1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Derived from arch/i386/kernel/irq.c
4 * Copyright (C) 1992 Linus Torvalds
5 * Adapted from arch/i386 by Gary Thomas
6 * Copyright (C) 1995-1996 Gary Thomas ([email protected])
7 * Updated and modified by Cort Dougan <[email protected]>
8 * Copyright (C) 1996-2001 Cort Dougan
9 * Adapted for Power Macintosh by Paul Mackerras
10 * Copyright (C) 1996 Paul Mackerras ([email protected])
11 *
12 * This file contains the code used to make IRQ descriptions in the
13 * device tree to actual irq numbers on an interrupt controller
14 * driver.
15 */
16
17 #define pr_fmt(fmt) "OF: " fmt
18
19 #include <linux/cleanup.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_irq.h>
26 #include <linux/string.h>
27 #include <linux/slab.h>
28
29 #include "of_private.h"
30
31 /**
32 * irq_of_parse_and_map - Parse and map an interrupt into linux virq space
33 * @dev: Device node of the device whose interrupt is to be mapped
34 * @index: Index of the interrupt to map
35 *
36 * This function is a wrapper that chains of_irq_parse_one() and
37 * irq_create_of_mapping() to make things easier to callers
38 */
irq_of_parse_and_map(struct device_node * dev,int index)39 unsigned int irq_of_parse_and_map(struct device_node *dev, int index)
40 {
41 struct of_phandle_args oirq;
42 unsigned int ret;
43
44 if (of_irq_parse_one(dev, index, &oirq))
45 return 0;
46
47 ret = irq_create_of_mapping(&oirq);
48 of_node_put(oirq.np);
49
50 return ret;
51 }
52 EXPORT_SYMBOL_GPL(irq_of_parse_and_map);
53
54 /**
55 * of_irq_find_parent - Given a device node, find its interrupt parent node
56 * @child: pointer to device node
57 *
58 * Return: A pointer to the interrupt parent node, or NULL if the interrupt
59 * parent could not be determined.
60 */
of_irq_find_parent(struct device_node * child)61 struct device_node *of_irq_find_parent(struct device_node *child)
62 {
63 struct device_node *p;
64 phandle parent;
65
66 if (!of_node_get(child))
67 return NULL;
68
69 do {
70 if (of_property_read_u32(child, "interrupt-parent", &parent)) {
71 p = of_get_parent(child);
72 } else {
73 if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
74 p = of_node_get(of_irq_dflt_pic);
75 else
76 p = of_find_node_by_phandle(parent);
77 }
78 of_node_put(child);
79 child = p;
80 } while (p && of_get_property(p, "#interrupt-cells", NULL) == NULL);
81
82 return p;
83 }
84 EXPORT_SYMBOL_GPL(of_irq_find_parent);
85
86 /*
87 * These interrupt controllers abuse interrupt-map for unspeakable
88 * reasons and rely on the core code to *ignore* it (the drivers do
89 * their own parsing of the property). The PAsemi entry covers a
90 * non-sensical interrupt-map that is better left ignored.
91 *
92 * If you think of adding to the list for something *new*, think
93 * again. There is a high chance that you will be sent back to the
94 * drawing board.
95 */
96 static const char * const of_irq_imap_abusers[] = {
97 "CBEA,platform-spider-pic",
98 "sti,platform-spider-pic",
99 "realtek,rtl-intc",
100 "fsl,ls1021a-extirq",
101 "fsl,ls1043a-extirq",
102 "fsl,ls1088a-extirq",
103 "renesas,rza1-irqc",
104 "pasemi,rootbus",
105 NULL,
106 };
107
of_irq_parse_imap_parent(const __be32 * imap,int len,struct of_phandle_args * out_irq)108 const __be32 *of_irq_parse_imap_parent(const __be32 *imap, int len, struct of_phandle_args *out_irq)
109 {
110 u32 intsize, addrsize;
111 struct device_node *np;
112
113 /* Get the interrupt parent */
114 if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
115 np = of_node_get(of_irq_dflt_pic);
116 else
117 np = of_find_node_by_phandle(be32_to_cpup(imap));
118 imap++;
119 len--;
120
121 /* Check if not found */
122 if (!np) {
123 pr_debug(" -> imap parent not found !\n");
124 return NULL;
125 }
126
127 /* Get #interrupt-cells and #address-cells of new parent */
128 if (of_property_read_u32(np, "#interrupt-cells",
129 &intsize)) {
130 pr_debug(" -> parent lacks #interrupt-cells!\n");
131 of_node_put(np);
132 return NULL;
133 }
134 if (of_property_read_u32(np, "#address-cells",
135 &addrsize))
136 addrsize = 0;
137
138 pr_debug(" -> intsize=%d, addrsize=%d\n",
139 intsize, addrsize);
140
141 /* Check for malformed properties */
142 if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS)
143 || (len < (addrsize + intsize))) {
144 of_node_put(np);
145 return NULL;
146 }
147
148 pr_debug(" -> imaplen=%d\n", len);
149
150 imap += addrsize + intsize;
151
152 out_irq->np = np;
153 for (int i = 0; i < intsize; i++)
154 out_irq->args[i] = be32_to_cpup(imap - intsize + i);
155 out_irq->args_count = intsize;
156
157 return imap;
158 }
159
160 /**
161 * of_irq_parse_raw - Low level interrupt tree parsing
162 * @addr: address specifier (start of "reg" property of the device) in be32 format
163 * @out_irq: structure of_phandle_args updated by this function
164 *
165 * This function is a low-level interrupt tree walking function. It
166 * can be used to do a partial walk with synthetized reg and interrupts
167 * properties, for example when resolving PCI interrupts when no device
168 * node exist for the parent. It takes an interrupt specifier structure as
169 * input, walks the tree looking for any interrupt-map properties, translates
170 * the specifier for each map, and then returns the translated map.
171 *
172 * Return: 0 on success and a negative number on error
173 *
174 * Note: refcount of node @out_irq->np is increased by 1 on success.
175 */
of_irq_parse_raw(const __be32 * addr,struct of_phandle_args * out_irq)176 int of_irq_parse_raw(const __be32 *addr, struct of_phandle_args *out_irq)
177 {
178 struct device_node *ipar, *tnode, *old = NULL;
179 __be32 initial_match_array[MAX_PHANDLE_ARGS];
180 const __be32 *match_array = initial_match_array;
181 const __be32 *tmp, dummy_imask[] = { [0 ... (MAX_PHANDLE_ARGS - 1)] = cpu_to_be32(~0) };
182 u32 intsize = 1, addrsize;
183 int i, rc = -EINVAL;
184
185 #ifdef DEBUG
186 of_print_phandle_args("of_irq_parse_raw: ", out_irq);
187 #endif
188
189 ipar = of_node_get(out_irq->np);
190
191 /* First get the #interrupt-cells property of the current cursor
192 * that tells us how to interpret the passed-in intspec. If there
193 * is none, we are nice and just walk up the tree
194 */
195 do {
196 if (!of_property_read_u32(ipar, "#interrupt-cells", &intsize))
197 break;
198 tnode = ipar;
199 ipar = of_irq_find_parent(ipar);
200 of_node_put(tnode);
201 } while (ipar);
202 if (ipar == NULL) {
203 pr_debug(" -> no parent found !\n");
204 goto fail;
205 }
206
207 pr_debug("of_irq_parse_raw: ipar=%pOF, size=%d\n", ipar, intsize);
208
209 if (out_irq->args_count != intsize)
210 goto fail;
211
212 /* Look for this #address-cells. We have to implement the old linux
213 * trick of looking for the parent here as some device-trees rely on it
214 */
215 old = of_node_get(ipar);
216 do {
217 tmp = of_get_property(old, "#address-cells", NULL);
218 tnode = of_get_parent(old);
219 of_node_put(old);
220 old = tnode;
221 } while (old && tmp == NULL);
222 of_node_put(old);
223 old = NULL;
224 addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp);
225
226 pr_debug(" -> addrsize=%d\n", addrsize);
227
228 /* Range check so that the temporary buffer doesn't overflow */
229 if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS)) {
230 rc = -EFAULT;
231 goto fail;
232 }
233
234 /* Precalculate the match array - this simplifies match loop */
235 for (i = 0; i < addrsize; i++)
236 initial_match_array[i] = addr ? addr[i] : 0;
237 for (i = 0; i < intsize; i++)
238 initial_match_array[addrsize + i] = cpu_to_be32(out_irq->args[i]);
239
240 /* Now start the actual "proper" walk of the interrupt tree */
241 while (ipar != NULL) {
242 int imaplen, match;
243 const __be32 *imap, *oldimap, *imask;
244 struct device_node *newpar;
245 /*
246 * Now check if cursor is an interrupt-controller and
247 * if it is then we are done, unless there is an
248 * interrupt-map which takes precedence except on one
249 * of these broken platforms that want to parse
250 * interrupt-map themselves for $reason.
251 */
252 bool intc = of_property_read_bool(ipar, "interrupt-controller");
253
254 imap = of_get_property(ipar, "interrupt-map", &imaplen);
255 if (intc &&
256 (!imap || of_device_compatible_match(ipar, of_irq_imap_abusers))) {
257 pr_debug(" -> got it !\n");
258 return 0;
259 }
260
261 /*
262 * interrupt-map parsing does not work without a reg
263 * property when #address-cells != 0
264 */
265 if (addrsize && !addr) {
266 pr_debug(" -> no reg passed in when needed !\n");
267 goto fail;
268 }
269
270 /* No interrupt map, check for an interrupt parent */
271 if (imap == NULL) {
272 pr_debug(" -> no map, getting parent\n");
273 newpar = of_irq_find_parent(ipar);
274 goto skiplevel;
275 }
276 imaplen /= sizeof(u32);
277
278 /* Look for a mask */
279 imask = of_get_property(ipar, "interrupt-map-mask", NULL);
280 if (!imask)
281 imask = dummy_imask;
282
283 /* Parse interrupt-map */
284 match = 0;
285 while (imaplen > (addrsize + intsize + 1)) {
286 /* Compare specifiers */
287 match = 1;
288 for (i = 0; i < (addrsize + intsize); i++, imaplen--)
289 match &= !((match_array[i] ^ *imap++) & imask[i]);
290
291 pr_debug(" -> match=%d (imaplen=%d)\n", match, imaplen);
292
293 oldimap = imap;
294 imap = of_irq_parse_imap_parent(oldimap, imaplen, out_irq);
295 if (!imap)
296 goto fail;
297
298 match &= of_device_is_available(out_irq->np);
299 if (match)
300 break;
301
302 of_node_put(out_irq->np);
303 imaplen -= imap - oldimap;
304 pr_debug(" -> imaplen=%d\n", imaplen);
305 }
306 if (!match)
307 goto fail;
308
309 /*
310 * Successfully parsed an interrupt-map translation; copy new
311 * interrupt specifier into the out_irq structure
312 */
313 match_array = oldimap + 1;
314
315 newpar = out_irq->np;
316 intsize = out_irq->args_count;
317 addrsize = (imap - match_array) - intsize;
318
319 if (ipar == newpar) {
320 /*
321 * We got @ipar's refcount, but the refcount was
322 * gotten again by of_irq_parse_imap_parent() via its
323 * alias @newpar.
324 */
325 of_node_put(ipar);
326 pr_debug("%pOF interrupt-map entry to self\n", ipar);
327 return 0;
328 }
329
330 skiplevel:
331 /* Iterate again with new parent */
332 pr_debug(" -> new parent: %pOF\n", newpar);
333 of_node_put(ipar);
334 ipar = newpar;
335 newpar = NULL;
336 }
337 rc = -ENOENT; /* No interrupt-map found */
338
339 fail:
340 of_node_put(ipar);
341
342 return rc;
343 }
344 EXPORT_SYMBOL_GPL(of_irq_parse_raw);
345
346 /**
347 * of_irq_parse_one - Resolve an interrupt for a device
348 * @device: the device whose interrupt is to be resolved
349 * @index: index of the interrupt to resolve
350 * @out_irq: structure of_phandle_args filled by this function
351 *
352 * This function resolves an interrupt for a node by walking the interrupt tree,
353 * finding which interrupt controller node it is attached to, and returning the
354 * interrupt specifier that can be used to retrieve a Linux IRQ number.
355 *
356 * Note: refcount of node @out_irq->np is increased by 1 on success.
357 */
of_irq_parse_one(struct device_node * device,int index,struct of_phandle_args * out_irq)358 int of_irq_parse_one(struct device_node *device, int index, struct of_phandle_args *out_irq)
359 {
360 struct device_node __free(device_node) *p = NULL;
361 const __be32 *addr;
362 u32 intsize;
363 int i, res, addr_len;
364 __be32 addr_buf[3] = { 0 };
365
366 pr_debug("of_irq_parse_one: dev=%pOF, index=%d\n", device, index);
367
368 /* OldWorld mac stuff is "special", handle out of line */
369 if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC)
370 return of_irq_parse_oldworld(device, index, out_irq);
371
372 /* Get the reg property (if any) */
373 addr_len = 0;
374 addr = of_get_property(device, "reg", &addr_len);
375
376 /* Prevent out-of-bounds read in case of longer interrupt parent address size */
377 if (addr_len > sizeof(addr_buf))
378 addr_len = sizeof(addr_buf);
379 if (addr)
380 memcpy(addr_buf, addr, addr_len);
381
382 /* Try the new-style interrupts-extended first */
383 res = of_parse_phandle_with_args(device, "interrupts-extended",
384 "#interrupt-cells", index, out_irq);
385 if (!res) {
386 p = out_irq->np;
387 } else {
388 /* Look for the interrupt parent. */
389 p = of_irq_find_parent(device);
390 /* Get size of interrupt specifier */
391 if (!p || of_property_read_u32(p, "#interrupt-cells", &intsize))
392 return -EINVAL;
393
394 pr_debug(" parent=%pOF, intsize=%d\n", p, intsize);
395
396 /* Copy intspec into irq structure */
397 out_irq->np = p;
398 out_irq->args_count = intsize;
399 for (i = 0; i < intsize; i++) {
400 res = of_property_read_u32_index(device, "interrupts",
401 (index * intsize) + i,
402 out_irq->args + i);
403 if (res)
404 return res;
405 }
406
407 pr_debug(" intspec=%d\n", *out_irq->args);
408 }
409
410 /* Check if there are any interrupt-map translations to process */
411 return of_irq_parse_raw(addr_buf, out_irq);
412 }
413 EXPORT_SYMBOL_GPL(of_irq_parse_one);
414
415 /**
416 * of_irq_to_resource - Decode a node's IRQ and return it as a resource
417 * @dev: pointer to device tree node
418 * @index: zero-based index of the irq
419 * @r: pointer to resource structure to return result into.
420 */
of_irq_to_resource(struct device_node * dev,int index,struct resource * r)421 int of_irq_to_resource(struct device_node *dev, int index, struct resource *r)
422 {
423 int irq = of_irq_get(dev, index);
424
425 if (irq < 0)
426 return irq;
427
428 /* Only dereference the resource if both the
429 * resource and the irq are valid. */
430 if (r && irq) {
431 const char *name = NULL;
432
433 memset(r, 0, sizeof(*r));
434 /*
435 * Get optional "interrupt-names" property to add a name
436 * to the resource.
437 */
438 of_property_read_string_index(dev, "interrupt-names", index,
439 &name);
440
441 *r = DEFINE_RES_IRQ_NAMED(irq, name ?: of_node_full_name(dev));
442 r->flags |= irq_get_trigger_type(irq);
443 }
444
445 return irq;
446 }
447 EXPORT_SYMBOL_GPL(of_irq_to_resource);
448
449 /**
450 * of_irq_get - Decode a node's IRQ and return it as a Linux IRQ number
451 * @dev: pointer to device tree node
452 * @index: zero-based index of the IRQ
453 *
454 * Return: Linux IRQ number on success, or 0 on the IRQ mapping failure, or
455 * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case
456 * of any other failure.
457 */
of_irq_get(struct device_node * dev,int index)458 int of_irq_get(struct device_node *dev, int index)
459 {
460 int rc;
461 struct of_phandle_args oirq;
462 struct irq_domain *domain;
463
464 rc = of_irq_parse_one(dev, index, &oirq);
465 if (rc)
466 return rc;
467
468 domain = irq_find_host(oirq.np);
469 if (!domain) {
470 rc = -EPROBE_DEFER;
471 goto out;
472 }
473
474 rc = irq_create_of_mapping(&oirq);
475 out:
476 of_node_put(oirq.np);
477
478 return rc;
479 }
480 EXPORT_SYMBOL_GPL(of_irq_get);
481
482 /**
483 * of_irq_get_byname - Decode a node's IRQ and return it as a Linux IRQ number
484 * @dev: pointer to device tree node
485 * @name: IRQ name
486 *
487 * Return: Linux IRQ number on success, or 0 on the IRQ mapping failure, or
488 * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case
489 * of any other failure.
490 */
of_irq_get_byname(struct device_node * dev,const char * name)491 int of_irq_get_byname(struct device_node *dev, const char *name)
492 {
493 int index;
494
495 if (unlikely(!name))
496 return -EINVAL;
497
498 index = of_property_match_string(dev, "interrupt-names", name);
499 if (index < 0)
500 return index;
501
502 return of_irq_get(dev, index);
503 }
504 EXPORT_SYMBOL_GPL(of_irq_get_byname);
505
506 /**
507 * of_irq_count - Count the number of IRQs a node uses
508 * @dev: pointer to device tree node
509 */
of_irq_count(struct device_node * dev)510 int of_irq_count(struct device_node *dev)
511 {
512 struct of_phandle_args irq;
513 int nr = 0;
514
515 while (of_irq_parse_one(dev, nr, &irq) == 0) {
516 of_node_put(irq.np);
517 nr++;
518 }
519
520 return nr;
521 }
522
523 /**
524 * of_irq_to_resource_table - Fill in resource table with node's IRQ info
525 * @dev: pointer to device tree node
526 * @res: array of resources to fill in
527 * @nr_irqs: the number of IRQs (and upper bound for num of @res elements)
528 *
529 * Return: The size of the filled in table (up to @nr_irqs).
530 */
of_irq_to_resource_table(struct device_node * dev,struct resource * res,int nr_irqs)531 int of_irq_to_resource_table(struct device_node *dev, struct resource *res,
532 int nr_irqs)
533 {
534 int i;
535
536 for (i = 0; i < nr_irqs; i++, res++)
537 if (of_irq_to_resource(dev, i, res) <= 0)
538 break;
539
540 return i;
541 }
542 EXPORT_SYMBOL_GPL(of_irq_to_resource_table);
543
544 struct of_intc_desc {
545 struct list_head list;
546 of_irq_init_cb_t irq_init_cb;
547 struct device_node *dev;
548 struct device_node *interrupt_parent;
549 };
550
551 /**
552 * of_irq_init - Scan and init matching interrupt controllers in DT
553 * @matches: 0 terminated array of nodes to match and init function to call
554 *
555 * This function scans the device tree for matching interrupt controller nodes,
556 * and calls their initialization functions in order with parents first.
557 */
of_irq_init(const struct of_device_id * matches)558 void __init of_irq_init(const struct of_device_id *matches)
559 {
560 const struct of_device_id *match;
561 struct device_node *np, *parent = NULL;
562 struct of_intc_desc *desc, *temp_desc;
563 struct list_head intc_desc_list, intc_parent_list;
564
565 INIT_LIST_HEAD(&intc_desc_list);
566 INIT_LIST_HEAD(&intc_parent_list);
567
568 for_each_matching_node_and_match(np, matches, &match) {
569 if (!of_property_read_bool(np, "interrupt-controller") ||
570 !of_device_is_available(np))
571 continue;
572
573 if (WARN(!match->data, "of_irq_init: no init function for %s\n",
574 match->compatible))
575 continue;
576
577 /*
578 * Here, we allocate and populate an of_intc_desc with the node
579 * pointer, interrupt-parent device_node etc.
580 */
581 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
582 if (!desc) {
583 of_node_put(np);
584 goto err;
585 }
586
587 desc->irq_init_cb = match->data;
588 desc->dev = of_node_get(np);
589 /*
590 * interrupts-extended can reference multiple parent domains.
591 * Arbitrarily pick the first one; assume any other parents
592 * are the same distance away from the root irq controller.
593 */
594 desc->interrupt_parent = of_parse_phandle(np, "interrupts-extended", 0);
595 if (!desc->interrupt_parent)
596 desc->interrupt_parent = of_irq_find_parent(np);
597 if (desc->interrupt_parent == np) {
598 of_node_put(desc->interrupt_parent);
599 desc->interrupt_parent = NULL;
600 }
601 list_add_tail(&desc->list, &intc_desc_list);
602 }
603
604 /*
605 * The root irq controller is the one without an interrupt-parent.
606 * That one goes first, followed by the controllers that reference it,
607 * followed by the ones that reference the 2nd level controllers, etc.
608 */
609 while (!list_empty(&intc_desc_list)) {
610 /*
611 * Process all controllers with the current 'parent'.
612 * First pass will be looking for NULL as the parent.
613 * The assumption is that NULL parent means a root controller.
614 */
615 list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
616 int ret;
617
618 if (desc->interrupt_parent != parent)
619 continue;
620
621 list_del(&desc->list);
622
623 of_node_set_flag(desc->dev, OF_POPULATED);
624
625 pr_debug("of_irq_init: init %pOF (%p), parent %p\n",
626 desc->dev,
627 desc->dev, desc->interrupt_parent);
628 ret = desc->irq_init_cb(desc->dev,
629 desc->interrupt_parent);
630 if (ret) {
631 pr_err("%s: Failed to init %pOF (%p), parent %p\n",
632 __func__, desc->dev, desc->dev,
633 desc->interrupt_parent);
634 of_node_clear_flag(desc->dev, OF_POPULATED);
635 of_node_put(desc->interrupt_parent);
636 of_node_put(desc->dev);
637 kfree(desc);
638 continue;
639 }
640
641 /*
642 * This one is now set up; add it to the parent list so
643 * its children can get processed in a subsequent pass.
644 */
645 list_add_tail(&desc->list, &intc_parent_list);
646 }
647
648 /* Get the next pending parent that might have children */
649 desc = list_first_entry_or_null(&intc_parent_list,
650 typeof(*desc), list);
651 if (!desc) {
652 pr_err("of_irq_init: children remain, but no parents\n");
653 break;
654 }
655 list_del(&desc->list);
656 parent = desc->dev;
657 kfree(desc);
658 }
659
660 list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) {
661 list_del(&desc->list);
662 kfree(desc);
663 }
664 err:
665 list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
666 list_del(&desc->list);
667 of_node_put(desc->interrupt_parent);
668 of_node_put(desc->dev);
669 kfree(desc);
670 }
671 }
672
__of_msi_map_id(struct device * dev,struct device_node ** np,u32 id_in)673 static u32 __of_msi_map_id(struct device *dev, struct device_node **np,
674 u32 id_in)
675 {
676 struct device *parent_dev;
677 u32 id_out = id_in;
678
679 /*
680 * Walk up the device parent links looking for one with a
681 * "msi-map" property.
682 */
683 for (parent_dev = dev; parent_dev; parent_dev = parent_dev->parent)
684 if (!of_map_id(parent_dev->of_node, id_in, "msi-map",
685 "msi-map-mask", np, &id_out))
686 break;
687 return id_out;
688 }
689
690 /**
691 * of_msi_map_id - Map a MSI ID for a device.
692 * @dev: device for which the mapping is to be done.
693 * @msi_np: device node of the expected msi controller.
694 * @id_in: unmapped MSI ID for the device.
695 *
696 * Walk up the device hierarchy looking for devices with a "msi-map"
697 * property. If found, apply the mapping to @id_in.
698 *
699 * Return: The mapped MSI ID.
700 */
of_msi_map_id(struct device * dev,struct device_node * msi_np,u32 id_in)701 u32 of_msi_map_id(struct device *dev, struct device_node *msi_np, u32 id_in)
702 {
703 return __of_msi_map_id(dev, &msi_np, id_in);
704 }
705
706 /**
707 * of_msi_map_get_device_domain - Use msi-map to find the relevant MSI domain
708 * @dev: device for which the mapping is to be done.
709 * @id: Device ID.
710 * @bus_token: Bus token
711 *
712 * Walk up the device hierarchy looking for devices with a "msi-map"
713 * property.
714 *
715 * Returns: the MSI domain for this device (or NULL on failure)
716 */
of_msi_map_get_device_domain(struct device * dev,u32 id,u32 bus_token)717 struct irq_domain *of_msi_map_get_device_domain(struct device *dev, u32 id,
718 u32 bus_token)
719 {
720 struct device_node *np = NULL;
721
722 __of_msi_map_id(dev, &np, id);
723 return irq_find_matching_host(np, bus_token);
724 }
725
726 /**
727 * of_msi_get_domain - Use msi-parent to find the relevant MSI domain
728 * @dev: device for which the domain is requested
729 * @np: device node for @dev
730 * @token: bus type for this domain
731 *
732 * Parse the msi-parent property and returns the corresponding MSI domain.
733 *
734 * Returns: the MSI domain for this device (or NULL on failure).
735 */
of_msi_get_domain(struct device * dev,const struct device_node * np,enum irq_domain_bus_token token)736 struct irq_domain *of_msi_get_domain(struct device *dev,
737 const struct device_node *np,
738 enum irq_domain_bus_token token)
739 {
740 struct of_phandle_iterator it;
741 struct irq_domain *d;
742 int err;
743
744 of_for_each_phandle(&it, err, np, "msi-parent", "#msi-cells", 0) {
745 d = irq_find_matching_host(it.node, token);
746 if (d)
747 return d;
748 }
749
750 return NULL;
751 }
752 EXPORT_SYMBOL_GPL(of_msi_get_domain);
753
754 /**
755 * of_msi_configure - Set the msi_domain field of a device
756 * @dev: device structure to associate with an MSI irq domain
757 * @np: device node for that device
758 */
of_msi_configure(struct device * dev,const struct device_node * np)759 void of_msi_configure(struct device *dev, const struct device_node *np)
760 {
761 dev_set_msi_domain(dev,
762 of_msi_get_domain(dev, np, DOMAIN_BUS_PLATFORM_MSI));
763 }
764 EXPORT_SYMBOL_GPL(of_msi_configure);
765