1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 #include "mei/iwl-mei.h"
26 
27 /* NVM offsets (in words) definitions */
28 enum nvm_offsets {
29 	/* NVM HW-Section offset (in words) definitions */
30 	SUBSYSTEM_ID = 0x0A,
31 	HW_ADDR = 0x15,
32 
33 	/* NVM SW-Section offset (in words) definitions */
34 	NVM_SW_SECTION = 0x1C0,
35 	NVM_VERSION = 0,
36 	RADIO_CFG = 1,
37 	SKU = 2,
38 	N_HW_ADDRS = 3,
39 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40 
41 	/* NVM REGULATORY -Section offset (in words) definitions */
42 	NVM_CHANNELS_SDP = 0,
43 };
44 
45 enum ext_nvm_offsets {
46 	/* NVM HW-Section offset (in words) definitions */
47 
48 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
49 
50 	/* NVM SW-Section offset (in words) definitions */
51 	NVM_VERSION_EXT_NVM = 0,
52 	N_HW_ADDRS_FAMILY_8000 = 3,
53 
54 	/* NVM PHY_SKU-Section offset (in words) definitions */
55 	RADIO_CFG_FAMILY_EXT_NVM = 0,
56 	SKU_FAMILY_8000 = 2,
57 
58 	/* NVM REGULATORY -Section offset (in words) definitions */
59 	NVM_CHANNELS_EXTENDED = 0,
60 	NVM_LAR_OFFSET_OLD = 0x4C7,
61 	NVM_LAR_OFFSET = 0x507,
62 	NVM_LAR_ENABLED = 0x7,
63 };
64 
65 /* SKU Capabilities (actual values from NVM definition) */
66 enum nvm_sku_bits {
67 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
68 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
69 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
70 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
71 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
72 };
73 
74 /*
75  * These are the channel numbers in the order that they are stored in the NVM
76  */
77 static const u16 iwl_nvm_channels[] = {
78 	/* 2.4 GHz */
79 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
80 	/* 5 GHz */
81 	36, 40, 44, 48, 52, 56, 60, 64,
82 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
83 	149, 153, 157, 161, 165
84 };
85 
86 static const u16 iwl_ext_nvm_channels[] = {
87 	/* 2.4 GHz */
88 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
89 	/* 5 GHz */
90 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
91 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
92 	149, 153, 157, 161, 165, 169, 173, 177, 181
93 };
94 
95 static const u16 iwl_uhb_nvm_channels[] = {
96 	/* 2.4 GHz */
97 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
98 	/* 5 GHz */
99 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
100 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
101 	149, 153, 157, 161, 165, 169, 173, 177, 181,
102 	/* 6-7 GHz */
103 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
104 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
105 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
106 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
107 };
108 
109 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
110 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
111 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
112 #define NUM_2GHZ_CHANNELS		14
113 #define NUM_5GHZ_CHANNELS		37
114 #define FIRST_2GHZ_HT_MINUS		5
115 #define LAST_2GHZ_HT_PLUS		9
116 #define N_HW_ADDR_MASK			0xF
117 
118 /* rate data (static) */
119 static struct ieee80211_rate iwl_cfg80211_rates[] = {
120 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
121 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
122 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
123 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
124 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
125 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
126 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
127 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
128 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
129 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
130 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
131 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
132 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
133 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
134 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
135 };
136 #define RATES_24_OFFS	0
137 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
138 #define RATES_52_OFFS	4
139 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
140 
141 /**
142  * enum iwl_nvm_channel_flags - channel flags in NVM
143  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
144  * @NVM_CHANNEL_IBSS: usable as an IBSS channel and deprecated
145  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
146  * @NVM_CHANNEL_ACTIVE: active scanning allowed and allows IBSS
147  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
148  * @NVM_CHANNEL_RADAR: radar detection required
149  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
150  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
151  *	on same channel on 2.4 or same UNII band on 5.2
152  * @NVM_CHANNEL_UNIFORM: uniform spreading required
153  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
154  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
155  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
156  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
157  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
158  * @NVM_CHANNEL_VLP: client support connection to UHB VLP AP
159  * @NVM_CHANNEL_AFC: client support connection to UHB AFC AP
160  */
161 enum iwl_nvm_channel_flags {
162 	NVM_CHANNEL_VALID		= BIT(0),
163 	NVM_CHANNEL_IBSS		= BIT(1),
164 	NVM_CHANNEL_ACTIVE		= BIT(3),
165 	NVM_CHANNEL_RADAR		= BIT(4),
166 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
167 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
168 	NVM_CHANNEL_UNIFORM		= BIT(7),
169 	NVM_CHANNEL_20MHZ		= BIT(8),
170 	NVM_CHANNEL_40MHZ		= BIT(9),
171 	NVM_CHANNEL_80MHZ		= BIT(10),
172 	NVM_CHANNEL_160MHZ		= BIT(11),
173 	NVM_CHANNEL_DC_HIGH		= BIT(12),
174 	NVM_CHANNEL_VLP			= BIT(13),
175 	NVM_CHANNEL_AFC			= BIT(14),
176 };
177 
178 /**
179  * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
180  * domain.
181  * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
182  *	2.4Ghz band is allowed.
183  * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
184  *	5Ghz band is allowed.
185  * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
186  *	for this regulatory domain (valid only in 5Ghz).
187  * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
188  *	for this regulatory domain (valid only in 5Ghz).
189  * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
190  * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
191  * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
192  *	for this regulatory domain (valid only in 5Ghz).
193  * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
194  * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
195  */
196 enum iwl_reg_capa_flags_v1 {
197 	REG_CAPA_V1_BF_CCD_LOW_BAND	= BIT(0),
198 	REG_CAPA_V1_BF_CCD_HIGH_BAND	= BIT(1),
199 	REG_CAPA_V1_160MHZ_ALLOWED	= BIT(2),
200 	REG_CAPA_V1_80MHZ_ALLOWED	= BIT(3),
201 	REG_CAPA_V1_MCS_8_ALLOWED	= BIT(4),
202 	REG_CAPA_V1_MCS_9_ALLOWED	= BIT(5),
203 	REG_CAPA_V1_40MHZ_FORBIDDEN	= BIT(7),
204 	REG_CAPA_V1_DC_HIGH_ENABLED	= BIT(9),
205 	REG_CAPA_V1_11AX_DISABLED	= BIT(10),
206 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
207 
208 /**
209  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
210  * domain (version 2).
211  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
212  *	disabled.
213  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
214  *	2.4Ghz band is allowed.
215  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
216  *	5Ghz band is allowed.
217  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
218  *	for this regulatory domain (valid only in 5Ghz).
219  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
220  *	for this regulatory domain (valid only in 5Ghz).
221  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
222  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
223  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
224  *	126, 122) are disabled.
225  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
226  *	for this regulatory domain (uvalid only in 5Ghz).
227  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
228  */
229 enum iwl_reg_capa_flags_v2 {
230 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
231 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
232 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
233 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
234 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
235 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
236 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
237 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
238 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
239 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
240 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
241 
242 /**
243  * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
244  * domain.
245  * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
246  *	for this regulatory domain (valid only in 5Ghz).
247  * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
248  *	for this regulatory domain (valid only in 5Ghz).
249  * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
250  * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
251  * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
252  * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
253  * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
254  *	for this regulatory domain (valid only in 5GHz).
255  */
256 enum iwl_reg_capa_flags_v4 {
257 	REG_CAPA_V4_160MHZ_ALLOWED		= BIT(3),
258 	REG_CAPA_V4_80MHZ_ALLOWED		= BIT(4),
259 	REG_CAPA_V4_MCS_12_ALLOWED		= BIT(5),
260 	REG_CAPA_V4_MCS_13_ALLOWED		= BIT(6),
261 	REG_CAPA_V4_11BE_DISABLED		= BIT(8),
262 	REG_CAPA_V4_11AX_DISABLED		= BIT(13),
263 	REG_CAPA_V4_320MHZ_ALLOWED		= BIT(16),
264 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
265 
266 /*
267 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
268 * MCC update command response.
269 */
270 #define REG_CAPA_V2_RESP_VER	6
271 
272 /* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
273  * MCC update command response.
274  */
275 #define REG_CAPA_V4_RESP_VER	8
276 
277 /**
278  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
279  * handling the different APIs of reg_capa_flags.
280  *
281  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
282  *	for this regulatory domain.
283  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
284  *	for this regulatory domain (valid only in 5 and 6 Ghz).
285  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
286  *	for this regulatory domain (valid only in 5 and 6 Ghz).
287  * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
288  *	for this regulatory domain (valid only in 6 Ghz).
289  * @disable_11ax: 11ax is forbidden for this regulatory domain.
290  * @disable_11be: 11be is forbidden for this regulatory domain.
291  */
292 struct iwl_reg_capa {
293 	bool allow_40mhz;
294 	bool allow_80mhz;
295 	bool allow_160mhz;
296 	bool allow_320mhz;
297 	bool disable_11ax;
298 	bool disable_11be;
299 };
300 
iwl_nvm_print_channel_flags(struct device * dev,u32 level,int chan,u32 flags)301 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
302 					       int chan, u32 flags)
303 {
304 #define CHECK_AND_PRINT_I(x)	\
305 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
306 
307 	if (!(flags & NVM_CHANNEL_VALID)) {
308 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
309 			      chan, flags);
310 		return;
311 	}
312 
313 	/* Note: already can print up to 101 characters, 110 is the limit! */
314 	IWL_DEBUG_DEV(dev, level,
315 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
316 		      chan, flags,
317 		      CHECK_AND_PRINT_I(VALID),
318 		      CHECK_AND_PRINT_I(IBSS),
319 		      CHECK_AND_PRINT_I(ACTIVE),
320 		      CHECK_AND_PRINT_I(RADAR),
321 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
322 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
323 		      CHECK_AND_PRINT_I(UNIFORM),
324 		      CHECK_AND_PRINT_I(20MHZ),
325 		      CHECK_AND_PRINT_I(40MHZ),
326 		      CHECK_AND_PRINT_I(80MHZ),
327 		      CHECK_AND_PRINT_I(160MHZ),
328 		      CHECK_AND_PRINT_I(DC_HIGH),
329 		      CHECK_AND_PRINT_I(VLP),
330 		      CHECK_AND_PRINT_I(AFC));
331 #undef CHECK_AND_PRINT_I
332 }
333 
iwl_get_channel_flags(u8 ch_num,int ch_idx,enum nl80211_band band,u32 nvm_flags,const struct iwl_cfg * cfg)334 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
335 				 u32 nvm_flags, const struct iwl_cfg *cfg)
336 {
337 	u32 flags = IEEE80211_CHAN_NO_HT40;
338 
339 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
340 		if (ch_num <= LAST_2GHZ_HT_PLUS)
341 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
342 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
343 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
344 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
345 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
346 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
347 		else
348 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
349 	}
350 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
351 		flags |= IEEE80211_CHAN_NO_80MHZ;
352 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
353 		flags |= IEEE80211_CHAN_NO_160MHZ;
354 
355 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
356 		flags |= IEEE80211_CHAN_NO_IR;
357 
358 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
359 		flags |= IEEE80211_CHAN_NO_IR;
360 
361 	if (nvm_flags & NVM_CHANNEL_RADAR)
362 		flags |= IEEE80211_CHAN_RADAR;
363 
364 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
365 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
366 
367 	/* Set the GO concurrent flag only in case that NO_IR is set.
368 	 * Otherwise it is meaningless
369 	 */
370 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
371 	    (flags & IEEE80211_CHAN_NO_IR))
372 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
373 
374 	/* Set the AP type for the UHB case. */
375 	if (nvm_flags & NVM_CHANNEL_VLP)
376 		flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
377 	else
378 		flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
379 	if (!(nvm_flags & NVM_CHANNEL_AFC))
380 		flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
381 
382 	return flags;
383 }
384 
iwl_nl80211_band_from_channel_idx(int ch_idx)385 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
386 {
387 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
388 		return NL80211_BAND_6GHZ;
389 	}
390 
391 	if (ch_idx >= NUM_2GHZ_CHANNELS)
392 		return NL80211_BAND_5GHZ;
393 	return NL80211_BAND_2GHZ;
394 }
395 
iwl_init_channel_map(struct iwl_trans * trans,const struct iwl_fw * fw,struct iwl_nvm_data * data,const void * const nvm_ch_flags,u32 sbands_flags,bool v4)396 static int iwl_init_channel_map(struct iwl_trans *trans,
397 				const struct iwl_fw *fw,
398 				struct iwl_nvm_data *data,
399 				const void * const nvm_ch_flags,
400 				u32 sbands_flags, bool v4)
401 {
402 	const struct iwl_cfg *cfg = trans->cfg;
403 	struct device *dev = trans->dev;
404 	int ch_idx;
405 	int n_channels = 0;
406 	struct ieee80211_channel *channel;
407 	u32 ch_flags;
408 	int num_of_ch;
409 	const u16 *nvm_chan;
410 
411 	if (cfg->uhb_supported) {
412 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
413 		nvm_chan = iwl_uhb_nvm_channels;
414 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
415 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
416 		nvm_chan = iwl_ext_nvm_channels;
417 	} else {
418 		num_of_ch = IWL_NVM_NUM_CHANNELS;
419 		nvm_chan = iwl_nvm_channels;
420 	}
421 
422 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
423 		enum nl80211_band band =
424 			iwl_nl80211_band_from_channel_idx(ch_idx);
425 
426 		if (v4)
427 			ch_flags =
428 				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
429 		else
430 			ch_flags =
431 				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
432 
433 		if (band == NL80211_BAND_5GHZ &&
434 		    !data->sku_cap_band_52ghz_enable)
435 			continue;
436 
437 		/* workaround to disable wide channels in 5GHz */
438 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
439 		    band == NL80211_BAND_5GHZ) {
440 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
441 				     NVM_CHANNEL_80MHZ |
442 				     NVM_CHANNEL_160MHZ);
443 		}
444 
445 		if (ch_flags & NVM_CHANNEL_160MHZ)
446 			data->vht160_supported = true;
447 
448 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
449 		    !(ch_flags & NVM_CHANNEL_VALID)) {
450 			/*
451 			 * Channels might become valid later if lar is
452 			 * supported, hence we still want to add them to
453 			 * the list of supported channels to cfg80211.
454 			 */
455 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
456 						    nvm_chan[ch_idx], ch_flags);
457 			continue;
458 		}
459 
460 		channel = &data->channels[n_channels];
461 		n_channels++;
462 
463 		channel->hw_value = nvm_chan[ch_idx];
464 		channel->band = band;
465 		channel->center_freq =
466 			ieee80211_channel_to_frequency(
467 				channel->hw_value, channel->band);
468 
469 		/* Initialize regulatory-based run-time data */
470 
471 		/*
472 		 * Default value - highest tx power value.  max_power
473 		 * is not used in mvm, and is used for backwards compatibility
474 		 */
475 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
476 
477 		/* don't put limitations in case we're using LAR */
478 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
479 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
480 							       ch_idx, band,
481 							       ch_flags, cfg);
482 		else
483 			channel->flags = 0;
484 
485 		if (fw_has_capa(&fw->ucode_capa,
486 				IWL_UCODE_TLV_CAPA_MONITOR_PASSIVE_CHANS))
487 			channel->flags |= IEEE80211_CHAN_CAN_MONITOR;
488 
489 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
490 					    channel->hw_value, ch_flags);
491 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
492 				 channel->hw_value, channel->max_power);
493 	}
494 
495 	return n_channels;
496 }
497 
iwl_init_vht_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_sta_vht_cap * vht_cap,u8 tx_chains,u8 rx_chains)498 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
499 				  struct iwl_nvm_data *data,
500 				  struct ieee80211_sta_vht_cap *vht_cap,
501 				  u8 tx_chains, u8 rx_chains)
502 {
503 	const struct iwl_cfg *cfg = trans->cfg;
504 	int num_rx_ants = num_of_ant(rx_chains);
505 	int num_tx_ants = num_of_ant(tx_chains);
506 
507 	vht_cap->vht_supported = true;
508 
509 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
510 		       IEEE80211_VHT_CAP_RXSTBC_1 |
511 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
512 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
513 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
514 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
515 
516 	if (!trans->cfg->ht_params->stbc)
517 		vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
518 
519 	if (data->vht160_supported)
520 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
521 				IEEE80211_VHT_CAP_SHORT_GI_160;
522 
523 	if (cfg->vht_mu_mimo_supported)
524 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
525 
526 	if (cfg->ht_params->ldpc)
527 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
528 
529 	if (data->sku_cap_mimo_disabled) {
530 		num_rx_ants = 1;
531 		num_tx_ants = 1;
532 	}
533 
534 	if (trans->cfg->ht_params->stbc && num_tx_ants > 1)
535 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
536 	else
537 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
538 
539 	switch (iwlwifi_mod_params.amsdu_size) {
540 	case IWL_AMSDU_DEF:
541 		if (trans->trans_cfg->mq_rx_supported)
542 			vht_cap->cap |=
543 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
544 		else
545 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
546 		break;
547 	case IWL_AMSDU_2K:
548 		if (trans->trans_cfg->mq_rx_supported)
549 			vht_cap->cap |=
550 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
551 		else
552 			WARN(1, "RB size of 2K is not supported by this device\n");
553 		break;
554 	case IWL_AMSDU_4K:
555 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
556 		break;
557 	case IWL_AMSDU_8K:
558 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
559 		break;
560 	case IWL_AMSDU_12K:
561 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
562 		break;
563 	default:
564 		break;
565 	}
566 
567 	vht_cap->vht_mcs.rx_mcs_map =
568 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
569 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
570 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
571 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
572 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
573 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
574 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
575 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
576 
577 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
578 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
579 		/* this works because NOT_SUPPORTED == 3 */
580 		vht_cap->vht_mcs.rx_mcs_map |=
581 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
582 	}
583 
584 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
585 
586 	vht_cap->vht_mcs.tx_highest |=
587 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
588 }
589 
590 static const u8 iwl_vendor_caps[] = {
591 	0xdd,			/* vendor element */
592 	0x06,			/* length */
593 	0x00, 0x17, 0x35,	/* Intel OUI */
594 	0x08,			/* type (Intel Capabilities) */
595 	/* followed by 16 bits of capabilities */
596 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
597 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
598 	0x00
599 };
600 
601 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
602 	{
603 		.types_mask = BIT(NL80211_IFTYPE_STATION) |
604 			      BIT(NL80211_IFTYPE_P2P_CLIENT),
605 		.he_cap = {
606 			.has_he = true,
607 			.he_cap_elem = {
608 				.mac_cap_info[0] =
609 					IEEE80211_HE_MAC_CAP0_HTC_HE,
610 				.mac_cap_info[1] =
611 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
612 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
613 				.mac_cap_info[2] =
614 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
615 				.mac_cap_info[3] =
616 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
617 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
618 				.mac_cap_info[4] =
619 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
620 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
621 				.mac_cap_info[5] =
622 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
623 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
624 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
625 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
626 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
627 				.phy_cap_info[1] =
628 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
629 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
630 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
631 				.phy_cap_info[2] =
632 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
633 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
634 				.phy_cap_info[3] =
635 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
636 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
637 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
638 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
639 				.phy_cap_info[4] =
640 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
641 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
642 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
643 				.phy_cap_info[6] =
644 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
645 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
646 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
647 				.phy_cap_info[7] =
648 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
649 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
650 				.phy_cap_info[8] =
651 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
652 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
653 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
654 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
655 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
656 				.phy_cap_info[9] =
657 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
658 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
659 					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
660 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
661 				.phy_cap_info[10] =
662 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
663 			},
664 			/*
665 			 * Set default Tx/Rx HE MCS NSS Support field.
666 			 * Indicate support for up to 2 spatial streams and all
667 			 * MCS, without any special cases
668 			 */
669 			.he_mcs_nss_supp = {
670 				.rx_mcs_80 = cpu_to_le16(0xfffa),
671 				.tx_mcs_80 = cpu_to_le16(0xfffa),
672 				.rx_mcs_160 = cpu_to_le16(0xfffa),
673 				.tx_mcs_160 = cpu_to_le16(0xfffa),
674 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
675 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
676 			},
677 			/*
678 			 * Set default PPE thresholds, with PPET16 set to 0,
679 			 * PPET8 set to 7
680 			 */
681 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
682 		},
683 		.eht_cap = {
684 			.has_eht = true,
685 			.eht_cap_elem = {
686 				.mac_cap_info[0] =
687 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
688 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
689 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 |
690 					IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC,
691 				.phy_cap_info[0] =
692 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
693 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
694 					IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
695 					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
696 					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
697 				.phy_cap_info[1] =
698 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
699 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
700 				.phy_cap_info[3] =
701 					IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
702 					IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
703 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
704 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
705 					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
706 					IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
707 					IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
708 
709 				.phy_cap_info[4] =
710 					IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
711 					IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
712 					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
713 				.phy_cap_info[5] =
714 					FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
715 							 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US) |
716 					IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
717 					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
718 					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP,
719 				.phy_cap_info[6] =
720 					IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
721 					IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
722 				.phy_cap_info[8] =
723 					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
724 					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
725 			},
726 
727 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
728 			 * Rx - note we don't set the only_20mhz, but due to this
729 			 * being a union, it gets set correctly anyway.
730 			 */
731 			.eht_mcs_nss_supp = {
732 				.bw._80 = {
733 					.rx_tx_mcs9_max_nss = 0x22,
734 					.rx_tx_mcs11_max_nss = 0x22,
735 					.rx_tx_mcs13_max_nss = 0x22,
736 				},
737 				.bw._160 = {
738 					.rx_tx_mcs9_max_nss = 0x22,
739 					.rx_tx_mcs11_max_nss = 0x22,
740 					.rx_tx_mcs13_max_nss = 0x22,
741 				},
742 				.bw._320 = {
743 					.rx_tx_mcs9_max_nss = 0x22,
744 					.rx_tx_mcs11_max_nss = 0x22,
745 					.rx_tx_mcs13_max_nss = 0x22,
746 				},
747 			},
748 
749 			/*
750 			 * PPE thresholds for NSS = 2, and RU index bitmap set
751 			 * to 0xc.
752 			 * Note: just for stating what we want, not present in
753 			 * the transmitted data due to not including
754 			 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
755 			 */
756 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
757 		},
758 	},
759 	{
760 		.types_mask = BIT(NL80211_IFTYPE_AP) |
761 			      BIT(NL80211_IFTYPE_P2P_GO),
762 		.he_cap = {
763 			.has_he = true,
764 			.he_cap_elem = {
765 				.mac_cap_info[0] =
766 					IEEE80211_HE_MAC_CAP0_HTC_HE,
767 				.mac_cap_info[1] =
768 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
769 				.mac_cap_info[3] =
770 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
771 				.phy_cap_info[1] =
772 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
773 				.phy_cap_info[2] =
774 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
775 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
776 				.phy_cap_info[3] =
777 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
778 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
779 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
780 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
781 				.phy_cap_info[6] =
782 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
783 				.phy_cap_info[7] =
784 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
785 				.phy_cap_info[8] =
786 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
787 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
788 				.phy_cap_info[9] =
789 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
790 					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
791 			},
792 			/*
793 			 * Set default Tx/Rx HE MCS NSS Support field.
794 			 * Indicate support for up to 2 spatial streams and all
795 			 * MCS, without any special cases
796 			 */
797 			.he_mcs_nss_supp = {
798 				.rx_mcs_80 = cpu_to_le16(0xfffa),
799 				.tx_mcs_80 = cpu_to_le16(0xfffa),
800 				.rx_mcs_160 = cpu_to_le16(0xfffa),
801 				.tx_mcs_160 = cpu_to_le16(0xfffa),
802 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
803 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
804 			},
805 			/*
806 			 * Set default PPE thresholds, with PPET16 set to 0,
807 			 * PPET8 set to 7
808 			 */
809 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
810 		},
811 		.eht_cap = {
812 			.has_eht = true,
813 			.eht_cap_elem = {
814 				.mac_cap_info[0] =
815 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
816 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
817 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
818 				.phy_cap_info[0] =
819 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
820 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
821 				.phy_cap_info[5] =
822 					FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
823 							 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US),
824 			},
825 
826 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
827 			 * Rx - note we don't set the only_20mhz, but due to this
828 			 * being a union, it gets set correctly anyway.
829 			 */
830 			.eht_mcs_nss_supp = {
831 				.bw._80 = {
832 					.rx_tx_mcs9_max_nss = 0x22,
833 					.rx_tx_mcs11_max_nss = 0x22,
834 					.rx_tx_mcs13_max_nss = 0x22,
835 				},
836 				.bw._160 = {
837 					.rx_tx_mcs9_max_nss = 0x22,
838 					.rx_tx_mcs11_max_nss = 0x22,
839 					.rx_tx_mcs13_max_nss = 0x22,
840 				},
841 				.bw._320 = {
842 					.rx_tx_mcs9_max_nss = 0x22,
843 					.rx_tx_mcs11_max_nss = 0x22,
844 					.rx_tx_mcs13_max_nss = 0x22,
845 				},
846 			},
847 
848 			/*
849 			 * PPE thresholds for NSS = 2, and RU index bitmap set
850 			 * to 0xc.
851 			 * Note: just for stating what we want, not present in
852 			 * the transmitted data due to not including
853 			 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
854 			 */
855 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
856 		},
857 	},
858 };
859 
iwl_init_he_6ghz_capa(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains)860 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
861 				  struct iwl_nvm_data *data,
862 				  struct ieee80211_supported_band *sband,
863 				  u8 tx_chains, u8 rx_chains)
864 {
865 	struct ieee80211_sta_ht_cap ht_cap;
866 	struct ieee80211_sta_vht_cap vht_cap = {};
867 	struct ieee80211_sband_iftype_data *iftype_data;
868 	u16 he_6ghz_capa = 0;
869 	u32 exp;
870 	int i;
871 
872 	if (sband->band != NL80211_BAND_6GHZ)
873 		return;
874 
875 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
876 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
877 			     tx_chains, rx_chains);
878 	WARN_ON(!ht_cap.ht_supported);
879 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
880 	WARN_ON(!vht_cap.vht_supported);
881 
882 	he_6ghz_capa |=
883 		u16_encode_bits(ht_cap.ampdu_density,
884 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
885 	exp = u32_get_bits(vht_cap.cap,
886 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
887 	he_6ghz_capa |=
888 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
889 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
890 	he_6ghz_capa |=
891 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
892 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
893 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
894 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
895 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
896 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
897 
898 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
899 
900 	/* we know it's writable - we set it before ourselves */
901 	iftype_data = (void *)(uintptr_t)sband->iftype_data;
902 	for (i = 0; i < sband->n_iftype_data; i++)
903 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
904 }
905 
906 static void
iwl_nvm_fixup_sband_iftd(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,struct ieee80211_sband_iftype_data * iftype_data,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)907 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
908 			 struct iwl_nvm_data *data,
909 			 struct ieee80211_supported_band *sband,
910 			 struct ieee80211_sband_iftype_data *iftype_data,
911 			 u8 tx_chains, u8 rx_chains,
912 			 const struct iwl_fw *fw)
913 {
914 	bool is_ap = iftype_data->types_mask & (BIT(NL80211_IFTYPE_AP) |
915 						BIT(NL80211_IFTYPE_P2P_GO));
916 	bool no_320;
917 
918 	no_320 = (!trans->trans_cfg->integrated &&
919 		 trans->pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB) ||
920 		 trans->reduced_cap_sku;
921 
922 	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
923 		iftype_data->eht_cap.has_eht = false;
924 
925 	/* Advertise an A-MPDU exponent extension based on
926 	 * operating band
927 	 */
928 	if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
929 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
930 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
931 	else if (sband->band != NL80211_BAND_2GHZ)
932 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
933 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
934 	else
935 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
936 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
937 
938 	switch (sband->band) {
939 	case NL80211_BAND_2GHZ:
940 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
941 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
942 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
943 			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
944 				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
945 		break;
946 	case NL80211_BAND_6GHZ:
947 		if (!no_320) {
948 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
949 				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
950 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
951 				IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
952 		}
953 		fallthrough;
954 	case NL80211_BAND_5GHZ:
955 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
956 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
957 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
958 		break;
959 	default:
960 		WARN_ON(1);
961 		break;
962 	}
963 
964 	if ((tx_chains & rx_chains) == ANT_AB) {
965 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
966 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
967 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
968 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
969 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
970 		if (!is_ap) {
971 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
972 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
973 
974 			if (iftype_data->eht_cap.has_eht) {
975 				/*
976 				 * Set the number of sounding dimensions for each
977 				 * bandwidth to 1 to indicate the maximal supported
978 				 * value of TXVECTOR parameter NUM_STS of 2
979 				 */
980 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
981 
982 				/*
983 				 * Set the MAX NC to 1 to indicate sounding feedback of
984 				 * 2 supported by the beamfomee.
985 				 */
986 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
987 			}
988 		}
989 	} else {
990 		struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp =
991 			&iftype_data->he_cap.he_mcs_nss_supp;
992 
993 		if (iftype_data->eht_cap.has_eht) {
994 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
995 				&iftype_data->eht_cap.eht_mcs_nss_supp;
996 
997 			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
998 		}
999 
1000 		if (!is_ap) {
1001 			/* If not 2x2, we need to indicate 1x1 in the
1002 			 * Midamble RX Max NSTS - but not for AP mode
1003 			 */
1004 			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
1005 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
1006 			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1007 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
1008 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
1009 				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
1010 		}
1011 
1012 		he_mcs_nss_supp->rx_mcs_80 |=
1013 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1014 		he_mcs_nss_supp->tx_mcs_80 |=
1015 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1016 		he_mcs_nss_supp->rx_mcs_160 |=
1017 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1018 		he_mcs_nss_supp->tx_mcs_160 |=
1019 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1020 		he_mcs_nss_supp->rx_mcs_80p80 |=
1021 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1022 		he_mcs_nss_supp->tx_mcs_80p80 |=
1023 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1024 	}
1025 
1026 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
1027 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
1028 			IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
1029 
1030 	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
1031 	case IWL_CFG_RF_TYPE_GF:
1032 	case IWL_CFG_RF_TYPE_FM:
1033 	case IWL_CFG_RF_TYPE_WH:
1034 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1035 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
1036 		if (!is_ap)
1037 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1038 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1039 		break;
1040 	}
1041 
1042 	if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
1043 	    iftype_data->eht_cap.has_eht) {
1044 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
1045 			~(IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
1046 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
1047 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
1048 			~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
1049 			  IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1050 			  IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1051 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1052 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1053 			  IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
1054 			  IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK);
1055 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
1056 			~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
1057 			  IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
1058 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
1059 			~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
1060 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
1061 			~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
1062 			  IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
1063 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |=
1064 			IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF;
1065 	}
1066 
1067 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1068 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1069 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1070 
1071 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1072 	    !is_ap) {
1073 		iftype_data->vendor_elems.data = iwl_vendor_caps;
1074 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1075 	}
1076 
1077 	if (!trans->cfg->ht_params->stbc) {
1078 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1079 			~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1080 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1081 			~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1082 	}
1083 
1084 	if (trans->step_urm) {
1085 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs11_max_nss = 0;
1086 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs13_max_nss = 0;
1087 	}
1088 
1089 	if (trans->no_160)
1090 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] &=
1091 			~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
1092 
1093 	if (trans->reduced_cap_sku) {
1094 		memset(&iftype_data->eht_cap.eht_mcs_nss_supp.bw._320, 0,
1095 		       sizeof(iftype_data->eht_cap.eht_mcs_nss_supp.bw._320));
1096 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss = 0;
1097 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._160.rx_tx_mcs13_max_nss = 0;
1098 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[8] &=
1099 			~IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA;
1100 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] &=
1101 			~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK;
1102 	}
1103 }
1104 
iwl_init_he_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)1105 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1106 				 struct iwl_nvm_data *data,
1107 				 struct ieee80211_supported_band *sband,
1108 				 u8 tx_chains, u8 rx_chains,
1109 				 const struct iwl_fw *fw)
1110 {
1111 	struct ieee80211_sband_iftype_data *iftype_data;
1112 	int i;
1113 
1114 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1115 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1116 	BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1117 
1118 	switch (sband->band) {
1119 	case NL80211_BAND_2GHZ:
1120 		iftype_data = data->iftd.low;
1121 		break;
1122 	case NL80211_BAND_5GHZ:
1123 		iftype_data = data->iftd.high;
1124 		break;
1125 	case NL80211_BAND_6GHZ:
1126 		iftype_data = data->iftd.uhb;
1127 		break;
1128 	default:
1129 		WARN_ON(1);
1130 		return;
1131 	}
1132 
1133 	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1134 
1135 	_ieee80211_set_sband_iftype_data(sband, iftype_data,
1136 					 ARRAY_SIZE(iwl_he_eht_capa));
1137 
1138 	for (i = 0; i < sband->n_iftype_data; i++)
1139 		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1140 					 tx_chains, rx_chains, fw);
1141 
1142 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1143 }
1144 
iwl_reinit_cab(struct iwl_trans * trans,struct iwl_nvm_data * data,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)1145 void iwl_reinit_cab(struct iwl_trans *trans, struct iwl_nvm_data *data,
1146 		    u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw)
1147 {
1148 	struct ieee80211_supported_band *sband;
1149 
1150 	sband = &data->bands[NL80211_BAND_2GHZ];
1151 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1152 			     tx_chains, rx_chains);
1153 
1154 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1155 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1156 				     fw);
1157 
1158 	sband = &data->bands[NL80211_BAND_5GHZ];
1159 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1160 			     tx_chains, rx_chains);
1161 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1162 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1163 				      tx_chains, rx_chains);
1164 
1165 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1166 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1167 				     fw);
1168 
1169 	sband = &data->bands[NL80211_BAND_6GHZ];
1170 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1171 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1172 				     fw);
1173 }
1174 IWL_EXPORT_SYMBOL(iwl_reinit_cab);
1175 
iwl_init_sbands(struct iwl_trans * trans,struct iwl_nvm_data * data,const void * nvm_ch_flags,u8 tx_chains,u8 rx_chains,u32 sbands_flags,bool v4,const struct iwl_fw * fw)1176 static void iwl_init_sbands(struct iwl_trans *trans,
1177 			    struct iwl_nvm_data *data,
1178 			    const void *nvm_ch_flags, u8 tx_chains,
1179 			    u8 rx_chains, u32 sbands_flags, bool v4,
1180 			    const struct iwl_fw *fw)
1181 {
1182 	struct device *dev = trans->dev;
1183 	int n_channels;
1184 	int n_used = 0;
1185 	struct ieee80211_supported_band *sband;
1186 
1187 	n_channels = iwl_init_channel_map(trans, fw, data, nvm_ch_flags,
1188 					  sbands_flags, v4);
1189 	sband = &data->bands[NL80211_BAND_2GHZ];
1190 	sband->band = NL80211_BAND_2GHZ;
1191 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1192 	sband->n_bitrates = N_RATES_24;
1193 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1194 					  NL80211_BAND_2GHZ);
1195 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1196 			     tx_chains, rx_chains);
1197 
1198 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1199 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1200 				     fw);
1201 
1202 	sband = &data->bands[NL80211_BAND_5GHZ];
1203 	sband->band = NL80211_BAND_5GHZ;
1204 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1205 	sband->n_bitrates = N_RATES_52;
1206 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1207 					  NL80211_BAND_5GHZ);
1208 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1209 			     tx_chains, rx_chains);
1210 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1211 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1212 				      tx_chains, rx_chains);
1213 
1214 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1215 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1216 				     fw);
1217 
1218 	/* 6GHz band. */
1219 	sband = &data->bands[NL80211_BAND_6GHZ];
1220 	sband->band = NL80211_BAND_6GHZ;
1221 	/* use the same rates as 5GHz band */
1222 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1223 	sband->n_bitrates = N_RATES_52;
1224 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1225 					  NL80211_BAND_6GHZ);
1226 
1227 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1228 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1229 				     fw);
1230 	else
1231 		sband->n_channels = 0;
1232 	if (n_channels != n_used)
1233 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1234 			    n_used, n_channels);
1235 }
1236 
iwl_get_sku(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)1237 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1238 		       const __le16 *phy_sku)
1239 {
1240 	if (cfg->nvm_type != IWL_NVM_EXT)
1241 		return le16_to_cpup(nvm_sw + SKU);
1242 
1243 	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1244 }
1245 
iwl_get_nvm_version(const struct iwl_cfg * cfg,const __le16 * nvm_sw)1246 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1247 {
1248 	if (cfg->nvm_type != IWL_NVM_EXT)
1249 		return le16_to_cpup(nvm_sw + NVM_VERSION);
1250 	else
1251 		return le32_to_cpup((const __le32 *)(nvm_sw +
1252 						     NVM_VERSION_EXT_NVM));
1253 }
1254 
iwl_get_radio_cfg(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)1255 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1256 			     const __le16 *phy_sku)
1257 {
1258 	if (cfg->nvm_type != IWL_NVM_EXT)
1259 		return le16_to_cpup(nvm_sw + RADIO_CFG);
1260 
1261 	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1262 
1263 }
1264 
iwl_get_n_hw_addrs(const struct iwl_cfg * cfg,const __le16 * nvm_sw)1265 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1266 {
1267 	int n_hw_addr;
1268 
1269 	if (cfg->nvm_type != IWL_NVM_EXT)
1270 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1271 
1272 	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1273 
1274 	return n_hw_addr & N_HW_ADDR_MASK;
1275 }
1276 
iwl_set_radio_cfg(const struct iwl_cfg * cfg,struct iwl_nvm_data * data,u32 radio_cfg)1277 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1278 			      struct iwl_nvm_data *data,
1279 			      u32 radio_cfg)
1280 {
1281 	if (cfg->nvm_type != IWL_NVM_EXT) {
1282 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1283 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1284 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1285 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1286 		return;
1287 	}
1288 
1289 	/* set the radio configuration for family 8000 */
1290 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1291 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1292 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1293 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1294 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1295 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1296 }
1297 
iwl_flip_hw_address(__le32 mac_addr0,__le32 mac_addr1,u8 * dest)1298 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1299 {
1300 	const u8 *hw_addr;
1301 
1302 	hw_addr = (const u8 *)&mac_addr0;
1303 	dest[0] = hw_addr[3];
1304 	dest[1] = hw_addr[2];
1305 	dest[2] = hw_addr[1];
1306 	dest[3] = hw_addr[0];
1307 
1308 	hw_addr = (const u8 *)&mac_addr1;
1309 	dest[4] = hw_addr[1];
1310 	dest[5] = hw_addr[0];
1311 }
1312 
iwl_set_hw_address_from_csr(struct iwl_trans * trans,struct iwl_nvm_data * data)1313 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1314 					struct iwl_nvm_data *data)
1315 {
1316 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1317 						  CSR_MAC_ADDR0_STRAP(trans)));
1318 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1319 						  CSR_MAC_ADDR1_STRAP(trans)));
1320 
1321 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1322 	/*
1323 	 * If the OEM fused a valid address, use it instead of the one in the
1324 	 * OTP
1325 	 */
1326 	if (is_valid_ether_addr(data->hw_addr))
1327 		return;
1328 
1329 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1330 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1331 
1332 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1333 }
1334 
iwl_set_hw_address_family_8000(struct iwl_trans * trans,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __le16 * mac_override,const __be16 * nvm_hw)1335 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1336 					   const struct iwl_cfg *cfg,
1337 					   struct iwl_nvm_data *data,
1338 					   const __le16 *mac_override,
1339 					   const __be16 *nvm_hw)
1340 {
1341 	const u8 *hw_addr;
1342 
1343 	if (mac_override) {
1344 		static const u8 reserved_mac[] = {
1345 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1346 		};
1347 
1348 		hw_addr = (const u8 *)(mac_override +
1349 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1350 
1351 		/*
1352 		 * Store the MAC address from MAO section.
1353 		 * No byte swapping is required in MAO section
1354 		 */
1355 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1356 
1357 		/*
1358 		 * Force the use of the OTP MAC address in case of reserved MAC
1359 		 * address in the NVM, or if address is given but invalid.
1360 		 */
1361 		if (is_valid_ether_addr(data->hw_addr) &&
1362 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1363 			return;
1364 
1365 		IWL_ERR(trans,
1366 			"mac address from nvm override section is not valid\n");
1367 	}
1368 
1369 	if (nvm_hw) {
1370 		/* read the mac address from WFMP registers */
1371 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1372 						WFMP_MAC_ADDR_0));
1373 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1374 						WFMP_MAC_ADDR_1));
1375 
1376 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1377 
1378 		return;
1379 	}
1380 
1381 	IWL_ERR(trans, "mac address is not found\n");
1382 }
1383 
iwl_set_hw_address(struct iwl_trans * trans,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __be16 * nvm_hw,const __le16 * mac_override)1384 static int iwl_set_hw_address(struct iwl_trans *trans,
1385 			      const struct iwl_cfg *cfg,
1386 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1387 			      const __le16 *mac_override)
1388 {
1389 	if (cfg->mac_addr_from_csr) {
1390 		iwl_set_hw_address_from_csr(trans, data);
1391 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1392 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1393 
1394 		/* The byte order is little endian 16 bit, meaning 214365 */
1395 		data->hw_addr[0] = hw_addr[1];
1396 		data->hw_addr[1] = hw_addr[0];
1397 		data->hw_addr[2] = hw_addr[3];
1398 		data->hw_addr[3] = hw_addr[2];
1399 		data->hw_addr[4] = hw_addr[5];
1400 		data->hw_addr[5] = hw_addr[4];
1401 	} else {
1402 		iwl_set_hw_address_family_8000(trans, cfg, data,
1403 					       mac_override, nvm_hw);
1404 	}
1405 
1406 	if (!is_valid_ether_addr(data->hw_addr)) {
1407 		IWL_ERR(trans, "no valid mac address was found\n");
1408 		return -EINVAL;
1409 	}
1410 
1411 	if (!trans->csme_own)
1412 		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1413 			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1414 
1415 	return 0;
1416 }
1417 
1418 static bool
iwl_nvm_no_wide_in_5ghz(struct iwl_trans * trans,const struct iwl_cfg * cfg,const __be16 * nvm_hw)1419 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1420 			const __be16 *nvm_hw)
1421 {
1422 	/*
1423 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1424 	 * some 7000-family OTPs erroneously allow wide channels in
1425 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1426 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1427 	 * 9.  In those cases, we need to force-disable wide channels
1428 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1429 	 * to use them.
1430 	 */
1431 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1432 		/*
1433 		 * Unlike the other sections in the NVM, the hw
1434 		 * section uses big-endian.
1435 		 */
1436 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1437 		u8 sku = (subsystem_id & 0x1e) >> 1;
1438 
1439 		if (sku == 5 || sku == 9) {
1440 			IWL_DEBUG_EEPROM(trans->dev,
1441 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1442 					 subsystem_id, sku);
1443 			return true;
1444 		}
1445 	}
1446 
1447 	return false;
1448 }
1449 
1450 struct iwl_nvm_data *
iwl_parse_mei_nvm_data(struct iwl_trans * trans,const struct iwl_cfg * cfg,const struct iwl_mei_nvm * mei_nvm,const struct iwl_fw * fw,u8 tx_ant,u8 rx_ant)1451 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1452 		       const struct iwl_mei_nvm *mei_nvm,
1453 		       const struct iwl_fw *fw, u8 tx_ant, u8 rx_ant)
1454 {
1455 	struct iwl_nvm_data *data;
1456 	u32 sbands_flags = 0;
1457 	u8 rx_chains = fw->valid_rx_ant;
1458 	u8 tx_chains = fw->valid_rx_ant;
1459 
1460 	if (cfg->uhb_supported)
1461 		data = kzalloc(struct_size(data, channels,
1462 					   IWL_NVM_NUM_CHANNELS_UHB),
1463 					   GFP_KERNEL);
1464 	else
1465 		data = kzalloc(struct_size(data, channels,
1466 					   IWL_NVM_NUM_CHANNELS_EXT),
1467 					   GFP_KERNEL);
1468 	if (!data)
1469 		return NULL;
1470 
1471 	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1472 		     IWL_NVM_NUM_CHANNELS_UHB);
1473 	data->nvm_version = mei_nvm->nvm_version;
1474 
1475 	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1476 	if (data->valid_tx_ant)
1477 		tx_chains &= data->valid_tx_ant;
1478 	if (data->valid_rx_ant)
1479 		rx_chains &= data->valid_rx_ant;
1480 	if (tx_ant)
1481 		tx_chains &= tx_ant;
1482 	if (rx_ant)
1483 		rx_chains &= rx_ant;
1484 
1485 	data->sku_cap_mimo_disabled = false;
1486 	data->sku_cap_band_24ghz_enable = true;
1487 	data->sku_cap_band_52ghz_enable = true;
1488 	data->sku_cap_11n_enable =
1489 		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1490 	data->sku_cap_11ac_enable = true;
1491 	data->sku_cap_11ax_enable =
1492 		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1493 
1494 	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1495 
1496 	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1497 	/* If no valid mac address was found - bail out */
1498 	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1499 		kfree(data);
1500 		return NULL;
1501 	}
1502 
1503 	if (data->lar_enabled &&
1504 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1505 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1506 
1507 	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1508 			sbands_flags, true, fw);
1509 
1510 	return data;
1511 }
1512 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1513 
1514 struct iwl_nvm_data *
iwl_parse_nvm_data(struct iwl_trans * trans,const struct iwl_cfg * cfg,const struct iwl_fw * fw,const __be16 * nvm_hw,const __le16 * nvm_sw,const __le16 * nvm_calib,const __le16 * regulatory,const __le16 * mac_override,const __le16 * phy_sku,u8 tx_chains,u8 rx_chains)1515 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1516 		   const struct iwl_fw *fw,
1517 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1518 		   const __le16 *nvm_calib, const __le16 *regulatory,
1519 		   const __le16 *mac_override, const __le16 *phy_sku,
1520 		   u8 tx_chains, u8 rx_chains)
1521 {
1522 	struct iwl_nvm_data *data;
1523 	bool lar_enabled;
1524 	u32 sku, radio_cfg;
1525 	u32 sbands_flags = 0;
1526 	u16 lar_config;
1527 	const __le16 *ch_section;
1528 
1529 	if (cfg->uhb_supported)
1530 		data = kzalloc(struct_size(data, channels,
1531 					   IWL_NVM_NUM_CHANNELS_UHB),
1532 					   GFP_KERNEL);
1533 	else if (cfg->nvm_type != IWL_NVM_EXT)
1534 		data = kzalloc(struct_size(data, channels,
1535 					   IWL_NVM_NUM_CHANNELS),
1536 					   GFP_KERNEL);
1537 	else
1538 		data = kzalloc(struct_size(data, channels,
1539 					   IWL_NVM_NUM_CHANNELS_EXT),
1540 					   GFP_KERNEL);
1541 	if (!data)
1542 		return NULL;
1543 
1544 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1545 
1546 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1547 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1548 	if (data->valid_tx_ant)
1549 		tx_chains &= data->valid_tx_ant;
1550 	if (data->valid_rx_ant)
1551 		rx_chains &= data->valid_rx_ant;
1552 
1553 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1554 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1555 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1556 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1557 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1558 		data->sku_cap_11n_enable = false;
1559 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1560 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1561 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1562 
1563 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1564 
1565 	if (cfg->nvm_type != IWL_NVM_EXT) {
1566 		/* Checking for required sections */
1567 		if (!nvm_calib) {
1568 			IWL_ERR(trans,
1569 				"Can't parse empty Calib NVM sections\n");
1570 			kfree(data);
1571 			return NULL;
1572 		}
1573 
1574 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1575 			     &regulatory[NVM_CHANNELS_SDP] :
1576 			     &nvm_sw[NVM_CHANNELS];
1577 
1578 		lar_enabled = true;
1579 	} else {
1580 		u16 lar_offset = data->nvm_version < 0xE39 ?
1581 				 NVM_LAR_OFFSET_OLD :
1582 				 NVM_LAR_OFFSET;
1583 
1584 		lar_config = le16_to_cpup(regulatory + lar_offset);
1585 		data->lar_enabled = !!(lar_config &
1586 				       NVM_LAR_ENABLED);
1587 		lar_enabled = data->lar_enabled;
1588 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1589 	}
1590 
1591 	/* If no valid mac address was found - bail out */
1592 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1593 		kfree(data);
1594 		return NULL;
1595 	}
1596 
1597 	if (lar_enabled &&
1598 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1599 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1600 
1601 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1602 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1603 
1604 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1605 			sbands_flags, false, fw);
1606 	data->calib_version = 255;
1607 
1608 	return data;
1609 }
1610 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1611 
iwl_nvm_get_regdom_bw_flags(const u16 * nvm_chan,int ch_idx,u16 nvm_flags,struct iwl_reg_capa reg_capa,const struct iwl_cfg * cfg)1612 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1613 				       int ch_idx, u16 nvm_flags,
1614 				       struct iwl_reg_capa reg_capa,
1615 				       const struct iwl_cfg *cfg)
1616 {
1617 	u32 flags = NL80211_RRF_NO_HT40;
1618 
1619 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1620 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1621 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1622 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1623 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1624 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1625 	} else if (ch_idx < NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS &&
1626 		   nvm_flags & NVM_CHANNEL_40MHZ) {
1627 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1628 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1629 		else
1630 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1631 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1632 		flags &= ~NL80211_RRF_NO_HT40PLUS;
1633 		flags &= ~NL80211_RRF_NO_HT40MINUS;
1634 	}
1635 
1636 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1637 		flags |= NL80211_RRF_NO_80MHZ;
1638 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1639 		flags |= NL80211_RRF_NO_160MHZ;
1640 
1641 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1642 		flags |= NL80211_RRF_NO_IR;
1643 
1644 	if (nvm_flags & NVM_CHANNEL_RADAR)
1645 		flags |= NL80211_RRF_DFS;
1646 
1647 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1648 		flags |= NL80211_RRF_NO_OUTDOOR;
1649 
1650 	/* Set the GO concurrent flag only in case that NO_IR is set.
1651 	 * Otherwise it is meaningless
1652 	 */
1653 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT)) {
1654 		if (flags & NL80211_RRF_NO_IR)
1655 			flags |= NL80211_RRF_GO_CONCURRENT;
1656 		if (flags & NL80211_RRF_DFS) {
1657 			flags |= NL80211_RRF_DFS_CONCURRENT;
1658 			/* Our device doesn't set active bit for DFS channels
1659 			 * however, once marked as DFS no-ir is not needed.
1660 			 */
1661 			flags &= ~NL80211_RRF_NO_IR;
1662 		}
1663 	}
1664 
1665 	/* Set the AP type for the UHB case. */
1666 	if (nvm_flags & NVM_CHANNEL_VLP)
1667 		flags |= NL80211_RRF_ALLOW_6GHZ_VLP_AP;
1668 	else
1669 		flags |= NL80211_RRF_NO_6GHZ_VLP_CLIENT;
1670 
1671 	if (!(nvm_flags & NVM_CHANNEL_AFC))
1672 		flags |= NL80211_RRF_NO_6GHZ_AFC_CLIENT;
1673 
1674 	/*
1675 	 * reg_capa is per regulatory domain so apply it for every channel
1676 	 */
1677 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1678 		if (!reg_capa.allow_40mhz)
1679 			flags |= NL80211_RRF_NO_HT40;
1680 
1681 		if (!reg_capa.allow_80mhz)
1682 			flags |= NL80211_RRF_NO_80MHZ;
1683 
1684 		if (!reg_capa.allow_160mhz)
1685 			flags |= NL80211_RRF_NO_160MHZ;
1686 
1687 		if (!reg_capa.allow_320mhz)
1688 			flags |= NL80211_RRF_NO_320MHZ;
1689 	}
1690 
1691 	if (reg_capa.disable_11ax)
1692 		flags |= NL80211_RRF_NO_HE;
1693 
1694 	if (reg_capa.disable_11be)
1695 		flags |= NL80211_RRF_NO_EHT;
1696 
1697 	return flags;
1698 }
1699 
iwl_get_reg_capa(u32 flags,u8 resp_ver)1700 static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1701 {
1702 	struct iwl_reg_capa reg_capa = {};
1703 
1704 	if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1705 		reg_capa.allow_40mhz = true;
1706 		reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1707 		reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1708 		reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1709 		reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1710 		reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1711 	} else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1712 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1713 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1714 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1715 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1716 	} else {
1717 		reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1718 		reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1719 		reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1720 		reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1721 	}
1722 	return reg_capa;
1723 }
1724 
1725 struct ieee80211_regdomain *
iwl_parse_nvm_mcc_info(struct device * dev,const struct iwl_cfg * cfg,int num_of_ch,__le32 * channels,u16 fw_mcc,u16 geo_info,u32 cap,u8 resp_ver)1726 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1727 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1728 		       u16 geo_info, u32 cap, u8 resp_ver)
1729 {
1730 	int ch_idx;
1731 	u16 ch_flags;
1732 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1733 	const u16 *nvm_chan;
1734 	struct ieee80211_regdomain *regd, *copy_rd;
1735 	struct ieee80211_reg_rule *rule;
1736 	int center_freq, prev_center_freq = 0;
1737 	int valid_rules = 0;
1738 	bool new_rule;
1739 	int max_num_ch;
1740 	struct iwl_reg_capa reg_capa;
1741 
1742 	if (cfg->uhb_supported) {
1743 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1744 		nvm_chan = iwl_uhb_nvm_channels;
1745 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1746 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1747 		nvm_chan = iwl_ext_nvm_channels;
1748 	} else {
1749 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1750 		nvm_chan = iwl_nvm_channels;
1751 	}
1752 
1753 	if (num_of_ch > max_num_ch) {
1754 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1755 			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1756 			      num_of_ch, max_num_ch);
1757 		num_of_ch = max_num_ch;
1758 	}
1759 
1760 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1761 		return ERR_PTR(-EINVAL);
1762 
1763 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1764 		      num_of_ch);
1765 
1766 	/* build a regdomain rule for every valid channel */
1767 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1768 	if (!regd)
1769 		return ERR_PTR(-ENOMEM);
1770 
1771 	/* set alpha2 from FW. */
1772 	regd->alpha2[0] = fw_mcc >> 8;
1773 	regd->alpha2[1] = fw_mcc & 0xff;
1774 
1775 	/* parse regulatory capability flags */
1776 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1777 
1778 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1779 		enum nl80211_band band =
1780 			iwl_nl80211_band_from_channel_idx(ch_idx);
1781 
1782 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1783 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1784 							     band);
1785 		new_rule = false;
1786 
1787 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1788 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1789 						    nvm_chan[ch_idx], ch_flags);
1790 			continue;
1791 		}
1792 
1793 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1794 							     ch_flags, reg_capa,
1795 							     cfg);
1796 
1797 		/* we can't continue the same rule */
1798 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1799 		    center_freq - prev_center_freq > 20) {
1800 			valid_rules++;
1801 			new_rule = true;
1802 		}
1803 
1804 		rule = &regd->reg_rules[valid_rules - 1];
1805 
1806 		if (new_rule)
1807 			rule->freq_range.start_freq_khz =
1808 						MHZ_TO_KHZ(center_freq - 10);
1809 
1810 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1811 
1812 		/* this doesn't matter - not used by FW */
1813 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1814 		rule->power_rule.max_eirp =
1815 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1816 
1817 		rule->flags = reg_rule_flags;
1818 
1819 		/* rely on auto-calculation to merge BW of contiguous chans */
1820 		rule->flags |= NL80211_RRF_AUTO_BW;
1821 		rule->freq_range.max_bandwidth_khz = 0;
1822 
1823 		prev_center_freq = center_freq;
1824 		prev_reg_rule_flags = reg_rule_flags;
1825 
1826 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1827 					    nvm_chan[ch_idx], ch_flags);
1828 
1829 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1830 		    band == NL80211_BAND_2GHZ)
1831 			continue;
1832 
1833 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1834 	}
1835 
1836 	/*
1837 	 * Certain firmware versions might report no valid channels
1838 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1839 	 * running. We'll get out of this situation later when the
1840 	 * rfkill is removed and we update the regdomain again, but
1841 	 * since cfg80211 doesn't accept an empty regdomain, add a
1842 	 * dummy (unusable) rule here in this case so we can init.
1843 	 */
1844 	if (!valid_rules) {
1845 		valid_rules = 1;
1846 		rule = &regd->reg_rules[valid_rules - 1];
1847 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1848 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1849 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1850 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1851 		rule->power_rule.max_eirp =
1852 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1853 	}
1854 
1855 	regd->n_reg_rules = valid_rules;
1856 
1857 	/*
1858 	 * Narrow down regdom for unused regulatory rules to prevent hole
1859 	 * between reg rules to wmm rules.
1860 	 */
1861 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1862 			  GFP_KERNEL);
1863 	if (!copy_rd)
1864 		copy_rd = ERR_PTR(-ENOMEM);
1865 
1866 	kfree(regd);
1867 	return copy_rd;
1868 }
1869 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1870 
1871 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1872 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1873 #define MAX_NVM_FILE_LEN	16384
1874 
iwl_nvm_fixups(u32 hw_id,unsigned int section,u8 * data,unsigned int len)1875 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1876 		    unsigned int len)
1877 {
1878 #define IWL_4165_DEVICE_ID	0x5501
1879 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1880 
1881 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1882 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1883 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1884 		/* OTP 0x52 bug work around: it's a 1x1 device */
1885 		data[3] = ANT_B | (ANT_B << 4);
1886 }
1887 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1888 
1889 /*
1890  * Reads external NVM from a file into mvm->nvm_sections
1891  *
1892  * HOW TO CREATE THE NVM FILE FORMAT:
1893  * ------------------------------
1894  * 1. create hex file, format:
1895  *      3800 -> header
1896  *      0000 -> header
1897  *      5a40 -> data
1898  *
1899  *   rev - 6 bit (word1)
1900  *   len - 10 bit (word1)
1901  *   id - 4 bit (word2)
1902  *   rsv - 12 bit (word2)
1903  *
1904  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1905  *
1906  * 3. create binary file from the hex file
1907  *
1908  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1909  */
iwl_read_external_nvm(struct iwl_trans * trans,const char * nvm_file_name,struct iwl_nvm_section * nvm_sections)1910 int iwl_read_external_nvm(struct iwl_trans *trans,
1911 			  const char *nvm_file_name,
1912 			  struct iwl_nvm_section *nvm_sections)
1913 {
1914 	int ret, section_size;
1915 	u16 section_id;
1916 	const struct firmware *fw_entry;
1917 	const struct {
1918 		__le16 word1;
1919 		__le16 word2;
1920 		u8 data[];
1921 	} *file_sec;
1922 	const u8 *eof;
1923 	u8 *temp;
1924 	int max_section_size;
1925 	const __le32 *dword_buff;
1926 
1927 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1928 #define NVM_WORD2_ID(x) (x >> 12)
1929 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1930 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1931 #define NVM_HEADER_0	(0x2A504C54)
1932 #define NVM_HEADER_1	(0x4E564D2A)
1933 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1934 
1935 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1936 
1937 	/* Maximal size depends on NVM version */
1938 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1939 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1940 	else
1941 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1942 
1943 	/*
1944 	 * Obtain NVM image via request_firmware. Since we already used
1945 	 * request_firmware_nowait() for the firmware binary load and only
1946 	 * get here after that we assume the NVM request can be satisfied
1947 	 * synchronously.
1948 	 */
1949 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1950 	if (ret) {
1951 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1952 			nvm_file_name, ret);
1953 		return ret;
1954 	}
1955 
1956 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1957 		 nvm_file_name, fw_entry->size);
1958 
1959 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1960 		IWL_ERR(trans, "NVM file too large\n");
1961 		ret = -EINVAL;
1962 		goto out;
1963 	}
1964 
1965 	eof = fw_entry->data + fw_entry->size;
1966 	dword_buff = (const __le32 *)fw_entry->data;
1967 
1968 	/* some NVM file will contain a header.
1969 	 * The header is identified by 2 dwords header as follow:
1970 	 * dword[0] = 0x2A504C54
1971 	 * dword[1] = 0x4E564D2A
1972 	 *
1973 	 * This header must be skipped when providing the NVM data to the FW.
1974 	 */
1975 	if (fw_entry->size > NVM_HEADER_SIZE &&
1976 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1977 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1978 		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1979 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1980 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1981 			 le32_to_cpu(dword_buff[3]));
1982 
1983 		/* nvm file validation, dword_buff[2] holds the file version */
1984 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1985 		    trans->hw_rev_step == SILICON_C_STEP &&
1986 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1987 			ret = -EFAULT;
1988 			goto out;
1989 		}
1990 	} else {
1991 		file_sec = (const void *)fw_entry->data;
1992 	}
1993 
1994 	while (true) {
1995 		if (file_sec->data > eof) {
1996 			IWL_ERR(trans,
1997 				"ERROR - NVM file too short for section header\n");
1998 			ret = -EINVAL;
1999 			break;
2000 		}
2001 
2002 		/* check for EOF marker */
2003 		if (!file_sec->word1 && !file_sec->word2) {
2004 			ret = 0;
2005 			break;
2006 		}
2007 
2008 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
2009 			section_size =
2010 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
2011 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
2012 		} else {
2013 			section_size = 2 * EXT_NVM_WORD2_LEN(
2014 						le16_to_cpu(file_sec->word2));
2015 			section_id = EXT_NVM_WORD1_ID(
2016 						le16_to_cpu(file_sec->word1));
2017 		}
2018 
2019 		if (section_size > max_section_size) {
2020 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
2021 				section_size);
2022 			ret = -EINVAL;
2023 			break;
2024 		}
2025 
2026 		if (!section_size) {
2027 			IWL_ERR(trans, "ERROR - section empty\n");
2028 			ret = -EINVAL;
2029 			break;
2030 		}
2031 
2032 		if (file_sec->data + section_size > eof) {
2033 			IWL_ERR(trans,
2034 				"ERROR - NVM file too short for section (%d bytes)\n",
2035 				section_size);
2036 			ret = -EINVAL;
2037 			break;
2038 		}
2039 
2040 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
2041 			 "Invalid NVM section ID %d\n", section_id)) {
2042 			ret = -EINVAL;
2043 			break;
2044 		}
2045 
2046 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
2047 		if (!temp) {
2048 			ret = -ENOMEM;
2049 			break;
2050 		}
2051 
2052 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
2053 
2054 		kfree(nvm_sections[section_id].data);
2055 		nvm_sections[section_id].data = temp;
2056 		nvm_sections[section_id].length = section_size;
2057 
2058 		/* advance to the next section */
2059 		file_sec = (const void *)(file_sec->data + section_size);
2060 	}
2061 out:
2062 	release_firmware(fw_entry);
2063 	return ret;
2064 }
2065 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
2066 
iwl_get_nvm(struct iwl_trans * trans,const struct iwl_fw * fw,u8 set_tx_ant,u8 set_rx_ant)2067 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
2068 				 const struct iwl_fw *fw,
2069 				 u8 set_tx_ant, u8 set_rx_ant)
2070 {
2071 	struct iwl_nvm_get_info cmd = {};
2072 	struct iwl_nvm_data *nvm;
2073 	struct iwl_host_cmd hcmd = {
2074 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
2075 		.data = { &cmd, },
2076 		.len = { sizeof(cmd) },
2077 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
2078 	};
2079 	int  ret;
2080 	bool empty_otp;
2081 	u32 mac_flags;
2082 	u32 sbands_flags = 0;
2083 	u8 tx_ant;
2084 	u8 rx_ant;
2085 
2086 	/*
2087 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
2088 	 * in v3, except for the channel profile part of the
2089 	 * regulatory.  So we can just access the new struct, with the
2090 	 * exception of the latter.
2091 	 */
2092 	struct iwl_nvm_get_info_rsp *rsp;
2093 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
2094 	bool v4 = fw_has_api(&fw->ucode_capa,
2095 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
2096 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
2097 	void *channel_profile;
2098 
2099 	ret = iwl_trans_send_cmd(trans, &hcmd);
2100 	if (ret)
2101 		return ERR_PTR(ret);
2102 
2103 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
2104 		 "Invalid payload len in NVM response from FW %d",
2105 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
2106 		ret = -EINVAL;
2107 		goto out;
2108 	}
2109 
2110 	rsp = (void *)hcmd.resp_pkt->data;
2111 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2112 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
2113 	if (empty_otp)
2114 		IWL_INFO(trans, "OTP is empty\n");
2115 
2116 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2117 	if (!nvm) {
2118 		ret = -ENOMEM;
2119 		goto out;
2120 	}
2121 
2122 	iwl_set_hw_address_from_csr(trans, nvm);
2123 	/* TODO: if platform NVM has MAC address - override it here */
2124 
2125 	if (!is_valid_ether_addr(nvm->hw_addr)) {
2126 		IWL_ERR(trans, "no valid mac address was found\n");
2127 		ret = -EINVAL;
2128 		goto err_free;
2129 	}
2130 
2131 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2132 
2133 	/* Initialize general data */
2134 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2135 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2136 	if (nvm->n_hw_addrs == 0)
2137 		IWL_WARN(trans,
2138 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2139 			 empty_otp);
2140 
2141 	/* Initialize MAC sku data */
2142 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2143 	nvm->sku_cap_11ac_enable =
2144 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2145 	nvm->sku_cap_11n_enable =
2146 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2147 	nvm->sku_cap_11ax_enable =
2148 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2149 	nvm->sku_cap_band_24ghz_enable =
2150 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2151 	nvm->sku_cap_band_52ghz_enable =
2152 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2153 	nvm->sku_cap_mimo_disabled =
2154 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2155 	if (CSR_HW_RFID_TYPE(trans->hw_rf_id) >= IWL_CFG_RF_TYPE_FM)
2156 		nvm->sku_cap_11be_enable = true;
2157 
2158 	/* Initialize PHY sku data */
2159 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2160 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2161 
2162 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2163 	    fw_has_capa(&fw->ucode_capa,
2164 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2165 		nvm->lar_enabled = true;
2166 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2167 	}
2168 
2169 	rsp_v3 = (void *)rsp;
2170 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2171 			  (void *)rsp_v3->regulatory.channel_profile;
2172 
2173 	tx_ant = nvm->valid_tx_ant & fw->valid_tx_ant;
2174 	rx_ant = nvm->valid_rx_ant & fw->valid_rx_ant;
2175 
2176 	if (set_tx_ant)
2177 		tx_ant &= set_tx_ant;
2178 	if (set_rx_ant)
2179 		rx_ant &= set_rx_ant;
2180 
2181 	iwl_init_sbands(trans, nvm, channel_profile, tx_ant, rx_ant,
2182 			sbands_flags, v4, fw);
2183 
2184 	iwl_free_resp(&hcmd);
2185 	return nvm;
2186 
2187 err_free:
2188 	kfree(nvm);
2189 out:
2190 	iwl_free_resp(&hcmd);
2191 	return ERR_PTR(ret);
2192 }
2193 IWL_EXPORT_SYMBOL(iwl_get_nvm);
2194