1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Test driver to test endpoint functionality
4 *
5 * Copyright (C) 2017 Texas Instruments
6 * Author: Kishon Vijay Abraham I <[email protected]>
7 */
8
9 #include <linux/crc32.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/io.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/pci_ids.h>
16 #include <linux/random.h>
17
18 #include <linux/pci-epc.h>
19 #include <linux/pci-epf.h>
20 #include <linux/pci_regs.h>
21
22 #define IRQ_TYPE_INTX 0
23 #define IRQ_TYPE_MSI 1
24 #define IRQ_TYPE_MSIX 2
25
26 #define COMMAND_RAISE_INTX_IRQ BIT(0)
27 #define COMMAND_RAISE_MSI_IRQ BIT(1)
28 #define COMMAND_RAISE_MSIX_IRQ BIT(2)
29 #define COMMAND_READ BIT(3)
30 #define COMMAND_WRITE BIT(4)
31 #define COMMAND_COPY BIT(5)
32
33 #define STATUS_READ_SUCCESS BIT(0)
34 #define STATUS_READ_FAIL BIT(1)
35 #define STATUS_WRITE_SUCCESS BIT(2)
36 #define STATUS_WRITE_FAIL BIT(3)
37 #define STATUS_COPY_SUCCESS BIT(4)
38 #define STATUS_COPY_FAIL BIT(5)
39 #define STATUS_IRQ_RAISED BIT(6)
40 #define STATUS_SRC_ADDR_INVALID BIT(7)
41 #define STATUS_DST_ADDR_INVALID BIT(8)
42
43 #define FLAG_USE_DMA BIT(0)
44
45 #define TIMER_RESOLUTION 1
46
47 #define CAP_UNALIGNED_ACCESS BIT(0)
48
49 static struct workqueue_struct *kpcitest_workqueue;
50
51 struct pci_epf_test {
52 void *reg[PCI_STD_NUM_BARS];
53 struct pci_epf *epf;
54 enum pci_barno test_reg_bar;
55 size_t msix_table_offset;
56 struct delayed_work cmd_handler;
57 struct dma_chan *dma_chan_tx;
58 struct dma_chan *dma_chan_rx;
59 struct dma_chan *transfer_chan;
60 dma_cookie_t transfer_cookie;
61 enum dma_status transfer_status;
62 struct completion transfer_complete;
63 bool dma_supported;
64 bool dma_private;
65 const struct pci_epc_features *epc_features;
66 };
67
68 struct pci_epf_test_reg {
69 __le32 magic;
70 __le32 command;
71 __le32 status;
72 __le64 src_addr;
73 __le64 dst_addr;
74 __le32 size;
75 __le32 checksum;
76 __le32 irq_type;
77 __le32 irq_number;
78 __le32 flags;
79 __le32 caps;
80 } __packed;
81
82 static struct pci_epf_header test_header = {
83 .vendorid = PCI_ANY_ID,
84 .deviceid = PCI_ANY_ID,
85 .baseclass_code = PCI_CLASS_OTHERS,
86 .interrupt_pin = PCI_INTERRUPT_INTA,
87 };
88
89 static size_t bar_size[] = { 512, 512, 1024, 16384, 131072, 1048576 };
90
pci_epf_test_dma_callback(void * param)91 static void pci_epf_test_dma_callback(void *param)
92 {
93 struct pci_epf_test *epf_test = param;
94 struct dma_tx_state state;
95
96 epf_test->transfer_status =
97 dmaengine_tx_status(epf_test->transfer_chan,
98 epf_test->transfer_cookie, &state);
99 if (epf_test->transfer_status == DMA_COMPLETE ||
100 epf_test->transfer_status == DMA_ERROR)
101 complete(&epf_test->transfer_complete);
102 }
103
104 /**
105 * pci_epf_test_data_transfer() - Function that uses dmaengine API to transfer
106 * data between PCIe EP and remote PCIe RC
107 * @epf_test: the EPF test device that performs the data transfer operation
108 * @dma_dst: The destination address of the data transfer. It can be a physical
109 * address given by pci_epc_mem_alloc_addr or DMA mapping APIs.
110 * @dma_src: The source address of the data transfer. It can be a physical
111 * address given by pci_epc_mem_alloc_addr or DMA mapping APIs.
112 * @len: The size of the data transfer
113 * @dma_remote: remote RC physical address
114 * @dir: DMA transfer direction
115 *
116 * Function that uses dmaengine API to transfer data between PCIe EP and remote
117 * PCIe RC. The source and destination address can be a physical address given
118 * by pci_epc_mem_alloc_addr or the one obtained using DMA mapping APIs.
119 *
120 * The function returns '0' on success and negative value on failure.
121 */
pci_epf_test_data_transfer(struct pci_epf_test * epf_test,dma_addr_t dma_dst,dma_addr_t dma_src,size_t len,dma_addr_t dma_remote,enum dma_transfer_direction dir)122 static int pci_epf_test_data_transfer(struct pci_epf_test *epf_test,
123 dma_addr_t dma_dst, dma_addr_t dma_src,
124 size_t len, dma_addr_t dma_remote,
125 enum dma_transfer_direction dir)
126 {
127 struct dma_chan *chan = (dir == DMA_MEM_TO_DEV) ?
128 epf_test->dma_chan_tx : epf_test->dma_chan_rx;
129 dma_addr_t dma_local = (dir == DMA_MEM_TO_DEV) ? dma_src : dma_dst;
130 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
131 struct pci_epf *epf = epf_test->epf;
132 struct dma_async_tx_descriptor *tx;
133 struct dma_slave_config sconf = {};
134 struct device *dev = &epf->dev;
135 int ret;
136
137 if (IS_ERR_OR_NULL(chan)) {
138 dev_err(dev, "Invalid DMA memcpy channel\n");
139 return -EINVAL;
140 }
141
142 if (epf_test->dma_private) {
143 sconf.direction = dir;
144 if (dir == DMA_MEM_TO_DEV)
145 sconf.dst_addr = dma_remote;
146 else
147 sconf.src_addr = dma_remote;
148
149 if (dmaengine_slave_config(chan, &sconf)) {
150 dev_err(dev, "DMA slave config fail\n");
151 return -EIO;
152 }
153 tx = dmaengine_prep_slave_single(chan, dma_local, len, dir,
154 flags);
155 } else {
156 tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len,
157 flags);
158 }
159
160 if (!tx) {
161 dev_err(dev, "Failed to prepare DMA memcpy\n");
162 return -EIO;
163 }
164
165 reinit_completion(&epf_test->transfer_complete);
166 epf_test->transfer_chan = chan;
167 tx->callback = pci_epf_test_dma_callback;
168 tx->callback_param = epf_test;
169 epf_test->transfer_cookie = dmaengine_submit(tx);
170
171 ret = dma_submit_error(epf_test->transfer_cookie);
172 if (ret) {
173 dev_err(dev, "Failed to do DMA tx_submit %d\n", ret);
174 goto terminate;
175 }
176
177 dma_async_issue_pending(chan);
178 ret = wait_for_completion_interruptible(&epf_test->transfer_complete);
179 if (ret < 0) {
180 dev_err(dev, "DMA wait_for_completion interrupted\n");
181 goto terminate;
182 }
183
184 if (epf_test->transfer_status == DMA_ERROR) {
185 dev_err(dev, "DMA transfer failed\n");
186 ret = -EIO;
187 }
188
189 terminate:
190 dmaengine_terminate_sync(chan);
191
192 return ret;
193 }
194
195 struct epf_dma_filter {
196 struct device *dev;
197 u32 dma_mask;
198 };
199
epf_dma_filter_fn(struct dma_chan * chan,void * node)200 static bool epf_dma_filter_fn(struct dma_chan *chan, void *node)
201 {
202 struct epf_dma_filter *filter = node;
203 struct dma_slave_caps caps;
204
205 memset(&caps, 0, sizeof(caps));
206 dma_get_slave_caps(chan, &caps);
207
208 return chan->device->dev == filter->dev
209 && (filter->dma_mask & caps.directions);
210 }
211
212 /**
213 * pci_epf_test_init_dma_chan() - Function to initialize EPF test DMA channel
214 * @epf_test: the EPF test device that performs data transfer operation
215 *
216 * Function to initialize EPF test DMA channel.
217 */
pci_epf_test_init_dma_chan(struct pci_epf_test * epf_test)218 static int pci_epf_test_init_dma_chan(struct pci_epf_test *epf_test)
219 {
220 struct pci_epf *epf = epf_test->epf;
221 struct device *dev = &epf->dev;
222 struct epf_dma_filter filter;
223 struct dma_chan *dma_chan;
224 dma_cap_mask_t mask;
225 int ret;
226
227 filter.dev = epf->epc->dev.parent;
228 filter.dma_mask = BIT(DMA_DEV_TO_MEM);
229
230 dma_cap_zero(mask);
231 dma_cap_set(DMA_SLAVE, mask);
232 dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter);
233 if (!dma_chan) {
234 dev_info(dev, "Failed to get private DMA rx channel. Falling back to generic one\n");
235 goto fail_back_tx;
236 }
237
238 epf_test->dma_chan_rx = dma_chan;
239
240 filter.dma_mask = BIT(DMA_MEM_TO_DEV);
241 dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter);
242
243 if (!dma_chan) {
244 dev_info(dev, "Failed to get private DMA tx channel. Falling back to generic one\n");
245 goto fail_back_rx;
246 }
247
248 epf_test->dma_chan_tx = dma_chan;
249 epf_test->dma_private = true;
250
251 init_completion(&epf_test->transfer_complete);
252
253 return 0;
254
255 fail_back_rx:
256 dma_release_channel(epf_test->dma_chan_rx);
257 epf_test->dma_chan_rx = NULL;
258
259 fail_back_tx:
260 dma_cap_zero(mask);
261 dma_cap_set(DMA_MEMCPY, mask);
262
263 dma_chan = dma_request_chan_by_mask(&mask);
264 if (IS_ERR(dma_chan)) {
265 ret = PTR_ERR(dma_chan);
266 if (ret != -EPROBE_DEFER)
267 dev_err(dev, "Failed to get DMA channel\n");
268 return ret;
269 }
270 init_completion(&epf_test->transfer_complete);
271
272 epf_test->dma_chan_tx = epf_test->dma_chan_rx = dma_chan;
273
274 return 0;
275 }
276
277 /**
278 * pci_epf_test_clean_dma_chan() - Function to cleanup EPF test DMA channel
279 * @epf_test: the EPF test device that performs data transfer operation
280 *
281 * Helper to cleanup EPF test DMA channel.
282 */
pci_epf_test_clean_dma_chan(struct pci_epf_test * epf_test)283 static void pci_epf_test_clean_dma_chan(struct pci_epf_test *epf_test)
284 {
285 if (!epf_test->dma_supported)
286 return;
287
288 dma_release_channel(epf_test->dma_chan_tx);
289 if (epf_test->dma_chan_tx == epf_test->dma_chan_rx) {
290 epf_test->dma_chan_tx = NULL;
291 epf_test->dma_chan_rx = NULL;
292 return;
293 }
294
295 dma_release_channel(epf_test->dma_chan_rx);
296 epf_test->dma_chan_rx = NULL;
297 }
298
pci_epf_test_print_rate(struct pci_epf_test * epf_test,const char * op,u64 size,struct timespec64 * start,struct timespec64 * end,bool dma)299 static void pci_epf_test_print_rate(struct pci_epf_test *epf_test,
300 const char *op, u64 size,
301 struct timespec64 *start,
302 struct timespec64 *end, bool dma)
303 {
304 struct timespec64 ts = timespec64_sub(*end, *start);
305 u64 rate = 0, ns;
306
307 /* calculate the rate */
308 ns = timespec64_to_ns(&ts);
309 if (ns)
310 rate = div64_u64(size * NSEC_PER_SEC, ns * 1000);
311
312 dev_info(&epf_test->epf->dev,
313 "%s => Size: %llu B, DMA: %s, Time: %llu.%09u s, Rate: %llu KB/s\n",
314 op, size, dma ? "YES" : "NO",
315 (u64)ts.tv_sec, (u32)ts.tv_nsec, rate);
316 }
317
pci_epf_test_copy(struct pci_epf_test * epf_test,struct pci_epf_test_reg * reg)318 static void pci_epf_test_copy(struct pci_epf_test *epf_test,
319 struct pci_epf_test_reg *reg)
320 {
321 int ret = 0;
322 struct timespec64 start, end;
323 struct pci_epf *epf = epf_test->epf;
324 struct pci_epc *epc = epf->epc;
325 struct device *dev = &epf->dev;
326 struct pci_epc_map src_map, dst_map;
327 u64 src_addr = le64_to_cpu(reg->src_addr);
328 u64 dst_addr = le64_to_cpu(reg->dst_addr);
329 size_t orig_size, copy_size;
330 ssize_t map_size = 0;
331 u32 flags = le32_to_cpu(reg->flags);
332 u32 status = 0;
333 void *copy_buf = NULL, *buf;
334
335 orig_size = copy_size = le32_to_cpu(reg->size);
336
337 if (flags & FLAG_USE_DMA) {
338 if (!dma_has_cap(DMA_MEMCPY, epf_test->dma_chan_tx->device->cap_mask)) {
339 dev_err(dev, "DMA controller doesn't support MEMCPY\n");
340 ret = -EINVAL;
341 goto set_status;
342 }
343 } else {
344 copy_buf = kzalloc(copy_size, GFP_KERNEL);
345 if (!copy_buf) {
346 ret = -ENOMEM;
347 goto set_status;
348 }
349 buf = copy_buf;
350 }
351
352 while (copy_size) {
353 ret = pci_epc_mem_map(epc, epf->func_no, epf->vfunc_no,
354 src_addr, copy_size, &src_map);
355 if (ret) {
356 dev_err(dev, "Failed to map source address\n");
357 status = STATUS_SRC_ADDR_INVALID;
358 goto free_buf;
359 }
360
361 ret = pci_epc_mem_map(epf->epc, epf->func_no, epf->vfunc_no,
362 dst_addr, copy_size, &dst_map);
363 if (ret) {
364 dev_err(dev, "Failed to map destination address\n");
365 status = STATUS_DST_ADDR_INVALID;
366 pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no,
367 &src_map);
368 goto free_buf;
369 }
370
371 map_size = min_t(size_t, dst_map.pci_size, src_map.pci_size);
372
373 ktime_get_ts64(&start);
374 if (flags & FLAG_USE_DMA) {
375 ret = pci_epf_test_data_transfer(epf_test,
376 dst_map.phys_addr, src_map.phys_addr,
377 map_size, 0, DMA_MEM_TO_MEM);
378 if (ret) {
379 dev_err(dev, "Data transfer failed\n");
380 goto unmap;
381 }
382 } else {
383 memcpy_fromio(buf, src_map.virt_addr, map_size);
384 memcpy_toio(dst_map.virt_addr, buf, map_size);
385 buf += map_size;
386 }
387 ktime_get_ts64(&end);
388
389 copy_size -= map_size;
390 src_addr += map_size;
391 dst_addr += map_size;
392
393 pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no, &dst_map);
394 pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no, &src_map);
395 map_size = 0;
396 }
397
398 pci_epf_test_print_rate(epf_test, "COPY", orig_size, &start, &end,
399 flags & FLAG_USE_DMA);
400
401 unmap:
402 if (map_size) {
403 pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no, &dst_map);
404 pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no, &src_map);
405 }
406
407 free_buf:
408 kfree(copy_buf);
409
410 set_status:
411 if (!ret)
412 status |= STATUS_COPY_SUCCESS;
413 else
414 status |= STATUS_COPY_FAIL;
415 reg->status = cpu_to_le32(status);
416 }
417
pci_epf_test_read(struct pci_epf_test * epf_test,struct pci_epf_test_reg * reg)418 static void pci_epf_test_read(struct pci_epf_test *epf_test,
419 struct pci_epf_test_reg *reg)
420 {
421 int ret = 0;
422 void *src_buf, *buf;
423 u32 crc32;
424 struct pci_epc_map map;
425 phys_addr_t dst_phys_addr;
426 struct timespec64 start, end;
427 struct pci_epf *epf = epf_test->epf;
428 struct pci_epc *epc = epf->epc;
429 struct device *dev = &epf->dev;
430 struct device *dma_dev = epf->epc->dev.parent;
431 u64 src_addr = le64_to_cpu(reg->src_addr);
432 size_t orig_size, src_size;
433 ssize_t map_size = 0;
434 u32 flags = le32_to_cpu(reg->flags);
435 u32 checksum = le32_to_cpu(reg->checksum);
436 u32 status = 0;
437
438 orig_size = src_size = le32_to_cpu(reg->size);
439
440 src_buf = kzalloc(src_size, GFP_KERNEL);
441 if (!src_buf) {
442 ret = -ENOMEM;
443 goto set_status;
444 }
445 buf = src_buf;
446
447 while (src_size) {
448 ret = pci_epc_mem_map(epc, epf->func_no, epf->vfunc_no,
449 src_addr, src_size, &map);
450 if (ret) {
451 dev_err(dev, "Failed to map address\n");
452 status = STATUS_SRC_ADDR_INVALID;
453 goto free_buf;
454 }
455
456 map_size = map.pci_size;
457 if (flags & FLAG_USE_DMA) {
458 dst_phys_addr = dma_map_single(dma_dev, buf, map_size,
459 DMA_FROM_DEVICE);
460 if (dma_mapping_error(dma_dev, dst_phys_addr)) {
461 dev_err(dev,
462 "Failed to map destination buffer addr\n");
463 ret = -ENOMEM;
464 goto unmap;
465 }
466
467 ktime_get_ts64(&start);
468 ret = pci_epf_test_data_transfer(epf_test,
469 dst_phys_addr, map.phys_addr,
470 map_size, src_addr, DMA_DEV_TO_MEM);
471 if (ret)
472 dev_err(dev, "Data transfer failed\n");
473 ktime_get_ts64(&end);
474
475 dma_unmap_single(dma_dev, dst_phys_addr, map_size,
476 DMA_FROM_DEVICE);
477
478 if (ret)
479 goto unmap;
480 } else {
481 ktime_get_ts64(&start);
482 memcpy_fromio(buf, map.virt_addr, map_size);
483 ktime_get_ts64(&end);
484 }
485
486 src_size -= map_size;
487 src_addr += map_size;
488 buf += map_size;
489
490 pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no, &map);
491 map_size = 0;
492 }
493
494 pci_epf_test_print_rate(epf_test, "READ", orig_size, &start, &end,
495 flags & FLAG_USE_DMA);
496
497 crc32 = crc32_le(~0, src_buf, orig_size);
498 if (crc32 != checksum)
499 ret = -EIO;
500
501 unmap:
502 if (map_size)
503 pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no, &map);
504
505 free_buf:
506 kfree(src_buf);
507
508 set_status:
509 if (!ret)
510 status |= STATUS_READ_SUCCESS;
511 else
512 status |= STATUS_READ_FAIL;
513 reg->status = cpu_to_le32(status);
514 }
515
pci_epf_test_write(struct pci_epf_test * epf_test,struct pci_epf_test_reg * reg)516 static void pci_epf_test_write(struct pci_epf_test *epf_test,
517 struct pci_epf_test_reg *reg)
518 {
519 int ret = 0;
520 void *dst_buf, *buf;
521 struct pci_epc_map map;
522 phys_addr_t src_phys_addr;
523 struct timespec64 start, end;
524 struct pci_epf *epf = epf_test->epf;
525 struct pci_epc *epc = epf->epc;
526 struct device *dev = &epf->dev;
527 struct device *dma_dev = epf->epc->dev.parent;
528 u64 dst_addr = le64_to_cpu(reg->dst_addr);
529 size_t orig_size, dst_size;
530 ssize_t map_size = 0;
531 u32 flags = le32_to_cpu(reg->flags);
532 u32 status = 0;
533
534 orig_size = dst_size = le32_to_cpu(reg->size);
535
536 dst_buf = kzalloc(dst_size, GFP_KERNEL);
537 if (!dst_buf) {
538 ret = -ENOMEM;
539 goto set_status;
540 }
541 get_random_bytes(dst_buf, dst_size);
542 reg->checksum = cpu_to_le32(crc32_le(~0, dst_buf, dst_size));
543 buf = dst_buf;
544
545 while (dst_size) {
546 ret = pci_epc_mem_map(epc, epf->func_no, epf->vfunc_no,
547 dst_addr, dst_size, &map);
548 if (ret) {
549 dev_err(dev, "Failed to map address\n");
550 status = STATUS_DST_ADDR_INVALID;
551 goto free_buf;
552 }
553
554 map_size = map.pci_size;
555 if (flags & FLAG_USE_DMA) {
556 src_phys_addr = dma_map_single(dma_dev, buf, map_size,
557 DMA_TO_DEVICE);
558 if (dma_mapping_error(dma_dev, src_phys_addr)) {
559 dev_err(dev,
560 "Failed to map source buffer addr\n");
561 ret = -ENOMEM;
562 goto unmap;
563 }
564
565 ktime_get_ts64(&start);
566
567 ret = pci_epf_test_data_transfer(epf_test,
568 map.phys_addr, src_phys_addr,
569 map_size, dst_addr,
570 DMA_MEM_TO_DEV);
571 if (ret)
572 dev_err(dev, "Data transfer failed\n");
573 ktime_get_ts64(&end);
574
575 dma_unmap_single(dma_dev, src_phys_addr, map_size,
576 DMA_TO_DEVICE);
577
578 if (ret)
579 goto unmap;
580 } else {
581 ktime_get_ts64(&start);
582 memcpy_toio(map.virt_addr, buf, map_size);
583 ktime_get_ts64(&end);
584 }
585
586 dst_size -= map_size;
587 dst_addr += map_size;
588 buf += map_size;
589
590 pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no, &map);
591 map_size = 0;
592 }
593
594 pci_epf_test_print_rate(epf_test, "WRITE", orig_size, &start, &end,
595 flags & FLAG_USE_DMA);
596
597 /*
598 * wait 1ms inorder for the write to complete. Without this delay L3
599 * error in observed in the host system.
600 */
601 usleep_range(1000, 2000);
602
603 unmap:
604 if (map_size)
605 pci_epc_mem_unmap(epc, epf->func_no, epf->vfunc_no, &map);
606
607 free_buf:
608 kfree(dst_buf);
609
610 set_status:
611 if (!ret)
612 status |= STATUS_WRITE_SUCCESS;
613 else
614 status |= STATUS_WRITE_FAIL;
615 reg->status = cpu_to_le32(status);
616 }
617
pci_epf_test_raise_irq(struct pci_epf_test * epf_test,struct pci_epf_test_reg * reg)618 static void pci_epf_test_raise_irq(struct pci_epf_test *epf_test,
619 struct pci_epf_test_reg *reg)
620 {
621 struct pci_epf *epf = epf_test->epf;
622 struct device *dev = &epf->dev;
623 struct pci_epc *epc = epf->epc;
624 u32 status = le32_to_cpu(reg->status);
625 u32 irq_number = le32_to_cpu(reg->irq_number);
626 u32 irq_type = le32_to_cpu(reg->irq_type);
627 int count;
628
629 /*
630 * Set the status before raising the IRQ to ensure that the host sees
631 * the updated value when it gets the IRQ.
632 */
633 status |= STATUS_IRQ_RAISED;
634 WRITE_ONCE(reg->status, cpu_to_le32(status));
635
636 switch (irq_type) {
637 case IRQ_TYPE_INTX:
638 pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
639 PCI_IRQ_INTX, 0);
640 break;
641 case IRQ_TYPE_MSI:
642 count = pci_epc_get_msi(epc, epf->func_no, epf->vfunc_no);
643 if (irq_number > count || count <= 0) {
644 dev_err(dev, "Invalid MSI IRQ number %d / %d\n",
645 irq_number, count);
646 return;
647 }
648 pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
649 PCI_IRQ_MSI, irq_number);
650 break;
651 case IRQ_TYPE_MSIX:
652 count = pci_epc_get_msix(epc, epf->func_no, epf->vfunc_no);
653 if (irq_number > count || count <= 0) {
654 dev_err(dev, "Invalid MSIX IRQ number %d / %d\n",
655 irq_number, count);
656 return;
657 }
658 pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
659 PCI_IRQ_MSIX, irq_number);
660 break;
661 default:
662 dev_err(dev, "Failed to raise IRQ, unknown type\n");
663 break;
664 }
665 }
666
pci_epf_test_cmd_handler(struct work_struct * work)667 static void pci_epf_test_cmd_handler(struct work_struct *work)
668 {
669 u32 command;
670 struct pci_epf_test *epf_test = container_of(work, struct pci_epf_test,
671 cmd_handler.work);
672 struct pci_epf *epf = epf_test->epf;
673 struct device *dev = &epf->dev;
674 enum pci_barno test_reg_bar = epf_test->test_reg_bar;
675 struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
676 u32 irq_type = le32_to_cpu(reg->irq_type);
677
678 command = le32_to_cpu(READ_ONCE(reg->command));
679 if (!command)
680 goto reset_handler;
681
682 WRITE_ONCE(reg->command, 0);
683 WRITE_ONCE(reg->status, 0);
684
685 if ((le32_to_cpu(READ_ONCE(reg->flags)) & FLAG_USE_DMA) &&
686 !epf_test->dma_supported) {
687 dev_err(dev, "Cannot transfer data using DMA\n");
688 goto reset_handler;
689 }
690
691 if (irq_type > IRQ_TYPE_MSIX) {
692 dev_err(dev, "Failed to detect IRQ type\n");
693 goto reset_handler;
694 }
695
696 switch (command) {
697 case COMMAND_RAISE_INTX_IRQ:
698 case COMMAND_RAISE_MSI_IRQ:
699 case COMMAND_RAISE_MSIX_IRQ:
700 pci_epf_test_raise_irq(epf_test, reg);
701 break;
702 case COMMAND_WRITE:
703 pci_epf_test_write(epf_test, reg);
704 pci_epf_test_raise_irq(epf_test, reg);
705 break;
706 case COMMAND_READ:
707 pci_epf_test_read(epf_test, reg);
708 pci_epf_test_raise_irq(epf_test, reg);
709 break;
710 case COMMAND_COPY:
711 pci_epf_test_copy(epf_test, reg);
712 pci_epf_test_raise_irq(epf_test, reg);
713 break;
714 default:
715 dev_err(dev, "Invalid command 0x%x\n", command);
716 break;
717 }
718
719 reset_handler:
720 queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
721 msecs_to_jiffies(1));
722 }
723
pci_epf_test_set_bar(struct pci_epf * epf)724 static int pci_epf_test_set_bar(struct pci_epf *epf)
725 {
726 int bar, ret;
727 struct pci_epc *epc = epf->epc;
728 struct device *dev = &epf->dev;
729 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
730 enum pci_barno test_reg_bar = epf_test->test_reg_bar;
731
732 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
733 if (!epf_test->reg[bar])
734 continue;
735
736 ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no,
737 &epf->bar[bar]);
738 if (ret) {
739 pci_epf_free_space(epf, epf_test->reg[bar], bar,
740 PRIMARY_INTERFACE);
741 dev_err(dev, "Failed to set BAR%d\n", bar);
742 if (bar == test_reg_bar)
743 return ret;
744 }
745 }
746
747 return 0;
748 }
749
pci_epf_test_clear_bar(struct pci_epf * epf)750 static void pci_epf_test_clear_bar(struct pci_epf *epf)
751 {
752 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
753 struct pci_epc *epc = epf->epc;
754 int bar;
755
756 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
757 if (!epf_test->reg[bar])
758 continue;
759
760 pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no,
761 &epf->bar[bar]);
762 }
763 }
764
pci_epf_test_set_capabilities(struct pci_epf * epf)765 static void pci_epf_test_set_capabilities(struct pci_epf *epf)
766 {
767 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
768 enum pci_barno test_reg_bar = epf_test->test_reg_bar;
769 struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
770 struct pci_epc *epc = epf->epc;
771 u32 caps = 0;
772
773 if (epc->ops->align_addr)
774 caps |= CAP_UNALIGNED_ACCESS;
775
776 reg->caps = cpu_to_le32(caps);
777 }
778
pci_epf_test_epc_init(struct pci_epf * epf)779 static int pci_epf_test_epc_init(struct pci_epf *epf)
780 {
781 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
782 struct pci_epf_header *header = epf->header;
783 const struct pci_epc_features *epc_features = epf_test->epc_features;
784 struct pci_epc *epc = epf->epc;
785 struct device *dev = &epf->dev;
786 bool linkup_notifier = false;
787 int ret;
788
789 epf_test->dma_supported = true;
790
791 ret = pci_epf_test_init_dma_chan(epf_test);
792 if (ret)
793 epf_test->dma_supported = false;
794
795 if (epf->vfunc_no <= 1) {
796 ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no, header);
797 if (ret) {
798 dev_err(dev, "Configuration header write failed\n");
799 return ret;
800 }
801 }
802
803 pci_epf_test_set_capabilities(epf);
804
805 ret = pci_epf_test_set_bar(epf);
806 if (ret)
807 return ret;
808
809 if (epc_features->msi_capable) {
810 ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no,
811 epf->msi_interrupts);
812 if (ret) {
813 dev_err(dev, "MSI configuration failed\n");
814 return ret;
815 }
816 }
817
818 if (epc_features->msix_capable) {
819 ret = pci_epc_set_msix(epc, epf->func_no, epf->vfunc_no,
820 epf->msix_interrupts,
821 epf_test->test_reg_bar,
822 epf_test->msix_table_offset);
823 if (ret) {
824 dev_err(dev, "MSI-X configuration failed\n");
825 return ret;
826 }
827 }
828
829 linkup_notifier = epc_features->linkup_notifier;
830 if (!linkup_notifier)
831 queue_work(kpcitest_workqueue, &epf_test->cmd_handler.work);
832
833 return 0;
834 }
835
pci_epf_test_epc_deinit(struct pci_epf * epf)836 static void pci_epf_test_epc_deinit(struct pci_epf *epf)
837 {
838 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
839
840 cancel_delayed_work_sync(&epf_test->cmd_handler);
841 pci_epf_test_clean_dma_chan(epf_test);
842 pci_epf_test_clear_bar(epf);
843 }
844
pci_epf_test_link_up(struct pci_epf * epf)845 static int pci_epf_test_link_up(struct pci_epf *epf)
846 {
847 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
848
849 queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
850 msecs_to_jiffies(1));
851
852 return 0;
853 }
854
pci_epf_test_link_down(struct pci_epf * epf)855 static int pci_epf_test_link_down(struct pci_epf *epf)
856 {
857 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
858
859 cancel_delayed_work_sync(&epf_test->cmd_handler);
860
861 return 0;
862 }
863
864 static const struct pci_epc_event_ops pci_epf_test_event_ops = {
865 .epc_init = pci_epf_test_epc_init,
866 .epc_deinit = pci_epf_test_epc_deinit,
867 .link_up = pci_epf_test_link_up,
868 .link_down = pci_epf_test_link_down,
869 };
870
pci_epf_test_alloc_space(struct pci_epf * epf)871 static int pci_epf_test_alloc_space(struct pci_epf *epf)
872 {
873 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
874 struct device *dev = &epf->dev;
875 size_t msix_table_size = 0;
876 size_t test_reg_bar_size;
877 size_t pba_size = 0;
878 void *base;
879 enum pci_barno test_reg_bar = epf_test->test_reg_bar;
880 enum pci_barno bar;
881 const struct pci_epc_features *epc_features = epf_test->epc_features;
882 size_t test_reg_size;
883
884 test_reg_bar_size = ALIGN(sizeof(struct pci_epf_test_reg), 128);
885
886 if (epc_features->msix_capable) {
887 msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts;
888 epf_test->msix_table_offset = test_reg_bar_size;
889 /* Align to QWORD or 8 Bytes */
890 pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8);
891 }
892 test_reg_size = test_reg_bar_size + msix_table_size + pba_size;
893
894 base = pci_epf_alloc_space(epf, test_reg_size, test_reg_bar,
895 epc_features, PRIMARY_INTERFACE);
896 if (!base) {
897 dev_err(dev, "Failed to allocated register space\n");
898 return -ENOMEM;
899 }
900 epf_test->reg[test_reg_bar] = base;
901
902 for (bar = BAR_0; bar < PCI_STD_NUM_BARS; bar++) {
903 bar = pci_epc_get_next_free_bar(epc_features, bar);
904 if (bar == NO_BAR)
905 break;
906
907 if (bar == test_reg_bar)
908 continue;
909
910 base = pci_epf_alloc_space(epf, bar_size[bar], bar,
911 epc_features, PRIMARY_INTERFACE);
912 if (!base)
913 dev_err(dev, "Failed to allocate space for BAR%d\n",
914 bar);
915 epf_test->reg[bar] = base;
916 }
917
918 return 0;
919 }
920
pci_epf_test_free_space(struct pci_epf * epf)921 static void pci_epf_test_free_space(struct pci_epf *epf)
922 {
923 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
924 int bar;
925
926 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
927 if (!epf_test->reg[bar])
928 continue;
929
930 pci_epf_free_space(epf, epf_test->reg[bar], bar,
931 PRIMARY_INTERFACE);
932 }
933 }
934
pci_epf_test_bind(struct pci_epf * epf)935 static int pci_epf_test_bind(struct pci_epf *epf)
936 {
937 int ret;
938 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
939 const struct pci_epc_features *epc_features;
940 enum pci_barno test_reg_bar = BAR_0;
941 struct pci_epc *epc = epf->epc;
942
943 if (WARN_ON_ONCE(!epc))
944 return -EINVAL;
945
946 epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
947 if (!epc_features) {
948 dev_err(&epf->dev, "epc_features not implemented\n");
949 return -EOPNOTSUPP;
950 }
951
952 test_reg_bar = pci_epc_get_first_free_bar(epc_features);
953 if (test_reg_bar < 0)
954 return -EINVAL;
955
956 epf_test->test_reg_bar = test_reg_bar;
957 epf_test->epc_features = epc_features;
958
959 ret = pci_epf_test_alloc_space(epf);
960 if (ret)
961 return ret;
962
963 return 0;
964 }
965
pci_epf_test_unbind(struct pci_epf * epf)966 static void pci_epf_test_unbind(struct pci_epf *epf)
967 {
968 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
969 struct pci_epc *epc = epf->epc;
970
971 cancel_delayed_work_sync(&epf_test->cmd_handler);
972 if (epc->init_complete) {
973 pci_epf_test_clean_dma_chan(epf_test);
974 pci_epf_test_clear_bar(epf);
975 }
976 pci_epf_test_free_space(epf);
977 }
978
979 static const struct pci_epf_device_id pci_epf_test_ids[] = {
980 {
981 .name = "pci_epf_test",
982 },
983 {},
984 };
985
pci_epf_test_probe(struct pci_epf * epf,const struct pci_epf_device_id * id)986 static int pci_epf_test_probe(struct pci_epf *epf,
987 const struct pci_epf_device_id *id)
988 {
989 struct pci_epf_test *epf_test;
990 struct device *dev = &epf->dev;
991
992 epf_test = devm_kzalloc(dev, sizeof(*epf_test), GFP_KERNEL);
993 if (!epf_test)
994 return -ENOMEM;
995
996 epf->header = &test_header;
997 epf_test->epf = epf;
998
999 INIT_DELAYED_WORK(&epf_test->cmd_handler, pci_epf_test_cmd_handler);
1000
1001 epf->event_ops = &pci_epf_test_event_ops;
1002
1003 epf_set_drvdata(epf, epf_test);
1004 return 0;
1005 }
1006
1007 static const struct pci_epf_ops ops = {
1008 .unbind = pci_epf_test_unbind,
1009 .bind = pci_epf_test_bind,
1010 };
1011
1012 static struct pci_epf_driver test_driver = {
1013 .driver.name = "pci_epf_test",
1014 .probe = pci_epf_test_probe,
1015 .id_table = pci_epf_test_ids,
1016 .ops = &ops,
1017 .owner = THIS_MODULE,
1018 };
1019
pci_epf_test_init(void)1020 static int __init pci_epf_test_init(void)
1021 {
1022 int ret;
1023
1024 kpcitest_workqueue = alloc_workqueue("kpcitest",
1025 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1026 if (!kpcitest_workqueue) {
1027 pr_err("Failed to allocate the kpcitest work queue\n");
1028 return -ENOMEM;
1029 }
1030
1031 ret = pci_epf_register_driver(&test_driver);
1032 if (ret) {
1033 destroy_workqueue(kpcitest_workqueue);
1034 pr_err("Failed to register pci epf test driver --> %d\n", ret);
1035 return ret;
1036 }
1037
1038 return 0;
1039 }
1040 module_init(pci_epf_test_init);
1041
pci_epf_test_exit(void)1042 static void __exit pci_epf_test_exit(void)
1043 {
1044 if (kpcitest_workqueue)
1045 destroy_workqueue(kpcitest_workqueue);
1046 pci_epf_unregister_driver(&test_driver);
1047 }
1048 module_exit(pci_epf_test_exit);
1049
1050 MODULE_DESCRIPTION("PCI EPF TEST DRIVER");
1051 MODULE_AUTHOR("Kishon Vijay Abraham I <[email protected]>");
1052 MODULE_LICENSE("GPL v2");
1053