1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <[email protected]>
6  * Copyright (C) 2013 Maxime Ripard <[email protected]>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 #include "internals.h"
23 
24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25 
26 #define FLAG_COMPAT		BIT(0)
27 struct nvmem_cell_entry {
28 	const char		*name;
29 	int			offset;
30 	size_t			raw_len;
31 	int			bytes;
32 	int			bit_offset;
33 	int			nbits;
34 	nvmem_cell_post_process_t read_post_process;
35 	void			*priv;
36 	struct device_node	*np;
37 	struct nvmem_device	*nvmem;
38 	struct list_head	node;
39 };
40 
41 struct nvmem_cell {
42 	struct nvmem_cell_entry *entry;
43 	const char		*id;
44 	int			index;
45 };
46 
47 static DEFINE_MUTEX(nvmem_mutex);
48 static DEFINE_IDA(nvmem_ida);
49 
50 static DEFINE_MUTEX(nvmem_cell_mutex);
51 static LIST_HEAD(nvmem_cell_tables);
52 
53 static DEFINE_MUTEX(nvmem_lookup_mutex);
54 static LIST_HEAD(nvmem_lookup_list);
55 
56 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
57 
__nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)58 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
59 			    void *val, size_t bytes)
60 {
61 	if (nvmem->reg_read)
62 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
63 
64 	return -EINVAL;
65 }
66 
__nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)67 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
68 			     void *val, size_t bytes)
69 {
70 	int ret;
71 
72 	if (nvmem->reg_write) {
73 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
74 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
75 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
76 		return ret;
77 	}
78 
79 	return -EINVAL;
80 }
81 
nvmem_access_with_keepouts(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes,int write)82 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
83 				      unsigned int offset, void *val,
84 				      size_t bytes, int write)
85 {
86 
87 	unsigned int end = offset + bytes;
88 	unsigned int kend, ksize;
89 	const struct nvmem_keepout *keepout = nvmem->keepout;
90 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
91 	int rc;
92 
93 	/*
94 	 * Skip all keepouts before the range being accessed.
95 	 * Keepouts are sorted.
96 	 */
97 	while ((keepout < keepoutend) && (keepout->end <= offset))
98 		keepout++;
99 
100 	while ((offset < end) && (keepout < keepoutend)) {
101 		/* Access the valid portion before the keepout. */
102 		if (offset < keepout->start) {
103 			kend = min(end, keepout->start);
104 			ksize = kend - offset;
105 			if (write)
106 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
107 			else
108 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
109 
110 			if (rc)
111 				return rc;
112 
113 			offset += ksize;
114 			val += ksize;
115 		}
116 
117 		/*
118 		 * Now we're aligned to the start of this keepout zone. Go
119 		 * through it.
120 		 */
121 		kend = min(end, keepout->end);
122 		ksize = kend - offset;
123 		if (!write)
124 			memset(val, keepout->value, ksize);
125 
126 		val += ksize;
127 		offset += ksize;
128 		keepout++;
129 	}
130 
131 	/*
132 	 * If we ran out of keepouts but there's still stuff to do, send it
133 	 * down directly
134 	 */
135 	if (offset < end) {
136 		ksize = end - offset;
137 		if (write)
138 			return __nvmem_reg_write(nvmem, offset, val, ksize);
139 		else
140 			return __nvmem_reg_read(nvmem, offset, val, ksize);
141 	}
142 
143 	return 0;
144 }
145 
nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)146 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
147 			  void *val, size_t bytes)
148 {
149 	if (!nvmem->nkeepout)
150 		return __nvmem_reg_read(nvmem, offset, val, bytes);
151 
152 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
153 }
154 
nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)155 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
156 			   void *val, size_t bytes)
157 {
158 	if (!nvmem->nkeepout)
159 		return __nvmem_reg_write(nvmem, offset, val, bytes);
160 
161 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
162 }
163 
164 #ifdef CONFIG_NVMEM_SYSFS
165 static const char * const nvmem_type_str[] = {
166 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
167 	[NVMEM_TYPE_EEPROM] = "EEPROM",
168 	[NVMEM_TYPE_OTP] = "OTP",
169 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
170 	[NVMEM_TYPE_FRAM] = "FRAM",
171 };
172 
173 #ifdef CONFIG_DEBUG_LOCK_ALLOC
174 static struct lock_class_key eeprom_lock_key;
175 #endif
176 
type_show(struct device * dev,struct device_attribute * attr,char * buf)177 static ssize_t type_show(struct device *dev,
178 			 struct device_attribute *attr, char *buf)
179 {
180 	struct nvmem_device *nvmem = to_nvmem_device(dev);
181 
182 	return sysfs_emit(buf, "%s\n", nvmem_type_str[nvmem->type]);
183 }
184 
185 static DEVICE_ATTR_RO(type);
186 
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)187 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
188 			     char *buf)
189 {
190 	struct nvmem_device *nvmem = to_nvmem_device(dev);
191 
192 	return sysfs_emit(buf, "%d\n", nvmem->read_only);
193 }
194 
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)195 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
196 			      const char *buf, size_t count)
197 {
198 	struct nvmem_device *nvmem = to_nvmem_device(dev);
199 	int ret = kstrtobool(buf, &nvmem->read_only);
200 
201 	if (ret < 0)
202 		return ret;
203 
204 	return count;
205 }
206 
207 static DEVICE_ATTR_RW(force_ro);
208 
209 static struct attribute *nvmem_attrs[] = {
210 	&dev_attr_force_ro.attr,
211 	&dev_attr_type.attr,
212 	NULL,
213 };
214 
bin_attr_nvmem_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)215 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
216 				   const struct bin_attribute *attr, char *buf,
217 				   loff_t pos, size_t count)
218 {
219 	struct device *dev;
220 	struct nvmem_device *nvmem;
221 	int rc;
222 
223 	if (attr->private)
224 		dev = attr->private;
225 	else
226 		dev = kobj_to_dev(kobj);
227 	nvmem = to_nvmem_device(dev);
228 
229 	if (!IS_ALIGNED(pos, nvmem->stride))
230 		return -EINVAL;
231 
232 	if (count < nvmem->word_size)
233 		return -EINVAL;
234 
235 	count = round_down(count, nvmem->word_size);
236 
237 	if (!nvmem->reg_read)
238 		return -EPERM;
239 
240 	rc = nvmem_reg_read(nvmem, pos, buf, count);
241 
242 	if (rc)
243 		return rc;
244 
245 	return count;
246 }
247 
bin_attr_nvmem_write(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)248 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
249 				    const struct bin_attribute *attr, char *buf,
250 				    loff_t pos, size_t count)
251 {
252 	struct device *dev;
253 	struct nvmem_device *nvmem;
254 	int rc;
255 
256 	if (attr->private)
257 		dev = attr->private;
258 	else
259 		dev = kobj_to_dev(kobj);
260 	nvmem = to_nvmem_device(dev);
261 
262 	if (!IS_ALIGNED(pos, nvmem->stride))
263 		return -EINVAL;
264 
265 	if (count < nvmem->word_size)
266 		return -EINVAL;
267 
268 	count = round_down(count, nvmem->word_size);
269 
270 	if (!nvmem->reg_write || nvmem->read_only)
271 		return -EPERM;
272 
273 	rc = nvmem_reg_write(nvmem, pos, buf, count);
274 
275 	if (rc)
276 		return rc;
277 
278 	return count;
279 }
280 
nvmem_bin_attr_get_umode(struct nvmem_device * nvmem)281 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
282 {
283 	umode_t mode = 0400;
284 
285 	if (!nvmem->root_only)
286 		mode |= 0044;
287 
288 	if (!nvmem->read_only)
289 		mode |= 0200;
290 
291 	if (!nvmem->reg_write)
292 		mode &= ~0200;
293 
294 	if (!nvmem->reg_read)
295 		mode &= ~0444;
296 
297 	return mode;
298 }
299 
nvmem_bin_attr_is_visible(struct kobject * kobj,const struct bin_attribute * attr,int i)300 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
301 					 const struct bin_attribute *attr,
302 					 int i)
303 {
304 	struct device *dev = kobj_to_dev(kobj);
305 	struct nvmem_device *nvmem = to_nvmem_device(dev);
306 
307 	return nvmem_bin_attr_get_umode(nvmem);
308 }
309 
nvmem_bin_attr_size(struct kobject * kobj,const struct bin_attribute * attr,int i)310 static size_t nvmem_bin_attr_size(struct kobject *kobj,
311 				  const struct bin_attribute *attr,
312 				  int i)
313 {
314 	struct device *dev = kobj_to_dev(kobj);
315 	struct nvmem_device *nvmem = to_nvmem_device(dev);
316 
317 	return nvmem->size;
318 }
319 
nvmem_attr_is_visible(struct kobject * kobj,struct attribute * attr,int i)320 static umode_t nvmem_attr_is_visible(struct kobject *kobj,
321 				     struct attribute *attr, int i)
322 {
323 	struct device *dev = kobj_to_dev(kobj);
324 	struct nvmem_device *nvmem = to_nvmem_device(dev);
325 
326 	/*
327 	 * If the device has no .reg_write operation, do not allow
328 	 * configuration as read-write.
329 	 * If the device is set as read-only by configuration, it
330 	 * can be forced into read-write mode using the 'force_ro'
331 	 * attribute.
332 	 */
333 	if (attr == &dev_attr_force_ro.attr && !nvmem->reg_write)
334 		return 0;	/* Attribute not visible */
335 
336 	return attr->mode;
337 }
338 
339 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
340 					    const char *id, int index);
341 
nvmem_cell_attr_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)342 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
343 				    const struct bin_attribute *attr, char *buf,
344 				    loff_t pos, size_t count)
345 {
346 	struct nvmem_cell_entry *entry;
347 	struct nvmem_cell *cell = NULL;
348 	size_t cell_sz, read_len;
349 	void *content;
350 
351 	entry = attr->private;
352 	cell = nvmem_create_cell(entry, entry->name, 0);
353 	if (IS_ERR(cell))
354 		return PTR_ERR(cell);
355 
356 	if (!cell)
357 		return -EINVAL;
358 
359 	content = nvmem_cell_read(cell, &cell_sz);
360 	if (IS_ERR(content)) {
361 		read_len = PTR_ERR(content);
362 		goto destroy_cell;
363 	}
364 
365 	read_len = min_t(unsigned int, cell_sz - pos, count);
366 	memcpy(buf, content + pos, read_len);
367 	kfree(content);
368 
369 destroy_cell:
370 	kfree_const(cell->id);
371 	kfree(cell);
372 
373 	return read_len;
374 }
375 
376 /* default read/write permissions */
377 static const struct bin_attribute bin_attr_rw_nvmem = {
378 	.attr	= {
379 		.name	= "nvmem",
380 		.mode	= 0644,
381 	},
382 	.read_new	= bin_attr_nvmem_read,
383 	.write_new	= bin_attr_nvmem_write,
384 };
385 
386 static const struct bin_attribute *const nvmem_bin_attributes[] = {
387 	&bin_attr_rw_nvmem,
388 	NULL,
389 };
390 
391 static const struct attribute_group nvmem_bin_group = {
392 	.bin_attrs_new	= nvmem_bin_attributes,
393 	.attrs		= nvmem_attrs,
394 	.is_bin_visible = nvmem_bin_attr_is_visible,
395 	.bin_size	= nvmem_bin_attr_size,
396 	.is_visible	= nvmem_attr_is_visible,
397 };
398 
399 static const struct attribute_group *nvmem_dev_groups[] = {
400 	&nvmem_bin_group,
401 	NULL,
402 };
403 
404 static const struct bin_attribute bin_attr_nvmem_eeprom_compat = {
405 	.attr	= {
406 		.name	= "eeprom",
407 	},
408 	.read_new	= bin_attr_nvmem_read,
409 	.write_new	= bin_attr_nvmem_write,
410 };
411 
412 /*
413  * nvmem_setup_compat() - Create an additional binary entry in
414  * drivers sys directory, to be backwards compatible with the older
415  * drivers/misc/eeprom drivers.
416  */
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)417 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
418 				    const struct nvmem_config *config)
419 {
420 	int rval;
421 
422 	if (!config->compat)
423 		return 0;
424 
425 	if (!config->base_dev)
426 		return -EINVAL;
427 
428 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
429 	if (config->type == NVMEM_TYPE_FRAM)
430 		nvmem->eeprom.attr.name = "fram";
431 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
432 	nvmem->eeprom.size = nvmem->size;
433 #ifdef CONFIG_DEBUG_LOCK_ALLOC
434 	nvmem->eeprom.attr.key = &eeprom_lock_key;
435 #endif
436 	nvmem->eeprom.private = &nvmem->dev;
437 	nvmem->base_dev = config->base_dev;
438 
439 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
440 	if (rval) {
441 		dev_err(&nvmem->dev,
442 			"Failed to create eeprom binary file %d\n", rval);
443 		return rval;
444 	}
445 
446 	nvmem->flags |= FLAG_COMPAT;
447 
448 	return 0;
449 }
450 
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)451 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
452 			      const struct nvmem_config *config)
453 {
454 	if (config->compat)
455 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
456 }
457 
nvmem_populate_sysfs_cells(struct nvmem_device * nvmem)458 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
459 {
460 	struct attribute_group group = {
461 		.name	= "cells",
462 	};
463 	struct nvmem_cell_entry *entry;
464 	const struct bin_attribute **pattrs;
465 	struct bin_attribute *attrs;
466 	unsigned int ncells = 0, i = 0;
467 	int ret = 0;
468 
469 	mutex_lock(&nvmem_mutex);
470 
471 	if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated)
472 		goto unlock_mutex;
473 
474 	/* Allocate an array of attributes with a sentinel */
475 	ncells = list_count_nodes(&nvmem->cells);
476 	pattrs = devm_kcalloc(&nvmem->dev, ncells + 1,
477 			      sizeof(struct bin_attribute *), GFP_KERNEL);
478 	if (!pattrs) {
479 		ret = -ENOMEM;
480 		goto unlock_mutex;
481 	}
482 
483 	attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
484 	if (!attrs) {
485 		ret = -ENOMEM;
486 		goto unlock_mutex;
487 	}
488 
489 	/* Initialize each attribute to take the name and size of the cell */
490 	list_for_each_entry(entry, &nvmem->cells, node) {
491 		sysfs_bin_attr_init(&attrs[i]);
492 		attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
493 						    "%s@%x,%x", entry->name,
494 						    entry->offset,
495 						    entry->bit_offset);
496 		attrs[i].attr.mode = 0444 & nvmem_bin_attr_get_umode(nvmem);
497 		attrs[i].size = entry->bytes;
498 		attrs[i].read_new = &nvmem_cell_attr_read;
499 		attrs[i].private = entry;
500 		if (!attrs[i].attr.name) {
501 			ret = -ENOMEM;
502 			goto unlock_mutex;
503 		}
504 
505 		pattrs[i] = &attrs[i];
506 		i++;
507 	}
508 
509 	group.bin_attrs_new = pattrs;
510 
511 	ret = device_add_group(&nvmem->dev, &group);
512 	if (ret)
513 		goto unlock_mutex;
514 
515 	nvmem->sysfs_cells_populated = true;
516 
517 unlock_mutex:
518 	mutex_unlock(&nvmem_mutex);
519 
520 	return ret;
521 }
522 
523 #else /* CONFIG_NVMEM_SYSFS */
524 
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)525 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
526 				    const struct nvmem_config *config)
527 {
528 	return -ENOSYS;
529 }
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)530 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
531 				      const struct nvmem_config *config)
532 {
533 }
534 
535 #endif /* CONFIG_NVMEM_SYSFS */
536 
nvmem_release(struct device * dev)537 static void nvmem_release(struct device *dev)
538 {
539 	struct nvmem_device *nvmem = to_nvmem_device(dev);
540 
541 	ida_free(&nvmem_ida, nvmem->id);
542 	gpiod_put(nvmem->wp_gpio);
543 	kfree(nvmem);
544 }
545 
546 static const struct device_type nvmem_provider_type = {
547 	.release	= nvmem_release,
548 };
549 
550 static struct bus_type nvmem_bus_type = {
551 	.name		= "nvmem",
552 };
553 
nvmem_cell_entry_drop(struct nvmem_cell_entry * cell)554 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
555 {
556 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
557 	mutex_lock(&nvmem_mutex);
558 	list_del(&cell->node);
559 	mutex_unlock(&nvmem_mutex);
560 	of_node_put(cell->np);
561 	kfree_const(cell->name);
562 	kfree(cell);
563 }
564 
nvmem_device_remove_all_cells(const struct nvmem_device * nvmem)565 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
566 {
567 	struct nvmem_cell_entry *cell, *p;
568 
569 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
570 		nvmem_cell_entry_drop(cell);
571 }
572 
nvmem_cell_entry_add(struct nvmem_cell_entry * cell)573 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
574 {
575 	mutex_lock(&nvmem_mutex);
576 	list_add_tail(&cell->node, &cell->nvmem->cells);
577 	mutex_unlock(&nvmem_mutex);
578 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
579 }
580 
nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)581 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
582 						     const struct nvmem_cell_info *info,
583 						     struct nvmem_cell_entry *cell)
584 {
585 	cell->nvmem = nvmem;
586 	cell->offset = info->offset;
587 	cell->raw_len = info->raw_len ?: info->bytes;
588 	cell->bytes = info->bytes;
589 	cell->name = info->name;
590 	cell->read_post_process = info->read_post_process;
591 	cell->priv = info->priv;
592 
593 	cell->bit_offset = info->bit_offset;
594 	cell->nbits = info->nbits;
595 	cell->np = info->np;
596 
597 	if (cell->nbits)
598 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
599 					   BITS_PER_BYTE);
600 
601 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
602 		dev_err(&nvmem->dev,
603 			"cell %s unaligned to nvmem stride %d\n",
604 			cell->name ?: "<unknown>", nvmem->stride);
605 		return -EINVAL;
606 	}
607 
608 	return 0;
609 }
610 
nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)611 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
612 					       const struct nvmem_cell_info *info,
613 					       struct nvmem_cell_entry *cell)
614 {
615 	int err;
616 
617 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
618 	if (err)
619 		return err;
620 
621 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
622 	if (!cell->name)
623 		return -ENOMEM;
624 
625 	return 0;
626 }
627 
628 /**
629  * nvmem_add_one_cell() - Add one cell information to an nvmem device
630  *
631  * @nvmem: nvmem device to add cells to.
632  * @info: nvmem cell info to add to the device
633  *
634  * Return: 0 or negative error code on failure.
635  */
nvmem_add_one_cell(struct nvmem_device * nvmem,const struct nvmem_cell_info * info)636 int nvmem_add_one_cell(struct nvmem_device *nvmem,
637 		       const struct nvmem_cell_info *info)
638 {
639 	struct nvmem_cell_entry *cell;
640 	int rval;
641 
642 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
643 	if (!cell)
644 		return -ENOMEM;
645 
646 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
647 	if (rval) {
648 		kfree(cell);
649 		return rval;
650 	}
651 
652 	nvmem_cell_entry_add(cell);
653 
654 	return 0;
655 }
656 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
657 
658 /**
659  * nvmem_add_cells() - Add cell information to an nvmem device
660  *
661  * @nvmem: nvmem device to add cells to.
662  * @info: nvmem cell info to add to the device
663  * @ncells: number of cells in info
664  *
665  * Return: 0 or negative error code on failure.
666  */
nvmem_add_cells(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,int ncells)667 static int nvmem_add_cells(struct nvmem_device *nvmem,
668 		    const struct nvmem_cell_info *info,
669 		    int ncells)
670 {
671 	int i, rval;
672 
673 	for (i = 0; i < ncells; i++) {
674 		rval = nvmem_add_one_cell(nvmem, &info[i]);
675 		if (rval)
676 			return rval;
677 	}
678 
679 	return 0;
680 }
681 
682 /**
683  * nvmem_register_notifier() - Register a notifier block for nvmem events.
684  *
685  * @nb: notifier block to be called on nvmem events.
686  *
687  * Return: 0 on success, negative error number on failure.
688  */
nvmem_register_notifier(struct notifier_block * nb)689 int nvmem_register_notifier(struct notifier_block *nb)
690 {
691 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
692 }
693 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
694 
695 /**
696  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
697  *
698  * @nb: notifier block to be unregistered.
699  *
700  * Return: 0 on success, negative error number on failure.
701  */
nvmem_unregister_notifier(struct notifier_block * nb)702 int nvmem_unregister_notifier(struct notifier_block *nb)
703 {
704 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
705 }
706 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
707 
nvmem_add_cells_from_table(struct nvmem_device * nvmem)708 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
709 {
710 	const struct nvmem_cell_info *info;
711 	struct nvmem_cell_table *table;
712 	struct nvmem_cell_entry *cell;
713 	int rval = 0, i;
714 
715 	mutex_lock(&nvmem_cell_mutex);
716 	list_for_each_entry(table, &nvmem_cell_tables, node) {
717 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
718 			for (i = 0; i < table->ncells; i++) {
719 				info = &table->cells[i];
720 
721 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
722 				if (!cell) {
723 					rval = -ENOMEM;
724 					goto out;
725 				}
726 
727 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
728 				if (rval) {
729 					kfree(cell);
730 					goto out;
731 				}
732 
733 				nvmem_cell_entry_add(cell);
734 			}
735 		}
736 	}
737 
738 out:
739 	mutex_unlock(&nvmem_cell_mutex);
740 	return rval;
741 }
742 
743 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_name(struct nvmem_device * nvmem,const char * cell_id)744 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
745 {
746 	struct nvmem_cell_entry *iter, *cell = NULL;
747 
748 	mutex_lock(&nvmem_mutex);
749 	list_for_each_entry(iter, &nvmem->cells, node) {
750 		if (strcmp(cell_id, iter->name) == 0) {
751 			cell = iter;
752 			break;
753 		}
754 	}
755 	mutex_unlock(&nvmem_mutex);
756 
757 	return cell;
758 }
759 
nvmem_validate_keepouts(struct nvmem_device * nvmem)760 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
761 {
762 	unsigned int cur = 0;
763 	const struct nvmem_keepout *keepout = nvmem->keepout;
764 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
765 
766 	while (keepout < keepoutend) {
767 		/* Ensure keepouts are sorted and don't overlap. */
768 		if (keepout->start < cur) {
769 			dev_err(&nvmem->dev,
770 				"Keepout regions aren't sorted or overlap.\n");
771 
772 			return -ERANGE;
773 		}
774 
775 		if (keepout->end < keepout->start) {
776 			dev_err(&nvmem->dev,
777 				"Invalid keepout region.\n");
778 
779 			return -EINVAL;
780 		}
781 
782 		/*
783 		 * Validate keepouts (and holes between) don't violate
784 		 * word_size constraints.
785 		 */
786 		if ((keepout->end - keepout->start < nvmem->word_size) ||
787 		    ((keepout->start != cur) &&
788 		     (keepout->start - cur < nvmem->word_size))) {
789 
790 			dev_err(&nvmem->dev,
791 				"Keepout regions violate word_size constraints.\n");
792 
793 			return -ERANGE;
794 		}
795 
796 		/* Validate keepouts don't violate stride (alignment). */
797 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
798 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
799 
800 			dev_err(&nvmem->dev,
801 				"Keepout regions violate stride.\n");
802 
803 			return -EINVAL;
804 		}
805 
806 		cur = keepout->end;
807 		keepout++;
808 	}
809 
810 	return 0;
811 }
812 
nvmem_add_cells_from_dt(struct nvmem_device * nvmem,struct device_node * np)813 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
814 {
815 	struct device *dev = &nvmem->dev;
816 	struct device_node *child;
817 	const __be32 *addr;
818 	int len, ret;
819 
820 	for_each_child_of_node(np, child) {
821 		struct nvmem_cell_info info = {0};
822 
823 		addr = of_get_property(child, "reg", &len);
824 		if (!addr)
825 			continue;
826 		if (len < 2 * sizeof(u32)) {
827 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
828 			of_node_put(child);
829 			return -EINVAL;
830 		}
831 
832 		info.offset = be32_to_cpup(addr++);
833 		info.bytes = be32_to_cpup(addr);
834 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
835 
836 		addr = of_get_property(child, "bits", &len);
837 		if (addr && len == (2 * sizeof(u32))) {
838 			info.bit_offset = be32_to_cpup(addr++);
839 			info.nbits = be32_to_cpup(addr);
840 			if (info.bit_offset >= BITS_PER_BYTE || info.nbits < 1) {
841 				dev_err(dev, "nvmem: invalid bits on %pOF\n", child);
842 				of_node_put(child);
843 				return -EINVAL;
844 			}
845 		}
846 
847 		info.np = of_node_get(child);
848 
849 		if (nvmem->fixup_dt_cell_info)
850 			nvmem->fixup_dt_cell_info(nvmem, &info);
851 
852 		ret = nvmem_add_one_cell(nvmem, &info);
853 		kfree(info.name);
854 		if (ret) {
855 			of_node_put(child);
856 			return ret;
857 		}
858 	}
859 
860 	return 0;
861 }
862 
nvmem_add_cells_from_legacy_of(struct nvmem_device * nvmem)863 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
864 {
865 	return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
866 }
867 
nvmem_add_cells_from_fixed_layout(struct nvmem_device * nvmem)868 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
869 {
870 	struct device_node *layout_np;
871 	int err = 0;
872 
873 	layout_np = of_nvmem_layout_get_container(nvmem);
874 	if (!layout_np)
875 		return 0;
876 
877 	if (of_device_is_compatible(layout_np, "fixed-layout"))
878 		err = nvmem_add_cells_from_dt(nvmem, layout_np);
879 
880 	of_node_put(layout_np);
881 
882 	return err;
883 }
884 
nvmem_layout_register(struct nvmem_layout * layout)885 int nvmem_layout_register(struct nvmem_layout *layout)
886 {
887 	int ret;
888 
889 	if (!layout->add_cells)
890 		return -EINVAL;
891 
892 	/* Populate the cells */
893 	ret = layout->add_cells(layout);
894 	if (ret)
895 		return ret;
896 
897 #ifdef CONFIG_NVMEM_SYSFS
898 	ret = nvmem_populate_sysfs_cells(layout->nvmem);
899 	if (ret) {
900 		nvmem_device_remove_all_cells(layout->nvmem);
901 		return ret;
902 	}
903 #endif
904 
905 	return 0;
906 }
907 EXPORT_SYMBOL_GPL(nvmem_layout_register);
908 
nvmem_layout_unregister(struct nvmem_layout * layout)909 void nvmem_layout_unregister(struct nvmem_layout *layout)
910 {
911 	/* Keep the API even with an empty stub in case we need it later */
912 }
913 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
914 
915 /**
916  * nvmem_register() - Register a nvmem device for given nvmem_config.
917  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
918  *
919  * @config: nvmem device configuration with which nvmem device is created.
920  *
921  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
922  * on success.
923  */
924 
nvmem_register(const struct nvmem_config * config)925 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
926 {
927 	struct nvmem_device *nvmem;
928 	int rval;
929 
930 	if (!config->dev)
931 		return ERR_PTR(-EINVAL);
932 
933 	if (!config->reg_read && !config->reg_write)
934 		return ERR_PTR(-EINVAL);
935 
936 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
937 	if (!nvmem)
938 		return ERR_PTR(-ENOMEM);
939 
940 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
941 	if (rval < 0) {
942 		kfree(nvmem);
943 		return ERR_PTR(rval);
944 	}
945 
946 	nvmem->id = rval;
947 
948 	nvmem->dev.type = &nvmem_provider_type;
949 	nvmem->dev.bus = &nvmem_bus_type;
950 	nvmem->dev.parent = config->dev;
951 
952 	device_initialize(&nvmem->dev);
953 
954 	if (!config->ignore_wp)
955 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
956 						    GPIOD_OUT_HIGH);
957 	if (IS_ERR(nvmem->wp_gpio)) {
958 		rval = PTR_ERR(nvmem->wp_gpio);
959 		nvmem->wp_gpio = NULL;
960 		goto err_put_device;
961 	}
962 
963 	kref_init(&nvmem->refcnt);
964 	INIT_LIST_HEAD(&nvmem->cells);
965 	nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
966 
967 	nvmem->owner = config->owner;
968 	if (!nvmem->owner && config->dev->driver)
969 		nvmem->owner = config->dev->driver->owner;
970 	nvmem->stride = config->stride ?: 1;
971 	nvmem->word_size = config->word_size ?: 1;
972 	nvmem->size = config->size;
973 	nvmem->root_only = config->root_only;
974 	nvmem->priv = config->priv;
975 	nvmem->type = config->type;
976 	nvmem->reg_read = config->reg_read;
977 	nvmem->reg_write = config->reg_write;
978 	nvmem->keepout = config->keepout;
979 	nvmem->nkeepout = config->nkeepout;
980 	if (config->of_node)
981 		nvmem->dev.of_node = config->of_node;
982 	else
983 		nvmem->dev.of_node = config->dev->of_node;
984 
985 	switch (config->id) {
986 	case NVMEM_DEVID_NONE:
987 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
988 		break;
989 	case NVMEM_DEVID_AUTO:
990 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
991 		break;
992 	default:
993 		rval = dev_set_name(&nvmem->dev, "%s%d",
994 			     config->name ? : "nvmem",
995 			     config->name ? config->id : nvmem->id);
996 		break;
997 	}
998 
999 	if (rval)
1000 		goto err_put_device;
1001 
1002 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
1003 			   config->read_only || !nvmem->reg_write;
1004 
1005 #ifdef CONFIG_NVMEM_SYSFS
1006 	nvmem->dev.groups = nvmem_dev_groups;
1007 #endif
1008 
1009 	if (nvmem->nkeepout) {
1010 		rval = nvmem_validate_keepouts(nvmem);
1011 		if (rval)
1012 			goto err_put_device;
1013 	}
1014 
1015 	if (config->compat) {
1016 		rval = nvmem_sysfs_setup_compat(nvmem, config);
1017 		if (rval)
1018 			goto err_put_device;
1019 	}
1020 
1021 	if (config->cells) {
1022 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
1023 		if (rval)
1024 			goto err_remove_cells;
1025 	}
1026 
1027 	rval = nvmem_add_cells_from_table(nvmem);
1028 	if (rval)
1029 		goto err_remove_cells;
1030 
1031 	if (config->add_legacy_fixed_of_cells) {
1032 		rval = nvmem_add_cells_from_legacy_of(nvmem);
1033 		if (rval)
1034 			goto err_remove_cells;
1035 	}
1036 
1037 	rval = nvmem_add_cells_from_fixed_layout(nvmem);
1038 	if (rval)
1039 		goto err_remove_cells;
1040 
1041 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1042 
1043 	rval = device_add(&nvmem->dev);
1044 	if (rval)
1045 		goto err_remove_cells;
1046 
1047 	rval = nvmem_populate_layout(nvmem);
1048 	if (rval)
1049 		goto err_remove_dev;
1050 
1051 #ifdef CONFIG_NVMEM_SYSFS
1052 	rval = nvmem_populate_sysfs_cells(nvmem);
1053 	if (rval)
1054 		goto err_destroy_layout;
1055 #endif
1056 
1057 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1058 
1059 	return nvmem;
1060 
1061 #ifdef CONFIG_NVMEM_SYSFS
1062 err_destroy_layout:
1063 	nvmem_destroy_layout(nvmem);
1064 #endif
1065 err_remove_dev:
1066 	device_del(&nvmem->dev);
1067 err_remove_cells:
1068 	nvmem_device_remove_all_cells(nvmem);
1069 	if (config->compat)
1070 		nvmem_sysfs_remove_compat(nvmem, config);
1071 err_put_device:
1072 	put_device(&nvmem->dev);
1073 
1074 	return ERR_PTR(rval);
1075 }
1076 EXPORT_SYMBOL_GPL(nvmem_register);
1077 
nvmem_device_release(struct kref * kref)1078 static void nvmem_device_release(struct kref *kref)
1079 {
1080 	struct nvmem_device *nvmem;
1081 
1082 	nvmem = container_of(kref, struct nvmem_device, refcnt);
1083 
1084 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1085 
1086 	if (nvmem->flags & FLAG_COMPAT)
1087 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1088 
1089 	nvmem_device_remove_all_cells(nvmem);
1090 	nvmem_destroy_layout(nvmem);
1091 	device_unregister(&nvmem->dev);
1092 }
1093 
1094 /**
1095  * nvmem_unregister() - Unregister previously registered nvmem device
1096  *
1097  * @nvmem: Pointer to previously registered nvmem device.
1098  */
nvmem_unregister(struct nvmem_device * nvmem)1099 void nvmem_unregister(struct nvmem_device *nvmem)
1100 {
1101 	if (nvmem)
1102 		kref_put(&nvmem->refcnt, nvmem_device_release);
1103 }
1104 EXPORT_SYMBOL_GPL(nvmem_unregister);
1105 
devm_nvmem_unregister(void * nvmem)1106 static void devm_nvmem_unregister(void *nvmem)
1107 {
1108 	nvmem_unregister(nvmem);
1109 }
1110 
1111 /**
1112  * devm_nvmem_register() - Register a managed nvmem device for given
1113  * nvmem_config.
1114  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1115  *
1116  * @dev: Device that uses the nvmem device.
1117  * @config: nvmem device configuration with which nvmem device is created.
1118  *
1119  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1120  * on success.
1121  */
devm_nvmem_register(struct device * dev,const struct nvmem_config * config)1122 struct nvmem_device *devm_nvmem_register(struct device *dev,
1123 					 const struct nvmem_config *config)
1124 {
1125 	struct nvmem_device *nvmem;
1126 	int ret;
1127 
1128 	nvmem = nvmem_register(config);
1129 	if (IS_ERR(nvmem))
1130 		return nvmem;
1131 
1132 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1133 	if (ret)
1134 		return ERR_PTR(ret);
1135 
1136 	return nvmem;
1137 }
1138 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1139 
__nvmem_device_get(void * data,int (* match)(struct device * dev,const void * data))1140 static struct nvmem_device *__nvmem_device_get(void *data,
1141 			int (*match)(struct device *dev, const void *data))
1142 {
1143 	struct nvmem_device *nvmem = NULL;
1144 	struct device *dev;
1145 
1146 	mutex_lock(&nvmem_mutex);
1147 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1148 	if (dev)
1149 		nvmem = to_nvmem_device(dev);
1150 	mutex_unlock(&nvmem_mutex);
1151 	if (!nvmem)
1152 		return ERR_PTR(-EPROBE_DEFER);
1153 
1154 	if (!try_module_get(nvmem->owner)) {
1155 		dev_err(&nvmem->dev,
1156 			"could not increase module refcount for cell %s\n",
1157 			nvmem_dev_name(nvmem));
1158 
1159 		put_device(&nvmem->dev);
1160 		return ERR_PTR(-EINVAL);
1161 	}
1162 
1163 	kref_get(&nvmem->refcnt);
1164 
1165 	return nvmem;
1166 }
1167 
__nvmem_device_put(struct nvmem_device * nvmem)1168 static void __nvmem_device_put(struct nvmem_device *nvmem)
1169 {
1170 	put_device(&nvmem->dev);
1171 	module_put(nvmem->owner);
1172 	kref_put(&nvmem->refcnt, nvmem_device_release);
1173 }
1174 
1175 #if IS_ENABLED(CONFIG_OF)
1176 /**
1177  * of_nvmem_device_get() - Get nvmem device from a given id
1178  *
1179  * @np: Device tree node that uses the nvmem device.
1180  * @id: nvmem name from nvmem-names property.
1181  *
1182  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1183  * on success.
1184  */
of_nvmem_device_get(struct device_node * np,const char * id)1185 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1186 {
1187 
1188 	struct device_node *nvmem_np;
1189 	struct nvmem_device *nvmem;
1190 	int index = 0;
1191 
1192 	if (id)
1193 		index = of_property_match_string(np, "nvmem-names", id);
1194 
1195 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1196 	if (!nvmem_np)
1197 		return ERR_PTR(-ENOENT);
1198 
1199 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1200 	of_node_put(nvmem_np);
1201 	return nvmem;
1202 }
1203 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1204 #endif
1205 
1206 /**
1207  * nvmem_device_get() - Get nvmem device from a given id
1208  *
1209  * @dev: Device that uses the nvmem device.
1210  * @dev_name: name of the requested nvmem device.
1211  *
1212  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1213  * on success.
1214  */
nvmem_device_get(struct device * dev,const char * dev_name)1215 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1216 {
1217 	if (dev->of_node) { /* try dt first */
1218 		struct nvmem_device *nvmem;
1219 
1220 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1221 
1222 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1223 			return nvmem;
1224 
1225 	}
1226 
1227 	return __nvmem_device_get((void *)dev_name, device_match_name);
1228 }
1229 EXPORT_SYMBOL_GPL(nvmem_device_get);
1230 
1231 /**
1232  * nvmem_device_find() - Find nvmem device with matching function
1233  *
1234  * @data: Data to pass to match function
1235  * @match: Callback function to check device
1236  *
1237  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1238  * on success.
1239  */
nvmem_device_find(void * data,int (* match)(struct device * dev,const void * data))1240 struct nvmem_device *nvmem_device_find(void *data,
1241 			int (*match)(struct device *dev, const void *data))
1242 {
1243 	return __nvmem_device_get(data, match);
1244 }
1245 EXPORT_SYMBOL_GPL(nvmem_device_find);
1246 
devm_nvmem_device_match(struct device * dev,void * res,void * data)1247 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1248 {
1249 	struct nvmem_device **nvmem = res;
1250 
1251 	if (WARN_ON(!nvmem || !*nvmem))
1252 		return 0;
1253 
1254 	return *nvmem == data;
1255 }
1256 
devm_nvmem_device_release(struct device * dev,void * res)1257 static void devm_nvmem_device_release(struct device *dev, void *res)
1258 {
1259 	nvmem_device_put(*(struct nvmem_device **)res);
1260 }
1261 
1262 /**
1263  * devm_nvmem_device_put() - put already got nvmem device
1264  *
1265  * @dev: Device that uses the nvmem device.
1266  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1267  * that needs to be released.
1268  */
devm_nvmem_device_put(struct device * dev,struct nvmem_device * nvmem)1269 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1270 {
1271 	int ret;
1272 
1273 	ret = devres_release(dev, devm_nvmem_device_release,
1274 			     devm_nvmem_device_match, nvmem);
1275 
1276 	WARN_ON(ret);
1277 }
1278 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1279 
1280 /**
1281  * nvmem_device_put() - put already got nvmem device
1282  *
1283  * @nvmem: pointer to nvmem device that needs to be released.
1284  */
nvmem_device_put(struct nvmem_device * nvmem)1285 void nvmem_device_put(struct nvmem_device *nvmem)
1286 {
1287 	__nvmem_device_put(nvmem);
1288 }
1289 EXPORT_SYMBOL_GPL(nvmem_device_put);
1290 
1291 /**
1292  * devm_nvmem_device_get() - Get nvmem device of device form a given id
1293  *
1294  * @dev: Device that requests the nvmem device.
1295  * @id: name id for the requested nvmem device.
1296  *
1297  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1298  * on success.  The nvmem_device will be freed by the automatically once the
1299  * device is freed.
1300  */
devm_nvmem_device_get(struct device * dev,const char * id)1301 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1302 {
1303 	struct nvmem_device **ptr, *nvmem;
1304 
1305 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1306 	if (!ptr)
1307 		return ERR_PTR(-ENOMEM);
1308 
1309 	nvmem = nvmem_device_get(dev, id);
1310 	if (!IS_ERR(nvmem)) {
1311 		*ptr = nvmem;
1312 		devres_add(dev, ptr);
1313 	} else {
1314 		devres_free(ptr);
1315 	}
1316 
1317 	return nvmem;
1318 }
1319 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1320 
nvmem_create_cell(struct nvmem_cell_entry * entry,const char * id,int index)1321 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1322 					    const char *id, int index)
1323 {
1324 	struct nvmem_cell *cell;
1325 	const char *name = NULL;
1326 
1327 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1328 	if (!cell)
1329 		return ERR_PTR(-ENOMEM);
1330 
1331 	if (id) {
1332 		name = kstrdup_const(id, GFP_KERNEL);
1333 		if (!name) {
1334 			kfree(cell);
1335 			return ERR_PTR(-ENOMEM);
1336 		}
1337 	}
1338 
1339 	cell->id = name;
1340 	cell->entry = entry;
1341 	cell->index = index;
1342 
1343 	return cell;
1344 }
1345 
1346 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device * dev,const char * con_id)1347 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1348 {
1349 	struct nvmem_cell_entry *cell_entry;
1350 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1351 	struct nvmem_cell_lookup *lookup;
1352 	struct nvmem_device *nvmem;
1353 	const char *dev_id;
1354 
1355 	if (!dev)
1356 		return ERR_PTR(-EINVAL);
1357 
1358 	dev_id = dev_name(dev);
1359 
1360 	mutex_lock(&nvmem_lookup_mutex);
1361 
1362 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1363 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1364 		    (strcmp(lookup->con_id, con_id) == 0)) {
1365 			/* This is the right entry. */
1366 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1367 						   device_match_name);
1368 			if (IS_ERR(nvmem)) {
1369 				/* Provider may not be registered yet. */
1370 				cell = ERR_CAST(nvmem);
1371 				break;
1372 			}
1373 
1374 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1375 								   lookup->cell_name);
1376 			if (!cell_entry) {
1377 				__nvmem_device_put(nvmem);
1378 				cell = ERR_PTR(-ENOENT);
1379 			} else {
1380 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1381 				if (IS_ERR(cell))
1382 					__nvmem_device_put(nvmem);
1383 			}
1384 			break;
1385 		}
1386 	}
1387 
1388 	mutex_unlock(&nvmem_lookup_mutex);
1389 	return cell;
1390 }
1391 
nvmem_layout_module_put(struct nvmem_device * nvmem)1392 static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1393 {
1394 	if (nvmem->layout && nvmem->layout->dev.driver)
1395 		module_put(nvmem->layout->dev.driver->owner);
1396 }
1397 
1398 #if IS_ENABLED(CONFIG_OF)
1399 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_node(struct nvmem_device * nvmem,struct device_node * np)1400 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1401 {
1402 	struct nvmem_cell_entry *iter, *cell = NULL;
1403 
1404 	mutex_lock(&nvmem_mutex);
1405 	list_for_each_entry(iter, &nvmem->cells, node) {
1406 		if (np == iter->np) {
1407 			cell = iter;
1408 			break;
1409 		}
1410 	}
1411 	mutex_unlock(&nvmem_mutex);
1412 
1413 	return cell;
1414 }
1415 
nvmem_layout_module_get_optional(struct nvmem_device * nvmem)1416 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1417 {
1418 	if (!nvmem->layout)
1419 		return 0;
1420 
1421 	if (!nvmem->layout->dev.driver ||
1422 	    !try_module_get(nvmem->layout->dev.driver->owner))
1423 		return -EPROBE_DEFER;
1424 
1425 	return 0;
1426 }
1427 
1428 /**
1429  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1430  *
1431  * @np: Device tree node that uses the nvmem cell.
1432  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1433  *      for the cell at index 0 (the lone cell with no accompanying
1434  *      nvmem-cell-names property).
1435  *
1436  * Return: Will be an ERR_PTR() on error or a valid pointer
1437  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1438  * nvmem_cell_put().
1439  */
of_nvmem_cell_get(struct device_node * np,const char * id)1440 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1441 {
1442 	struct device_node *cell_np, *nvmem_np;
1443 	struct nvmem_device *nvmem;
1444 	struct nvmem_cell_entry *cell_entry;
1445 	struct nvmem_cell *cell;
1446 	struct of_phandle_args cell_spec;
1447 	int index = 0;
1448 	int cell_index = 0;
1449 	int ret;
1450 
1451 	/* if cell name exists, find index to the name */
1452 	if (id)
1453 		index = of_property_match_string(np, "nvmem-cell-names", id);
1454 
1455 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1456 						  "#nvmem-cell-cells",
1457 						  index, &cell_spec);
1458 	if (ret)
1459 		return ERR_PTR(-ENOENT);
1460 
1461 	if (cell_spec.args_count > 1)
1462 		return ERR_PTR(-EINVAL);
1463 
1464 	cell_np = cell_spec.np;
1465 	if (cell_spec.args_count)
1466 		cell_index = cell_spec.args[0];
1467 
1468 	nvmem_np = of_get_parent(cell_np);
1469 	if (!nvmem_np) {
1470 		of_node_put(cell_np);
1471 		return ERR_PTR(-EINVAL);
1472 	}
1473 
1474 	/* nvmem layouts produce cells within the nvmem-layout container */
1475 	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1476 		nvmem_np = of_get_next_parent(nvmem_np);
1477 		if (!nvmem_np) {
1478 			of_node_put(cell_np);
1479 			return ERR_PTR(-EINVAL);
1480 		}
1481 	}
1482 
1483 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1484 	of_node_put(nvmem_np);
1485 	if (IS_ERR(nvmem)) {
1486 		of_node_put(cell_np);
1487 		return ERR_CAST(nvmem);
1488 	}
1489 
1490 	ret = nvmem_layout_module_get_optional(nvmem);
1491 	if (ret) {
1492 		of_node_put(cell_np);
1493 		__nvmem_device_put(nvmem);
1494 		return ERR_PTR(ret);
1495 	}
1496 
1497 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1498 	of_node_put(cell_np);
1499 	if (!cell_entry) {
1500 		__nvmem_device_put(nvmem);
1501 		nvmem_layout_module_put(nvmem);
1502 		if (nvmem->layout)
1503 			return ERR_PTR(-EPROBE_DEFER);
1504 		else
1505 			return ERR_PTR(-ENOENT);
1506 	}
1507 
1508 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1509 	if (IS_ERR(cell)) {
1510 		__nvmem_device_put(nvmem);
1511 		nvmem_layout_module_put(nvmem);
1512 	}
1513 
1514 	return cell;
1515 }
1516 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1517 #endif
1518 
1519 /**
1520  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1521  *
1522  * @dev: Device that requests the nvmem cell.
1523  * @id: nvmem cell name to get (this corresponds with the name from the
1524  *      nvmem-cell-names property for DT systems and with the con_id from
1525  *      the lookup entry for non-DT systems).
1526  *
1527  * Return: Will be an ERR_PTR() on error or a valid pointer
1528  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1529  * nvmem_cell_put().
1530  */
nvmem_cell_get(struct device * dev,const char * id)1531 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1532 {
1533 	struct nvmem_cell *cell;
1534 
1535 	if (dev->of_node) { /* try dt first */
1536 		cell = of_nvmem_cell_get(dev->of_node, id);
1537 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1538 			return cell;
1539 	}
1540 
1541 	/* NULL cell id only allowed for device tree; invalid otherwise */
1542 	if (!id)
1543 		return ERR_PTR(-EINVAL);
1544 
1545 	return nvmem_cell_get_from_lookup(dev, id);
1546 }
1547 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1548 
devm_nvmem_cell_release(struct device * dev,void * res)1549 static void devm_nvmem_cell_release(struct device *dev, void *res)
1550 {
1551 	nvmem_cell_put(*(struct nvmem_cell **)res);
1552 }
1553 
1554 /**
1555  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1556  *
1557  * @dev: Device that requests the nvmem cell.
1558  * @id: nvmem cell name id to get.
1559  *
1560  * Return: Will be an ERR_PTR() on error or a valid pointer
1561  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1562  * automatically once the device is freed.
1563  */
devm_nvmem_cell_get(struct device * dev,const char * id)1564 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1565 {
1566 	struct nvmem_cell **ptr, *cell;
1567 
1568 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1569 	if (!ptr)
1570 		return ERR_PTR(-ENOMEM);
1571 
1572 	cell = nvmem_cell_get(dev, id);
1573 	if (!IS_ERR(cell)) {
1574 		*ptr = cell;
1575 		devres_add(dev, ptr);
1576 	} else {
1577 		devres_free(ptr);
1578 	}
1579 
1580 	return cell;
1581 }
1582 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1583 
devm_nvmem_cell_match(struct device * dev,void * res,void * data)1584 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1585 {
1586 	struct nvmem_cell **c = res;
1587 
1588 	if (WARN_ON(!c || !*c))
1589 		return 0;
1590 
1591 	return *c == data;
1592 }
1593 
1594 /**
1595  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1596  * from devm_nvmem_cell_get.
1597  *
1598  * @dev: Device that requests the nvmem cell.
1599  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1600  */
devm_nvmem_cell_put(struct device * dev,struct nvmem_cell * cell)1601 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1602 {
1603 	int ret;
1604 
1605 	ret = devres_release(dev, devm_nvmem_cell_release,
1606 				devm_nvmem_cell_match, cell);
1607 
1608 	WARN_ON(ret);
1609 }
1610 EXPORT_SYMBOL(devm_nvmem_cell_put);
1611 
1612 /**
1613  * nvmem_cell_put() - Release previously allocated nvmem cell.
1614  *
1615  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1616  */
nvmem_cell_put(struct nvmem_cell * cell)1617 void nvmem_cell_put(struct nvmem_cell *cell)
1618 {
1619 	struct nvmem_device *nvmem = cell->entry->nvmem;
1620 
1621 	if (cell->id)
1622 		kfree_const(cell->id);
1623 
1624 	kfree(cell);
1625 	__nvmem_device_put(nvmem);
1626 	nvmem_layout_module_put(nvmem);
1627 }
1628 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1629 
nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry * cell,void * buf)1630 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1631 {
1632 	u8 *p, *b;
1633 	int i, extra, bit_offset = cell->bit_offset;
1634 
1635 	p = b = buf;
1636 	if (bit_offset) {
1637 		/* First shift */
1638 		*b++ >>= bit_offset;
1639 
1640 		/* setup rest of the bytes if any */
1641 		for (i = 1; i < cell->bytes; i++) {
1642 			/* Get bits from next byte and shift them towards msb */
1643 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1644 
1645 			p = b;
1646 			*b++ >>= bit_offset;
1647 		}
1648 	} else {
1649 		/* point to the msb */
1650 		p += cell->bytes - 1;
1651 	}
1652 
1653 	/* result fits in less bytes */
1654 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1655 	while (--extra >= 0)
1656 		*p-- = 0;
1657 
1658 	/* clear msb bits if any leftover in the last byte */
1659 	if (cell->nbits % BITS_PER_BYTE)
1660 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1661 }
1662 
__nvmem_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_entry * cell,void * buf,size_t * len,const char * id,int index)1663 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1664 			     struct nvmem_cell_entry *cell,
1665 			     void *buf, size_t *len, const char *id, int index)
1666 {
1667 	int rc;
1668 
1669 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1670 
1671 	if (rc)
1672 		return rc;
1673 
1674 	/* shift bits in-place */
1675 	if (cell->bit_offset || cell->nbits)
1676 		nvmem_shift_read_buffer_in_place(cell, buf);
1677 
1678 	if (cell->read_post_process) {
1679 		rc = cell->read_post_process(cell->priv, id, index,
1680 					     cell->offset, buf, cell->raw_len);
1681 		if (rc)
1682 			return rc;
1683 	}
1684 
1685 	if (len)
1686 		*len = cell->bytes;
1687 
1688 	return 0;
1689 }
1690 
1691 /**
1692  * nvmem_cell_read() - Read a given nvmem cell
1693  *
1694  * @cell: nvmem cell to be read.
1695  * @len: pointer to length of cell which will be populated on successful read;
1696  *	 can be NULL.
1697  *
1698  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1699  * buffer should be freed by the consumer with a kfree().
1700  */
nvmem_cell_read(struct nvmem_cell * cell,size_t * len)1701 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1702 {
1703 	struct nvmem_cell_entry *entry = cell->entry;
1704 	struct nvmem_device *nvmem = entry->nvmem;
1705 	u8 *buf;
1706 	int rc;
1707 
1708 	if (!nvmem)
1709 		return ERR_PTR(-EINVAL);
1710 
1711 	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1712 	if (!buf)
1713 		return ERR_PTR(-ENOMEM);
1714 
1715 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1716 	if (rc) {
1717 		kfree(buf);
1718 		return ERR_PTR(rc);
1719 	}
1720 
1721 	return buf;
1722 }
1723 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1724 
nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry * cell,u8 * _buf,int len)1725 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1726 					     u8 *_buf, int len)
1727 {
1728 	struct nvmem_device *nvmem = cell->nvmem;
1729 	int i, rc, nbits, bit_offset = cell->bit_offset;
1730 	u8 v, *p, *buf, *b, pbyte, pbits;
1731 
1732 	nbits = cell->nbits;
1733 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1734 	if (!buf)
1735 		return ERR_PTR(-ENOMEM);
1736 
1737 	memcpy(buf, _buf, len);
1738 	p = b = buf;
1739 
1740 	if (bit_offset) {
1741 		pbyte = *b;
1742 		*b <<= bit_offset;
1743 
1744 		/* setup the first byte with lsb bits from nvmem */
1745 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1746 		if (rc)
1747 			goto err;
1748 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1749 
1750 		/* setup rest of the byte if any */
1751 		for (i = 1; i < cell->bytes; i++) {
1752 			/* Get last byte bits and shift them towards lsb */
1753 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1754 			pbyte = *b;
1755 			p = b;
1756 			*b <<= bit_offset;
1757 			*b++ |= pbits;
1758 		}
1759 	}
1760 
1761 	/* if it's not end on byte boundary */
1762 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1763 		/* setup the last byte with msb bits from nvmem */
1764 		rc = nvmem_reg_read(nvmem,
1765 				    cell->offset + cell->bytes - 1, &v, 1);
1766 		if (rc)
1767 			goto err;
1768 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1769 
1770 	}
1771 
1772 	return buf;
1773 err:
1774 	kfree(buf);
1775 	return ERR_PTR(rc);
1776 }
1777 
__nvmem_cell_entry_write(struct nvmem_cell_entry * cell,void * buf,size_t len)1778 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1779 {
1780 	struct nvmem_device *nvmem = cell->nvmem;
1781 	int rc;
1782 
1783 	if (!nvmem || nvmem->read_only ||
1784 	    (cell->bit_offset == 0 && len != cell->bytes))
1785 		return -EINVAL;
1786 
1787 	/*
1788 	 * Any cells which have a read_post_process hook are read-only because
1789 	 * we cannot reverse the operation and it might affect other cells,
1790 	 * too.
1791 	 */
1792 	if (cell->read_post_process)
1793 		return -EINVAL;
1794 
1795 	if (cell->bit_offset || cell->nbits) {
1796 		if (len != BITS_TO_BYTES(cell->nbits) && len != cell->bytes)
1797 			return -EINVAL;
1798 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1799 		if (IS_ERR(buf))
1800 			return PTR_ERR(buf);
1801 	}
1802 
1803 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1804 
1805 	/* free the tmp buffer */
1806 	if (cell->bit_offset || cell->nbits)
1807 		kfree(buf);
1808 
1809 	if (rc)
1810 		return rc;
1811 
1812 	return len;
1813 }
1814 
1815 /**
1816  * nvmem_cell_write() - Write to a given nvmem cell
1817  *
1818  * @cell: nvmem cell to be written.
1819  * @buf: Buffer to be written.
1820  * @len: length of buffer to be written to nvmem cell.
1821  *
1822  * Return: length of bytes written or negative on failure.
1823  */
nvmem_cell_write(struct nvmem_cell * cell,void * buf,size_t len)1824 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1825 {
1826 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1827 }
1828 
1829 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1830 
nvmem_cell_read_common(struct device * dev,const char * cell_id,void * val,size_t count)1831 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1832 				  void *val, size_t count)
1833 {
1834 	struct nvmem_cell *cell;
1835 	void *buf;
1836 	size_t len;
1837 
1838 	cell = nvmem_cell_get(dev, cell_id);
1839 	if (IS_ERR(cell))
1840 		return PTR_ERR(cell);
1841 
1842 	buf = nvmem_cell_read(cell, &len);
1843 	if (IS_ERR(buf)) {
1844 		nvmem_cell_put(cell);
1845 		return PTR_ERR(buf);
1846 	}
1847 	if (len != count) {
1848 		kfree(buf);
1849 		nvmem_cell_put(cell);
1850 		return -EINVAL;
1851 	}
1852 	memcpy(val, buf, count);
1853 	kfree(buf);
1854 	nvmem_cell_put(cell);
1855 
1856 	return 0;
1857 }
1858 
1859 /**
1860  * nvmem_cell_read_u8() - Read a cell value as a u8
1861  *
1862  * @dev: Device that requests the nvmem cell.
1863  * @cell_id: Name of nvmem cell to read.
1864  * @val: pointer to output value.
1865  *
1866  * Return: 0 on success or negative errno.
1867  */
nvmem_cell_read_u8(struct device * dev,const char * cell_id,u8 * val)1868 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1869 {
1870 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1871 }
1872 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1873 
1874 /**
1875  * nvmem_cell_read_u16() - Read a cell value as a u16
1876  *
1877  * @dev: Device that requests the nvmem cell.
1878  * @cell_id: Name of nvmem cell to read.
1879  * @val: pointer to output value.
1880  *
1881  * Return: 0 on success or negative errno.
1882  */
nvmem_cell_read_u16(struct device * dev,const char * cell_id,u16 * val)1883 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1884 {
1885 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1886 }
1887 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1888 
1889 /**
1890  * nvmem_cell_read_u32() - Read a cell value as a u32
1891  *
1892  * @dev: Device that requests the nvmem cell.
1893  * @cell_id: Name of nvmem cell to read.
1894  * @val: pointer to output value.
1895  *
1896  * Return: 0 on success or negative errno.
1897  */
nvmem_cell_read_u32(struct device * dev,const char * cell_id,u32 * val)1898 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1899 {
1900 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1901 }
1902 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1903 
1904 /**
1905  * nvmem_cell_read_u64() - Read a cell value as a u64
1906  *
1907  * @dev: Device that requests the nvmem cell.
1908  * @cell_id: Name of nvmem cell to read.
1909  * @val: pointer to output value.
1910  *
1911  * Return: 0 on success or negative errno.
1912  */
nvmem_cell_read_u64(struct device * dev,const char * cell_id,u64 * val)1913 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1914 {
1915 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1916 }
1917 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1918 
nvmem_cell_read_variable_common(struct device * dev,const char * cell_id,size_t max_len,size_t * len)1919 static const void *nvmem_cell_read_variable_common(struct device *dev,
1920 						   const char *cell_id,
1921 						   size_t max_len, size_t *len)
1922 {
1923 	struct nvmem_cell *cell;
1924 	int nbits;
1925 	void *buf;
1926 
1927 	cell = nvmem_cell_get(dev, cell_id);
1928 	if (IS_ERR(cell))
1929 		return cell;
1930 
1931 	nbits = cell->entry->nbits;
1932 	buf = nvmem_cell_read(cell, len);
1933 	nvmem_cell_put(cell);
1934 	if (IS_ERR(buf))
1935 		return buf;
1936 
1937 	/*
1938 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1939 	 * the length of the real data. Throw away the extra junk.
1940 	 */
1941 	if (nbits)
1942 		*len = DIV_ROUND_UP(nbits, 8);
1943 
1944 	if (*len > max_len) {
1945 		kfree(buf);
1946 		return ERR_PTR(-ERANGE);
1947 	}
1948 
1949 	return buf;
1950 }
1951 
1952 /**
1953  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1954  *
1955  * @dev: Device that requests the nvmem cell.
1956  * @cell_id: Name of nvmem cell to read.
1957  * @val: pointer to output value.
1958  *
1959  * Return: 0 on success or negative errno.
1960  */
nvmem_cell_read_variable_le_u32(struct device * dev,const char * cell_id,u32 * val)1961 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1962 				    u32 *val)
1963 {
1964 	size_t len;
1965 	const u8 *buf;
1966 	int i;
1967 
1968 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1969 	if (IS_ERR(buf))
1970 		return PTR_ERR(buf);
1971 
1972 	/* Copy w/ implicit endian conversion */
1973 	*val = 0;
1974 	for (i = 0; i < len; i++)
1975 		*val |= buf[i] << (8 * i);
1976 
1977 	kfree(buf);
1978 
1979 	return 0;
1980 }
1981 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1982 
1983 /**
1984  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1985  *
1986  * @dev: Device that requests the nvmem cell.
1987  * @cell_id: Name of nvmem cell to read.
1988  * @val: pointer to output value.
1989  *
1990  * Return: 0 on success or negative errno.
1991  */
nvmem_cell_read_variable_le_u64(struct device * dev,const char * cell_id,u64 * val)1992 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1993 				    u64 *val)
1994 {
1995 	size_t len;
1996 	const u8 *buf;
1997 	int i;
1998 
1999 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
2000 	if (IS_ERR(buf))
2001 		return PTR_ERR(buf);
2002 
2003 	/* Copy w/ implicit endian conversion */
2004 	*val = 0;
2005 	for (i = 0; i < len; i++)
2006 		*val |= (uint64_t)buf[i] << (8 * i);
2007 
2008 	kfree(buf);
2009 
2010 	return 0;
2011 }
2012 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
2013 
2014 /**
2015  * nvmem_device_cell_read() - Read a given nvmem device and cell
2016  *
2017  * @nvmem: nvmem device to read from.
2018  * @info: nvmem cell info to be read.
2019  * @buf: buffer pointer which will be populated on successful read.
2020  *
2021  * Return: length of successful bytes read on success and negative
2022  * error code on error.
2023  */
nvmem_device_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)2024 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
2025 			   struct nvmem_cell_info *info, void *buf)
2026 {
2027 	struct nvmem_cell_entry cell;
2028 	int rc;
2029 	ssize_t len;
2030 
2031 	if (!nvmem)
2032 		return -EINVAL;
2033 
2034 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2035 	if (rc)
2036 		return rc;
2037 
2038 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2039 	if (rc)
2040 		return rc;
2041 
2042 	return len;
2043 }
2044 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2045 
2046 /**
2047  * nvmem_device_cell_write() - Write cell to a given nvmem device
2048  *
2049  * @nvmem: nvmem device to be written to.
2050  * @info: nvmem cell info to be written.
2051  * @buf: buffer to be written to cell.
2052  *
2053  * Return: length of bytes written or negative error code on failure.
2054  */
nvmem_device_cell_write(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)2055 int nvmem_device_cell_write(struct nvmem_device *nvmem,
2056 			    struct nvmem_cell_info *info, void *buf)
2057 {
2058 	struct nvmem_cell_entry cell;
2059 	int rc;
2060 
2061 	if (!nvmem)
2062 		return -EINVAL;
2063 
2064 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2065 	if (rc)
2066 		return rc;
2067 
2068 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2069 }
2070 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2071 
2072 /**
2073  * nvmem_device_read() - Read from a given nvmem device
2074  *
2075  * @nvmem: nvmem device to read from.
2076  * @offset: offset in nvmem device.
2077  * @bytes: number of bytes to read.
2078  * @buf: buffer pointer which will be populated on successful read.
2079  *
2080  * Return: length of successful bytes read on success and negative
2081  * error code on error.
2082  */
nvmem_device_read(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2083 int nvmem_device_read(struct nvmem_device *nvmem,
2084 		      unsigned int offset,
2085 		      size_t bytes, void *buf)
2086 {
2087 	int rc;
2088 
2089 	if (!nvmem)
2090 		return -EINVAL;
2091 
2092 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2093 
2094 	if (rc)
2095 		return rc;
2096 
2097 	return bytes;
2098 }
2099 EXPORT_SYMBOL_GPL(nvmem_device_read);
2100 
2101 /**
2102  * nvmem_device_write() - Write cell to a given nvmem device
2103  *
2104  * @nvmem: nvmem device to be written to.
2105  * @offset: offset in nvmem device.
2106  * @bytes: number of bytes to write.
2107  * @buf: buffer to be written.
2108  *
2109  * Return: length of bytes written or negative error code on failure.
2110  */
nvmem_device_write(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2111 int nvmem_device_write(struct nvmem_device *nvmem,
2112 		       unsigned int offset,
2113 		       size_t bytes, void *buf)
2114 {
2115 	int rc;
2116 
2117 	if (!nvmem)
2118 		return -EINVAL;
2119 
2120 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2121 
2122 	if (rc)
2123 		return rc;
2124 
2125 
2126 	return bytes;
2127 }
2128 EXPORT_SYMBOL_GPL(nvmem_device_write);
2129 
2130 /**
2131  * nvmem_add_cell_table() - register a table of cell info entries
2132  *
2133  * @table: table of cell info entries
2134  */
nvmem_add_cell_table(struct nvmem_cell_table * table)2135 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2136 {
2137 	mutex_lock(&nvmem_cell_mutex);
2138 	list_add_tail(&table->node, &nvmem_cell_tables);
2139 	mutex_unlock(&nvmem_cell_mutex);
2140 }
2141 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2142 
2143 /**
2144  * nvmem_del_cell_table() - remove a previously registered cell info table
2145  *
2146  * @table: table of cell info entries
2147  */
nvmem_del_cell_table(struct nvmem_cell_table * table)2148 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2149 {
2150 	mutex_lock(&nvmem_cell_mutex);
2151 	list_del(&table->node);
2152 	mutex_unlock(&nvmem_cell_mutex);
2153 }
2154 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2155 
2156 /**
2157  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2158  *
2159  * @entries: array of cell lookup entries
2160  * @nentries: number of cell lookup entries in the array
2161  */
nvmem_add_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2162 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2163 {
2164 	int i;
2165 
2166 	mutex_lock(&nvmem_lookup_mutex);
2167 	for (i = 0; i < nentries; i++)
2168 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2169 	mutex_unlock(&nvmem_lookup_mutex);
2170 }
2171 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2172 
2173 /**
2174  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2175  *                            entries
2176  *
2177  * @entries: array of cell lookup entries
2178  * @nentries: number of cell lookup entries in the array
2179  */
nvmem_del_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2180 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2181 {
2182 	int i;
2183 
2184 	mutex_lock(&nvmem_lookup_mutex);
2185 	for (i = 0; i < nentries; i++)
2186 		list_del(&entries[i].node);
2187 	mutex_unlock(&nvmem_lookup_mutex);
2188 }
2189 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2190 
2191 /**
2192  * nvmem_dev_name() - Get the name of a given nvmem device.
2193  *
2194  * @nvmem: nvmem device.
2195  *
2196  * Return: name of the nvmem device.
2197  */
nvmem_dev_name(struct nvmem_device * nvmem)2198 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2199 {
2200 	return dev_name(&nvmem->dev);
2201 }
2202 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2203 
2204 /**
2205  * nvmem_dev_size() - Get the size of a given nvmem device.
2206  *
2207  * @nvmem: nvmem device.
2208  *
2209  * Return: size of the nvmem device.
2210  */
nvmem_dev_size(struct nvmem_device * nvmem)2211 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2212 {
2213 	return nvmem->size;
2214 }
2215 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2216 
nvmem_init(void)2217 static int __init nvmem_init(void)
2218 {
2219 	int ret;
2220 
2221 	ret = bus_register(&nvmem_bus_type);
2222 	if (ret)
2223 		return ret;
2224 
2225 	ret = nvmem_layout_bus_register();
2226 	if (ret)
2227 		bus_unregister(&nvmem_bus_type);
2228 
2229 	return ret;
2230 }
2231 
nvmem_exit(void)2232 static void __exit nvmem_exit(void)
2233 {
2234 	nvmem_layout_bus_unregister();
2235 	bus_unregister(&nvmem_bus_type);
2236 }
2237 
2238 subsys_initcall(nvmem_init);
2239 module_exit(nvmem_exit);
2240 
2241 MODULE_AUTHOR("Srinivas Kandagatla <[email protected]");
2242 MODULE_AUTHOR("Maxime Ripard <[email protected]");
2243 MODULE_DESCRIPTION("nvmem Driver Core");
2244