flag to indicate that the last record is corrupted.
600 */
601 if (FIELD_GET(PMBSR_EL1_DL, pmbsr))
602 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
603 PERF_AUX_FLAG_PARTIAL);
604
605 /* Report collisions to userspace so that it can up the period */
606 if (FIELD_GET(PMBSR_EL1_COLL, pmbsr))
607 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
608
609 /* We only expect buffer management events */
610 switch (FIELD_GET(PMBSR_EL1_EC, pmbsr)) {
611 case PMBSR_EL1_EC_BUF:
612 /* Handled below */
613 break;
614 case PMBSR_EL1_EC_FAULT_S1:
615 case PMBSR_EL1_EC_FAULT_S2:
616 err_str = "Unexpected buffer fault";
617 goto out_err;
618 default:
619 err_str = "Unknown error code";
620 goto out_err;
621 }
622
623 /* Buffer management event */
624 switch (FIELD_GET(PMBSR_EL1_BUF_BSC_MASK, pmbsr)) {
625 case PMBSR_EL1_BUF_BSC_FULL:
626 ret = SPE_PMU_BUF_FAULT_ACT_OK;
627 goto out_stop;
628 default:
629 err_str = "Unknown buffer status code";
630 }
631
632 out_err:
633 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
634 err_str, smp_processor_id(), pmbsr,
635 read_sysreg_s(SYS_PMBPTR_EL1),
636 read_sysreg_s(SYS_PMBLIMITR_EL1));
637 ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
638
639 out_stop:
640 arm_spe_perf_aux_output_end(handle);
641 return ret;
642 }
643
arm_spe_pmu_irq_handler(int irq,void * dev)644 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
645 {
646 struct perf_output_handle *handle = dev;
647 struct perf_event *event = handle->event;
648 enum arm_spe_pmu_buf_fault_action act;
649
650 if (!perf_get_aux(handle))
651 return IRQ_NONE;
652
653 act = arm_spe_pmu_buf_get_fault_act(handle);
654 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
655 return IRQ_NONE;
656
657 /*
658 * Ensure perf callbacks have completed, which may disable the
659 * profiling buffer in response to a TRUNCATION flag.
660 */
661 irq_work_run();
662
663 switch (act) {
664 case SPE_PMU_BUF_FAULT_ACT_FATAL:
665 /*
666 * If a fatal exception occurred then leaving the profiling
667 * buffer enabled is a recipe waiting to happen. Since
668 * fatal faults don't always imply truncation, make sure
669 * that the profiling buffer is disabled explicitly before
670 * clearing the syndrome register.
671 */
672 arm_spe_pmu_disable_and_drain_local();
673 break;
674 case SPE_PMU_BUF_FAULT_ACT_OK:
675 /*
676 * We handled the fault (the buffer was full), so resume
677 * profiling as long as we didn't detect truncation.
678 * PMBPTR might be misaligned, but we'll burn that bridge
679 * when we get to it.
680 */
681 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
682 arm_spe_perf_aux_output_begin(handle, event);
683 isb();
684 }
685 break;
686 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
687 /* We've seen you before, but GCC has the memory of a sieve. */
688 break;
689 }
690
691 /* The buffer pointers are now sane, so resume profiling. */
692 write_sysreg_s(0, SYS_PMBSR_EL1);
693 return IRQ_HANDLED;
694 }
695
arm_spe_pmsevfr_res0(u16 pmsver)696 static u64 arm_spe_pmsevfr_res0(u16 pmsver)
697 {
698 switch (pmsver) {
699 case ID_AA64DFR0_EL1_PMSVer_IMP:
700 return PMSEVFR_EL1_RES0_IMP;
701 case ID_AA64DFR0_EL1_PMSVer_V1P1:
702 return PMSEVFR_EL1_RES0_V1P1;
703 case ID_AA64DFR0_EL1_PMSVer_V1P2:
704 /* Return the highest version we support in default */
705 default:
706 return PMSEVFR_EL1_RES0_V1P2;
707 }
708 }
709
710 /* Perf callbacks */
arm_spe_pmu_event_init(struct perf_event * event)711 static int arm_spe_pmu_event_init(struct perf_event *event)
712 {
713 u64 reg;
714 struct perf_event_attr *attr = &event->attr;
715 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
716
717 /* This is, of course, deeply driver-specific */
718 if (attr->type != event->pmu->type)
719 return -ENOENT;
720
721 if (event->cpu >= 0 &&
722 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
723 return -ENOENT;
724
725 if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
726 return -EOPNOTSUPP;
727
728 if (arm_spe_event_to_pmsnevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
729 return -EOPNOTSUPP;
730
731 if (attr->exclude_idle)
732 return -EOPNOTSUPP;
733
734 /*
735 * Feedback-directed frequency throttling doesn't work when we
736 * have a buffer of samples. We'd need to manually count the
737 * samples in the buffer when it fills up and adjust the event
738 * count to reflect that. Instead, just force the user to specify
739 * a sample period.
740 */
741 if (attr->freq)
742 return -EINVAL;
743
744 reg = arm_spe_event_to_pmsfcr(event);
745 if ((FIELD_GET(PMSFCR_EL1_FE, reg)) &&
746 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
747 return -EOPNOTSUPP;
748
749 if ((FIELD_GET(PMSFCR_EL1_FnE, reg)) &&
750 !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
751 return -EOPNOTSUPP;
752
753 if ((FIELD_GET(PMSFCR_EL1_FT, reg)) &&
754 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
755 return -EOPNOTSUPP;
756
757 if ((FIELD_GET(PMSFCR_EL1_FL, reg)) &&
758 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
759 return -EOPNOTSUPP;
760
761 if (ATTR_CFG_GET_FLD(&event->attr, discard) &&
762 !(spe_pmu->features & SPE_PMU_FEAT_DISCARD))
763 return -EOPNOTSUPP;
764
765 set_spe_event_has_cx(event);
766 reg = arm_spe_event_to_pmscr(event);
767 if (reg & (PMSCR_EL1_PA | PMSCR_EL1_PCT))
768 return perf_allow_kernel(&event->attr);
769
770 return 0;
771 }
772
arm_spe_pmu_start(struct perf_event * event,int flags)773 static void arm_spe_pmu_start(struct perf_event *event, int flags)
774 {
775 u64 reg;
776 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
777 struct hw_perf_event *hwc = &event->hw;
778 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
779
780 hwc->state = 0;
781 arm_spe_perf_aux_output_begin(handle, event);
782 if (hwc->state)
783 return;
784
785 reg = arm_spe_event_to_pmsfcr(event);
786 write_sysreg_s(reg, SYS_PMSFCR_EL1);
787
788 reg = arm_spe_event_to_pmsevfr(event);
789 write_sysreg_s(reg, SYS_PMSEVFR_EL1);
790
791 if (spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT) {
792 reg = arm_spe_event_to_pmsnevfr(event);
793 write_sysreg_s(reg, SYS_PMSNEVFR_EL1);
794 }
795
796 reg = arm_spe_event_to_pmslatfr(event);
797 write_sysreg_s(reg, SYS_PMSLATFR_EL1);
798
799 if (flags & PERF_EF_RELOAD) {
800 reg = arm_spe_event_to_pmsirr(event);
801 write_sysreg_s(reg, SYS_PMSIRR_EL1);
802 isb();
803 reg = local64_read(&hwc->period_left);
804 write_sysreg_s(reg, SYS_PMSICR_EL1);
805 }
806
807 reg = arm_spe_event_to_pmscr(event);
808 isb();
809 write_sysreg_s(reg, SYS_PMSCR_EL1);
810 }
811
arm_spe_pmu_stop(struct perf_event * event,int flags)812 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
813 {
814 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
815 struct hw_perf_event *hwc = &event->hw;
816 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
817
818 /* If we're already stopped, then nothing to do */
819 if (hwc->state & PERF_HES_STOPPED)
820 return;
821
822 /* Stop all trace generation */
823 arm_spe_pmu_disable_and_drain_local();
824
825 if (flags & PERF_EF_UPDATE) {
826 /*
827 * If there's a fault pending then ensure we contain it
828 * to this buffer, since we might be on the context-switch
829 * path.
830 */
831 if (perf_get_aux(handle)) {
832 enum arm_spe_pmu_buf_fault_action act;
833
834 act = arm_spe_pmu_buf_get_fault_act(handle);
835 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
836 arm_spe_perf_aux_output_end(handle);
837 else
838 write_sysreg_s(0, SYS_PMBSR_EL1);
839 }
840
841 /*
842 * This may also contain ECOUNT, but nobody else should
843 * be looking at period_left, since we forbid frequency
844 * based sampling.
845 */
846 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
847 hwc->state |= PERF_HES_UPTODATE;
848 }
849
850 hwc->state |= PERF_HES_STOPPED;
851 }
852
arm_spe_pmu_add(struct perf_event * event,int flags)853 static int arm_spe_pmu_add(struct perf_event *event, int flags)
854 {
855 int ret = 0;
856 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
857 struct hw_perf_event *hwc = &event->hw;
858 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
859
860 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
861 return -ENOENT;
862
863 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
864
865 if (flags & PERF_EF_START) {
866 arm_spe_pmu_start(event, PERF_EF_RELOAD);
867 if (hwc->state & PERF_HES_STOPPED)
868 ret = -EINVAL;
869 }
870
871 return ret;
872 }
873
arm_spe_pmu_del(struct perf_event * event,int flags)874 static void arm_spe_pmu_del(struct perf_event *event, int flags)
875 {
876 arm_spe_pmu_stop(event, PERF_EF_UPDATE);
877 }
878
arm_spe_pmu_read(struct perf_event * event)879 static void arm_spe_pmu_read(struct perf_event *event)
880 {
881 }
882
arm_spe_pmu_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)883 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
884 int nr_pages, bool snapshot)
885 {
886 int i, cpu = event->cpu;
887 struct page **pglist;
888 struct arm_spe_pmu_buf *buf;
889
890 /* We need at least two pages for this to work. */
891 if (nr_pages < 2)
892 return NULL;
893
894 /*
895 * We require an even number of pages for snapshot mode, so that
896 * we can effectively treat the buffer as consisting of two equal
897 * parts and give userspace a fighting chance of getting some
898 * useful data out of it.
899 */
900 if (snapshot && (nr_pages & 1))
901 return NULL;
902
903 if (cpu == -1)
904 cpu = raw_smp_processor_id();
905
906 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
907 if (!buf)
908 return NULL;
909
910 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
911 if (!pglist)
912 goto out_free_buf;
913
914 for (i = 0; i < nr_pages; ++i)
915 pglist[i] = virt_to_page(pages[i]);
916
917 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
918 if (!buf->base)
919 goto out_free_pglist;
920
921 buf->nr_pages = nr_pages;
922 buf->snapshot = snapshot;
923
924 kfree(pglist);
925 return buf;
926
927 out_free_pglist:
928 kfree(pglist);
929 out_free_buf:
930 kfree(buf);
931 return NULL;
932 }
933
arm_spe_pmu_free_aux(void * aux)934 static void arm_spe_pmu_free_aux(void *aux)
935 {
936 struct arm_spe_pmu_buf *buf = aux;
937
938 vunmap(buf->base);
939 kfree(buf);
940 }
941
942 /* Initialisation and teardown functions */
arm_spe_pmu_perf_init(struct arm_spe_pmu * spe_pmu)943 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
944 {
945 static atomic_t pmu_idx = ATOMIC_INIT(-1);
946
947 int idx;
948 char *name;
949 struct device *dev = &spe_pmu->pdev->dev;
950
951 spe_pmu->pmu = (struct pmu) {
952 .module = THIS_MODULE,
953 .parent = &spe_pmu->pdev->dev,
954 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
955 .attr_groups = arm_spe_pmu_attr_groups,
956 /*
957 * We hitch a ride on the software context here, so that
958 * we can support per-task profiling (which is not possible
959 * with the invalid context as it doesn't get sched callbacks).
960 * This requires that userspace either uses a dummy event for
961 * perf_event_open, since the aux buffer is not setup until
962 * a subsequent mmap, or creates the profiling event in a
963 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
964 * once the buffer has been created.
965 */
966 .task_ctx_nr = perf_sw_context,
967 .event_init = arm_spe_pmu_event_init,
968 .add = arm_spe_pmu_add,
969 .del = arm_spe_pmu_del,
970 .start = arm_spe_pmu_start,
971 .stop = arm_spe_pmu_stop,
972 .read = arm_spe_pmu_read,
973 .setup_aux = arm_spe_pmu_setup_aux,
974 .free_aux = arm_spe_pmu_free_aux,
975 };
976
977 idx = atomic_inc_return(&pmu_idx);
978 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
979 if (!name) {
980 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
981 return -ENOMEM;
982 }
983
984 return perf_pmu_register(&spe_pmu->pmu, name, -1);
985 }
986
arm_spe_pmu_perf_destroy(struct arm_spe_pmu * spe_pmu)987 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
988 {
989 perf_pmu_unregister(&spe_pmu->pmu);
990 }
991
__arm_spe_pmu_dev_probe(void * info)992 static void __arm_spe_pmu_dev_probe(void *info)
993 {
994 int fld;
995 u64 reg;
996 struct arm_spe_pmu *spe_pmu = info;
997 struct device *dev = &spe_pmu->pdev->dev;
998
999 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
1000 ID_AA64DFR0_EL1_PMSVer_SHIFT);
1001 if (!fld) {
1002 dev_err(dev,
1003 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
1004 fld, smp_processor_id());
1005 return;
1006 }
1007 spe_pmu->pmsver = (u16)fld;
1008
1009 /* Read PMBIDR first to determine whether or not we have access */
1010 reg = read_sysreg_s(SYS_PMBIDR_EL1);
1011 if (FIELD_GET(PMBIDR_EL1_P, reg)) {
1012 dev_err(dev,
1013 "profiling buffer owned by higher exception level\n");
1014 return;
1015 }
1016
1017 /* Minimum alignment. If it's out-of-range, then fail the probe */
1018 fld = FIELD_GET(PMBIDR_EL1_ALIGN, reg);
1019 spe_pmu->align = 1 << fld;
1020 if (spe_pmu->align > SZ_2K) {
1021 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
1022 fld, smp_processor_id());
1023 return;
1024 }
1025
1026 /* It's now safe to read PMSIDR and figure out what we've got */
1027 reg = read_sysreg_s(SYS_PMSIDR_EL1);
1028 if (FIELD_GET(PMSIDR_EL1_FE, reg))
1029 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
1030
1031 if (FIELD_GET(PMSIDR_EL1_FnE, reg))
1032 spe_pmu->features |= SPE_PMU_FEAT_INV_FILT_EVT;
1033
1034 if (FIELD_GET(PMSIDR_EL1_FT, reg))
1035 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
1036
1037 if (FIELD_GET(PMSIDR_EL1_FL, reg))
1038 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
1039
1040 if (FIELD_GET(PMSIDR_EL1_ARCHINST, reg))
1041 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
1042
1043 if (FIELD_GET(PMSIDR_EL1_LDS, reg))
1044 spe_pmu->features |= SPE_PMU_FEAT_LDS;
1045
1046 if (FIELD_GET(PMSIDR_EL1_ERND, reg))
1047 spe_pmu->features |= SPE_PMU_FEAT_ERND;
1048
1049 if (spe_pmu->pmsver >= ID_AA64DFR0_EL1_PMSVer_V1P2)
1050 spe_pmu->features |= SPE_PMU_FEAT_DISCARD;
1051
1052 /* This field has a spaced out encoding, so just use a look-up */
1053 fld = FIELD_GET(PMSIDR_EL1_INTERVAL, reg);
1054 switch (fld) {
1055 case PMSIDR_EL1_INTERVAL_256:
1056 spe_pmu->min_period = 256;
1057 break;
1058 case PMSIDR_EL1_INTERVAL_512:
1059 spe_pmu->min_period = 512;
1060 break;
1061 case PMSIDR_EL1_INTERVAL_768:
1062 spe_pmu->min_period = 768;
1063 break;
1064 case PMSIDR_EL1_INTERVAL_1024:
1065 spe_pmu->min_period = 1024;
1066 break;
1067 case PMSIDR_EL1_INTERVAL_1536:
1068 spe_pmu->min_period = 1536;
1069 break;
1070 case PMSIDR_EL1_INTERVAL_2048:
1071 spe_pmu->min_period = 2048;
1072 break;
1073 case PMSIDR_EL1_INTERVAL_3072:
1074 spe_pmu->min_period = 3072;
1075 break;
1076 default:
1077 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1078 fld);
1079 fallthrough;
1080 case PMSIDR_EL1_INTERVAL_4096:
1081 spe_pmu->min_period = 4096;
1082 }
1083
1084 /* Maximum record size. If it's out-of-range, then fail the probe */
1085 fld = FIELD_GET(PMSIDR_EL1_MAXSIZE, reg);
1086 spe_pmu->max_record_sz = 1 << fld;
1087 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1088 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1089 fld, smp_processor_id());
1090 return;
1091 }
1092
1093 fld = FIELD_GET(PMSIDR_EL1_COUNTSIZE, reg);
1094 switch (fld) {
1095 default:
1096 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1097 fld);
1098 fallthrough;
1099 case PMSIDR_EL1_COUNTSIZE_12_BIT_SAT:
1100 spe_pmu->counter_sz = 12;
1101 break;
1102 case PMSIDR_EL1_COUNTSIZE_16_BIT_SAT:
1103 spe_pmu->counter_sz = 16;
1104 }
1105
1106 dev_info(dev,
1107 "probed SPEv1.%d for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1108 spe_pmu->pmsver - 1, cpumask_pr_args(&spe_pmu->supported_cpus),
1109 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1110
1111 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1112 }
1113
__arm_spe_pmu_reset_local(void)1114 static void __arm_spe_pmu_reset_local(void)
1115 {
1116 /*
1117 * This is probably overkill, as we have no idea where we're
1118 * draining any buffered data to...
1119 */
1120 arm_spe_pmu_disable_and_drain_local();
1121
1122 /* Reset the buffer base pointer */
1123 write_sysreg_s(0, SYS_PMBPTR_EL1);
1124 isb();
1125
1126 /* Clear any pending management interrupts */
1127 write_sysreg_s(0, SYS_PMBSR_EL1);
1128 isb();
1129 }
1130
__arm_spe_pmu_setup_one(void * info)1131 static void __arm_spe_pmu_setup_one(void *info)
1132 {
1133 struct arm_spe_pmu *spe_pmu = info;
1134
1135 __arm_spe_pmu_reset_local();
1136 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1137 }
1138
__arm_spe_pmu_stop_one(void * info)1139 static void __arm_spe_pmu_stop_one(void *info)
1140 {
1141 struct arm_spe_pmu *spe_pmu = info;
1142
1143 disable_percpu_irq(spe_pmu->irq);
1144 __arm_spe_pmu_reset_local();
1145 }
1146
arm_spe_pmu_cpu_startup(unsigned int cpu,struct hlist_node * node)1147 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1148 {
1149 struct arm_spe_pmu *spe_pmu;
1150
1151 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1152 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1153 return 0;
1154
1155 __arm_spe_pmu_setup_one(spe_pmu);
1156 return 0;
1157 }
1158
arm_spe_pmu_cpu_teardown(unsigned int cpu,struct hlist_node * node)1159 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1160 {
1161 struct arm_spe_pmu *spe_pmu;
1162
1163 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1164 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1165 return 0;
1166
1167 __arm_spe_pmu_stop_one(spe_pmu);
1168 return 0;
1169 }
1170
arm_spe_pmu_dev_init(struct arm_spe_pmu * spe_pmu)1171 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1172 {
1173 int ret;
1174 cpumask_t *mask = &spe_pmu->supported_cpus;
1175
1176 /* Make sure we probe the hardware on a relevant CPU */
1177 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1);
1178 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1179 return -ENXIO;
1180
1181 /* Request our PPIs (note that the IRQ is still disabled) */
1182 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1183 spe_pmu->handle);
1184 if (ret)
1185 return ret;
1186
1187 /*
1188 * Register our hotplug notifier now so we don't miss any events.
1189 * This will enable the IRQ for any supported CPUs that are already
1190 * up.
1191 */
1192 ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1193 &spe_pmu->hotplug_node);
1194 if (ret)
1195 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1196
1197 return ret;
1198 }
1199
arm_spe_pmu_dev_teardown(struct arm_spe_pmu * spe_pmu)1200 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1201 {
1202 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1203 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1204 }
1205
1206 /* Driver and device probing */
arm_spe_pmu_irq_probe(struct arm_spe_pmu * spe_pmu)1207 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1208 {
1209 struct platform_device *pdev = spe_pmu->pdev;
1210 int irq = platform_get_irq(pdev, 0);
1211
1212 if (irq < 0)
1213 return -ENXIO;
1214
1215 if (!irq_is_percpu(irq)) {
1216 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1217 return -EINVAL;
1218 }
1219
1220 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1221 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1222 return -EINVAL;
1223 }
1224
1225 spe_pmu->irq = irq;
1226 return 0;
1227 }
1228
1229 static const struct of_device_id arm_spe_pmu_of_match[] = {
1230 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1231 { /* Sentinel */ },
1232 };
1233 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1234
1235 static const struct platform_device_id arm_spe_match[] = {
1236 { ARMV8_SPE_PDEV_NAME, 0},
1237 { }
1238 };
1239 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1240
arm_spe_pmu_device_probe(struct platform_device * pdev)1241 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1242 {
1243 int ret;
1244 struct arm_spe_pmu *spe_pmu;
1245 struct device *dev = &pdev->dev;
1246
1247 /*
1248 * If kernelspace is unmapped when running at EL0, then the SPE
1249 * buffer will fault and prematurely terminate the AUX session.
1250 */
1251 if (arm64_kernel_unmapped_at_el0()) {
1252 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1253 return -EPERM;
1254 }
1255
1256 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1257 if (!spe_pmu)
1258 return -ENOMEM;
1259
1260 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1261 if (!spe_pmu->handle)
1262 return -ENOMEM;
1263
1264 spe_pmu->pdev = pdev;
1265 platform_set_drvdata(pdev, spe_pmu);
1266
1267 ret = arm_spe_pmu_irq_probe(spe_pmu);
1268 if (ret)
1269 goto out_free_handle;
1270
1271 ret = arm_spe_pmu_dev_init(spe_pmu);
1272 if (ret)
1273 goto out_free_handle;
1274
1275 ret = arm_spe_pmu_perf_init(spe_pmu);
1276 if (ret)
1277 goto out_teardown_dev;
1278
1279 return 0;
1280
1281 out_teardown_dev:
1282 arm_spe_pmu_dev_teardown(spe_pmu);
1283 out_free_handle:
1284 free_percpu(spe_pmu->handle);
1285 return ret;
1286 }
1287
arm_spe_pmu_device_remove(struct platform_device * pdev)1288 static void arm_spe_pmu_device_remove(struct platform_device *pdev)
1289 {
1290 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1291
1292 arm_spe_pmu_perf_destroy(spe_pmu);
1293 arm_spe_pmu_dev_teardown(spe_pmu);
1294 free_percpu(spe_pmu->handle);
1295 }
1296
1297 static struct platform_driver arm_spe_pmu_driver = {
1298 .id_table = arm_spe_match,
1299 .driver = {
1300 .name = DRVNAME,
1301 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1302 .suppress_bind_attrs = true,
1303 },
1304 .probe = arm_spe_pmu_device_probe,
1305 .remove = arm_spe_pmu_device_remove,
1306 };
1307
arm_spe_pmu_init(void)1308 static int __init arm_spe_pmu_init(void)
1309 {
1310 int ret;
1311
1312 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1313 arm_spe_pmu_cpu_startup,
1314 arm_spe_pmu_cpu_teardown);
1315 if (ret < 0)
1316 return ret;
1317 arm_spe_pmu_online = ret;
1318
1319 ret = platform_driver_register(&arm_spe_pmu_driver);
1320 if (ret)
1321 cpuhp_remove_multi_state(arm_spe_pmu_online);
1322
1323 return ret;
1324 }
1325
arm_spe_pmu_exit(void)1326 static void __exit arm_spe_pmu_exit(void)
1327 {
1328 platform_driver_unregister(&arm_spe_pmu_driver);
1329 cpuhp_remove_multi_state(arm_spe_pmu_online);
1330 }
1331
1332 module_init(arm_spe_pmu_init);
1333 module_exit(arm_spe_pmu_exit);
1334
1335 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1336 MODULE_AUTHOR("Will Deacon <[email protected]>");
1337 MODULE_LICENSE("GPL v2");
1338