1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * nvmem framework core.
4 *
5 * Copyright (C) 2015 Srinivas Kandagatla <[email protected]>
6 * Copyright (C) 2013 Maxime Ripard <[email protected]>
7 */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 #include "internals.h"
23
24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25
26 #define FLAG_COMPAT BIT(0)
27 struct nvmem_cell_entry {
28 const char *name;
29 int offset;
30 size_t raw_len;
31 int bytes;
32 int bit_offset;
33 int nbits;
34 nvmem_cell_post_process_t read_post_process;
35 void *priv;
36 struct device_node *np;
37 struct nvmem_device *nvmem;
38 struct list_head node;
39 };
40
41 struct nvmem_cell {
42 struct nvmem_cell_entry *entry;
43 const char *id;
44 int index;
45 };
46
47 static DEFINE_MUTEX(nvmem_mutex);
48 static DEFINE_IDA(nvmem_ida);
49
50 static DEFINE_MUTEX(nvmem_cell_mutex);
51 static LIST_HEAD(nvmem_cell_tables);
52
53 static DEFINE_MUTEX(nvmem_lookup_mutex);
54 static LIST_HEAD(nvmem_lookup_list);
55
56 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
57
__nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)58 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
59 void *val, size_t bytes)
60 {
61 if (nvmem->reg_read)
62 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
63
64 return -EINVAL;
65 }
66
__nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)67 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
68 void *val, size_t bytes)
69 {
70 int ret;
71
72 if (nvmem->reg_write) {
73 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
74 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
75 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
76 return ret;
77 }
78
79 return -EINVAL;
80 }
81
nvmem_access_with_keepouts(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes,int write)82 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
83 unsigned int offset, void *val,
84 size_t bytes, int write)
85 {
86
87 unsigned int end = offset + bytes;
88 unsigned int kend, ksize;
89 const struct nvmem_keepout *keepout = nvmem->keepout;
90 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
91 int rc;
92
93 /*
94 * Skip all keepouts before the range being accessed.
95 * Keepouts are sorted.
96 */
97 while ((keepout < keepoutend) && (keepout->end <= offset))
98 keepout++;
99
100 while ((offset < end) && (keepout < keepoutend)) {
101 /* Access the valid portion before the keepout. */
102 if (offset < keepout->start) {
103 kend = min(end, keepout->start);
104 ksize = kend - offset;
105 if (write)
106 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
107 else
108 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
109
110 if (rc)
111 return rc;
112
113 offset += ksize;
114 val += ksize;
115 }
116
117 /*
118 * Now we're aligned to the start of this keepout zone. Go
119 * through it.
120 */
121 kend = min(end, keepout->end);
122 ksize = kend - offset;
123 if (!write)
124 memset(val, keepout->value, ksize);
125
126 val += ksize;
127 offset += ksize;
128 keepout++;
129 }
130
131 /*
132 * If we ran out of keepouts but there's still stuff to do, send it
133 * down directly
134 */
135 if (offset < end) {
136 ksize = end - offset;
137 if (write)
138 return __nvmem_reg_write(nvmem, offset, val, ksize);
139 else
140 return __nvmem_reg_read(nvmem, offset, val, ksize);
141 }
142
143 return 0;
144 }
145
nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)146 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
147 void *val, size_t bytes)
148 {
149 if (!nvmem->nkeepout)
150 return __nvmem_reg_read(nvmem, offset, val, bytes);
151
152 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
153 }
154
nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)155 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
156 void *val, size_t bytes)
157 {
158 if (!nvmem->nkeepout)
159 return __nvmem_reg_write(nvmem, offset, val, bytes);
160
161 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
162 }
163
164 #ifdef CONFIG_NVMEM_SYSFS
165 static const char * const nvmem_type_str[] = {
166 [NVMEM_TYPE_UNKNOWN] = "Unknown",
167 [NVMEM_TYPE_EEPROM] = "EEPROM",
168 [NVMEM_TYPE_OTP] = "OTP",
169 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
170 [NVMEM_TYPE_FRAM] = "FRAM",
171 };
172
173 #ifdef CONFIG_DEBUG_LOCK_ALLOC
174 static struct lock_class_key eeprom_lock_key;
175 #endif
176
type_show(struct device * dev,struct device_attribute * attr,char * buf)177 static ssize_t type_show(struct device *dev,
178 struct device_attribute *attr, char *buf)
179 {
180 struct nvmem_device *nvmem = to_nvmem_device(dev);
181
182 return sysfs_emit(buf, "%s\n", nvmem_type_str[nvmem->type]);
183 }
184
185 static DEVICE_ATTR_RO(type);
186
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)187 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
188 char *buf)
189 {
190 struct nvmem_device *nvmem = to_nvmem_device(dev);
191
192 return sysfs_emit(buf, "%d\n", nvmem->read_only);
193 }
194
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)195 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
196 const char *buf, size_t count)
197 {
198 struct nvmem_device *nvmem = to_nvmem_device(dev);
199 int ret = kstrtobool(buf, &nvmem->read_only);
200
201 if (ret < 0)
202 return ret;
203
204 return count;
205 }
206
207 static DEVICE_ATTR_RW(force_ro);
208
209 static struct attribute *nvmem_attrs[] = {
210 &dev_attr_force_ro.attr,
211 &dev_attr_type.attr,
212 NULL,
213 };
214
bin_attr_nvmem_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)215 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
216 const struct bin_attribute *attr, char *buf,
217 loff_t pos, size_t count)
218 {
219 struct device *dev;
220 struct nvmem_device *nvmem;
221 int rc;
222
223 if (attr->private)
224 dev = attr->private;
225 else
226 dev = kobj_to_dev(kobj);
227 nvmem = to_nvmem_device(dev);
228
229 if (!IS_ALIGNED(pos, nvmem->stride))
230 return -EINVAL;
231
232 if (count < nvmem->word_size)
233 return -EINVAL;
234
235 count = round_down(count, nvmem->word_size);
236
237 if (!nvmem->reg_read)
238 return -EPERM;
239
240 rc = nvmem_reg_read(nvmem, pos, buf, count);
241
242 if (rc)
243 return rc;
244
245 return count;
246 }
247
bin_attr_nvmem_write(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)248 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
249 const struct bin_attribute *attr, char *buf,
250 loff_t pos, size_t count)
251 {
252 struct device *dev;
253 struct nvmem_device *nvmem;
254 int rc;
255
256 if (attr->private)
257 dev = attr->private;
258 else
259 dev = kobj_to_dev(kobj);
260 nvmem = to_nvmem_device(dev);
261
262 if (!IS_ALIGNED(pos, nvmem->stride))
263 return -EINVAL;
264
265 if (count < nvmem->word_size)
266 return -EINVAL;
267
268 count = round_down(count, nvmem->word_size);
269
270 if (!nvmem->reg_write || nvmem->read_only)
271 return -EPERM;
272
273 rc = nvmem_reg_write(nvmem, pos, buf, count);
274
275 if (rc)
276 return rc;
277
278 return count;
279 }
280
nvmem_bin_attr_get_umode(struct nvmem_device * nvmem)281 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
282 {
283 umode_t mode = 0400;
284
285 if (!nvmem->root_only)
286 mode |= 0044;
287
288 if (!nvmem->read_only)
289 mode |= 0200;
290
291 if (!nvmem->reg_write)
292 mode &= ~0200;
293
294 if (!nvmem->reg_read)
295 mode &= ~0444;
296
297 return mode;
298 }
299
nvmem_bin_attr_is_visible(struct kobject * kobj,const struct bin_attribute * attr,int i)300 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
301 const struct bin_attribute *attr,
302 int i)
303 {
304 struct device *dev = kobj_to_dev(kobj);
305 struct nvmem_device *nvmem = to_nvmem_device(dev);
306
307 return nvmem_bin_attr_get_umode(nvmem);
308 }
309
nvmem_bin_attr_size(struct kobject * kobj,const struct bin_attribute * attr,int i)310 static size_t nvmem_bin_attr_size(struct kobject *kobj,
311 const struct bin_attribute *attr,
312 int i)
313 {
314 struct device *dev = kobj_to_dev(kobj);
315 struct nvmem_device *nvmem = to_nvmem_device(dev);
316
317 return nvmem->size;
318 }
319
nvmem_attr_is_visible(struct kobject * kobj,struct attribute * attr,int i)320 static umode_t nvmem_attr_is_visible(struct kobject *kobj,
321 struct attribute *attr, int i)
322 {
323 struct device *dev = kobj_to_dev(kobj);
324 struct nvmem_device *nvmem = to_nvmem_device(dev);
325
326 /*
327 * If the device has no .reg_write operation, do not allow
328 * configuration as read-write.
329 * If the device is set as read-only by configuration, it
330 * can be forced into read-write mode using the 'force_ro'
331 * attribute.
332 */
333 if (attr == &dev_attr_force_ro.attr && !nvmem->reg_write)
334 return 0; /* Attribute not visible */
335
336 return attr->mode;
337 }
338
339 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
340 const char *id, int index);
341
nvmem_cell_attr_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)342 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
343 const struct bin_attribute *attr, char *buf,
344 loff_t pos, size_t count)
345 {
346 struct nvmem_cell_entry *entry;
347 struct nvmem_cell *cell = NULL;
348 size_t cell_sz, read_len;
349 void *content;
350
351 entry = attr->private;
352 cell = nvmem_create_cell(entry, entry->name, 0);
353 if (IS_ERR(cell))
354 return PTR_ERR(cell);
355
356 if (!cell)
357 return -EINVAL;
358
359 content = nvmem_cell_read(cell, &cell_sz);
360 if (IS_ERR(content)) {
361 read_len = PTR_ERR(content);
362 goto destroy_cell;
363 }
364
365 read_len = min_t(unsigned int, cell_sz - pos, count);
366 memcpy(buf, content + pos, read_len);
367 kfree(content);
368
369 destroy_cell:
370 kfree_const(cell->id);
371 kfree(cell);
372
373 return read_len;
374 }
375
376 /* default read/write permissions */
377 static const struct bin_attribute bin_attr_rw_nvmem = {
378 .attr = {
379 .name = "nvmem",
380 .mode = 0644,
381 },
382 .read_new = bin_attr_nvmem_read,
383 .write_new = bin_attr_nvmem_write,
384 };
385
386 static const struct bin_attribute *const nvmem_bin_attributes[] = {
387 &bin_attr_rw_nvmem,
388 NULL,
389 };
390
391 static const struct attribute_group nvmem_bin_group = {
392 .bin_attrs_new = nvmem_bin_attributes,
393 .attrs = nvmem_attrs,
394 .is_bin_visible = nvmem_bin_attr_is_visible,
395 .bin_size = nvmem_bin_attr_size,
396 .is_visible = nvmem_attr_is_visible,
397 };
398
399 static const struct attribute_group *nvmem_dev_groups[] = {
400 &nvmem_bin_group,
401 NULL,
402 };
403
404 static const struct bin_attribute bin_attr_nvmem_eeprom_compat = {
405 .attr = {
406 .name = "eeprom",
407 },
408 .read_new = bin_attr_nvmem_read,
409 .write_new = bin_attr_nvmem_write,
410 };
411
412 /*
413 * nvmem_setup_compat() - Create an additional binary entry in
414 * drivers sys directory, to be backwards compatible with the older
415 * drivers/misc/eeprom drivers.
416 */
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)417 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
418 const struct nvmem_config *config)
419 {
420 int rval;
421
422 if (!config->compat)
423 return 0;
424
425 if (!config->base_dev)
426 return -EINVAL;
427
428 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
429 if (config->type == NVMEM_TYPE_FRAM)
430 nvmem->eeprom.attr.name = "fram";
431 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
432 nvmem->eeprom.size = nvmem->size;
433 #ifdef CONFIG_DEBUG_LOCK_ALLOC
434 nvmem->eeprom.attr.key = &eeprom_lock_key;
435 #endif
436 nvmem->eeprom.private = &nvmem->dev;
437 nvmem->base_dev = config->base_dev;
438
439 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
440 if (rval) {
441 dev_err(&nvmem->dev,
442 "Failed to create eeprom binary file %d\n", rval);
443 return rval;
444 }
445
446 nvmem->flags |= FLAG_COMPAT;
447
448 return 0;
449 }
450
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)451 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
452 const struct nvmem_config *config)
453 {
454 if (config->compat)
455 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
456 }
457
nvmem_populate_sysfs_cells(struct nvmem_device * nvmem)458 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
459 {
460 struct attribute_group group = {
461 .name = "cells",
462 };
463 struct nvmem_cell_entry *entry;
464 const struct bin_attribute **pattrs;
465 struct bin_attribute *attrs;
466 unsigned int ncells = 0, i = 0;
467 int ret = 0;
468
469 mutex_lock(&nvmem_mutex);
470
471 if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated)
472 goto unlock_mutex;
473
474 /* Allocate an array of attributes with a sentinel */
475 ncells = list_count_nodes(&nvmem->cells);
476 pattrs = devm_kcalloc(&nvmem->dev, ncells + 1,
477 sizeof(struct bin_attribute *), GFP_KERNEL);
478 if (!pattrs) {
479 ret = -ENOMEM;
480 goto unlock_mutex;
481 }
482
483 attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
484 if (!attrs) {
485 ret = -ENOMEM;
486 goto unlock_mutex;
487 }
488
489 /* Initialize each attribute to take the name and size of the cell */
490 list_for_each_entry(entry, &nvmem->cells, node) {
491 sysfs_bin_attr_init(&attrs[i]);
492 attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
493 "%s@%x,%x", entry->name,
494 entry->offset,
495 entry->bit_offset);
496 attrs[i].attr.mode = 0444 & nvmem_bin_attr_get_umode(nvmem);
497 attrs[i].size = entry->bytes;
498 attrs[i].read_new = &nvmem_cell_attr_read;
499 attrs[i].private = entry;
500 if (!attrs[i].attr.name) {
501 ret = -ENOMEM;
502 goto unlock_mutex;
503 }
504
505 pattrs[i] = &attrs[i];
506 i++;
507 }
508
509 group.bin_attrs_new = pattrs;
510
511 ret = device_add_group(&nvmem->dev, &group);
512 if (ret)
513 goto unlock_mutex;
514
515 nvmem->sysfs_cells_populated = true;
516
517 unlock_mutex:
518 mutex_unlock(&nvmem_mutex);
519
520 return ret;
521 }
522
523 #else /* CONFIG_NVMEM_SYSFS */
524
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)525 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
526 const struct nvmem_config *config)
527 {
528 return -ENOSYS;
529 }
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)530 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
531 const struct nvmem_config *config)
532 {
533 }
534
535 #endif /* CONFIG_NVMEM_SYSFS */
536
nvmem_release(struct device * dev)537 static void nvmem_release(struct device *dev)
538 {
539 struct nvmem_device *nvmem = to_nvmem_device(dev);
540
541 ida_free(&nvmem_ida, nvmem->id);
542 gpiod_put(nvmem->wp_gpio);
543 kfree(nvmem);
544 }
545
546 static const struct device_type nvmem_provider_type = {
547 .release = nvmem_release,
548 };
549
550 static struct bus_type nvmem_bus_type = {
551 .name = "nvmem",
552 };
553
nvmem_cell_entry_drop(struct nvmem_cell_entry * cell)554 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
555 {
556 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
557 mutex_lock(&nvmem_mutex);
558 list_del(&cell->node);
559 mutex_unlock(&nvmem_mutex);
560 of_node_put(cell->np);
561 kfree_const(cell->name);
562 kfree(cell);
563 }
564
nvmem_device_remove_all_cells(const struct nvmem_device * nvmem)565 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
566 {
567 struct nvmem_cell_entry *cell, *p;
568
569 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
570 nvmem_cell_entry_drop(cell);
571 }
572
nvmem_cell_entry_add(struct nvmem_cell_entry * cell)573 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
574 {
575 mutex_lock(&nvmem_mutex);
576 list_add_tail(&cell->node, &cell->nvmem->cells);
577 mutex_unlock(&nvmem_mutex);
578 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
579 }
580
nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)581 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
582 const struct nvmem_cell_info *info,
583 struct nvmem_cell_entry *cell)
584 {
585 cell->nvmem = nvmem;
586 cell->offset = info->offset;
587 cell->raw_len = info->raw_len ?: info->bytes;
588 cell->bytes = info->bytes;
589 cell->name = info->name;
590 cell->read_post_process = info->read_post_process;
591 cell->priv = info->priv;
592
593 cell->bit_offset = info->bit_offset;
594 cell->nbits = info->nbits;
595 cell->np = info->np;
596
597 if (cell->nbits)
598 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
599 BITS_PER_BYTE);
600
601 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
602 dev_err(&nvmem->dev,
603 "cell %s unaligned to nvmem stride %d\n",
604 cell->name ?: "<unknown>", nvmem->stride);
605 return -EINVAL;
606 }
607
608 return 0;
609 }
610
nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)611 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
612 const struct nvmem_cell_info *info,
613 struct nvmem_cell_entry *cell)
614 {
615 int err;
616
617 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
618 if (err)
619 return err;
620
621 cell->name = kstrdup_const(info->name, GFP_KERNEL);
622 if (!cell->name)
623 return -ENOMEM;
624
625 return 0;
626 }
627
628 /**
629 * nvmem_add_one_cell() - Add one cell information to an nvmem device
630 *
631 * @nvmem: nvmem device to add cells to.
632 * @info: nvmem cell info to add to the device
633 *
634 * Return: 0 or negative error code on failure.
635 */
nvmem_add_one_cell(struct nvmem_device * nvmem,const struct nvmem_cell_info * info)636 int nvmem_add_one_cell(struct nvmem_device *nvmem,
637 const struct nvmem_cell_info *info)
638 {
639 struct nvmem_cell_entry *cell;
640 int rval;
641
642 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
643 if (!cell)
644 return -ENOMEM;
645
646 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
647 if (rval) {
648 kfree(cell);
649 return rval;
650 }
651
652 nvmem_cell_entry_add(cell);
653
654 return 0;
655 }
656 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
657
658 /**
659 * nvmem_add_cells() - Add cell information to an nvmem device
660 *
661 * @nvmem: nvmem device to add cells to.
662 * @info: nvmem cell info to add to the device
663 * @ncells: number of cells in info
664 *
665 * Return: 0 or negative error code on failure.
666 */
nvmem_add_cells(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,int ncells)667 static int nvmem_add_cells(struct nvmem_device *nvmem,
668 const struct nvmem_cell_info *info,
669 int ncells)
670 {
671 int i, rval;
672
673 for (i = 0; i < ncells; i++) {
674 rval = nvmem_add_one_cell(nvmem, &info[i]);
675 if (rval)
676 return rval;
677 }
678
679 return 0;
680 }
681
682 /**
683 * nvmem_register_notifier() - Register a notifier block for nvmem events.
684 *
685 * @nb: notifier block to be called on nvmem events.
686 *
687 * Return: 0 on success, negative error number on failure.
688 */
nvmem_register_notifier(struct notifier_block * nb)689 int nvmem_register_notifier(struct notifier_block *nb)
690 {
691 return blocking_notifier_chain_register(&nvmem_notifier, nb);
692 }
693 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
694
695 /**
696 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
697 *
698 * @nb: notifier block to be unregistered.
699 *
700 * Return: 0 on success, negative error number on failure.
701 */
nvmem_unregister_notifier(struct notifier_block * nb)702 int nvmem_unregister_notifier(struct notifier_block *nb)
703 {
704 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
705 }
706 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
707
nvmem_add_cells_from_table(struct nvmem_device * nvmem)708 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
709 {
710 const struct nvmem_cell_info *info;
711 struct nvmem_cell_table *table;
712 struct nvmem_cell_entry *cell;
713 int rval = 0, i;
714
715 mutex_lock(&nvmem_cell_mutex);
716 list_for_each_entry(table, &nvmem_cell_tables, node) {
717 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
718 for (i = 0; i < table->ncells; i++) {
719 info = &table->cells[i];
720
721 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
722 if (!cell) {
723 rval = -ENOMEM;
724 goto out;
725 }
726
727 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
728 if (rval) {
729 kfree(cell);
730 goto out;
731 }
732
733 nvmem_cell_entry_add(cell);
734 }
735 }
736 }
737
738 out:
739 mutex_unlock(&nvmem_cell_mutex);
740 return rval;
741 }
742
743 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_name(struct nvmem_device * nvmem,const char * cell_id)744 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
745 {
746 struct nvmem_cell_entry *iter, *cell = NULL;
747
748 mutex_lock(&nvmem_mutex);
749 list_for_each_entry(iter, &nvmem->cells, node) {
750 if (strcmp(cell_id, iter->name) == 0) {
751 cell = iter;
752 break;
753 }
754 }
755 mutex_unlock(&nvmem_mutex);
756
757 return cell;
758 }
759
nvmem_validate_keepouts(struct nvmem_device * nvmem)760 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
761 {
762 unsigned int cur = 0;
763 const struct nvmem_keepout *keepout = nvmem->keepout;
764 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
765
766 while (keepout < keepoutend) {
767 /* Ensure keepouts are sorted and don't overlap. */
768 if (keepout->start < cur) {
769 dev_err(&nvmem->dev,
770 "Keepout regions aren't sorted or overlap.\n");
771
772 return -ERANGE;
773 }
774
775 if (keepout->end < keepout->start) {
776 dev_err(&nvmem->dev,
777 "Invalid keepout region.\n");
778
779 return -EINVAL;
780 }
781
782 /*
783 * Validate keepouts (and holes between) don't violate
784 * word_size constraints.
785 */
786 if ((keepout->end - keepout->start < nvmem->word_size) ||
787 ((keepout->start != cur) &&
788 (keepout->start - cur < nvmem->word_size))) {
789
790 dev_err(&nvmem->dev,
791 "Keepout regions violate word_size constraints.\n");
792
793 return -ERANGE;
794 }
795
796 /* Validate keepouts don't violate stride (alignment). */
797 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
798 !IS_ALIGNED(keepout->end, nvmem->stride)) {
799
800 dev_err(&nvmem->dev,
801 "Keepout regions violate stride.\n");
802
803 return -EINVAL;
804 }
805
806 cur = keepout->end;
807 keepout++;
808 }
809
810 return 0;
811 }
812
nvmem_add_cells_from_dt(struct nvmem_device * nvmem,struct device_node * np)813 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
814 {
815 struct device *dev = &nvmem->dev;
816 struct device_node *child;
817 const __be32 *addr;
818 int len, ret;
819
820 for_each_child_of_node(np, child) {
821 struct nvmem_cell_info info = {0};
822
823 addr = of_get_property(child, "reg", &len);
824 if (!addr)
825 continue;
826 if (len < 2 * sizeof(u32)) {
827 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
828 of_node_put(child);
829 return -EINVAL;
830 }
831
832 info.offset = be32_to_cpup(addr++);
833 info.bytes = be32_to_cpup(addr);
834 info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
835
836 addr = of_get_property(child, "bits", &len);
837 if (addr && len == (2 * sizeof(u32))) {
838 info.bit_offset = be32_to_cpup(addr++);
839 info.nbits = be32_to_cpup(addr);
840 if (info.bit_offset >= BITS_PER_BYTE || info.nbits < 1) {
841 dev_err(dev, "nvmem: invalid bits on %pOF\n", child);
842 of_node_put(child);
843 return -EINVAL;
844 }
845 }
846
847 info.np = of_node_get(child);
848
849 if (nvmem->fixup_dt_cell_info)
850 nvmem->fixup_dt_cell_info(nvmem, &info);
851
852 ret = nvmem_add_one_cell(nvmem, &info);
853 kfree(info.name);
854 if (ret) {
855 of_node_put(child);
856 return ret;
857 }
858 }
859
860 return 0;
861 }
862
nvmem_add_cells_from_legacy_of(struct nvmem_device * nvmem)863 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
864 {
865 return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
866 }
867
nvmem_add_cells_from_fixed_layout(struct nvmem_device * nvmem)868 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
869 {
870 struct device_node *layout_np;
871 int err = 0;
872
873 layout_np = of_nvmem_layout_get_container(nvmem);
874 if (!layout_np)
875 return 0;
876
877 if (of_device_is_compatible(layout_np, "fixed-layout"))
878 err = nvmem_add_cells_from_dt(nvmem, layout_np);
879
880 of_node_put(layout_np);
881
882 return err;
883 }
884
nvmem_layout_register(struct nvmem_layout * layout)885 int nvmem_layout_register(struct nvmem_layout *layout)
886 {
887 int ret;
888
889 if (!layout->add_cells)
890 return -EINVAL;
891
892 /* Populate the cells */
893 ret = layout->add_cells(layout);
894 if (ret)
895 return ret;
896
897 #ifdef CONFIG_NVMEM_SYSFS
898 ret = nvmem_populate_sysfs_cells(layout->nvmem);
899 if (ret) {
900 nvmem_device_remove_all_cells(layout->nvmem);
901 return ret;
902 }
903 #endif
904
905 return 0;
906 }
907 EXPORT_SYMBOL_GPL(nvmem_layout_register);
908
nvmem_layout_unregister(struct nvmem_layout * layout)909 void nvmem_layout_unregister(struct nvmem_layout *layout)
910 {
911 /* Keep the API even with an empty stub in case we need it later */
912 }
913 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
914
915 /**
916 * nvmem_register() - Register a nvmem device for given nvmem_config.
917 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
918 *
919 * @config: nvmem device configuration with which nvmem device is created.
920 *
921 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
922 * on success.
923 */
924
nvmem_register(const struct nvmem_config * config)925 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
926 {
927 struct nvmem_device *nvmem;
928 int rval;
929
930 if (!config->dev)
931 return ERR_PTR(-EINVAL);
932
933 if (!config->reg_read && !config->reg_write)
934 return ERR_PTR(-EINVAL);
935
936 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
937 if (!nvmem)
938 return ERR_PTR(-ENOMEM);
939
940 rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
941 if (rval < 0) {
942 kfree(nvmem);
943 return ERR_PTR(rval);
944 }
945
946 nvmem->id = rval;
947
948 nvmem->dev.type = &nvmem_provider_type;
949 nvmem->dev.bus = &nvmem_bus_type;
950 nvmem->dev.parent = config->dev;
951
952 device_initialize(&nvmem->dev);
953
954 if (!config->ignore_wp)
955 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
956 GPIOD_OUT_HIGH);
957 if (IS_ERR(nvmem->wp_gpio)) {
958 rval = PTR_ERR(nvmem->wp_gpio);
959 nvmem->wp_gpio = NULL;
960 goto err_put_device;
961 }
962
963 kref_init(&nvmem->refcnt);
964 INIT_LIST_HEAD(&nvmem->cells);
965 nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
966
967 nvmem->owner = config->owner;
968 if (!nvmem->owner && config->dev->driver)
969 nvmem->owner = config->dev->driver->owner;
970 nvmem->stride = config->stride ?: 1;
971 nvmem->word_size = config->word_size ?: 1;
972 nvmem->size = config->size;
973 nvmem->root_only = config->root_only;
974 nvmem->priv = config->priv;
975 nvmem->type = config->type;
976 nvmem->reg_read = config->reg_read;
977 nvmem->reg_write = config->reg_write;
978 nvmem->keepout = config->keepout;
979 nvmem->nkeepout = config->nkeepout;
980 if (config->of_node)
981 nvmem->dev.of_node = config->of_node;
982 else
983 nvmem->dev.of_node = config->dev->of_node;
984
985 switch (config->id) {
986 case NVMEM_DEVID_NONE:
987 rval = dev_set_name(&nvmem->dev, "%s", config->name);
988 break;
989 case NVMEM_DEVID_AUTO:
990 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
991 break;
992 default:
993 rval = dev_set_name(&nvmem->dev, "%s%d",
994 config->name ? : "nvmem",
995 config->name ? config->id : nvmem->id);
996 break;
997 }
998
999 if (rval)
1000 goto err_put_device;
1001
1002 nvmem->read_only = device_property_present(config->dev, "read-only") ||
1003 config->read_only || !nvmem->reg_write;
1004
1005 #ifdef CONFIG_NVMEM_SYSFS
1006 nvmem->dev.groups = nvmem_dev_groups;
1007 #endif
1008
1009 if (nvmem->nkeepout) {
1010 rval = nvmem_validate_keepouts(nvmem);
1011 if (rval)
1012 goto err_put_device;
1013 }
1014
1015 if (config->compat) {
1016 rval = nvmem_sysfs_setup_compat(nvmem, config);
1017 if (rval)
1018 goto err_put_device;
1019 }
1020
1021 if (config->cells) {
1022 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
1023 if (rval)
1024 goto err_remove_cells;
1025 }
1026
1027 rval = nvmem_add_cells_from_table(nvmem);
1028 if (rval)
1029 goto err_remove_cells;
1030
1031 if (config->add_legacy_fixed_of_cells) {
1032 rval = nvmem_add_cells_from_legacy_of(nvmem);
1033 if (rval)
1034 goto err_remove_cells;
1035 }
1036
1037 rval = nvmem_add_cells_from_fixed_layout(nvmem);
1038 if (rval)
1039 goto err_remove_cells;
1040
1041 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1042
1043 rval = device_add(&nvmem->dev);
1044 if (rval)
1045 goto err_remove_cells;
1046
1047 rval = nvmem_populate_layout(nvmem);
1048 if (rval)
1049 goto err_remove_dev;
1050
1051 #ifdef CONFIG_NVMEM_SYSFS
1052 rval = nvmem_populate_sysfs_cells(nvmem);
1053 if (rval)
1054 goto err_destroy_layout;
1055 #endif
1056
1057 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1058
1059 return nvmem;
1060
1061 #ifdef CONFIG_NVMEM_SYSFS
1062 err_destroy_layout:
1063 nvmem_destroy_layout(nvmem);
1064 #endif
1065 err_remove_dev:
1066 device_del(&nvmem->dev);
1067 err_remove_cells:
1068 nvmem_device_remove_all_cells(nvmem);
1069 if (config->compat)
1070 nvmem_sysfs_remove_compat(nvmem, config);
1071 err_put_device:
1072 put_device(&nvmem->dev);
1073
1074 return ERR_PTR(rval);
1075 }
1076 EXPORT_SYMBOL_GPL(nvmem_register);
1077
nvmem_device_release(struct kref * kref)1078 static void nvmem_device_release(struct kref *kref)
1079 {
1080 struct nvmem_device *nvmem;
1081
1082 nvmem = container_of(kref, struct nvmem_device, refcnt);
1083
1084 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1085
1086 if (nvmem->flags & FLAG_COMPAT)
1087 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1088
1089 nvmem_device_remove_all_cells(nvmem);
1090 nvmem_destroy_layout(nvmem);
1091 device_unregister(&nvmem->dev);
1092 }
1093
1094 /**
1095 * nvmem_unregister() - Unregister previously registered nvmem device
1096 *
1097 * @nvmem: Pointer to previously registered nvmem device.
1098 */
nvmem_unregister(struct nvmem_device * nvmem)1099 void nvmem_unregister(struct nvmem_device *nvmem)
1100 {
1101 if (nvmem)
1102 kref_put(&nvmem->refcnt, nvmem_device_release);
1103 }
1104 EXPORT_SYMBOL_GPL(nvmem_unregister);
1105
devm_nvmem_unregister(void * nvmem)1106 static void devm_nvmem_unregister(void *nvmem)
1107 {
1108 nvmem_unregister(nvmem);
1109 }
1110
1111 /**
1112 * devm_nvmem_register() - Register a managed nvmem device for given
1113 * nvmem_config.
1114 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1115 *
1116 * @dev: Device that uses the nvmem device.
1117 * @config: nvmem device configuration with which nvmem device is created.
1118 *
1119 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1120 * on success.
1121 */
devm_nvmem_register(struct device * dev,const struct nvmem_config * config)1122 struct nvmem_device *devm_nvmem_register(struct device *dev,
1123 const struct nvmem_config *config)
1124 {
1125 struct nvmem_device *nvmem;
1126 int ret;
1127
1128 nvmem = nvmem_register(config);
1129 if (IS_ERR(nvmem))
1130 return nvmem;
1131
1132 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1133 if (ret)
1134 return ERR_PTR(ret);
1135
1136 return nvmem;
1137 }
1138 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1139
__nvmem_device_get(void * data,int (* match)(struct device * dev,const void * data))1140 static struct nvmem_device *__nvmem_device_get(void *data,
1141 int (*match)(struct device *dev, const void *data))
1142 {
1143 struct nvmem_device *nvmem = NULL;
1144 struct device *dev;
1145
1146 mutex_lock(&nvmem_mutex);
1147 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1148 if (dev)
1149 nvmem = to_nvmem_device(dev);
1150 mutex_unlock(&nvmem_mutex);
1151 if (!nvmem)
1152 return ERR_PTR(-EPROBE_DEFER);
1153
1154 if (!try_module_get(nvmem->owner)) {
1155 dev_err(&nvmem->dev,
1156 "could not increase module refcount for cell %s\n",
1157 nvmem_dev_name(nvmem));
1158
1159 put_device(&nvmem->dev);
1160 return ERR_PTR(-EINVAL);
1161 }
1162
1163 kref_get(&nvmem->refcnt);
1164
1165 return nvmem;
1166 }
1167
__nvmem_device_put(struct nvmem_device * nvmem)1168 static void __nvmem_device_put(struct nvmem_device *nvmem)
1169 {
1170 put_device(&nvmem->dev);
1171 module_put(nvmem->owner);
1172 kref_put(&nvmem->refcnt, nvmem_device_release);
1173 }
1174
1175 #if IS_ENABLED(CONFIG_OF)
1176 /**
1177 * of_nvmem_device_get() - Get nvmem device from a given id
1178 *
1179 * @np: Device tree node that uses the nvmem device.
1180 * @id: nvmem name from nvmem-names property.
1181 *
1182 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1183 * on success.
1184 */
of_nvmem_device_get(struct device_node * np,const char * id)1185 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1186 {
1187
1188 struct device_node *nvmem_np;
1189 struct nvmem_device *nvmem;
1190 int index = 0;
1191
1192 if (id)
1193 index = of_property_match_string(np, "nvmem-names", id);
1194
1195 nvmem_np = of_parse_phandle(np, "nvmem", index);
1196 if (!nvmem_np)
1197 return ERR_PTR(-ENOENT);
1198
1199 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1200 of_node_put(nvmem_np);
1201 return nvmem;
1202 }
1203 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1204 #endif
1205
1206 /**
1207 * nvmem_device_get() - Get nvmem device from a given id
1208 *
1209 * @dev: Device that uses the nvmem device.
1210 * @dev_name: name of the requested nvmem device.
1211 *
1212 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1213 * on success.
1214 */
nvmem_device_get(struct device * dev,const char * dev_name)1215 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1216 {
1217 if (dev->of_node) { /* try dt first */
1218 struct nvmem_device *nvmem;
1219
1220 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1221
1222 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1223 return nvmem;
1224
1225 }
1226
1227 return __nvmem_device_get((void *)dev_name, device_match_name);
1228 }
1229 EXPORT_SYMBOL_GPL(nvmem_device_get);
1230
1231 /**
1232 * nvmem_device_find() - Find nvmem device with matching function
1233 *
1234 * @data: Data to pass to match function
1235 * @match: Callback function to check device
1236 *
1237 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1238 * on success.
1239 */
nvmem_device_find(void * data,int (* match)(struct device * dev,const void * data))1240 struct nvmem_device *nvmem_device_find(void *data,
1241 int (*match)(struct device *dev, const void *data))
1242 {
1243 return __nvmem_device_get(data, match);
1244 }
1245 EXPORT_SYMBOL_GPL(nvmem_device_find);
1246
devm_nvmem_device_match(struct device * dev,void * res,void * data)1247 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1248 {
1249 struct nvmem_device **nvmem = res;
1250
1251 if (WARN_ON(!nvmem || !*nvmem))
1252 return 0;
1253
1254 return *nvmem == data;
1255 }
1256
devm_nvmem_device_release(struct device * dev,void * res)1257 static void devm_nvmem_device_release(struct device *dev, void *res)
1258 {
1259 nvmem_device_put(*(struct nvmem_device **)res);
1260 }
1261
1262 /**
1263 * devm_nvmem_device_put() - put already got nvmem device
1264 *
1265 * @dev: Device that uses the nvmem device.
1266 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1267 * that needs to be released.
1268 */
devm_nvmem_device_put(struct device * dev,struct nvmem_device * nvmem)1269 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1270 {
1271 int ret;
1272
1273 ret = devres_release(dev, devm_nvmem_device_release,
1274 devm_nvmem_device_match, nvmem);
1275
1276 WARN_ON(ret);
1277 }
1278 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1279
1280 /**
1281 * nvmem_device_put() - put already got nvmem device
1282 *
1283 * @nvmem: pointer to nvmem device that needs to be released.
1284 */
nvmem_device_put(struct nvmem_device * nvmem)1285 void nvmem_device_put(struct nvmem_device *nvmem)
1286 {
1287 __nvmem_device_put(nvmem);
1288 }
1289 EXPORT_SYMBOL_GPL(nvmem_device_put);
1290
1291 /**
1292 * devm_nvmem_device_get() - Get nvmem device of device form a given id
1293 *
1294 * @dev: Device that requests the nvmem device.
1295 * @id: name id for the requested nvmem device.
1296 *
1297 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1298 * on success. The nvmem_device will be freed by the automatically once the
1299 * device is freed.
1300 */
devm_nvmem_device_get(struct device * dev,const char * id)1301 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1302 {
1303 struct nvmem_device **ptr, *nvmem;
1304
1305 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1306 if (!ptr)
1307 return ERR_PTR(-ENOMEM);
1308
1309 nvmem = nvmem_device_get(dev, id);
1310 if (!IS_ERR(nvmem)) {
1311 *ptr = nvmem;
1312 devres_add(dev, ptr);
1313 } else {
1314 devres_free(ptr);
1315 }
1316
1317 return nvmem;
1318 }
1319 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1320
nvmem_create_cell(struct nvmem_cell_entry * entry,const char * id,int index)1321 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1322 const char *id, int index)
1323 {
1324 struct nvmem_cell *cell;
1325 const char *name = NULL;
1326
1327 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1328 if (!cell)
1329 return ERR_PTR(-ENOMEM);
1330
1331 if (id) {
1332 name = kstrdup_const(id, GFP_KERNEL);
1333 if (!name) {
1334 kfree(cell);
1335 return ERR_PTR(-ENOMEM);
1336 }
1337 }
1338
1339 cell->id = name;
1340 cell->entry = entry;
1341 cell->index = index;
1342
1343 return cell;
1344 }
1345
1346 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device * dev,const char * con_id)1347 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1348 {
1349 struct nvmem_cell_entry *cell_entry;
1350 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1351 struct nvmem_cell_lookup *lookup;
1352 struct nvmem_device *nvmem;
1353 const char *dev_id;
1354
1355 if (!dev)
1356 return ERR_PTR(-EINVAL);
1357
1358 dev_id = dev_name(dev);
1359
1360 mutex_lock(&nvmem_lookup_mutex);
1361
1362 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1363 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1364 (strcmp(lookup->con_id, con_id) == 0)) {
1365 /* This is the right entry. */
1366 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1367 device_match_name);
1368 if (IS_ERR(nvmem)) {
1369 /* Provider may not be registered yet. */
1370 cell = ERR_CAST(nvmem);
1371 break;
1372 }
1373
1374 cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1375 lookup->cell_name);
1376 if (!cell_entry) {
1377 __nvmem_device_put(nvmem);
1378 cell = ERR_PTR(-ENOENT);
1379 } else {
1380 cell = nvmem_create_cell(cell_entry, con_id, 0);
1381 if (IS_ERR(cell))
1382 __nvmem_device_put(nvmem);
1383 }
1384 break;
1385 }
1386 }
1387
1388 mutex_unlock(&nvmem_lookup_mutex);
1389 return cell;
1390 }
1391
nvmem_layout_module_put(struct nvmem_device * nvmem)1392 static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1393 {
1394 if (nvmem->layout && nvmem->layout->dev.driver)
1395 module_put(nvmem->layout->dev.driver->owner);
1396 }
1397
1398 #if IS_ENABLED(CONFIG_OF)
1399 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_node(struct nvmem_device * nvmem,struct device_node * np)1400 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1401 {
1402 struct nvmem_cell_entry *iter, *cell = NULL;
1403
1404 mutex_lock(&nvmem_mutex);
1405 list_for_each_entry(iter, &nvmem->cells, node) {
1406 if (np == iter->np) {
1407 cell = iter;
1408 break;
1409 }
1410 }
1411 mutex_unlock(&nvmem_mutex);
1412
1413 return cell;
1414 }
1415
nvmem_layout_module_get_optional(struct nvmem_device * nvmem)1416 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1417 {
1418 if (!nvmem->layout)
1419 return 0;
1420
1421 if (!nvmem->layout->dev.driver ||
1422 !try_module_get(nvmem->layout->dev.driver->owner))
1423 return -EPROBE_DEFER;
1424
1425 return 0;
1426 }
1427
1428 /**
1429 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1430 *
1431 * @np: Device tree node that uses the nvmem cell.
1432 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1433 * for the cell at index 0 (the lone cell with no accompanying
1434 * nvmem-cell-names property).
1435 *
1436 * Return: Will be an ERR_PTR() on error or a valid pointer
1437 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1438 * nvmem_cell_put().
1439 */
of_nvmem_cell_get(struct device_node * np,const char * id)1440 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1441 {
1442 struct device_node *cell_np, *nvmem_np;
1443 struct nvmem_device *nvmem;
1444 struct nvmem_cell_entry *cell_entry;
1445 struct nvmem_cell *cell;
1446 struct of_phandle_args cell_spec;
1447 int index = 0;
1448 int cell_index = 0;
1449 int ret;
1450
1451 /* if cell name exists, find index to the name */
1452 if (id)
1453 index = of_property_match_string(np, "nvmem-cell-names", id);
1454
1455 ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1456 "#nvmem-cell-cells",
1457 index, &cell_spec);
1458 if (ret)
1459 return ERR_PTR(-ENOENT);
1460
1461 if (cell_spec.args_count > 1)
1462 return ERR_PTR(-EINVAL);
1463
1464 cell_np = cell_spec.np;
1465 if (cell_spec.args_count)
1466 cell_index = cell_spec.args[0];
1467
1468 nvmem_np = of_get_parent(cell_np);
1469 if (!nvmem_np) {
1470 of_node_put(cell_np);
1471 return ERR_PTR(-EINVAL);
1472 }
1473
1474 /* nvmem layouts produce cells within the nvmem-layout container */
1475 if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1476 nvmem_np = of_get_next_parent(nvmem_np);
1477 if (!nvmem_np) {
1478 of_node_put(cell_np);
1479 return ERR_PTR(-EINVAL);
1480 }
1481 }
1482
1483 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1484 of_node_put(nvmem_np);
1485 if (IS_ERR(nvmem)) {
1486 of_node_put(cell_np);
1487 return ERR_CAST(nvmem);
1488 }
1489
1490 ret = nvmem_layout_module_get_optional(nvmem);
1491 if (ret) {
1492 of_node_put(cell_np);
1493 __nvmem_device_put(nvmem);
1494 return ERR_PTR(ret);
1495 }
1496
1497 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1498 of_node_put(cell_np);
1499 if (!cell_entry) {
1500 __nvmem_device_put(nvmem);
1501 nvmem_layout_module_put(nvmem);
1502 if (nvmem->layout)
1503 return ERR_PTR(-EPROBE_DEFER);
1504 else
1505 return ERR_PTR(-ENOENT);
1506 }
1507
1508 cell = nvmem_create_cell(cell_entry, id, cell_index);
1509 if (IS_ERR(cell)) {
1510 __nvmem_device_put(nvmem);
1511 nvmem_layout_module_put(nvmem);
1512 }
1513
1514 return cell;
1515 }
1516 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1517 #endif
1518
1519 /**
1520 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1521 *
1522 * @dev: Device that requests the nvmem cell.
1523 * @id: nvmem cell name to get (this corresponds with the name from the
1524 * nvmem-cell-names property for DT systems and with the con_id from
1525 * the lookup entry for non-DT systems).
1526 *
1527 * Return: Will be an ERR_PTR() on error or a valid pointer
1528 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1529 * nvmem_cell_put().
1530 */
nvmem_cell_get(struct device * dev,const char * id)1531 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1532 {
1533 struct nvmem_cell *cell;
1534
1535 if (dev->of_node) { /* try dt first */
1536 cell = of_nvmem_cell_get(dev->of_node, id);
1537 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1538 return cell;
1539 }
1540
1541 /* NULL cell id only allowed for device tree; invalid otherwise */
1542 if (!id)
1543 return ERR_PTR(-EINVAL);
1544
1545 return nvmem_cell_get_from_lookup(dev, id);
1546 }
1547 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1548
devm_nvmem_cell_release(struct device * dev,void * res)1549 static void devm_nvmem_cell_release(struct device *dev, void *res)
1550 {
1551 nvmem_cell_put(*(struct nvmem_cell **)res);
1552 }
1553
1554 /**
1555 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1556 *
1557 * @dev: Device that requests the nvmem cell.
1558 * @id: nvmem cell name id to get.
1559 *
1560 * Return: Will be an ERR_PTR() on error or a valid pointer
1561 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1562 * automatically once the device is freed.
1563 */
devm_nvmem_cell_get(struct device * dev,const char * id)1564 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1565 {
1566 struct nvmem_cell **ptr, *cell;
1567
1568 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1569 if (!ptr)
1570 return ERR_PTR(-ENOMEM);
1571
1572 cell = nvmem_cell_get(dev, id);
1573 if (!IS_ERR(cell)) {
1574 *ptr = cell;
1575 devres_add(dev, ptr);
1576 } else {
1577 devres_free(ptr);
1578 }
1579
1580 return cell;
1581 }
1582 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1583
devm_nvmem_cell_match(struct device * dev,void * res,void * data)1584 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1585 {
1586 struct nvmem_cell **c = res;
1587
1588 if (WARN_ON(!c || !*c))
1589 return 0;
1590
1591 return *c == data;
1592 }
1593
1594 /**
1595 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1596 * from devm_nvmem_cell_get.
1597 *
1598 * @dev: Device that requests the nvmem cell.
1599 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1600 */
devm_nvmem_cell_put(struct device * dev,struct nvmem_cell * cell)1601 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1602 {
1603 int ret;
1604
1605 ret = devres_release(dev, devm_nvmem_cell_release,
1606 devm_nvmem_cell_match, cell);
1607
1608 WARN_ON(ret);
1609 }
1610 EXPORT_SYMBOL(devm_nvmem_cell_put);
1611
1612 /**
1613 * nvmem_cell_put() - Release previously allocated nvmem cell.
1614 *
1615 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1616 */
nvmem_cell_put(struct nvmem_cell * cell)1617 void nvmem_cell_put(struct nvmem_cell *cell)
1618 {
1619 struct nvmem_device *nvmem = cell->entry->nvmem;
1620
1621 if (cell->id)
1622 kfree_const(cell->id);
1623
1624 kfree(cell);
1625 __nvmem_device_put(nvmem);
1626 nvmem_layout_module_put(nvmem);
1627 }
1628 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1629
nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry * cell,void * buf)1630 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1631 {
1632 u8 *p, *b;
1633 int i, extra, bit_offset = cell->bit_offset;
1634
1635 p = b = buf;
1636 if (bit_offset) {
1637 /* First shift */
1638 *b++ >>= bit_offset;
1639
1640 /* setup rest of the bytes if any */
1641 for (i = 1; i < cell->bytes; i++) {
1642 /* Get bits from next byte and shift them towards msb */
1643 *p |= *b << (BITS_PER_BYTE - bit_offset);
1644
1645 p = b;
1646 *b++ >>= bit_offset;
1647 }
1648 } else {
1649 /* point to the msb */
1650 p += cell->bytes - 1;
1651 }
1652
1653 /* result fits in less bytes */
1654 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1655 while (--extra >= 0)
1656 *p-- = 0;
1657
1658 /* clear msb bits if any leftover in the last byte */
1659 if (cell->nbits % BITS_PER_BYTE)
1660 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1661 }
1662
__nvmem_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_entry * cell,void * buf,size_t * len,const char * id,int index)1663 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1664 struct nvmem_cell_entry *cell,
1665 void *buf, size_t *len, const char *id, int index)
1666 {
1667 int rc;
1668
1669 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1670
1671 if (rc)
1672 return rc;
1673
1674 /* shift bits in-place */
1675 if (cell->bit_offset || cell->nbits)
1676 nvmem_shift_read_buffer_in_place(cell, buf);
1677
1678 if (cell->read_post_process) {
1679 rc = cell->read_post_process(cell->priv, id, index,
1680 cell->offset, buf, cell->raw_len);
1681 if (rc)
1682 return rc;
1683 }
1684
1685 if (len)
1686 *len = cell->bytes;
1687
1688 return 0;
1689 }
1690
1691 /**
1692 * nvmem_cell_read() - Read a given nvmem cell
1693 *
1694 * @cell: nvmem cell to be read.
1695 * @len: pointer to length of cell which will be populated on successful read;
1696 * can be NULL.
1697 *
1698 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1699 * buffer should be freed by the consumer with a kfree().
1700 */
nvmem_cell_read(struct nvmem_cell * cell,size_t * len)1701 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1702 {
1703 struct nvmem_cell_entry *entry = cell->entry;
1704 struct nvmem_device *nvmem = entry->nvmem;
1705 u8 *buf;
1706 int rc;
1707
1708 if (!nvmem)
1709 return ERR_PTR(-EINVAL);
1710
1711 buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1712 if (!buf)
1713 return ERR_PTR(-ENOMEM);
1714
1715 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1716 if (rc) {
1717 kfree(buf);
1718 return ERR_PTR(rc);
1719 }
1720
1721 return buf;
1722 }
1723 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1724
nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry * cell,u8 * _buf,int len)1725 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1726 u8 *_buf, int len)
1727 {
1728 struct nvmem_device *nvmem = cell->nvmem;
1729 int i, rc, nbits, bit_offset = cell->bit_offset;
1730 u8 v, *p, *buf, *b, pbyte, pbits;
1731
1732 nbits = cell->nbits;
1733 buf = kzalloc(cell->bytes, GFP_KERNEL);
1734 if (!buf)
1735 return ERR_PTR(-ENOMEM);
1736
1737 memcpy(buf, _buf, len);
1738 p = b = buf;
1739
1740 if (bit_offset) {
1741 pbyte = *b;
1742 *b <<= bit_offset;
1743
1744 /* setup the first byte with lsb bits from nvmem */
1745 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1746 if (rc)
1747 goto err;
1748 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1749
1750 /* setup rest of the byte if any */
1751 for (i = 1; i < cell->bytes; i++) {
1752 /* Get last byte bits and shift them towards lsb */
1753 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1754 pbyte = *b;
1755 p = b;
1756 *b <<= bit_offset;
1757 *b++ |= pbits;
1758 }
1759 }
1760
1761 /* if it's not end on byte boundary */
1762 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1763 /* setup the last byte with msb bits from nvmem */
1764 rc = nvmem_reg_read(nvmem,
1765 cell->offset + cell->bytes - 1, &v, 1);
1766 if (rc)
1767 goto err;
1768 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1769
1770 }
1771
1772 return buf;
1773 err:
1774 kfree(buf);
1775 return ERR_PTR(rc);
1776 }
1777
__nvmem_cell_entry_write(struct nvmem_cell_entry * cell,void * buf,size_t len)1778 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1779 {
1780 struct nvmem_device *nvmem = cell->nvmem;
1781 int rc;
1782
1783 if (!nvmem || nvmem->read_only ||
1784 (cell->bit_offset == 0 && len != cell->bytes))
1785 return -EINVAL;
1786
1787 /*
1788 * Any cells which have a read_post_process hook are read-only because
1789 * we cannot reverse the operation and it might affect other cells,
1790 * too.
1791 */
1792 if (cell->read_post_process)
1793 return -EINVAL;
1794
1795 if (cell->bit_offset || cell->nbits) {
1796 if (len != BITS_TO_BYTES(cell->nbits) && len != cell->bytes)
1797 return -EINVAL;
1798 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1799 if (IS_ERR(buf))
1800 return PTR_ERR(buf);
1801 }
1802
1803 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1804
1805 /* free the tmp buffer */
1806 if (cell->bit_offset || cell->nbits)
1807 kfree(buf);
1808
1809 if (rc)
1810 return rc;
1811
1812 return len;
1813 }
1814
1815 /**
1816 * nvmem_cell_write() - Write to a given nvmem cell
1817 *
1818 * @cell: nvmem cell to be written.
1819 * @buf: Buffer to be written.
1820 * @len: length of buffer to be written to nvmem cell.
1821 *
1822 * Return: length of bytes written or negative on failure.
1823 */
nvmem_cell_write(struct nvmem_cell * cell,void * buf,size_t len)1824 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1825 {
1826 return __nvmem_cell_entry_write(cell->entry, buf, len);
1827 }
1828
1829 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1830
nvmem_cell_read_common(struct device * dev,const char * cell_id,void * val,size_t count)1831 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1832 void *val, size_t count)
1833 {
1834 struct nvmem_cell *cell;
1835 void *buf;
1836 size_t len;
1837
1838 cell = nvmem_cell_get(dev, cell_id);
1839 if (IS_ERR(cell))
1840 return PTR_ERR(cell);
1841
1842 buf = nvmem_cell_read(cell, &len);
1843 if (IS_ERR(buf)) {
1844 nvmem_cell_put(cell);
1845 return PTR_ERR(buf);
1846 }
1847 if (len != count) {
1848 kfree(buf);
1849 nvmem_cell_put(cell);
1850 return -EINVAL;
1851 }
1852 memcpy(val, buf, count);
1853 kfree(buf);
1854 nvmem_cell_put(cell);
1855
1856 return 0;
1857 }
1858
1859 /**
1860 * nvmem_cell_read_u8() - Read a cell value as a u8
1861 *
1862 * @dev: Device that requests the nvmem cell.
1863 * @cell_id: Name of nvmem cell to read.
1864 * @val: pointer to output value.
1865 *
1866 * Return: 0 on success or negative errno.
1867 */
nvmem_cell_read_u8(struct device * dev,const char * cell_id,u8 * val)1868 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1869 {
1870 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1871 }
1872 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1873
1874 /**
1875 * nvmem_cell_read_u16() - Read a cell value as a u16
1876 *
1877 * @dev: Device that requests the nvmem cell.
1878 * @cell_id: Name of nvmem cell to read.
1879 * @val: pointer to output value.
1880 *
1881 * Return: 0 on success or negative errno.
1882 */
nvmem_cell_read_u16(struct device * dev,const char * cell_id,u16 * val)1883 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1884 {
1885 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1886 }
1887 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1888
1889 /**
1890 * nvmem_cell_read_u32() - Read a cell value as a u32
1891 *
1892 * @dev: Device that requests the nvmem cell.
1893 * @cell_id: Name of nvmem cell to read.
1894 * @val: pointer to output value.
1895 *
1896 * Return: 0 on success or negative errno.
1897 */
nvmem_cell_read_u32(struct device * dev,const char * cell_id,u32 * val)1898 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1899 {
1900 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1901 }
1902 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1903
1904 /**
1905 * nvmem_cell_read_u64() - Read a cell value as a u64
1906 *
1907 * @dev: Device that requests the nvmem cell.
1908 * @cell_id: Name of nvmem cell to read.
1909 * @val: pointer to output value.
1910 *
1911 * Return: 0 on success or negative errno.
1912 */
nvmem_cell_read_u64(struct device * dev,const char * cell_id,u64 * val)1913 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1914 {
1915 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1916 }
1917 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1918
nvmem_cell_read_variable_common(struct device * dev,const char * cell_id,size_t max_len,size_t * len)1919 static const void *nvmem_cell_read_variable_common(struct device *dev,
1920 const char *cell_id,
1921 size_t max_len, size_t *len)
1922 {
1923 struct nvmem_cell *cell;
1924 int nbits;
1925 void *buf;
1926
1927 cell = nvmem_cell_get(dev, cell_id);
1928 if (IS_ERR(cell))
1929 return cell;
1930
1931 nbits = cell->entry->nbits;
1932 buf = nvmem_cell_read(cell, len);
1933 nvmem_cell_put(cell);
1934 if (IS_ERR(buf))
1935 return buf;
1936
1937 /*
1938 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1939 * the length of the real data. Throw away the extra junk.
1940 */
1941 if (nbits)
1942 *len = DIV_ROUND_UP(nbits, 8);
1943
1944 if (*len > max_len) {
1945 kfree(buf);
1946 return ERR_PTR(-ERANGE);
1947 }
1948
1949 return buf;
1950 }
1951
1952 /**
1953 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1954 *
1955 * @dev: Device that requests the nvmem cell.
1956 * @cell_id: Name of nvmem cell to read.
1957 * @val: pointer to output value.
1958 *
1959 * Return: 0 on success or negative errno.
1960 */
nvmem_cell_read_variable_le_u32(struct device * dev,const char * cell_id,u32 * val)1961 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1962 u32 *val)
1963 {
1964 size_t len;
1965 const u8 *buf;
1966 int i;
1967
1968 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1969 if (IS_ERR(buf))
1970 return PTR_ERR(buf);
1971
1972 /* Copy w/ implicit endian conversion */
1973 *val = 0;
1974 for (i = 0; i < len; i++)
1975 *val |= buf[i] << (8 * i);
1976
1977 kfree(buf);
1978
1979 return 0;
1980 }
1981 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1982
1983 /**
1984 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1985 *
1986 * @dev: Device that requests the nvmem cell.
1987 * @cell_id: Name of nvmem cell to read.
1988 * @val: pointer to output value.
1989 *
1990 * Return: 0 on success or negative errno.
1991 */
nvmem_cell_read_variable_le_u64(struct device * dev,const char * cell_id,u64 * val)1992 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1993 u64 *val)
1994 {
1995 size_t len;
1996 const u8 *buf;
1997 int i;
1998
1999 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
2000 if (IS_ERR(buf))
2001 return PTR_ERR(buf);
2002
2003 /* Copy w/ implicit endian conversion */
2004 *val = 0;
2005 for (i = 0; i < len; i++)
2006 *val |= (uint64_t)buf[i] << (8 * i);
2007
2008 kfree(buf);
2009
2010 return 0;
2011 }
2012 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
2013
2014 /**
2015 * nvmem_device_cell_read() - Read a given nvmem device and cell
2016 *
2017 * @nvmem: nvmem device to read from.
2018 * @info: nvmem cell info to be read.
2019 * @buf: buffer pointer which will be populated on successful read.
2020 *
2021 * Return: length of successful bytes read on success and negative
2022 * error code on error.
2023 */
nvmem_device_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)2024 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
2025 struct nvmem_cell_info *info, void *buf)
2026 {
2027 struct nvmem_cell_entry cell;
2028 int rc;
2029 ssize_t len;
2030
2031 if (!nvmem)
2032 return -EINVAL;
2033
2034 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2035 if (rc)
2036 return rc;
2037
2038 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2039 if (rc)
2040 return rc;
2041
2042 return len;
2043 }
2044 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2045
2046 /**
2047 * nvmem_device_cell_write() - Write cell to a given nvmem device
2048 *
2049 * @nvmem: nvmem device to be written to.
2050 * @info: nvmem cell info to be written.
2051 * @buf: buffer to be written to cell.
2052 *
2053 * Return: length of bytes written or negative error code on failure.
2054 */
nvmem_device_cell_write(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)2055 int nvmem_device_cell_write(struct nvmem_device *nvmem,
2056 struct nvmem_cell_info *info, void *buf)
2057 {
2058 struct nvmem_cell_entry cell;
2059 int rc;
2060
2061 if (!nvmem)
2062 return -EINVAL;
2063
2064 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2065 if (rc)
2066 return rc;
2067
2068 return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2069 }
2070 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2071
2072 /**
2073 * nvmem_device_read() - Read from a given nvmem device
2074 *
2075 * @nvmem: nvmem device to read from.
2076 * @offset: offset in nvmem device.
2077 * @bytes: number of bytes to read.
2078 * @buf: buffer pointer which will be populated on successful read.
2079 *
2080 * Return: length of successful bytes read on success and negative
2081 * error code on error.
2082 */
nvmem_device_read(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2083 int nvmem_device_read(struct nvmem_device *nvmem,
2084 unsigned int offset,
2085 size_t bytes, void *buf)
2086 {
2087 int rc;
2088
2089 if (!nvmem)
2090 return -EINVAL;
2091
2092 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2093
2094 if (rc)
2095 return rc;
2096
2097 return bytes;
2098 }
2099 EXPORT_SYMBOL_GPL(nvmem_device_read);
2100
2101 /**
2102 * nvmem_device_write() - Write cell to a given nvmem device
2103 *
2104 * @nvmem: nvmem device to be written to.
2105 * @offset: offset in nvmem device.
2106 * @bytes: number of bytes to write.
2107 * @buf: buffer to be written.
2108 *
2109 * Return: length of bytes written or negative error code on failure.
2110 */
nvmem_device_write(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2111 int nvmem_device_write(struct nvmem_device *nvmem,
2112 unsigned int offset,
2113 size_t bytes, void *buf)
2114 {
2115 int rc;
2116
2117 if (!nvmem)
2118 return -EINVAL;
2119
2120 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2121
2122 if (rc)
2123 return rc;
2124
2125
2126 return bytes;
2127 }
2128 EXPORT_SYMBOL_GPL(nvmem_device_write);
2129
2130 /**
2131 * nvmem_add_cell_table() - register a table of cell info entries
2132 *
2133 * @table: table of cell info entries
2134 */
nvmem_add_cell_table(struct nvmem_cell_table * table)2135 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2136 {
2137 mutex_lock(&nvmem_cell_mutex);
2138 list_add_tail(&table->node, &nvmem_cell_tables);
2139 mutex_unlock(&nvmem_cell_mutex);
2140 }
2141 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2142
2143 /**
2144 * nvmem_del_cell_table() - remove a previously registered cell info table
2145 *
2146 * @table: table of cell info entries
2147 */
nvmem_del_cell_table(struct nvmem_cell_table * table)2148 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2149 {
2150 mutex_lock(&nvmem_cell_mutex);
2151 list_del(&table->node);
2152 mutex_unlock(&nvmem_cell_mutex);
2153 }
2154 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2155
2156 /**
2157 * nvmem_add_cell_lookups() - register a list of cell lookup entries
2158 *
2159 * @entries: array of cell lookup entries
2160 * @nentries: number of cell lookup entries in the array
2161 */
nvmem_add_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2162 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2163 {
2164 int i;
2165
2166 mutex_lock(&nvmem_lookup_mutex);
2167 for (i = 0; i < nentries; i++)
2168 list_add_tail(&entries[i].node, &nvmem_lookup_list);
2169 mutex_unlock(&nvmem_lookup_mutex);
2170 }
2171 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2172
2173 /**
2174 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2175 * entries
2176 *
2177 * @entries: array of cell lookup entries
2178 * @nentries: number of cell lookup entries in the array
2179 */
nvmem_del_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2180 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2181 {
2182 int i;
2183
2184 mutex_lock(&nvmem_lookup_mutex);
2185 for (i = 0; i < nentries; i++)
2186 list_del(&entries[i].node);
2187 mutex_unlock(&nvmem_lookup_mutex);
2188 }
2189 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2190
2191 /**
2192 * nvmem_dev_name() - Get the name of a given nvmem device.
2193 *
2194 * @nvmem: nvmem device.
2195 *
2196 * Return: name of the nvmem device.
2197 */
nvmem_dev_name(struct nvmem_device * nvmem)2198 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2199 {
2200 return dev_name(&nvmem->dev);
2201 }
2202 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2203
2204 /**
2205 * nvmem_dev_size() - Get the size of a given nvmem device.
2206 *
2207 * @nvmem: nvmem device.
2208 *
2209 * Return: size of the nvmem device.
2210 */
nvmem_dev_size(struct nvmem_device * nvmem)2211 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2212 {
2213 return nvmem->size;
2214 }
2215 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2216
nvmem_init(void)2217 static int __init nvmem_init(void)
2218 {
2219 int ret;
2220
2221 ret = bus_register(&nvmem_bus_type);
2222 if (ret)
2223 return ret;
2224
2225 ret = nvmem_layout_bus_register();
2226 if (ret)
2227 bus_unregister(&nvmem_bus_type);
2228
2229 return ret;
2230 }
2231
nvmem_exit(void)2232 static void __exit nvmem_exit(void)
2233 {
2234 nvmem_layout_bus_unregister();
2235 bus_unregister(&nvmem_bus_type);
2236 }
2237
2238 subsys_initcall(nvmem_init);
2239 module_exit(nvmem_exit);
2240
2241 MODULE_AUTHOR("Srinivas Kandagatla <[email protected]");
2242 MODULE_AUTHOR("Maxime Ripard <[email protected]");
2243 MODULE_DESCRIPTION("nvmem Driver Core");
2244