1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-integrity.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kstrtox.h>
17 #include <linux/memremap.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/once.h>
22 #include <linux/pci.h>
23 #include <linux/suspend.h>
24 #include <linux/t10-pi.h>
25 #include <linux/types.h>
26 #include <linux/io-64-nonatomic-lo-hi.h>
27 #include <linux/io-64-nonatomic-hi-lo.h>
28 #include <linux/sed-opal.h>
29 #include <linux/pci-p2pdma.h>
30
31 #include "trace.h"
32 #include "nvme.h"
33
34 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
35 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
36
37 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
38
39 /*
40 * These can be higher, but we need to ensure that any command doesn't
41 * require an sg allocation that needs more than a page of data.
42 */
43 #define NVME_MAX_KB_SZ 8192
44 #define NVME_MAX_SEGS 128
45 #define NVME_MAX_META_SEGS 15
46 #define NVME_MAX_NR_ALLOCATIONS 5
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 "Use SGLs when average request segment size is larger or equal to "
64 "this size. Use 0 to disable SGLs.");
65
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 .set = io_queue_depth_set,
71 .get = param_get_uint,
72 };
73
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77
io_queue_count_set(const char * val,const struct kernel_param * kp)78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 unsigned int n;
81 int ret;
82
83 ret = kstrtouint(val, 10, &n);
84 if (ret != 0 || n > num_possible_cpus())
85 return -EINVAL;
86 return param_set_uint(val, kp);
87 }
88
89 static const struct kernel_param_ops io_queue_count_ops = {
90 .set = io_queue_count_set,
91 .get = param_get_uint,
92 };
93
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 "Number of queues to use for writes. If not set, reads and writes "
98 "will share a queue set.");
99
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107
108 struct nvme_dev;
109 struct nvme_queue;
110
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114
115 /*
116 * Represents an NVM Express device. Each nvme_dev is a PCI function.
117 */
118 struct nvme_dev {
119 struct nvme_queue *queues;
120 struct blk_mq_tag_set tagset;
121 struct blk_mq_tag_set admin_tagset;
122 u32 __iomem *dbs;
123 struct device *dev;
124 struct dma_pool *prp_page_pool;
125 struct dma_pool *prp_small_pool;
126 unsigned online_queues;
127 unsigned max_qid;
128 unsigned io_queues[HCTX_MAX_TYPES];
129 unsigned int num_vecs;
130 u32 q_depth;
131 int io_sqes;
132 u32 db_stride;
133 void __iomem *bar;
134 unsigned long bar_mapped_size;
135 struct mutex shutdown_lock;
136 bool subsystem;
137 u64 cmb_size;
138 bool cmb_use_sqes;
139 u32 cmbsz;
140 u32 cmbloc;
141 struct nvme_ctrl ctrl;
142 u32 last_ps;
143 bool hmb;
144 struct sg_table *hmb_sgt;
145
146 mempool_t *iod_mempool;
147 mempool_t *iod_meta_mempool;
148
149 /* shadow doorbell buffer support: */
150 __le32 *dbbuf_dbs;
151 dma_addr_t dbbuf_dbs_dma_addr;
152 __le32 *dbbuf_eis;
153 dma_addr_t dbbuf_eis_dma_addr;
154
155 /* host memory buffer support: */
156 u64 host_mem_size;
157 u32 nr_host_mem_descs;
158 u32 host_mem_descs_size;
159 dma_addr_t host_mem_descs_dma;
160 struct nvme_host_mem_buf_desc *host_mem_descs;
161 void **host_mem_desc_bufs;
162 unsigned int nr_allocated_queues;
163 unsigned int nr_write_queues;
164 unsigned int nr_poll_queues;
165 };
166
io_queue_depth_set(const char * val,const struct kernel_param * kp)167 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
168 {
169 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
170 NVME_PCI_MAX_QUEUE_SIZE);
171 }
172
sq_idx(unsigned int qid,u32 stride)173 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
174 {
175 return qid * 2 * stride;
176 }
177
cq_idx(unsigned int qid,u32 stride)178 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
179 {
180 return (qid * 2 + 1) * stride;
181 }
182
to_nvme_dev(struct nvme_ctrl * ctrl)183 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
184 {
185 return container_of(ctrl, struct nvme_dev, ctrl);
186 }
187
188 /*
189 * An NVM Express queue. Each device has at least two (one for admin
190 * commands and one for I/O commands).
191 */
192 struct nvme_queue {
193 struct nvme_dev *dev;
194 spinlock_t sq_lock;
195 void *sq_cmds;
196 /* only used for poll queues: */
197 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
198 struct nvme_completion *cqes;
199 dma_addr_t sq_dma_addr;
200 dma_addr_t cq_dma_addr;
201 u32 __iomem *q_db;
202 u32 q_depth;
203 u16 cq_vector;
204 u16 sq_tail;
205 u16 last_sq_tail;
206 u16 cq_head;
207 u16 qid;
208 u8 cq_phase;
209 u8 sqes;
210 unsigned long flags;
211 #define NVMEQ_ENABLED 0
212 #define NVMEQ_SQ_CMB 1
213 #define NVMEQ_DELETE_ERROR 2
214 #define NVMEQ_POLLED 3
215 __le32 *dbbuf_sq_db;
216 __le32 *dbbuf_cq_db;
217 __le32 *dbbuf_sq_ei;
218 __le32 *dbbuf_cq_ei;
219 struct completion delete_done;
220 };
221
222 union nvme_descriptor {
223 struct nvme_sgl_desc *sg_list;
224 __le64 *prp_list;
225 };
226
227 /*
228 * The nvme_iod describes the data in an I/O.
229 *
230 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
231 * to the actual struct scatterlist.
232 */
233 struct nvme_iod {
234 struct nvme_request req;
235 struct nvme_command cmd;
236 bool aborted;
237 s8 nr_allocations; /* PRP list pool allocations. 0 means small
238 pool in use */
239 unsigned int dma_len; /* length of single DMA segment mapping */
240 dma_addr_t first_dma;
241 dma_addr_t meta_dma;
242 struct sg_table sgt;
243 struct sg_table meta_sgt;
244 union nvme_descriptor meta_list;
245 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
246 };
247
nvme_dbbuf_size(struct nvme_dev * dev)248 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
249 {
250 return dev->nr_allocated_queues * 8 * dev->db_stride;
251 }
252
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)253 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
254 {
255 unsigned int mem_size = nvme_dbbuf_size(dev);
256
257 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
258 return;
259
260 if (dev->dbbuf_dbs) {
261 /*
262 * Clear the dbbuf memory so the driver doesn't observe stale
263 * values from the previous instantiation.
264 */
265 memset(dev->dbbuf_dbs, 0, mem_size);
266 memset(dev->dbbuf_eis, 0, mem_size);
267 return;
268 }
269
270 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
271 &dev->dbbuf_dbs_dma_addr,
272 GFP_KERNEL);
273 if (!dev->dbbuf_dbs)
274 goto fail;
275 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
276 &dev->dbbuf_eis_dma_addr,
277 GFP_KERNEL);
278 if (!dev->dbbuf_eis)
279 goto fail_free_dbbuf_dbs;
280 return;
281
282 fail_free_dbbuf_dbs:
283 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
284 dev->dbbuf_dbs_dma_addr);
285 dev->dbbuf_dbs = NULL;
286 fail:
287 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
288 }
289
nvme_dbbuf_dma_free(struct nvme_dev * dev)290 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
291 {
292 unsigned int mem_size = nvme_dbbuf_size(dev);
293
294 if (dev->dbbuf_dbs) {
295 dma_free_coherent(dev->dev, mem_size,
296 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
297 dev->dbbuf_dbs = NULL;
298 }
299 if (dev->dbbuf_eis) {
300 dma_free_coherent(dev->dev, mem_size,
301 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
302 dev->dbbuf_eis = NULL;
303 }
304 }
305
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)306 static void nvme_dbbuf_init(struct nvme_dev *dev,
307 struct nvme_queue *nvmeq, int qid)
308 {
309 if (!dev->dbbuf_dbs || !qid)
310 return;
311
312 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
313 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
314 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
315 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
316 }
317
nvme_dbbuf_free(struct nvme_queue * nvmeq)318 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
319 {
320 if (!nvmeq->qid)
321 return;
322
323 nvmeq->dbbuf_sq_db = NULL;
324 nvmeq->dbbuf_cq_db = NULL;
325 nvmeq->dbbuf_sq_ei = NULL;
326 nvmeq->dbbuf_cq_ei = NULL;
327 }
328
nvme_dbbuf_set(struct nvme_dev * dev)329 static void nvme_dbbuf_set(struct nvme_dev *dev)
330 {
331 struct nvme_command c = { };
332 unsigned int i;
333
334 if (!dev->dbbuf_dbs)
335 return;
336
337 c.dbbuf.opcode = nvme_admin_dbbuf;
338 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
339 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
340
341 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
342 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
343 /* Free memory and continue on */
344 nvme_dbbuf_dma_free(dev);
345
346 for (i = 1; i <= dev->online_queues; i++)
347 nvme_dbbuf_free(&dev->queues[i]);
348 }
349 }
350
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)351 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
352 {
353 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
354 }
355
356 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)357 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
358 volatile __le32 *dbbuf_ei)
359 {
360 if (dbbuf_db) {
361 u16 old_value, event_idx;
362
363 /*
364 * Ensure that the queue is written before updating
365 * the doorbell in memory
366 */
367 wmb();
368
369 old_value = le32_to_cpu(*dbbuf_db);
370 *dbbuf_db = cpu_to_le32(value);
371
372 /*
373 * Ensure that the doorbell is updated before reading the event
374 * index from memory. The controller needs to provide similar
375 * ordering to ensure the event index is updated before reading
376 * the doorbell.
377 */
378 mb();
379
380 event_idx = le32_to_cpu(*dbbuf_ei);
381 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
382 return false;
383 }
384
385 return true;
386 }
387
388 /*
389 * Will slightly overestimate the number of pages needed. This is OK
390 * as it only leads to a small amount of wasted memory for the lifetime of
391 * the I/O.
392 */
nvme_pci_npages_prp(void)393 static int nvme_pci_npages_prp(void)
394 {
395 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
396 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
397 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
398 }
399
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)400 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
401 unsigned int hctx_idx)
402 {
403 struct nvme_dev *dev = to_nvme_dev(data);
404 struct nvme_queue *nvmeq = &dev->queues[0];
405
406 WARN_ON(hctx_idx != 0);
407 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
408
409 hctx->driver_data = nvmeq;
410 return 0;
411 }
412
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)413 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
414 unsigned int hctx_idx)
415 {
416 struct nvme_dev *dev = to_nvme_dev(data);
417 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
418
419 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
420 hctx->driver_data = nvmeq;
421 return 0;
422 }
423
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)424 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
425 struct request *req, unsigned int hctx_idx,
426 unsigned int numa_node)
427 {
428 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
429
430 nvme_req(req)->ctrl = set->driver_data;
431 nvme_req(req)->cmd = &iod->cmd;
432 return 0;
433 }
434
queue_irq_offset(struct nvme_dev * dev)435 static int queue_irq_offset(struct nvme_dev *dev)
436 {
437 /* if we have more than 1 vec, admin queue offsets us by 1 */
438 if (dev->num_vecs > 1)
439 return 1;
440
441 return 0;
442 }
443
nvme_pci_map_queues(struct blk_mq_tag_set * set)444 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
445 {
446 struct nvme_dev *dev = to_nvme_dev(set->driver_data);
447 int i, qoff, offset;
448
449 offset = queue_irq_offset(dev);
450 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
451 struct blk_mq_queue_map *map = &set->map[i];
452
453 map->nr_queues = dev->io_queues[i];
454 if (!map->nr_queues) {
455 BUG_ON(i == HCTX_TYPE_DEFAULT);
456 continue;
457 }
458
459 /*
460 * The poll queue(s) doesn't have an IRQ (and hence IRQ
461 * affinity), so use the regular blk-mq cpu mapping
462 */
463 map->queue_offset = qoff;
464 if (i != HCTX_TYPE_POLL && offset)
465 blk_mq_map_hw_queues(map, dev->dev, offset);
466 else
467 blk_mq_map_queues(map);
468 qoff += map->nr_queues;
469 offset += map->nr_queues;
470 }
471 }
472
473 /*
474 * Write sq tail if we are asked to, or if the next command would wrap.
475 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)476 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
477 {
478 if (!write_sq) {
479 u16 next_tail = nvmeq->sq_tail + 1;
480
481 if (next_tail == nvmeq->q_depth)
482 next_tail = 0;
483 if (next_tail != nvmeq->last_sq_tail)
484 return;
485 }
486
487 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
488 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
489 writel(nvmeq->sq_tail, nvmeq->q_db);
490 nvmeq->last_sq_tail = nvmeq->sq_tail;
491 }
492
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)493 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
494 struct nvme_command *cmd)
495 {
496 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
497 absolute_pointer(cmd), sizeof(*cmd));
498 if (++nvmeq->sq_tail == nvmeq->q_depth)
499 nvmeq->sq_tail = 0;
500 }
501
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)502 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
503 {
504 struct nvme_queue *nvmeq = hctx->driver_data;
505
506 spin_lock(&nvmeq->sq_lock);
507 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
508 nvme_write_sq_db(nvmeq, true);
509 spin_unlock(&nvmeq->sq_lock);
510 }
511
nvme_pci_metadata_use_sgls(struct nvme_dev * dev,struct request * req)512 static inline bool nvme_pci_metadata_use_sgls(struct nvme_dev *dev,
513 struct request *req)
514 {
515 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
516 return false;
517 return req->nr_integrity_segments > 1 ||
518 nvme_req(req)->flags & NVME_REQ_USERCMD;
519 }
520
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req,int nseg)521 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
522 int nseg)
523 {
524 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
525 unsigned int avg_seg_size;
526
527 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
528
529 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
530 return false;
531 if (!nvmeq->qid)
532 return false;
533 if (nvme_pci_metadata_use_sgls(dev, req))
534 return true;
535 if (!sgl_threshold || avg_seg_size < sgl_threshold)
536 return nvme_req(req)->flags & NVME_REQ_USERCMD;
537 return true;
538 }
539
nvme_free_prps(struct nvme_dev * dev,struct request * req)540 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
541 {
542 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
543 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
544 dma_addr_t dma_addr = iod->first_dma;
545 int i;
546
547 for (i = 0; i < iod->nr_allocations; i++) {
548 __le64 *prp_list = iod->list[i].prp_list;
549 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
550
551 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
552 dma_addr = next_dma_addr;
553 }
554 }
555
nvme_unmap_data(struct nvme_dev * dev,struct request * req)556 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
557 {
558 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
559
560 if (iod->dma_len) {
561 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
562 rq_dma_dir(req));
563 return;
564 }
565
566 WARN_ON_ONCE(!iod->sgt.nents);
567
568 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
569
570 if (iod->nr_allocations == 0)
571 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
572 iod->first_dma);
573 else if (iod->nr_allocations == 1)
574 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
575 iod->first_dma);
576 else
577 nvme_free_prps(dev, req);
578 mempool_free(iod->sgt.sgl, dev->iod_mempool);
579 }
580
nvme_print_sgl(struct scatterlist * sgl,int nents)581 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
582 {
583 int i;
584 struct scatterlist *sg;
585
586 for_each_sg(sgl, sg, nents, i) {
587 dma_addr_t phys = sg_phys(sg);
588 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
589 "dma_address:%pad dma_length:%d\n",
590 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
591 sg_dma_len(sg));
592 }
593 }
594
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)595 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
596 struct request *req, struct nvme_rw_command *cmnd)
597 {
598 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
599 struct dma_pool *pool;
600 int length = blk_rq_payload_bytes(req);
601 struct scatterlist *sg = iod->sgt.sgl;
602 int dma_len = sg_dma_len(sg);
603 u64 dma_addr = sg_dma_address(sg);
604 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
605 __le64 *prp_list;
606 dma_addr_t prp_dma;
607 int nprps, i;
608
609 length -= (NVME_CTRL_PAGE_SIZE - offset);
610 if (length <= 0) {
611 iod->first_dma = 0;
612 goto done;
613 }
614
615 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
616 if (dma_len) {
617 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
618 } else {
619 sg = sg_next(sg);
620 dma_addr = sg_dma_address(sg);
621 dma_len = sg_dma_len(sg);
622 }
623
624 if (length <= NVME_CTRL_PAGE_SIZE) {
625 iod->first_dma = dma_addr;
626 goto done;
627 }
628
629 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
630 if (nprps <= (256 / 8)) {
631 pool = dev->prp_small_pool;
632 iod->nr_allocations = 0;
633 } else {
634 pool = dev->prp_page_pool;
635 iod->nr_allocations = 1;
636 }
637
638 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
639 if (!prp_list) {
640 iod->nr_allocations = -1;
641 return BLK_STS_RESOURCE;
642 }
643 iod->list[0].prp_list = prp_list;
644 iod->first_dma = prp_dma;
645 i = 0;
646 for (;;) {
647 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
648 __le64 *old_prp_list = prp_list;
649 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
650 if (!prp_list)
651 goto free_prps;
652 iod->list[iod->nr_allocations++].prp_list = prp_list;
653 prp_list[0] = old_prp_list[i - 1];
654 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
655 i = 1;
656 }
657 prp_list[i++] = cpu_to_le64(dma_addr);
658 dma_len -= NVME_CTRL_PAGE_SIZE;
659 dma_addr += NVME_CTRL_PAGE_SIZE;
660 length -= NVME_CTRL_PAGE_SIZE;
661 if (length <= 0)
662 break;
663 if (dma_len > 0)
664 continue;
665 if (unlikely(dma_len < 0))
666 goto bad_sgl;
667 sg = sg_next(sg);
668 dma_addr = sg_dma_address(sg);
669 dma_len = sg_dma_len(sg);
670 }
671 done:
672 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
673 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
674 return BLK_STS_OK;
675 free_prps:
676 nvme_free_prps(dev, req);
677 return BLK_STS_RESOURCE;
678 bad_sgl:
679 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
680 "Invalid SGL for payload:%d nents:%d\n",
681 blk_rq_payload_bytes(req), iod->sgt.nents);
682 return BLK_STS_IOERR;
683 }
684
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)685 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
686 struct scatterlist *sg)
687 {
688 sge->addr = cpu_to_le64(sg_dma_address(sg));
689 sge->length = cpu_to_le32(sg_dma_len(sg));
690 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
691 }
692
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)693 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
694 dma_addr_t dma_addr, int entries)
695 {
696 sge->addr = cpu_to_le64(dma_addr);
697 sge->length = cpu_to_le32(entries * sizeof(*sge));
698 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
699 }
700
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd)701 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
702 struct request *req, struct nvme_rw_command *cmd)
703 {
704 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
705 struct dma_pool *pool;
706 struct nvme_sgl_desc *sg_list;
707 struct scatterlist *sg = iod->sgt.sgl;
708 unsigned int entries = iod->sgt.nents;
709 dma_addr_t sgl_dma;
710 int i = 0;
711
712 /* setting the transfer type as SGL */
713 cmd->flags = NVME_CMD_SGL_METABUF;
714
715 if (entries == 1) {
716 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
717 return BLK_STS_OK;
718 }
719
720 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
721 pool = dev->prp_small_pool;
722 iod->nr_allocations = 0;
723 } else {
724 pool = dev->prp_page_pool;
725 iod->nr_allocations = 1;
726 }
727
728 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
729 if (!sg_list) {
730 iod->nr_allocations = -1;
731 return BLK_STS_RESOURCE;
732 }
733
734 iod->list[0].sg_list = sg_list;
735 iod->first_dma = sgl_dma;
736
737 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
738 do {
739 nvme_pci_sgl_set_data(&sg_list[i++], sg);
740 sg = sg_next(sg);
741 } while (--entries > 0);
742
743 return BLK_STS_OK;
744 }
745
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)746 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
747 struct request *req, struct nvme_rw_command *cmnd,
748 struct bio_vec *bv)
749 {
750 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
751 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
752 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
753
754 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
755 if (dma_mapping_error(dev->dev, iod->first_dma))
756 return BLK_STS_RESOURCE;
757 iod->dma_len = bv->bv_len;
758
759 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
760 if (bv->bv_len > first_prp_len)
761 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
762 else
763 cmnd->dptr.prp2 = 0;
764 return BLK_STS_OK;
765 }
766
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)767 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
768 struct request *req, struct nvme_rw_command *cmnd,
769 struct bio_vec *bv)
770 {
771 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
772
773 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
774 if (dma_mapping_error(dev->dev, iod->first_dma))
775 return BLK_STS_RESOURCE;
776 iod->dma_len = bv->bv_len;
777
778 cmnd->flags = NVME_CMD_SGL_METABUF;
779 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
780 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
781 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
782 return BLK_STS_OK;
783 }
784
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)785 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
786 struct nvme_command *cmnd)
787 {
788 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
789 blk_status_t ret = BLK_STS_RESOURCE;
790 int rc;
791
792 if (blk_rq_nr_phys_segments(req) == 1) {
793 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
794 struct bio_vec bv = req_bvec(req);
795
796 if (!is_pci_p2pdma_page(bv.bv_page)) {
797 if (!nvme_pci_metadata_use_sgls(dev, req) &&
798 (bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
799 bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
800 return nvme_setup_prp_simple(dev, req,
801 &cmnd->rw, &bv);
802
803 if (nvmeq->qid && sgl_threshold &&
804 nvme_ctrl_sgl_supported(&dev->ctrl))
805 return nvme_setup_sgl_simple(dev, req,
806 &cmnd->rw, &bv);
807 }
808 }
809
810 iod->dma_len = 0;
811 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
812 if (!iod->sgt.sgl)
813 return BLK_STS_RESOURCE;
814 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
815 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
816 if (!iod->sgt.orig_nents)
817 goto out_free_sg;
818
819 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
820 DMA_ATTR_NO_WARN);
821 if (rc) {
822 if (rc == -EREMOTEIO)
823 ret = BLK_STS_TARGET;
824 goto out_free_sg;
825 }
826
827 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
828 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
829 else
830 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
831 if (ret != BLK_STS_OK)
832 goto out_unmap_sg;
833 return BLK_STS_OK;
834
835 out_unmap_sg:
836 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
837 out_free_sg:
838 mempool_free(iod->sgt.sgl, dev->iod_mempool);
839 return ret;
840 }
841
nvme_pci_setup_meta_sgls(struct nvme_dev * dev,struct request * req)842 static blk_status_t nvme_pci_setup_meta_sgls(struct nvme_dev *dev,
843 struct request *req)
844 {
845 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
846 struct nvme_rw_command *cmnd = &iod->cmd.rw;
847 struct nvme_sgl_desc *sg_list;
848 struct scatterlist *sgl, *sg;
849 unsigned int entries;
850 dma_addr_t sgl_dma;
851 int rc, i;
852
853 iod->meta_sgt.sgl = mempool_alloc(dev->iod_meta_mempool, GFP_ATOMIC);
854 if (!iod->meta_sgt.sgl)
855 return BLK_STS_RESOURCE;
856
857 sg_init_table(iod->meta_sgt.sgl, req->nr_integrity_segments);
858 iod->meta_sgt.orig_nents = blk_rq_map_integrity_sg(req,
859 iod->meta_sgt.sgl);
860 if (!iod->meta_sgt.orig_nents)
861 goto out_free_sg;
862
863 rc = dma_map_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req),
864 DMA_ATTR_NO_WARN);
865 if (rc)
866 goto out_free_sg;
867
868 sg_list = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC, &sgl_dma);
869 if (!sg_list)
870 goto out_unmap_sg;
871
872 entries = iod->meta_sgt.nents;
873 iod->meta_list.sg_list = sg_list;
874 iod->meta_dma = sgl_dma;
875
876 cmnd->flags = NVME_CMD_SGL_METASEG;
877 cmnd->metadata = cpu_to_le64(sgl_dma);
878
879 sgl = iod->meta_sgt.sgl;
880 if (entries == 1) {
881 nvme_pci_sgl_set_data(sg_list, sgl);
882 return BLK_STS_OK;
883 }
884
885 sgl_dma += sizeof(*sg_list);
886 nvme_pci_sgl_set_seg(sg_list, sgl_dma, entries);
887 for_each_sg(sgl, sg, entries, i)
888 nvme_pci_sgl_set_data(&sg_list[i + 1], sg);
889
890 return BLK_STS_OK;
891
892 out_unmap_sg:
893 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
894 out_free_sg:
895 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
896 return BLK_STS_RESOURCE;
897 }
898
nvme_pci_setup_meta_mptr(struct nvme_dev * dev,struct request * req)899 static blk_status_t nvme_pci_setup_meta_mptr(struct nvme_dev *dev,
900 struct request *req)
901 {
902 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
903 struct bio_vec bv = rq_integrity_vec(req);
904 struct nvme_command *cmnd = &iod->cmd;
905
906 iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
907 if (dma_mapping_error(dev->dev, iod->meta_dma))
908 return BLK_STS_IOERR;
909 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
910 return BLK_STS_OK;
911 }
912
nvme_map_metadata(struct nvme_dev * dev,struct request * req)913 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req)
914 {
915 if (nvme_pci_metadata_use_sgls(dev, req))
916 return nvme_pci_setup_meta_sgls(dev, req);
917 return nvme_pci_setup_meta_mptr(dev, req);
918 }
919
nvme_prep_rq(struct nvme_dev * dev,struct request * req)920 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
921 {
922 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
923 blk_status_t ret;
924
925 iod->aborted = false;
926 iod->nr_allocations = -1;
927 iod->sgt.nents = 0;
928 iod->meta_sgt.nents = 0;
929
930 ret = nvme_setup_cmd(req->q->queuedata, req);
931 if (ret)
932 return ret;
933
934 if (blk_rq_nr_phys_segments(req)) {
935 ret = nvme_map_data(dev, req, &iod->cmd);
936 if (ret)
937 goto out_free_cmd;
938 }
939
940 if (blk_integrity_rq(req)) {
941 ret = nvme_map_metadata(dev, req);
942 if (ret)
943 goto out_unmap_data;
944 }
945
946 nvme_start_request(req);
947 return BLK_STS_OK;
948 out_unmap_data:
949 if (blk_rq_nr_phys_segments(req))
950 nvme_unmap_data(dev, req);
951 out_free_cmd:
952 nvme_cleanup_cmd(req);
953 return ret;
954 }
955
956 /*
957 * NOTE: ns is NULL when called on the admin queue.
958 */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)959 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
960 const struct blk_mq_queue_data *bd)
961 {
962 struct nvme_queue *nvmeq = hctx->driver_data;
963 struct nvme_dev *dev = nvmeq->dev;
964 struct request *req = bd->rq;
965 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
966 blk_status_t ret;
967
968 /*
969 * We should not need to do this, but we're still using this to
970 * ensure we can drain requests on a dying queue.
971 */
972 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
973 return BLK_STS_IOERR;
974
975 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
976 return nvme_fail_nonready_command(&dev->ctrl, req);
977
978 ret = nvme_prep_rq(dev, req);
979 if (unlikely(ret))
980 return ret;
981 spin_lock(&nvmeq->sq_lock);
982 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
983 nvme_write_sq_db(nvmeq, bd->last);
984 spin_unlock(&nvmeq->sq_lock);
985 return BLK_STS_OK;
986 }
987
nvme_submit_cmds(struct nvme_queue * nvmeq,struct rq_list * rqlist)988 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
989 {
990 struct request *req;
991
992 if (rq_list_empty(rqlist))
993 return;
994
995 spin_lock(&nvmeq->sq_lock);
996 while ((req = rq_list_pop(rqlist))) {
997 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
998
999 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1000 }
1001 nvme_write_sq_db(nvmeq, true);
1002 spin_unlock(&nvmeq->sq_lock);
1003 }
1004
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)1005 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1006 {
1007 /*
1008 * We should not need to do this, but we're still using this to
1009 * ensure we can drain requests on a dying queue.
1010 */
1011 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1012 return false;
1013 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1014 return false;
1015
1016 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
1017 }
1018
nvme_queue_rqs(struct rq_list * rqlist)1019 static void nvme_queue_rqs(struct rq_list *rqlist)
1020 {
1021 struct rq_list submit_list = { };
1022 struct rq_list requeue_list = { };
1023 struct nvme_queue *nvmeq = NULL;
1024 struct request *req;
1025
1026 while ((req = rq_list_pop(rqlist))) {
1027 if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1028 nvme_submit_cmds(nvmeq, &submit_list);
1029 nvmeq = req->mq_hctx->driver_data;
1030
1031 if (nvme_prep_rq_batch(nvmeq, req))
1032 rq_list_add_tail(&submit_list, req);
1033 else
1034 rq_list_add_tail(&requeue_list, req);
1035 }
1036
1037 if (nvmeq)
1038 nvme_submit_cmds(nvmeq, &submit_list);
1039 *rqlist = requeue_list;
1040 }
1041
nvme_unmap_metadata(struct nvme_dev * dev,struct request * req)1042 static __always_inline void nvme_unmap_metadata(struct nvme_dev *dev,
1043 struct request *req)
1044 {
1045 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1046
1047 if (!iod->meta_sgt.nents) {
1048 dma_unmap_page(dev->dev, iod->meta_dma,
1049 rq_integrity_vec(req).bv_len,
1050 rq_dma_dir(req));
1051 return;
1052 }
1053
1054 dma_pool_free(dev->prp_small_pool, iod->meta_list.sg_list,
1055 iod->meta_dma);
1056 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
1057 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
1058 }
1059
nvme_pci_unmap_rq(struct request * req)1060 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1061 {
1062 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1063 struct nvme_dev *dev = nvmeq->dev;
1064
1065 if (blk_integrity_rq(req))
1066 nvme_unmap_metadata(dev, req);
1067
1068 if (blk_rq_nr_phys_segments(req))
1069 nvme_unmap_data(dev, req);
1070 }
1071
nvme_pci_complete_rq(struct request * req)1072 static void nvme_pci_complete_rq(struct request *req)
1073 {
1074 nvme_pci_unmap_rq(req);
1075 nvme_complete_rq(req);
1076 }
1077
nvme_pci_complete_batch(struct io_comp_batch * iob)1078 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1079 {
1080 nvme_complete_batch(iob, nvme_pci_unmap_rq);
1081 }
1082
1083 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)1084 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1085 {
1086 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1087
1088 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1089 }
1090
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)1091 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1092 {
1093 u16 head = nvmeq->cq_head;
1094
1095 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1096 nvmeq->dbbuf_cq_ei))
1097 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1098 }
1099
nvme_queue_tagset(struct nvme_queue * nvmeq)1100 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1101 {
1102 if (!nvmeq->qid)
1103 return nvmeq->dev->admin_tagset.tags[0];
1104 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1105 }
1106
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1107 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1108 struct io_comp_batch *iob, u16 idx)
1109 {
1110 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1111 __u16 command_id = READ_ONCE(cqe->command_id);
1112 struct request *req;
1113
1114 /*
1115 * AEN requests are special as they don't time out and can
1116 * survive any kind of queue freeze and often don't respond to
1117 * aborts. We don't even bother to allocate a struct request
1118 * for them but rather special case them here.
1119 */
1120 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1121 nvme_complete_async_event(&nvmeq->dev->ctrl,
1122 cqe->status, &cqe->result);
1123 return;
1124 }
1125
1126 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1127 if (unlikely(!req)) {
1128 dev_warn(nvmeq->dev->ctrl.device,
1129 "invalid id %d completed on queue %d\n",
1130 command_id, le16_to_cpu(cqe->sq_id));
1131 return;
1132 }
1133
1134 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1135 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1136 !blk_mq_add_to_batch(req, iob,
1137 nvme_req(req)->status != NVME_SC_SUCCESS,
1138 nvme_pci_complete_batch))
1139 nvme_pci_complete_rq(req);
1140 }
1141
nvme_update_cq_head(struct nvme_queue * nvmeq)1142 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1143 {
1144 u32 tmp = nvmeq->cq_head + 1;
1145
1146 if (tmp == nvmeq->q_depth) {
1147 nvmeq->cq_head = 0;
1148 nvmeq->cq_phase ^= 1;
1149 } else {
1150 nvmeq->cq_head = tmp;
1151 }
1152 }
1153
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1154 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq,
1155 struct io_comp_batch *iob)
1156 {
1157 bool found = false;
1158
1159 while (nvme_cqe_pending(nvmeq)) {
1160 found = true;
1161 /*
1162 * load-load control dependency between phase and the rest of
1163 * the cqe requires a full read memory barrier
1164 */
1165 dma_rmb();
1166 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1167 nvme_update_cq_head(nvmeq);
1168 }
1169
1170 if (found)
1171 nvme_ring_cq_doorbell(nvmeq);
1172 return found;
1173 }
1174
nvme_irq(int irq,void * data)1175 static irqreturn_t nvme_irq(int irq, void *data)
1176 {
1177 struct nvme_queue *nvmeq = data;
1178 DEFINE_IO_COMP_BATCH(iob);
1179
1180 if (nvme_poll_cq(nvmeq, &iob)) {
1181 if (!rq_list_empty(&iob.req_list))
1182 nvme_pci_complete_batch(&iob);
1183 return IRQ_HANDLED;
1184 }
1185 return IRQ_NONE;
1186 }
1187
nvme_irq_check(int irq,void * data)1188 static irqreturn_t nvme_irq_check(int irq, void *data)
1189 {
1190 struct nvme_queue *nvmeq = data;
1191
1192 if (nvme_cqe_pending(nvmeq))
1193 return IRQ_WAKE_THREAD;
1194 return IRQ_NONE;
1195 }
1196
1197 /*
1198 * Poll for completions for any interrupt driven queue
1199 * Can be called from any context.
1200 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1201 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1202 {
1203 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1204
1205 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1206
1207 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1208 nvme_poll_cq(nvmeq, NULL);
1209 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1210 }
1211
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1212 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1213 {
1214 struct nvme_queue *nvmeq = hctx->driver_data;
1215 bool found;
1216
1217 if (!nvme_cqe_pending(nvmeq))
1218 return 0;
1219
1220 spin_lock(&nvmeq->cq_poll_lock);
1221 found = nvme_poll_cq(nvmeq, iob);
1222 spin_unlock(&nvmeq->cq_poll_lock);
1223
1224 return found;
1225 }
1226
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1227 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1228 {
1229 struct nvme_dev *dev = to_nvme_dev(ctrl);
1230 struct nvme_queue *nvmeq = &dev->queues[0];
1231 struct nvme_command c = { };
1232
1233 c.common.opcode = nvme_admin_async_event;
1234 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1235
1236 spin_lock(&nvmeq->sq_lock);
1237 nvme_sq_copy_cmd(nvmeq, &c);
1238 nvme_write_sq_db(nvmeq, true);
1239 spin_unlock(&nvmeq->sq_lock);
1240 }
1241
nvme_pci_subsystem_reset(struct nvme_ctrl * ctrl)1242 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1243 {
1244 struct nvme_dev *dev = to_nvme_dev(ctrl);
1245 int ret = 0;
1246
1247 /*
1248 * Taking the shutdown_lock ensures the BAR mapping is not being
1249 * altered by reset_work. Holding this lock before the RESETTING state
1250 * change, if successful, also ensures nvme_remove won't be able to
1251 * proceed to iounmap until we're done.
1252 */
1253 mutex_lock(&dev->shutdown_lock);
1254 if (!dev->bar_mapped_size) {
1255 ret = -ENODEV;
1256 goto unlock;
1257 }
1258
1259 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1260 ret = -EBUSY;
1261 goto unlock;
1262 }
1263
1264 writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1265 nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1266
1267 /*
1268 * Read controller status to flush the previous write and trigger a
1269 * pcie read error.
1270 */
1271 readl(dev->bar + NVME_REG_CSTS);
1272 unlock:
1273 mutex_unlock(&dev->shutdown_lock);
1274 return ret;
1275 }
1276
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1277 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1278 {
1279 struct nvme_command c = { };
1280
1281 c.delete_queue.opcode = opcode;
1282 c.delete_queue.qid = cpu_to_le16(id);
1283
1284 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1285 }
1286
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1287 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1288 struct nvme_queue *nvmeq, s16 vector)
1289 {
1290 struct nvme_command c = { };
1291 int flags = NVME_QUEUE_PHYS_CONTIG;
1292
1293 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1294 flags |= NVME_CQ_IRQ_ENABLED;
1295
1296 /*
1297 * Note: we (ab)use the fact that the prp fields survive if no data
1298 * is attached to the request.
1299 */
1300 c.create_cq.opcode = nvme_admin_create_cq;
1301 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1302 c.create_cq.cqid = cpu_to_le16(qid);
1303 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1304 c.create_cq.cq_flags = cpu_to_le16(flags);
1305 c.create_cq.irq_vector = cpu_to_le16(vector);
1306
1307 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1308 }
1309
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1310 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1311 struct nvme_queue *nvmeq)
1312 {
1313 struct nvme_ctrl *ctrl = &dev->ctrl;
1314 struct nvme_command c = { };
1315 int flags = NVME_QUEUE_PHYS_CONTIG;
1316
1317 /*
1318 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1319 * set. Since URGENT priority is zeroes, it makes all queues
1320 * URGENT.
1321 */
1322 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1323 flags |= NVME_SQ_PRIO_MEDIUM;
1324
1325 /*
1326 * Note: we (ab)use the fact that the prp fields survive if no data
1327 * is attached to the request.
1328 */
1329 c.create_sq.opcode = nvme_admin_create_sq;
1330 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1331 c.create_sq.sqid = cpu_to_le16(qid);
1332 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1333 c.create_sq.sq_flags = cpu_to_le16(flags);
1334 c.create_sq.cqid = cpu_to_le16(qid);
1335
1336 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1337 }
1338
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1339 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1340 {
1341 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1342 }
1343
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1344 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1345 {
1346 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1347 }
1348
abort_endio(struct request * req,blk_status_t error)1349 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1350 {
1351 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1352
1353 dev_warn(nvmeq->dev->ctrl.device,
1354 "Abort status: 0x%x", nvme_req(req)->status);
1355 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1356 blk_mq_free_request(req);
1357 return RQ_END_IO_NONE;
1358 }
1359
nvme_should_reset(struct nvme_dev * dev,u32 csts)1360 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1361 {
1362 /* If true, indicates loss of adapter communication, possibly by a
1363 * NVMe Subsystem reset.
1364 */
1365 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1366
1367 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1368 switch (nvme_ctrl_state(&dev->ctrl)) {
1369 case NVME_CTRL_RESETTING:
1370 case NVME_CTRL_CONNECTING:
1371 return false;
1372 default:
1373 break;
1374 }
1375
1376 /* We shouldn't reset unless the controller is on fatal error state
1377 * _or_ if we lost the communication with it.
1378 */
1379 if (!(csts & NVME_CSTS_CFS) && !nssro)
1380 return false;
1381
1382 return true;
1383 }
1384
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1385 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1386 {
1387 /* Read a config register to help see what died. */
1388 u16 pci_status;
1389 int result;
1390
1391 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1392 &pci_status);
1393 if (result == PCIBIOS_SUCCESSFUL)
1394 dev_warn(dev->ctrl.device,
1395 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1396 csts, pci_status);
1397 else
1398 dev_warn(dev->ctrl.device,
1399 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1400 csts, result);
1401
1402 if (csts != ~0)
1403 return;
1404
1405 dev_warn(dev->ctrl.device,
1406 "Does your device have a faulty power saving mode enabled?\n");
1407 dev_warn(dev->ctrl.device,
1408 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1409 }
1410
nvme_timeout(struct request * req)1411 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1412 {
1413 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1414 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1415 struct nvme_dev *dev = nvmeq->dev;
1416 struct request *abort_req;
1417 struct nvme_command cmd = { };
1418 struct pci_dev *pdev = to_pci_dev(dev->dev);
1419 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1420 u8 opcode;
1421
1422 /*
1423 * Shutdown the device immediately if we see it is disconnected. This
1424 * unblocks PCIe error handling if the nvme driver is waiting in
1425 * error_resume for a device that has been removed. We can't unbind the
1426 * driver while the driver's error callback is waiting to complete, so
1427 * we're relying on a timeout to break that deadlock if a removal
1428 * occurs while reset work is running.
1429 */
1430 if (pci_dev_is_disconnected(pdev))
1431 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1432 if (nvme_state_terminal(&dev->ctrl))
1433 goto disable;
1434
1435 /* If PCI error recovery process is happening, we cannot reset or
1436 * the recovery mechanism will surely fail.
1437 */
1438 mb();
1439 if (pci_channel_offline(pdev))
1440 return BLK_EH_RESET_TIMER;
1441
1442 /*
1443 * Reset immediately if the controller is failed
1444 */
1445 if (nvme_should_reset(dev, csts)) {
1446 nvme_warn_reset(dev, csts);
1447 goto disable;
1448 }
1449
1450 /*
1451 * Did we miss an interrupt?
1452 */
1453 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1454 nvme_poll(req->mq_hctx, NULL);
1455 else
1456 nvme_poll_irqdisable(nvmeq);
1457
1458 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1459 dev_warn(dev->ctrl.device,
1460 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1461 req->tag, nvme_cid(req), nvmeq->qid);
1462 return BLK_EH_DONE;
1463 }
1464
1465 /*
1466 * Shutdown immediately if controller times out while starting. The
1467 * reset work will see the pci device disabled when it gets the forced
1468 * cancellation error. All outstanding requests are completed on
1469 * shutdown, so we return BLK_EH_DONE.
1470 */
1471 switch (nvme_ctrl_state(&dev->ctrl)) {
1472 case NVME_CTRL_CONNECTING:
1473 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1474 fallthrough;
1475 case NVME_CTRL_DELETING:
1476 dev_warn_ratelimited(dev->ctrl.device,
1477 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1478 req->tag, nvme_cid(req), nvmeq->qid);
1479 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1480 nvme_dev_disable(dev, true);
1481 return BLK_EH_DONE;
1482 case NVME_CTRL_RESETTING:
1483 return BLK_EH_RESET_TIMER;
1484 default:
1485 break;
1486 }
1487
1488 /*
1489 * Shutdown the controller immediately and schedule a reset if the
1490 * command was already aborted once before and still hasn't been
1491 * returned to the driver, or if this is the admin queue.
1492 */
1493 opcode = nvme_req(req)->cmd->common.opcode;
1494 if (!nvmeq->qid || iod->aborted) {
1495 dev_warn(dev->ctrl.device,
1496 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1497 req->tag, nvme_cid(req), opcode,
1498 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1499 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1500 goto disable;
1501 }
1502
1503 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1504 atomic_inc(&dev->ctrl.abort_limit);
1505 return BLK_EH_RESET_TIMER;
1506 }
1507 iod->aborted = true;
1508
1509 cmd.abort.opcode = nvme_admin_abort_cmd;
1510 cmd.abort.cid = nvme_cid(req);
1511 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1512
1513 dev_warn(nvmeq->dev->ctrl.device,
1514 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1515 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1516 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1517 blk_rq_bytes(req));
1518
1519 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1520 BLK_MQ_REQ_NOWAIT);
1521 if (IS_ERR(abort_req)) {
1522 atomic_inc(&dev->ctrl.abort_limit);
1523 return BLK_EH_RESET_TIMER;
1524 }
1525 nvme_init_request(abort_req, &cmd);
1526
1527 abort_req->end_io = abort_endio;
1528 abort_req->end_io_data = NULL;
1529 blk_execute_rq_nowait(abort_req, false);
1530
1531 /*
1532 * The aborted req will be completed on receiving the abort req.
1533 * We enable the timer again. If hit twice, it'll cause a device reset,
1534 * as the device then is in a faulty state.
1535 */
1536 return BLK_EH_RESET_TIMER;
1537
1538 disable:
1539 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1540 if (nvme_state_terminal(&dev->ctrl))
1541 nvme_dev_disable(dev, true);
1542 return BLK_EH_DONE;
1543 }
1544
1545 nvme_dev_disable(dev, false);
1546 if (nvme_try_sched_reset(&dev->ctrl))
1547 nvme_unquiesce_io_queues(&dev->ctrl);
1548 return BLK_EH_DONE;
1549 }
1550
nvme_free_queue(struct nvme_queue * nvmeq)1551 static void nvme_free_queue(struct nvme_queue *nvmeq)
1552 {
1553 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1554 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1555 if (!nvmeq->sq_cmds)
1556 return;
1557
1558 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1559 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1560 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1561 } else {
1562 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1563 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1564 }
1565 }
1566
nvme_free_queues(struct nvme_dev * dev,int lowest)1567 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1568 {
1569 int i;
1570
1571 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1572 dev->ctrl.queue_count--;
1573 nvme_free_queue(&dev->queues[i]);
1574 }
1575 }
1576
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1577 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1578 {
1579 struct nvme_queue *nvmeq = &dev->queues[qid];
1580
1581 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1582 return;
1583
1584 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1585 mb();
1586
1587 nvmeq->dev->online_queues--;
1588 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1589 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1590 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1591 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1592 }
1593
nvme_suspend_io_queues(struct nvme_dev * dev)1594 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1595 {
1596 int i;
1597
1598 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1599 nvme_suspend_queue(dev, i);
1600 }
1601
1602 /*
1603 * Called only on a device that has been disabled and after all other threads
1604 * that can check this device's completion queues have synced, except
1605 * nvme_poll(). This is the last chance for the driver to see a natural
1606 * completion before nvme_cancel_request() terminates all incomplete requests.
1607 */
nvme_reap_pending_cqes(struct nvme_dev * dev)1608 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1609 {
1610 int i;
1611
1612 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1613 spin_lock(&dev->queues[i].cq_poll_lock);
1614 nvme_poll_cq(&dev->queues[i], NULL);
1615 spin_unlock(&dev->queues[i].cq_poll_lock);
1616 }
1617 }
1618
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1619 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1620 int entry_size)
1621 {
1622 int q_depth = dev->q_depth;
1623 unsigned q_size_aligned = roundup(q_depth * entry_size,
1624 NVME_CTRL_PAGE_SIZE);
1625
1626 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1627 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1628
1629 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1630 q_depth = div_u64(mem_per_q, entry_size);
1631
1632 /*
1633 * Ensure the reduced q_depth is above some threshold where it
1634 * would be better to map queues in system memory with the
1635 * original depth
1636 */
1637 if (q_depth < 64)
1638 return -ENOMEM;
1639 }
1640
1641 return q_depth;
1642 }
1643
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1644 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1645 int qid)
1646 {
1647 struct pci_dev *pdev = to_pci_dev(dev->dev);
1648
1649 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1650 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1651 if (nvmeq->sq_cmds) {
1652 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1653 nvmeq->sq_cmds);
1654 if (nvmeq->sq_dma_addr) {
1655 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1656 return 0;
1657 }
1658
1659 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1660 }
1661 }
1662
1663 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1664 &nvmeq->sq_dma_addr, GFP_KERNEL);
1665 if (!nvmeq->sq_cmds)
1666 return -ENOMEM;
1667 return 0;
1668 }
1669
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1670 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1671 {
1672 struct nvme_queue *nvmeq = &dev->queues[qid];
1673
1674 if (dev->ctrl.queue_count > qid)
1675 return 0;
1676
1677 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1678 nvmeq->q_depth = depth;
1679 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1680 &nvmeq->cq_dma_addr, GFP_KERNEL);
1681 if (!nvmeq->cqes)
1682 goto free_nvmeq;
1683
1684 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1685 goto free_cqdma;
1686
1687 nvmeq->dev = dev;
1688 spin_lock_init(&nvmeq->sq_lock);
1689 spin_lock_init(&nvmeq->cq_poll_lock);
1690 nvmeq->cq_head = 0;
1691 nvmeq->cq_phase = 1;
1692 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1693 nvmeq->qid = qid;
1694 dev->ctrl.queue_count++;
1695
1696 return 0;
1697
1698 free_cqdma:
1699 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1700 nvmeq->cq_dma_addr);
1701 free_nvmeq:
1702 return -ENOMEM;
1703 }
1704
queue_request_irq(struct nvme_queue * nvmeq)1705 static int queue_request_irq(struct nvme_queue *nvmeq)
1706 {
1707 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1708 int nr = nvmeq->dev->ctrl.instance;
1709
1710 if (use_threaded_interrupts) {
1711 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1712 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1713 } else {
1714 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1715 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1716 }
1717 }
1718
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1719 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1720 {
1721 struct nvme_dev *dev = nvmeq->dev;
1722
1723 nvmeq->sq_tail = 0;
1724 nvmeq->last_sq_tail = 0;
1725 nvmeq->cq_head = 0;
1726 nvmeq->cq_phase = 1;
1727 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1728 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1729 nvme_dbbuf_init(dev, nvmeq, qid);
1730 dev->online_queues++;
1731 wmb(); /* ensure the first interrupt sees the initialization */
1732 }
1733
1734 /*
1735 * Try getting shutdown_lock while setting up IO queues.
1736 */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1737 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1738 {
1739 /*
1740 * Give up if the lock is being held by nvme_dev_disable.
1741 */
1742 if (!mutex_trylock(&dev->shutdown_lock))
1743 return -ENODEV;
1744
1745 /*
1746 * Controller is in wrong state, fail early.
1747 */
1748 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1749 mutex_unlock(&dev->shutdown_lock);
1750 return -ENODEV;
1751 }
1752
1753 return 0;
1754 }
1755
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1756 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1757 {
1758 struct nvme_dev *dev = nvmeq->dev;
1759 int result;
1760 u16 vector = 0;
1761
1762 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1763
1764 /*
1765 * A queue's vector matches the queue identifier unless the controller
1766 * has only one vector available.
1767 */
1768 if (!polled)
1769 vector = dev->num_vecs == 1 ? 0 : qid;
1770 else
1771 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1772
1773 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1774 if (result)
1775 return result;
1776
1777 result = adapter_alloc_sq(dev, qid, nvmeq);
1778 if (result < 0)
1779 return result;
1780 if (result)
1781 goto release_cq;
1782
1783 nvmeq->cq_vector = vector;
1784
1785 result = nvme_setup_io_queues_trylock(dev);
1786 if (result)
1787 return result;
1788 nvme_init_queue(nvmeq, qid);
1789 if (!polled) {
1790 result = queue_request_irq(nvmeq);
1791 if (result < 0)
1792 goto release_sq;
1793 }
1794
1795 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1796 mutex_unlock(&dev->shutdown_lock);
1797 return result;
1798
1799 release_sq:
1800 dev->online_queues--;
1801 mutex_unlock(&dev->shutdown_lock);
1802 adapter_delete_sq(dev, qid);
1803 release_cq:
1804 adapter_delete_cq(dev, qid);
1805 return result;
1806 }
1807
1808 static const struct blk_mq_ops nvme_mq_admin_ops = {
1809 .queue_rq = nvme_queue_rq,
1810 .complete = nvme_pci_complete_rq,
1811 .init_hctx = nvme_admin_init_hctx,
1812 .init_request = nvme_pci_init_request,
1813 .timeout = nvme_timeout,
1814 };
1815
1816 static const struct blk_mq_ops nvme_mq_ops = {
1817 .queue_rq = nvme_queue_rq,
1818 .queue_rqs = nvme_queue_rqs,
1819 .complete = nvme_pci_complete_rq,
1820 .commit_rqs = nvme_commit_rqs,
1821 .init_hctx = nvme_init_hctx,
1822 .init_request = nvme_pci_init_request,
1823 .map_queues = nvme_pci_map_queues,
1824 .timeout = nvme_timeout,
1825 .poll = nvme_poll,
1826 };
1827
nvme_dev_remove_admin(struct nvme_dev * dev)1828 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1829 {
1830 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1831 /*
1832 * If the controller was reset during removal, it's possible
1833 * user requests may be waiting on a stopped queue. Start the
1834 * queue to flush these to completion.
1835 */
1836 nvme_unquiesce_admin_queue(&dev->ctrl);
1837 nvme_remove_admin_tag_set(&dev->ctrl);
1838 }
1839 }
1840
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1841 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1842 {
1843 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1844 }
1845
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1846 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1847 {
1848 struct pci_dev *pdev = to_pci_dev(dev->dev);
1849
1850 if (size <= dev->bar_mapped_size)
1851 return 0;
1852 if (size > pci_resource_len(pdev, 0))
1853 return -ENOMEM;
1854 if (dev->bar)
1855 iounmap(dev->bar);
1856 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1857 if (!dev->bar) {
1858 dev->bar_mapped_size = 0;
1859 return -ENOMEM;
1860 }
1861 dev->bar_mapped_size = size;
1862 dev->dbs = dev->bar + NVME_REG_DBS;
1863
1864 return 0;
1865 }
1866
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1867 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1868 {
1869 int result;
1870 u32 aqa;
1871 struct nvme_queue *nvmeq;
1872
1873 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1874 if (result < 0)
1875 return result;
1876
1877 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1878 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1879
1880 if (dev->subsystem &&
1881 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1882 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1883
1884 /*
1885 * If the device has been passed off to us in an enabled state, just
1886 * clear the enabled bit. The spec says we should set the 'shutdown
1887 * notification bits', but doing so may cause the device to complete
1888 * commands to the admin queue ... and we don't know what memory that
1889 * might be pointing at!
1890 */
1891 result = nvme_disable_ctrl(&dev->ctrl, false);
1892 if (result < 0)
1893 return result;
1894
1895 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1896 if (result)
1897 return result;
1898
1899 dev->ctrl.numa_node = dev_to_node(dev->dev);
1900
1901 nvmeq = &dev->queues[0];
1902 aqa = nvmeq->q_depth - 1;
1903 aqa |= aqa << 16;
1904
1905 writel(aqa, dev->bar + NVME_REG_AQA);
1906 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1907 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1908
1909 result = nvme_enable_ctrl(&dev->ctrl);
1910 if (result)
1911 return result;
1912
1913 nvmeq->cq_vector = 0;
1914 nvme_init_queue(nvmeq, 0);
1915 result = queue_request_irq(nvmeq);
1916 if (result) {
1917 dev->online_queues--;
1918 return result;
1919 }
1920
1921 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1922 return result;
1923 }
1924
nvme_create_io_queues(struct nvme_dev * dev)1925 static int nvme_create_io_queues(struct nvme_dev *dev)
1926 {
1927 unsigned i, max, rw_queues;
1928 int ret = 0;
1929
1930 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1931 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1932 ret = -ENOMEM;
1933 break;
1934 }
1935 }
1936
1937 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1938 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1939 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1940 dev->io_queues[HCTX_TYPE_READ];
1941 } else {
1942 rw_queues = max;
1943 }
1944
1945 for (i = dev->online_queues; i <= max; i++) {
1946 bool polled = i > rw_queues;
1947
1948 ret = nvme_create_queue(&dev->queues[i], i, polled);
1949 if (ret)
1950 break;
1951 }
1952
1953 /*
1954 * Ignore failing Create SQ/CQ commands, we can continue with less
1955 * than the desired amount of queues, and even a controller without
1956 * I/O queues can still be used to issue admin commands. This might
1957 * be useful to upgrade a buggy firmware for example.
1958 */
1959 return ret >= 0 ? 0 : ret;
1960 }
1961
nvme_cmb_size_unit(struct nvme_dev * dev)1962 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1963 {
1964 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1965
1966 return 1ULL << (12 + 4 * szu);
1967 }
1968
nvme_cmb_size(struct nvme_dev * dev)1969 static u32 nvme_cmb_size(struct nvme_dev *dev)
1970 {
1971 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1972 }
1973
nvme_map_cmb(struct nvme_dev * dev)1974 static void nvme_map_cmb(struct nvme_dev *dev)
1975 {
1976 u64 size, offset;
1977 resource_size_t bar_size;
1978 struct pci_dev *pdev = to_pci_dev(dev->dev);
1979 int bar;
1980
1981 if (dev->cmb_size)
1982 return;
1983
1984 if (NVME_CAP_CMBS(dev->ctrl.cap))
1985 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1986
1987 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1988 if (!dev->cmbsz)
1989 return;
1990 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1991
1992 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1993 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1994 bar = NVME_CMB_BIR(dev->cmbloc);
1995 bar_size = pci_resource_len(pdev, bar);
1996
1997 if (offset > bar_size)
1998 return;
1999
2000 /*
2001 * Controllers may support a CMB size larger than their BAR, for
2002 * example, due to being behind a bridge. Reduce the CMB to the
2003 * reported size of the BAR
2004 */
2005 size = min(size, bar_size - offset);
2006
2007 if (!IS_ALIGNED(size, memremap_compat_align()) ||
2008 !IS_ALIGNED(pci_resource_start(pdev, bar),
2009 memremap_compat_align()))
2010 return;
2011
2012 /*
2013 * Tell the controller about the host side address mapping the CMB,
2014 * and enable CMB decoding for the NVMe 1.4+ scheme:
2015 */
2016 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2017 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2018 (pci_bus_address(pdev, bar) + offset),
2019 dev->bar + NVME_REG_CMBMSC);
2020 }
2021
2022 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2023 dev_warn(dev->ctrl.device,
2024 "failed to register the CMB\n");
2025 hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2026 return;
2027 }
2028
2029 dev->cmb_size = size;
2030 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2031
2032 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2033 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2034 pci_p2pmem_publish(pdev, true);
2035
2036 nvme_update_attrs(dev);
2037 }
2038
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)2039 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2040 {
2041 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2042 u64 dma_addr = dev->host_mem_descs_dma;
2043 struct nvme_command c = { };
2044 int ret;
2045
2046 c.features.opcode = nvme_admin_set_features;
2047 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2048 c.features.dword11 = cpu_to_le32(bits);
2049 c.features.dword12 = cpu_to_le32(host_mem_size);
2050 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
2051 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
2052 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
2053
2054 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2055 if (ret) {
2056 dev_warn(dev->ctrl.device,
2057 "failed to set host mem (err %d, flags %#x).\n",
2058 ret, bits);
2059 } else
2060 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2061
2062 return ret;
2063 }
2064
nvme_free_host_mem_multi(struct nvme_dev * dev)2065 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2066 {
2067 int i;
2068
2069 for (i = 0; i < dev->nr_host_mem_descs; i++) {
2070 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2071 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2072
2073 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2074 le64_to_cpu(desc->addr),
2075 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2076 }
2077
2078 kfree(dev->host_mem_desc_bufs);
2079 dev->host_mem_desc_bufs = NULL;
2080 }
2081
nvme_free_host_mem(struct nvme_dev * dev)2082 static void nvme_free_host_mem(struct nvme_dev *dev)
2083 {
2084 if (dev->hmb_sgt)
2085 dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2086 dev->hmb_sgt, DMA_BIDIRECTIONAL);
2087 else
2088 nvme_free_host_mem_multi(dev);
2089
2090 dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2091 dev->host_mem_descs, dev->host_mem_descs_dma);
2092 dev->host_mem_descs = NULL;
2093 dev->host_mem_descs_size = 0;
2094 dev->nr_host_mem_descs = 0;
2095 }
2096
nvme_alloc_host_mem_single(struct nvme_dev * dev,u64 size)2097 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2098 {
2099 dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2100 DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2101 if (!dev->hmb_sgt)
2102 return -ENOMEM;
2103
2104 dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2105 sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2106 GFP_KERNEL);
2107 if (!dev->host_mem_descs) {
2108 dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt,
2109 DMA_BIDIRECTIONAL);
2110 dev->hmb_sgt = NULL;
2111 return -ENOMEM;
2112 }
2113 dev->host_mem_size = size;
2114 dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2115 dev->nr_host_mem_descs = 1;
2116
2117 dev->host_mem_descs[0].addr =
2118 cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2119 dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2120 return 0;
2121 }
2122
nvme_alloc_host_mem_multi(struct nvme_dev * dev,u64 preferred,u32 chunk_size)2123 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2124 u32 chunk_size)
2125 {
2126 struct nvme_host_mem_buf_desc *descs;
2127 u32 max_entries, len, descs_size;
2128 dma_addr_t descs_dma;
2129 int i = 0;
2130 void **bufs;
2131 u64 size, tmp;
2132
2133 tmp = (preferred + chunk_size - 1);
2134 do_div(tmp, chunk_size);
2135 max_entries = tmp;
2136
2137 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2138 max_entries = dev->ctrl.hmmaxd;
2139
2140 descs_size = max_entries * sizeof(*descs);
2141 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2142 GFP_KERNEL);
2143 if (!descs)
2144 goto out;
2145
2146 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2147 if (!bufs)
2148 goto out_free_descs;
2149
2150 for (size = 0; size < preferred && i < max_entries; size += len) {
2151 dma_addr_t dma_addr;
2152
2153 len = min_t(u64, chunk_size, preferred - size);
2154 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2155 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2156 if (!bufs[i])
2157 break;
2158
2159 descs[i].addr = cpu_to_le64(dma_addr);
2160 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2161 i++;
2162 }
2163
2164 if (!size)
2165 goto out_free_bufs;
2166
2167 dev->nr_host_mem_descs = i;
2168 dev->host_mem_size = size;
2169 dev->host_mem_descs = descs;
2170 dev->host_mem_descs_dma = descs_dma;
2171 dev->host_mem_descs_size = descs_size;
2172 dev->host_mem_desc_bufs = bufs;
2173 return 0;
2174
2175 out_free_bufs:
2176 kfree(bufs);
2177 out_free_descs:
2178 dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2179 out:
2180 dev->host_mem_descs = NULL;
2181 return -ENOMEM;
2182 }
2183
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2184 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2185 {
2186 unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2187 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2188 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2189 u64 chunk_size;
2190
2191 /*
2192 * If there is an IOMMU that can merge pages, try a virtually
2193 * non-contiguous allocation for a single segment first.
2194 */
2195 if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2196 if (!nvme_alloc_host_mem_single(dev, preferred))
2197 return 0;
2198 }
2199
2200 /* start big and work our way down */
2201 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2202 if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2203 if (!min || dev->host_mem_size >= min)
2204 return 0;
2205 nvme_free_host_mem(dev);
2206 }
2207 }
2208
2209 return -ENOMEM;
2210 }
2211
nvme_setup_host_mem(struct nvme_dev * dev)2212 static int nvme_setup_host_mem(struct nvme_dev *dev)
2213 {
2214 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2215 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2216 u64 min = (u64)dev->ctrl.hmmin * 4096;
2217 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2218 int ret;
2219
2220 if (!dev->ctrl.hmpre)
2221 return 0;
2222
2223 preferred = min(preferred, max);
2224 if (min > max) {
2225 dev_warn(dev->ctrl.device,
2226 "min host memory (%lld MiB) above limit (%d MiB).\n",
2227 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2228 nvme_free_host_mem(dev);
2229 return 0;
2230 }
2231
2232 /*
2233 * If we already have a buffer allocated check if we can reuse it.
2234 */
2235 if (dev->host_mem_descs) {
2236 if (dev->host_mem_size >= min)
2237 enable_bits |= NVME_HOST_MEM_RETURN;
2238 else
2239 nvme_free_host_mem(dev);
2240 }
2241
2242 if (!dev->host_mem_descs) {
2243 if (nvme_alloc_host_mem(dev, min, preferred)) {
2244 dev_warn(dev->ctrl.device,
2245 "failed to allocate host memory buffer.\n");
2246 return 0; /* controller must work without HMB */
2247 }
2248
2249 dev_info(dev->ctrl.device,
2250 "allocated %lld MiB host memory buffer (%u segment%s).\n",
2251 dev->host_mem_size >> ilog2(SZ_1M),
2252 dev->nr_host_mem_descs,
2253 str_plural(dev->nr_host_mem_descs));
2254 }
2255
2256 ret = nvme_set_host_mem(dev, enable_bits);
2257 if (ret)
2258 nvme_free_host_mem(dev);
2259 return ret;
2260 }
2261
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2262 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2263 char *buf)
2264 {
2265 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2266
2267 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2268 ndev->cmbloc, ndev->cmbsz);
2269 }
2270 static DEVICE_ATTR_RO(cmb);
2271
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2272 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2273 char *buf)
2274 {
2275 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2276
2277 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2278 }
2279 static DEVICE_ATTR_RO(cmbloc);
2280
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2281 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2282 char *buf)
2283 {
2284 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2285
2286 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2287 }
2288 static DEVICE_ATTR_RO(cmbsz);
2289
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2290 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2291 char *buf)
2292 {
2293 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2294
2295 return sysfs_emit(buf, "%d\n", ndev->hmb);
2296 }
2297
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2298 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2299 const char *buf, size_t count)
2300 {
2301 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2302 bool new;
2303 int ret;
2304
2305 if (kstrtobool(buf, &new) < 0)
2306 return -EINVAL;
2307
2308 if (new == ndev->hmb)
2309 return count;
2310
2311 if (new) {
2312 ret = nvme_setup_host_mem(ndev);
2313 } else {
2314 ret = nvme_set_host_mem(ndev, 0);
2315 if (!ret)
2316 nvme_free_host_mem(ndev);
2317 }
2318
2319 if (ret < 0)
2320 return ret;
2321
2322 return count;
2323 }
2324 static DEVICE_ATTR_RW(hmb);
2325
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2326 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2327 struct attribute *a, int n)
2328 {
2329 struct nvme_ctrl *ctrl =
2330 dev_get_drvdata(container_of(kobj, struct device, kobj));
2331 struct nvme_dev *dev = to_nvme_dev(ctrl);
2332
2333 if (a == &dev_attr_cmb.attr ||
2334 a == &dev_attr_cmbloc.attr ||
2335 a == &dev_attr_cmbsz.attr) {
2336 if (!dev->cmbsz)
2337 return 0;
2338 }
2339 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2340 return 0;
2341
2342 return a->mode;
2343 }
2344
2345 static struct attribute *nvme_pci_attrs[] = {
2346 &dev_attr_cmb.attr,
2347 &dev_attr_cmbloc.attr,
2348 &dev_attr_cmbsz.attr,
2349 &dev_attr_hmb.attr,
2350 NULL,
2351 };
2352
2353 static const struct attribute_group nvme_pci_dev_attrs_group = {
2354 .attrs = nvme_pci_attrs,
2355 .is_visible = nvme_pci_attrs_are_visible,
2356 };
2357
2358 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2359 &nvme_dev_attrs_group,
2360 &nvme_pci_dev_attrs_group,
2361 NULL,
2362 };
2363
nvme_update_attrs(struct nvme_dev * dev)2364 static void nvme_update_attrs(struct nvme_dev *dev)
2365 {
2366 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2367 }
2368
2369 /*
2370 * nirqs is the number of interrupts available for write and read
2371 * queues. The core already reserved an interrupt for the admin queue.
2372 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2373 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2374 {
2375 struct nvme_dev *dev = affd->priv;
2376 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2377
2378 /*
2379 * If there is no interrupt available for queues, ensure that
2380 * the default queue is set to 1. The affinity set size is
2381 * also set to one, but the irq core ignores it for this case.
2382 *
2383 * If only one interrupt is available or 'write_queue' == 0, combine
2384 * write and read queues.
2385 *
2386 * If 'write_queues' > 0, ensure it leaves room for at least one read
2387 * queue.
2388 */
2389 if (!nrirqs) {
2390 nrirqs = 1;
2391 nr_read_queues = 0;
2392 } else if (nrirqs == 1 || !nr_write_queues) {
2393 nr_read_queues = 0;
2394 } else if (nr_write_queues >= nrirqs) {
2395 nr_read_queues = 1;
2396 } else {
2397 nr_read_queues = nrirqs - nr_write_queues;
2398 }
2399
2400 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2401 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2402 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2403 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2404 affd->nr_sets = nr_read_queues ? 2 : 1;
2405 }
2406
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2407 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2408 {
2409 struct pci_dev *pdev = to_pci_dev(dev->dev);
2410 struct irq_affinity affd = {
2411 .pre_vectors = 1,
2412 .calc_sets = nvme_calc_irq_sets,
2413 .priv = dev,
2414 };
2415 unsigned int irq_queues, poll_queues;
2416 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2417
2418 /*
2419 * Poll queues don't need interrupts, but we need at least one I/O queue
2420 * left over for non-polled I/O.
2421 */
2422 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2423 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2424
2425 /*
2426 * Initialize for the single interrupt case, will be updated in
2427 * nvme_calc_irq_sets().
2428 */
2429 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2430 dev->io_queues[HCTX_TYPE_READ] = 0;
2431
2432 /*
2433 * We need interrupts for the admin queue and each non-polled I/O queue,
2434 * but some Apple controllers require all queues to use the first
2435 * vector.
2436 */
2437 irq_queues = 1;
2438 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2439 irq_queues += (nr_io_queues - poll_queues);
2440 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2441 flags &= ~PCI_IRQ_MSI;
2442 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2443 &affd);
2444 }
2445
nvme_max_io_queues(struct nvme_dev * dev)2446 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2447 {
2448 /*
2449 * If tags are shared with admin queue (Apple bug), then
2450 * make sure we only use one IO queue.
2451 */
2452 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2453 return 1;
2454 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2455 }
2456
nvme_setup_io_queues(struct nvme_dev * dev)2457 static int nvme_setup_io_queues(struct nvme_dev *dev)
2458 {
2459 struct nvme_queue *adminq = &dev->queues[0];
2460 struct pci_dev *pdev = to_pci_dev(dev->dev);
2461 unsigned int nr_io_queues;
2462 unsigned long size;
2463 int result;
2464
2465 /*
2466 * Sample the module parameters once at reset time so that we have
2467 * stable values to work with.
2468 */
2469 dev->nr_write_queues = write_queues;
2470 dev->nr_poll_queues = poll_queues;
2471
2472 nr_io_queues = dev->nr_allocated_queues - 1;
2473 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2474 if (result < 0)
2475 return result;
2476
2477 if (nr_io_queues == 0)
2478 return 0;
2479
2480 /*
2481 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2482 * from set to unset. If there is a window to it is truely freed,
2483 * pci_free_irq_vectors() jumping into this window will crash.
2484 * And take lock to avoid racing with pci_free_irq_vectors() in
2485 * nvme_dev_disable() path.
2486 */
2487 result = nvme_setup_io_queues_trylock(dev);
2488 if (result)
2489 return result;
2490 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2491 pci_free_irq(pdev, 0, adminq);
2492
2493 if (dev->cmb_use_sqes) {
2494 result = nvme_cmb_qdepth(dev, nr_io_queues,
2495 sizeof(struct nvme_command));
2496 if (result > 0) {
2497 dev->q_depth = result;
2498 dev->ctrl.sqsize = result - 1;
2499 } else {
2500 dev->cmb_use_sqes = false;
2501 }
2502 }
2503
2504 do {
2505 size = db_bar_size(dev, nr_io_queues);
2506 result = nvme_remap_bar(dev, size);
2507 if (!result)
2508 break;
2509 if (!--nr_io_queues) {
2510 result = -ENOMEM;
2511 goto out_unlock;
2512 }
2513 } while (1);
2514 adminq->q_db = dev->dbs;
2515
2516 retry:
2517 /* Deregister the admin queue's interrupt */
2518 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2519 pci_free_irq(pdev, 0, adminq);
2520
2521 /*
2522 * If we enable msix early due to not intx, disable it again before
2523 * setting up the full range we need.
2524 */
2525 pci_free_irq_vectors(pdev);
2526
2527 result = nvme_setup_irqs(dev, nr_io_queues);
2528 if (result <= 0) {
2529 result = -EIO;
2530 goto out_unlock;
2531 }
2532
2533 dev->num_vecs = result;
2534 result = max(result - 1, 1);
2535 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2536
2537 /*
2538 * Should investigate if there's a performance win from allocating
2539 * more queues than interrupt vectors; it might allow the submission
2540 * path to scale better, even if the receive path is limited by the
2541 * number of interrupts.
2542 */
2543 result = queue_request_irq(adminq);
2544 if (result)
2545 goto out_unlock;
2546 set_bit(NVMEQ_ENABLED, &adminq->flags);
2547 mutex_unlock(&dev->shutdown_lock);
2548
2549 result = nvme_create_io_queues(dev);
2550 if (result || dev->online_queues < 2)
2551 return result;
2552
2553 if (dev->online_queues - 1 < dev->max_qid) {
2554 nr_io_queues = dev->online_queues - 1;
2555 nvme_delete_io_queues(dev);
2556 result = nvme_setup_io_queues_trylock(dev);
2557 if (result)
2558 return result;
2559 nvme_suspend_io_queues(dev);
2560 goto retry;
2561 }
2562 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2563 dev->io_queues[HCTX_TYPE_DEFAULT],
2564 dev->io_queues[HCTX_TYPE_READ],
2565 dev->io_queues[HCTX_TYPE_POLL]);
2566 return 0;
2567 out_unlock:
2568 mutex_unlock(&dev->shutdown_lock);
2569 return result;
2570 }
2571
nvme_del_queue_end(struct request * req,blk_status_t error)2572 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2573 blk_status_t error)
2574 {
2575 struct nvme_queue *nvmeq = req->end_io_data;
2576
2577 blk_mq_free_request(req);
2578 complete(&nvmeq->delete_done);
2579 return RQ_END_IO_NONE;
2580 }
2581
nvme_del_cq_end(struct request * req,blk_status_t error)2582 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2583 blk_status_t error)
2584 {
2585 struct nvme_queue *nvmeq = req->end_io_data;
2586
2587 if (error)
2588 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2589
2590 return nvme_del_queue_end(req, error);
2591 }
2592
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2593 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2594 {
2595 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2596 struct request *req;
2597 struct nvme_command cmd = { };
2598
2599 cmd.delete_queue.opcode = opcode;
2600 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2601
2602 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2603 if (IS_ERR(req))
2604 return PTR_ERR(req);
2605 nvme_init_request(req, &cmd);
2606
2607 if (opcode == nvme_admin_delete_cq)
2608 req->end_io = nvme_del_cq_end;
2609 else
2610 req->end_io = nvme_del_queue_end;
2611 req->end_io_data = nvmeq;
2612
2613 init_completion(&nvmeq->delete_done);
2614 blk_execute_rq_nowait(req, false);
2615 return 0;
2616 }
2617
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2618 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2619 {
2620 int nr_queues = dev->online_queues - 1, sent = 0;
2621 unsigned long timeout;
2622
2623 retry:
2624 timeout = NVME_ADMIN_TIMEOUT;
2625 while (nr_queues > 0) {
2626 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2627 break;
2628 nr_queues--;
2629 sent++;
2630 }
2631 while (sent) {
2632 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2633
2634 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2635 timeout);
2636 if (timeout == 0)
2637 return false;
2638
2639 sent--;
2640 if (nr_queues)
2641 goto retry;
2642 }
2643 return true;
2644 }
2645
nvme_delete_io_queues(struct nvme_dev * dev)2646 static void nvme_delete_io_queues(struct nvme_dev *dev)
2647 {
2648 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2649 __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2650 }
2651
nvme_pci_nr_maps(struct nvme_dev * dev)2652 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2653 {
2654 if (dev->io_queues[HCTX_TYPE_POLL])
2655 return 3;
2656 if (dev->io_queues[HCTX_TYPE_READ])
2657 return 2;
2658 return 1;
2659 }
2660
nvme_pci_update_nr_queues(struct nvme_dev * dev)2661 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2662 {
2663 if (!dev->ctrl.tagset) {
2664 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2665 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2666 return true;
2667 }
2668
2669 /* Give up if we are racing with nvme_dev_disable() */
2670 if (!mutex_trylock(&dev->shutdown_lock))
2671 return false;
2672
2673 /* Check if nvme_dev_disable() has been executed already */
2674 if (!dev->online_queues) {
2675 mutex_unlock(&dev->shutdown_lock);
2676 return false;
2677 }
2678
2679 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2680 /* free previously allocated queues that are no longer usable */
2681 nvme_free_queues(dev, dev->online_queues);
2682 mutex_unlock(&dev->shutdown_lock);
2683 return true;
2684 }
2685
nvme_pci_enable(struct nvme_dev * dev)2686 static int nvme_pci_enable(struct nvme_dev *dev)
2687 {
2688 int result = -ENOMEM;
2689 struct pci_dev *pdev = to_pci_dev(dev->dev);
2690 unsigned int flags = PCI_IRQ_ALL_TYPES;
2691
2692 if (pci_enable_device_mem(pdev))
2693 return result;
2694
2695 pci_set_master(pdev);
2696
2697 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2698 result = -ENODEV;
2699 goto disable;
2700 }
2701
2702 /*
2703 * Some devices and/or platforms don't advertise or work with INTx
2704 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2705 * adjust this later.
2706 */
2707 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2708 flags &= ~PCI_IRQ_MSI;
2709 result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2710 if (result < 0)
2711 goto disable;
2712
2713 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2714
2715 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2716 io_queue_depth);
2717 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2718 dev->dbs = dev->bar + 4096;
2719
2720 /*
2721 * Some Apple controllers require a non-standard SQE size.
2722 * Interestingly they also seem to ignore the CC:IOSQES register
2723 * so we don't bother updating it here.
2724 */
2725 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2726 dev->io_sqes = 7;
2727 else
2728 dev->io_sqes = NVME_NVM_IOSQES;
2729
2730 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2731 dev->q_depth = 2;
2732 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2733 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2734 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2735 dev->q_depth = 64;
2736 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2737 "set queue depth=%u\n", dev->q_depth);
2738 }
2739
2740 /*
2741 * Controllers with the shared tags quirk need the IO queue to be
2742 * big enough so that we get 32 tags for the admin queue
2743 */
2744 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2745 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2746 dev->q_depth = NVME_AQ_DEPTH + 2;
2747 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2748 dev->q_depth);
2749 }
2750 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2751
2752 nvme_map_cmb(dev);
2753
2754 pci_save_state(pdev);
2755
2756 result = nvme_pci_configure_admin_queue(dev);
2757 if (result)
2758 goto free_irq;
2759 return result;
2760
2761 free_irq:
2762 pci_free_irq_vectors(pdev);
2763 disable:
2764 pci_disable_device(pdev);
2765 return result;
2766 }
2767
nvme_dev_unmap(struct nvme_dev * dev)2768 static void nvme_dev_unmap(struct nvme_dev *dev)
2769 {
2770 if (dev->bar)
2771 iounmap(dev->bar);
2772 pci_release_mem_regions(to_pci_dev(dev->dev));
2773 }
2774
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)2775 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2776 {
2777 struct pci_dev *pdev = to_pci_dev(dev->dev);
2778 u32 csts;
2779
2780 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2781 return true;
2782 if (pdev->error_state != pci_channel_io_normal)
2783 return true;
2784
2785 csts = readl(dev->bar + NVME_REG_CSTS);
2786 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2787 }
2788
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2789 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2790 {
2791 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2792 struct pci_dev *pdev = to_pci_dev(dev->dev);
2793 bool dead;
2794
2795 mutex_lock(&dev->shutdown_lock);
2796 dead = nvme_pci_ctrl_is_dead(dev);
2797 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2798 if (pci_is_enabled(pdev))
2799 nvme_start_freeze(&dev->ctrl);
2800 /*
2801 * Give the controller a chance to complete all entered requests
2802 * if doing a safe shutdown.
2803 */
2804 if (!dead && shutdown)
2805 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2806 }
2807
2808 nvme_quiesce_io_queues(&dev->ctrl);
2809
2810 if (!dead && dev->ctrl.queue_count > 0) {
2811 nvme_delete_io_queues(dev);
2812 nvme_disable_ctrl(&dev->ctrl, shutdown);
2813 nvme_poll_irqdisable(&dev->queues[0]);
2814 }
2815 nvme_suspend_io_queues(dev);
2816 nvme_suspend_queue(dev, 0);
2817 pci_free_irq_vectors(pdev);
2818 if (pci_is_enabled(pdev))
2819 pci_disable_device(pdev);
2820 nvme_reap_pending_cqes(dev);
2821
2822 nvme_cancel_tagset(&dev->ctrl);
2823 nvme_cancel_admin_tagset(&dev->ctrl);
2824
2825 /*
2826 * The driver will not be starting up queues again if shutting down so
2827 * must flush all entered requests to their failed completion to avoid
2828 * deadlocking blk-mq hot-cpu notifier.
2829 */
2830 if (shutdown) {
2831 nvme_unquiesce_io_queues(&dev->ctrl);
2832 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2833 nvme_unquiesce_admin_queue(&dev->ctrl);
2834 }
2835 mutex_unlock(&dev->shutdown_lock);
2836 }
2837
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2838 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2839 {
2840 if (!nvme_wait_reset(&dev->ctrl))
2841 return -EBUSY;
2842 nvme_dev_disable(dev, shutdown);
2843 return 0;
2844 }
2845
nvme_setup_prp_pools(struct nvme_dev * dev)2846 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2847 {
2848 size_t small_align = 256;
2849
2850 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2851 NVME_CTRL_PAGE_SIZE,
2852 NVME_CTRL_PAGE_SIZE, 0);
2853 if (!dev->prp_page_pool)
2854 return -ENOMEM;
2855
2856 if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
2857 small_align = 512;
2858
2859 /* Optimisation for I/Os between 4k and 128k */
2860 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2861 256, small_align, 0);
2862 if (!dev->prp_small_pool) {
2863 dma_pool_destroy(dev->prp_page_pool);
2864 return -ENOMEM;
2865 }
2866 return 0;
2867 }
2868
nvme_release_prp_pools(struct nvme_dev * dev)2869 static void nvme_release_prp_pools(struct nvme_dev *dev)
2870 {
2871 dma_pool_destroy(dev->prp_page_pool);
2872 dma_pool_destroy(dev->prp_small_pool);
2873 }
2874
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)2875 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2876 {
2877 size_t meta_size = sizeof(struct scatterlist) * (NVME_MAX_META_SEGS + 1);
2878 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2879
2880 dev->iod_mempool = mempool_create_node(1,
2881 mempool_kmalloc, mempool_kfree,
2882 (void *)alloc_size, GFP_KERNEL,
2883 dev_to_node(dev->dev));
2884 if (!dev->iod_mempool)
2885 return -ENOMEM;
2886
2887 dev->iod_meta_mempool = mempool_create_node(1,
2888 mempool_kmalloc, mempool_kfree,
2889 (void *)meta_size, GFP_KERNEL,
2890 dev_to_node(dev->dev));
2891 if (!dev->iod_meta_mempool)
2892 goto free;
2893
2894 return 0;
2895 free:
2896 mempool_destroy(dev->iod_mempool);
2897 return -ENOMEM;
2898 }
2899
nvme_free_tagset(struct nvme_dev * dev)2900 static void nvme_free_tagset(struct nvme_dev *dev)
2901 {
2902 if (dev->tagset.tags)
2903 nvme_remove_io_tag_set(&dev->ctrl);
2904 dev->ctrl.tagset = NULL;
2905 }
2906
2907 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2908 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2909 {
2910 struct nvme_dev *dev = to_nvme_dev(ctrl);
2911
2912 nvme_free_tagset(dev);
2913 put_device(dev->dev);
2914 kfree(dev->queues);
2915 kfree(dev);
2916 }
2917
nvme_reset_work(struct work_struct * work)2918 static void nvme_reset_work(struct work_struct *work)
2919 {
2920 struct nvme_dev *dev =
2921 container_of(work, struct nvme_dev, ctrl.reset_work);
2922 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2923 int result;
2924
2925 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2926 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2927 dev->ctrl.state);
2928 result = -ENODEV;
2929 goto out;
2930 }
2931
2932 /*
2933 * If we're called to reset a live controller first shut it down before
2934 * moving on.
2935 */
2936 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2937 nvme_dev_disable(dev, false);
2938 nvme_sync_queues(&dev->ctrl);
2939
2940 mutex_lock(&dev->shutdown_lock);
2941 result = nvme_pci_enable(dev);
2942 if (result)
2943 goto out_unlock;
2944 nvme_unquiesce_admin_queue(&dev->ctrl);
2945 mutex_unlock(&dev->shutdown_lock);
2946
2947 /*
2948 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2949 * initializing procedure here.
2950 */
2951 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2952 dev_warn(dev->ctrl.device,
2953 "failed to mark controller CONNECTING\n");
2954 result = -EBUSY;
2955 goto out;
2956 }
2957
2958 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2959 if (result)
2960 goto out;
2961
2962 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
2963 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
2964 else
2965 dev->ctrl.max_integrity_segments = 1;
2966
2967 nvme_dbbuf_dma_alloc(dev);
2968
2969 result = nvme_setup_host_mem(dev);
2970 if (result < 0)
2971 goto out;
2972
2973 result = nvme_setup_io_queues(dev);
2974 if (result)
2975 goto out;
2976
2977 /*
2978 * Freeze and update the number of I/O queues as thos might have
2979 * changed. If there are no I/O queues left after this reset, keep the
2980 * controller around but remove all namespaces.
2981 */
2982 if (dev->online_queues > 1) {
2983 nvme_dbbuf_set(dev);
2984 nvme_unquiesce_io_queues(&dev->ctrl);
2985 nvme_wait_freeze(&dev->ctrl);
2986 if (!nvme_pci_update_nr_queues(dev))
2987 goto out;
2988 nvme_unfreeze(&dev->ctrl);
2989 } else {
2990 dev_warn(dev->ctrl.device, "IO queues lost\n");
2991 nvme_mark_namespaces_dead(&dev->ctrl);
2992 nvme_unquiesce_io_queues(&dev->ctrl);
2993 nvme_remove_namespaces(&dev->ctrl);
2994 nvme_free_tagset(dev);
2995 }
2996
2997 /*
2998 * If only admin queue live, keep it to do further investigation or
2999 * recovery.
3000 */
3001 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3002 dev_warn(dev->ctrl.device,
3003 "failed to mark controller live state\n");
3004 result = -ENODEV;
3005 goto out;
3006 }
3007
3008 nvme_start_ctrl(&dev->ctrl);
3009 return;
3010
3011 out_unlock:
3012 mutex_unlock(&dev->shutdown_lock);
3013 out:
3014 /*
3015 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3016 * may be holding this pci_dev's device lock.
3017 */
3018 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3019 result);
3020 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3021 nvme_dev_disable(dev, true);
3022 nvme_sync_queues(&dev->ctrl);
3023 nvme_mark_namespaces_dead(&dev->ctrl);
3024 nvme_unquiesce_io_queues(&dev->ctrl);
3025 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3026 }
3027
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)3028 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3029 {
3030 *val = readl(to_nvme_dev(ctrl)->bar + off);
3031 return 0;
3032 }
3033
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)3034 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3035 {
3036 writel(val, to_nvme_dev(ctrl)->bar + off);
3037 return 0;
3038 }
3039
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)3040 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3041 {
3042 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3043 return 0;
3044 }
3045
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)3046 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3047 {
3048 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3049
3050 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3051 }
3052
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)3053 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3054 {
3055 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3056 struct nvme_subsystem *subsys = ctrl->subsys;
3057
3058 dev_err(ctrl->device,
3059 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3060 pdev->vendor, pdev->device,
3061 nvme_strlen(subsys->model, sizeof(subsys->model)),
3062 subsys->model, nvme_strlen(subsys->firmware_rev,
3063 sizeof(subsys->firmware_rev)),
3064 subsys->firmware_rev);
3065 }
3066
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)3067 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3068 {
3069 struct nvme_dev *dev = to_nvme_dev(ctrl);
3070
3071 return dma_pci_p2pdma_supported(dev->dev);
3072 }
3073
3074 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3075 .name = "pcie",
3076 .module = THIS_MODULE,
3077 .flags = NVME_F_METADATA_SUPPORTED,
3078 .dev_attr_groups = nvme_pci_dev_attr_groups,
3079 .reg_read32 = nvme_pci_reg_read32,
3080 .reg_write32 = nvme_pci_reg_write32,
3081 .reg_read64 = nvme_pci_reg_read64,
3082 .free_ctrl = nvme_pci_free_ctrl,
3083 .submit_async_event = nvme_pci_submit_async_event,
3084 .subsystem_reset = nvme_pci_subsystem_reset,
3085 .get_address = nvme_pci_get_address,
3086 .print_device_info = nvme_pci_print_device_info,
3087 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
3088 };
3089
nvme_dev_map(struct nvme_dev * dev)3090 static int nvme_dev_map(struct nvme_dev *dev)
3091 {
3092 struct pci_dev *pdev = to_pci_dev(dev->dev);
3093
3094 if (pci_request_mem_regions(pdev, "nvme"))
3095 return -ENODEV;
3096
3097 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3098 goto release;
3099
3100 return 0;
3101 release:
3102 pci_release_mem_regions(pdev);
3103 return -ENODEV;
3104 }
3105
check_vendor_combination_bug(struct pci_dev * pdev)3106 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3107 {
3108 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3109 /*
3110 * Several Samsung devices seem to drop off the PCIe bus
3111 * randomly when APST is on and uses the deepest sleep state.
3112 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3113 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3114 * 950 PRO 256GB", but it seems to be restricted to two Dell
3115 * laptops.
3116 */
3117 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3118 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3119 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3120 return NVME_QUIRK_NO_DEEPEST_PS;
3121 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3122 /*
3123 * Samsung SSD 960 EVO drops off the PCIe bus after system
3124 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3125 * within few minutes after bootup on a Coffee Lake board -
3126 * ASUS PRIME Z370-A
3127 */
3128 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3129 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3130 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3131 return NVME_QUIRK_NO_APST;
3132 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3133 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3134 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3135 /*
3136 * Forcing to use host managed nvme power settings for
3137 * lowest idle power with quick resume latency on
3138 * Samsung and Toshiba SSDs based on suspend behavior
3139 * on Coffee Lake board for LENOVO C640
3140 */
3141 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3142 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3143 return NVME_QUIRK_SIMPLE_SUSPEND;
3144 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3145 pdev->device == 0x500f)) {
3146 /*
3147 * Exclude some Kingston NV1 and A2000 devices from
3148 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3149 * lot fo energy with s2idle sleep on some TUXEDO platforms.
3150 */
3151 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3152 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3153 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3154 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3155 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3156 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3157 /*
3158 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3159 * because of high power consumption (> 2 Watt) in s2idle
3160 * sleep. Only some boards with Intel CPU are affected.
3161 */
3162 if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3163 dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3164 dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3165 dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3166 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3167 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3168 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3169 }
3170
3171 /*
3172 * NVMe SSD drops off the PCIe bus after system idle
3173 * for 10 hours on a Lenovo N60z board.
3174 */
3175 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3176 return NVME_QUIRK_NO_APST;
3177
3178 return 0;
3179 }
3180
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)3181 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3182 const struct pci_device_id *id)
3183 {
3184 unsigned long quirks = id->driver_data;
3185 int node = dev_to_node(&pdev->dev);
3186 struct nvme_dev *dev;
3187 int ret = -ENOMEM;
3188
3189 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3190 if (!dev)
3191 return ERR_PTR(-ENOMEM);
3192 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3193 mutex_init(&dev->shutdown_lock);
3194
3195 dev->nr_write_queues = write_queues;
3196 dev->nr_poll_queues = poll_queues;
3197 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3198 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3199 sizeof(struct nvme_queue), GFP_KERNEL, node);
3200 if (!dev->queues)
3201 goto out_free_dev;
3202
3203 dev->dev = get_device(&pdev->dev);
3204
3205 quirks |= check_vendor_combination_bug(pdev);
3206 if (!noacpi &&
3207 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3208 acpi_storage_d3(&pdev->dev)) {
3209 /*
3210 * Some systems use a bios work around to ask for D3 on
3211 * platforms that support kernel managed suspend.
3212 */
3213 dev_info(&pdev->dev,
3214 "platform quirk: setting simple suspend\n");
3215 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3216 }
3217 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3218 quirks);
3219 if (ret)
3220 goto out_put_device;
3221
3222 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3223 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3224 else
3225 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3226 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3227 dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3228
3229 /*
3230 * Limit the max command size to prevent iod->sg allocations going
3231 * over a single page.
3232 */
3233 dev->ctrl.max_hw_sectors = min_t(u32,
3234 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3235 dev->ctrl.max_segments = NVME_MAX_SEGS;
3236 dev->ctrl.max_integrity_segments = 1;
3237 return dev;
3238
3239 out_put_device:
3240 put_device(dev->dev);
3241 kfree(dev->queues);
3242 out_free_dev:
3243 kfree(dev);
3244 return ERR_PTR(ret);
3245 }
3246
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3247 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3248 {
3249 struct nvme_dev *dev;
3250 int result = -ENOMEM;
3251
3252 dev = nvme_pci_alloc_dev(pdev, id);
3253 if (IS_ERR(dev))
3254 return PTR_ERR(dev);
3255
3256 result = nvme_add_ctrl(&dev->ctrl);
3257 if (result)
3258 goto out_put_ctrl;
3259
3260 result = nvme_dev_map(dev);
3261 if (result)
3262 goto out_uninit_ctrl;
3263
3264 result = nvme_setup_prp_pools(dev);
3265 if (result)
3266 goto out_dev_unmap;
3267
3268 result = nvme_pci_alloc_iod_mempool(dev);
3269 if (result)
3270 goto out_release_prp_pools;
3271
3272 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3273
3274 result = nvme_pci_enable(dev);
3275 if (result)
3276 goto out_release_iod_mempool;
3277
3278 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3279 &nvme_mq_admin_ops, sizeof(struct nvme_iod));
3280 if (result)
3281 goto out_disable;
3282
3283 /*
3284 * Mark the controller as connecting before sending admin commands to
3285 * allow the timeout handler to do the right thing.
3286 */
3287 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3288 dev_warn(dev->ctrl.device,
3289 "failed to mark controller CONNECTING\n");
3290 result = -EBUSY;
3291 goto out_disable;
3292 }
3293
3294 result = nvme_init_ctrl_finish(&dev->ctrl, false);
3295 if (result)
3296 goto out_disable;
3297
3298 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3299 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3300 else
3301 dev->ctrl.max_integrity_segments = 1;
3302
3303 nvme_dbbuf_dma_alloc(dev);
3304
3305 result = nvme_setup_host_mem(dev);
3306 if (result < 0)
3307 goto out_disable;
3308
3309 result = nvme_setup_io_queues(dev);
3310 if (result)
3311 goto out_disable;
3312
3313 if (dev->online_queues > 1) {
3314 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3315 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3316 nvme_dbbuf_set(dev);
3317 }
3318
3319 if (!dev->ctrl.tagset)
3320 dev_warn(dev->ctrl.device, "IO queues not created\n");
3321
3322 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3323 dev_warn(dev->ctrl.device,
3324 "failed to mark controller live state\n");
3325 result = -ENODEV;
3326 goto out_disable;
3327 }
3328
3329 pci_set_drvdata(pdev, dev);
3330
3331 nvme_start_ctrl(&dev->ctrl);
3332 nvme_put_ctrl(&dev->ctrl);
3333 flush_work(&dev->ctrl.scan_work);
3334 return 0;
3335
3336 out_disable:
3337 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3338 nvme_dev_disable(dev, true);
3339 nvme_free_host_mem(dev);
3340 nvme_dev_remove_admin(dev);
3341 nvme_dbbuf_dma_free(dev);
3342 nvme_free_queues(dev, 0);
3343 out_release_iod_mempool:
3344 mempool_destroy(dev->iod_mempool);
3345 mempool_destroy(dev->iod_meta_mempool);
3346 out_release_prp_pools:
3347 nvme_release_prp_pools(dev);
3348 out_dev_unmap:
3349 nvme_dev_unmap(dev);
3350 out_uninit_ctrl:
3351 nvme_uninit_ctrl(&dev->ctrl);
3352 out_put_ctrl:
3353 nvme_put_ctrl(&dev->ctrl);
3354 return result;
3355 }
3356
nvme_reset_prepare(struct pci_dev * pdev)3357 static void nvme_reset_prepare(struct pci_dev *pdev)
3358 {
3359 struct nvme_dev *dev = pci_get_drvdata(pdev);
3360
3361 /*
3362 * We don't need to check the return value from waiting for the reset
3363 * state as pci_dev device lock is held, making it impossible to race
3364 * with ->remove().
3365 */
3366 nvme_disable_prepare_reset(dev, false);
3367 nvme_sync_queues(&dev->ctrl);
3368 }
3369
nvme_reset_done(struct pci_dev * pdev)3370 static void nvme_reset_done(struct pci_dev *pdev)
3371 {
3372 struct nvme_dev *dev = pci_get_drvdata(pdev);
3373
3374 if (!nvme_try_sched_reset(&dev->ctrl))
3375 flush_work(&dev->ctrl.reset_work);
3376 }
3377
nvme_shutdown(struct pci_dev * pdev)3378 static void nvme_shutdown(struct pci_dev *pdev)
3379 {
3380 struct nvme_dev *dev = pci_get_drvdata(pdev);
3381
3382 nvme_disable_prepare_reset(dev, true);
3383 }
3384
3385 /*
3386 * The driver's remove may be called on a device in a partially initialized
3387 * state. This function must not have any dependencies on the device state in
3388 * order to proceed.
3389 */
nvme_remove(struct pci_dev * pdev)3390 static void nvme_remove(struct pci_dev *pdev)
3391 {
3392 struct nvme_dev *dev = pci_get_drvdata(pdev);
3393
3394 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3395 pci_set_drvdata(pdev, NULL);
3396
3397 if (!pci_device_is_present(pdev)) {
3398 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3399 nvme_dev_disable(dev, true);
3400 }
3401
3402 flush_work(&dev->ctrl.reset_work);
3403 nvme_stop_ctrl(&dev->ctrl);
3404 nvme_remove_namespaces(&dev->ctrl);
3405 nvme_dev_disable(dev, true);
3406 nvme_free_host_mem(dev);
3407 nvme_dev_remove_admin(dev);
3408 nvme_dbbuf_dma_free(dev);
3409 nvme_free_queues(dev, 0);
3410 mempool_destroy(dev->iod_mempool);
3411 mempool_destroy(dev->iod_meta_mempool);
3412 nvme_release_prp_pools(dev);
3413 nvme_dev_unmap(dev);
3414 nvme_uninit_ctrl(&dev->ctrl);
3415 }
3416
3417 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3418 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3419 {
3420 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3421 }
3422
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3423 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3424 {
3425 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3426 }
3427
nvme_resume(struct device * dev)3428 static int nvme_resume(struct device *dev)
3429 {
3430 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3431 struct nvme_ctrl *ctrl = &ndev->ctrl;
3432
3433 if (ndev->last_ps == U32_MAX ||
3434 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3435 goto reset;
3436 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3437 goto reset;
3438
3439 return 0;
3440 reset:
3441 return nvme_try_sched_reset(ctrl);
3442 }
3443
nvme_suspend(struct device * dev)3444 static int nvme_suspend(struct device *dev)
3445 {
3446 struct pci_dev *pdev = to_pci_dev(dev);
3447 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3448 struct nvme_ctrl *ctrl = &ndev->ctrl;
3449 int ret = -EBUSY;
3450
3451 ndev->last_ps = U32_MAX;
3452
3453 /*
3454 * The platform does not remove power for a kernel managed suspend so
3455 * use host managed nvme power settings for lowest idle power if
3456 * possible. This should have quicker resume latency than a full device
3457 * shutdown. But if the firmware is involved after the suspend or the
3458 * device does not support any non-default power states, shut down the
3459 * device fully.
3460 *
3461 * If ASPM is not enabled for the device, shut down the device and allow
3462 * the PCI bus layer to put it into D3 in order to take the PCIe link
3463 * down, so as to allow the platform to achieve its minimum low-power
3464 * state (which may not be possible if the link is up).
3465 */
3466 if (pm_suspend_via_firmware() || !ctrl->npss ||
3467 !pcie_aspm_enabled(pdev) ||
3468 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3469 return nvme_disable_prepare_reset(ndev, true);
3470
3471 nvme_start_freeze(ctrl);
3472 nvme_wait_freeze(ctrl);
3473 nvme_sync_queues(ctrl);
3474
3475 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3476 goto unfreeze;
3477
3478 /*
3479 * Host memory access may not be successful in a system suspend state,
3480 * but the specification allows the controller to access memory in a
3481 * non-operational power state.
3482 */
3483 if (ndev->hmb) {
3484 ret = nvme_set_host_mem(ndev, 0);
3485 if (ret < 0)
3486 goto unfreeze;
3487 }
3488
3489 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3490 if (ret < 0)
3491 goto unfreeze;
3492
3493 /*
3494 * A saved state prevents pci pm from generically controlling the
3495 * device's power. If we're using protocol specific settings, we don't
3496 * want pci interfering.
3497 */
3498 pci_save_state(pdev);
3499
3500 ret = nvme_set_power_state(ctrl, ctrl->npss);
3501 if (ret < 0)
3502 goto unfreeze;
3503
3504 if (ret) {
3505 /* discard the saved state */
3506 pci_load_saved_state(pdev, NULL);
3507
3508 /*
3509 * Clearing npss forces a controller reset on resume. The
3510 * correct value will be rediscovered then.
3511 */
3512 ret = nvme_disable_prepare_reset(ndev, true);
3513 ctrl->npss = 0;
3514 }
3515 unfreeze:
3516 nvme_unfreeze(ctrl);
3517 return ret;
3518 }
3519
nvme_simple_suspend(struct device * dev)3520 static int nvme_simple_suspend(struct device *dev)
3521 {
3522 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3523
3524 return nvme_disable_prepare_reset(ndev, true);
3525 }
3526
nvme_simple_resume(struct device * dev)3527 static int nvme_simple_resume(struct device *dev)
3528 {
3529 struct pci_dev *pdev = to_pci_dev(dev);
3530 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3531
3532 return nvme_try_sched_reset(&ndev->ctrl);
3533 }
3534
3535 static const struct dev_pm_ops nvme_dev_pm_ops = {
3536 .suspend = nvme_suspend,
3537 .resume = nvme_resume,
3538 .freeze = nvme_simple_suspend,
3539 .thaw = nvme_simple_resume,
3540 .poweroff = nvme_simple_suspend,
3541 .restore = nvme_simple_resume,
3542 };
3543 #endif /* CONFIG_PM_SLEEP */
3544
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3545 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3546 pci_channel_state_t state)
3547 {
3548 struct nvme_dev *dev = pci_get_drvdata(pdev);
3549
3550 /*
3551 * A frozen channel requires a reset. When detected, this method will
3552 * shutdown the controller to quiesce. The controller will be restarted
3553 * after the slot reset through driver's slot_reset callback.
3554 */
3555 switch (state) {
3556 case pci_channel_io_normal:
3557 return PCI_ERS_RESULT_CAN_RECOVER;
3558 case pci_channel_io_frozen:
3559 dev_warn(dev->ctrl.device,
3560 "frozen state error detected, reset controller\n");
3561 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3562 nvme_dev_disable(dev, true);
3563 return PCI_ERS_RESULT_DISCONNECT;
3564 }
3565 nvme_dev_disable(dev, false);
3566 return PCI_ERS_RESULT_NEED_RESET;
3567 case pci_channel_io_perm_failure:
3568 dev_warn(dev->ctrl.device,
3569 "failure state error detected, request disconnect\n");
3570 return PCI_ERS_RESULT_DISCONNECT;
3571 }
3572 return PCI_ERS_RESULT_NEED_RESET;
3573 }
3574
nvme_slot_reset(struct pci_dev * pdev)3575 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3576 {
3577 struct nvme_dev *dev = pci_get_drvdata(pdev);
3578
3579 dev_info(dev->ctrl.device, "restart after slot reset\n");
3580 pci_restore_state(pdev);
3581 if (!nvme_try_sched_reset(&dev->ctrl))
3582 nvme_unquiesce_io_queues(&dev->ctrl);
3583 return PCI_ERS_RESULT_RECOVERED;
3584 }
3585
nvme_error_resume(struct pci_dev * pdev)3586 static void nvme_error_resume(struct pci_dev *pdev)
3587 {
3588 struct nvme_dev *dev = pci_get_drvdata(pdev);
3589
3590 flush_work(&dev->ctrl.reset_work);
3591 }
3592
3593 static const struct pci_error_handlers nvme_err_handler = {
3594 .error_detected = nvme_error_detected,
3595 .slot_reset = nvme_slot_reset,
3596 .resume = nvme_error_resume,
3597 .reset_prepare = nvme_reset_prepare,
3598 .reset_done = nvme_reset_done,
3599 };
3600
3601 static const struct pci_device_id nvme_id_table[] = {
3602 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3603 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3604 NVME_QUIRK_DEALLOCATE_ZEROES, },
3605 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3606 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3607 NVME_QUIRK_DEALLOCATE_ZEROES, },
3608 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3609 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3610 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3611 NVME_QUIRK_BOGUS_NID, },
3612 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3613 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
3614 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3615 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3616 NVME_QUIRK_MEDIUM_PRIO_SQ |
3617 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3618 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3619 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3620 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3621 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3622 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3623 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3624 NVME_QUIRK_BOGUS_NID, },
3625 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3626 .driver_data = NVME_QUIRK_BOGUS_NID, },
3627 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3628 .driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3629 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */
3630 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3631 NVME_QUIRK_BOGUS_NID, },
3632 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3633 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3634 NVME_QUIRK_BOGUS_NID, },
3635 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3636 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3637 NVME_QUIRK_NO_NS_DESC_LIST, },
3638 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3639 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3640 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3641 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3642 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3643 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3644 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3645 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3646 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3647 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3648 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3649 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3650 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */
3651 .driver_data = NVME_QUIRK_BROKEN_MSI },
3652 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3653 .driver_data = NVME_QUIRK_BOGUS_NID, },
3654 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3655 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3656 NVME_QUIRK_BOGUS_NID, },
3657 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3658 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3659 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3660 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3661 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3662 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3663 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3664 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3665 .driver_data = NVME_QUIRK_BOGUS_NID, },
3666 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3667 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3668 NVME_QUIRK_BOGUS_NID, },
3669 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3670 .driver_data = NVME_QUIRK_BOGUS_NID, },
3671 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3672 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3673 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3674 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3675 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3676 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3677 .driver_data = NVME_QUIRK_BOGUS_NID, },
3678 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3679 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3680 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3681 .driver_data = NVME_QUIRK_BOGUS_NID, },
3682 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */
3683 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3684 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3685 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3686 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3687 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3688 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3689 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3690 NVME_QUIRK_BOGUS_NID, },
3691 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3692 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3693 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */
3694 .driver_data = NVME_QUIRK_BOGUS_NID, },
3695 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3696 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3697 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3698 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3699 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3700 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3701 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3702 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3703 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3704 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3705 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3706 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3707 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3708 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3709 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3710 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3711 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3712 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3713 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3714 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3715 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
3716 .driver_data = NVME_QUIRK_BOGUS_NID, },
3717 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3718 .driver_data = NVME_QUIRK_BOGUS_NID, },
3719 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3720 .driver_data = NVME_QUIRK_BOGUS_NID, },
3721 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3722 .driver_data = NVME_QUIRK_BOGUS_NID, },
3723 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3724 .driver_data = NVME_QUIRK_BOGUS_NID, },
3725 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
3726 .driver_data = NVME_QUIRK_BOGUS_NID, },
3727 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3728 .driver_data = NVME_QUIRK_BOGUS_NID, },
3729 { PCI_DEVICE(0x1dbe, 0x5216), /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3730 .driver_data = NVME_QUIRK_BOGUS_NID, },
3731 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3732 .driver_data = NVME_QUIRK_BOGUS_NID, },
3733 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3734 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3735 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3736 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3737 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3738 .driver_data = NVME_QUIRK_BOGUS_NID, },
3739 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3740 .driver_data = NVME_QUIRK_BOGUS_NID, },
3741 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3742 .driver_data = NVME_QUIRK_BOGUS_NID, },
3743 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3744 .driver_data = NVME_QUIRK_BOGUS_NID |
3745 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3746 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3747 .driver_data = NVME_QUIRK_BOGUS_NID, },
3748 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
3749 .driver_data = NVME_QUIRK_BOGUS_NID, },
3750 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3751 .driver_data = NVME_QUIRK_BOGUS_NID, },
3752 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3753 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3754 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3755 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3756 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3757 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3758 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3759 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3760 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3761 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3762 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3763 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3764 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3765 /*
3766 * Fix for the Apple controller found in the MacBook8,1 and
3767 * some MacBook7,1 to avoid controller resets and data loss.
3768 */
3769 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3770 NVME_QUIRK_QDEPTH_ONE },
3771 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3772 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3773 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3774 NVME_QUIRK_128_BYTES_SQES |
3775 NVME_QUIRK_SHARED_TAGS |
3776 NVME_QUIRK_SKIP_CID_GEN |
3777 NVME_QUIRK_IDENTIFY_CNS },
3778 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3779 { 0, }
3780 };
3781 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3782
3783 static struct pci_driver nvme_driver = {
3784 .name = "nvme",
3785 .id_table = nvme_id_table,
3786 .probe = nvme_probe,
3787 .remove = nvme_remove,
3788 .shutdown = nvme_shutdown,
3789 .driver = {
3790 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
3791 #ifdef CONFIG_PM_SLEEP
3792 .pm = &nvme_dev_pm_ops,
3793 #endif
3794 },
3795 .sriov_configure = pci_sriov_configure_simple,
3796 .err_handler = &nvme_err_handler,
3797 };
3798
nvme_init(void)3799 static int __init nvme_init(void)
3800 {
3801 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3802 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3803 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3804 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3805 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3806 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3807 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3808
3809 return pci_register_driver(&nvme_driver);
3810 }
3811
nvme_exit(void)3812 static void __exit nvme_exit(void)
3813 {
3814 pci_unregister_driver(&nvme_driver);
3815 flush_workqueue(nvme_wq);
3816 }
3817
3818 MODULE_AUTHOR("Matthew Wilcox <[email protected]>");
3819 MODULE_LICENSE("GPL");
3820 MODULE_VERSION("1.0");
3821 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3822 module_init(nvme_init);
3823 module_exit(nvme_exit);
3824