1 /*
2  * Copyright (c) 2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/clocksource.h>
34 #include <linux/highmem.h>
35 #include <linux/log2.h>
36 #include <linux/ptp_clock_kernel.h>
37 #include <rdma/mlx5-abi.h>
38 #include "lib/eq.h"
39 #include "en.h"
40 #include "clock.h"
41 #ifdef CONFIG_X86
42 #include <linux/timekeeping.h>
43 #include <linux/cpufeature.h>
44 #endif /* CONFIG_X86 */
45 
46 enum {
47 	MLX5_PIN_MODE_IN		= 0x0,
48 	MLX5_PIN_MODE_OUT		= 0x1,
49 };
50 
51 enum {
52 	MLX5_OUT_PATTERN_PULSE		= 0x0,
53 	MLX5_OUT_PATTERN_PERIODIC	= 0x1,
54 };
55 
56 enum {
57 	MLX5_EVENT_MODE_DISABLE	= 0x0,
58 	MLX5_EVENT_MODE_REPETETIVE	= 0x1,
59 	MLX5_EVENT_MODE_ONCE_TILL_ARM	= 0x2,
60 };
61 
62 enum {
63 	MLX5_MTPPS_FS_ENABLE			= BIT(0x0),
64 	MLX5_MTPPS_FS_PATTERN			= BIT(0x2),
65 	MLX5_MTPPS_FS_PIN_MODE			= BIT(0x3),
66 	MLX5_MTPPS_FS_TIME_STAMP		= BIT(0x4),
67 	MLX5_MTPPS_FS_OUT_PULSE_DURATION	= BIT(0x5),
68 	MLX5_MTPPS_FS_ENH_OUT_PER_ADJ		= BIT(0x7),
69 	MLX5_MTPPS_FS_NPPS_PERIOD               = BIT(0x9),
70 	MLX5_MTPPS_FS_OUT_PULSE_DURATION_NS     = BIT(0xa),
71 };
72 
73 enum {
74 	MLX5_MTUTC_OPERATION_ADJUST_TIME_MIN          = S16_MIN,
75 	MLX5_MTUTC_OPERATION_ADJUST_TIME_MAX          = S16_MAX,
76 	MLX5_MTUTC_OPERATION_ADJUST_TIME_EXTENDED_MIN = -200000,
77 	MLX5_MTUTC_OPERATION_ADJUST_TIME_EXTENDED_MAX = 200000,
78 };
79 
mlx5_real_time_mode(struct mlx5_core_dev * mdev)80 static bool mlx5_real_time_mode(struct mlx5_core_dev *mdev)
81 {
82 	return (mlx5_is_real_time_rq(mdev) || mlx5_is_real_time_sq(mdev));
83 }
84 
mlx5_npps_real_time_supported(struct mlx5_core_dev * mdev)85 static bool mlx5_npps_real_time_supported(struct mlx5_core_dev *mdev)
86 {
87 	return (mlx5_real_time_mode(mdev) &&
88 		MLX5_CAP_MCAM_FEATURE(mdev, npps_period) &&
89 		MLX5_CAP_MCAM_FEATURE(mdev, out_pulse_duration_ns));
90 }
91 
mlx5_modify_mtutc_allowed(struct mlx5_core_dev * mdev)92 static bool mlx5_modify_mtutc_allowed(struct mlx5_core_dev *mdev)
93 {
94 	return MLX5_CAP_MCAM_FEATURE(mdev, ptpcyc2realtime_modify);
95 }
96 
mlx5_ptp_shift_constant(u32 dev_freq_khz)97 static u32 mlx5_ptp_shift_constant(u32 dev_freq_khz)
98 {
99 	/* Optimal shift constant leads to corrections above just 1 scaled ppm.
100 	 *
101 	 * Two sets of equations are needed to derive the optimal shift
102 	 * constant for the cyclecounter.
103 	 *
104 	 *    dev_freq_khz * 1000 / 2^shift_constant = 1 scaled_ppm
105 	 *    ppb = scaled_ppm * 1000 / 2^16
106 	 *
107 	 * Using the two equations together
108 	 *
109 	 *    dev_freq_khz * 1000 / 1 scaled_ppm = 2^shift_constant
110 	 *    dev_freq_khz * 2^16 / 1 ppb = 2^shift_constant
111 	 *    dev_freq_khz = 2^(shift_constant - 16)
112 	 *
113 	 * then yields
114 	 *
115 	 *    shift_constant = ilog2(dev_freq_khz) + 16
116 	 */
117 
118 	return min(ilog2(dev_freq_khz) + 16,
119 		   ilog2((U32_MAX / NSEC_PER_MSEC) * dev_freq_khz));
120 }
121 
mlx5_ptp_getmaxphase(struct ptp_clock_info * ptp)122 static s32 mlx5_ptp_getmaxphase(struct ptp_clock_info *ptp)
123 {
124 	struct mlx5_clock *clock = container_of(ptp, struct mlx5_clock, ptp_info);
125 	struct mlx5_core_dev *mdev;
126 
127 	mdev = container_of(clock, struct mlx5_core_dev, clock);
128 
129 	return MLX5_CAP_MCAM_FEATURE(mdev, mtutc_time_adjustment_extended_range) ?
130 		       MLX5_MTUTC_OPERATION_ADJUST_TIME_EXTENDED_MAX :
131 			     MLX5_MTUTC_OPERATION_ADJUST_TIME_MAX;
132 }
133 
mlx5_is_mtutc_time_adj_cap(struct mlx5_core_dev * mdev,s64 delta)134 static bool mlx5_is_mtutc_time_adj_cap(struct mlx5_core_dev *mdev, s64 delta)
135 {
136 	s64 max = mlx5_ptp_getmaxphase(&mdev->clock.ptp_info);
137 
138 	if (delta < -max || delta > max)
139 		return false;
140 
141 	return true;
142 }
143 
mlx5_set_mtutc(struct mlx5_core_dev * dev,u32 * mtutc,u32 size)144 static int mlx5_set_mtutc(struct mlx5_core_dev *dev, u32 *mtutc, u32 size)
145 {
146 	u32 out[MLX5_ST_SZ_DW(mtutc_reg)] = {};
147 
148 	if (!MLX5_CAP_MCAM_REG(dev, mtutc))
149 		return -EOPNOTSUPP;
150 
151 	return mlx5_core_access_reg(dev, mtutc, size, out, sizeof(out),
152 				    MLX5_REG_MTUTC, 0, 1);
153 }
154 
155 #ifdef CONFIG_X86
mlx5_is_ptm_source_time_available(struct mlx5_core_dev * dev)156 static bool mlx5_is_ptm_source_time_available(struct mlx5_core_dev *dev)
157 {
158 	u32 out[MLX5_ST_SZ_DW(mtptm_reg)] = {0};
159 	u32 in[MLX5_ST_SZ_DW(mtptm_reg)] = {0};
160 	int err;
161 
162 	if (!MLX5_CAP_MCAM_REG3(dev, mtptm))
163 		return false;
164 
165 	err = mlx5_core_access_reg(dev, in, sizeof(in), out, sizeof(out), MLX5_REG_MTPTM,
166 				   0, 0);
167 	if (err)
168 		return false;
169 
170 	return !!MLX5_GET(mtptm_reg, out, psta);
171 }
172 
mlx5_mtctr_syncdevicetime(ktime_t * device_time,struct system_counterval_t * sys_counterval,void * ctx)173 static int mlx5_mtctr_syncdevicetime(ktime_t *device_time,
174 				     struct system_counterval_t *sys_counterval,
175 				     void *ctx)
176 {
177 	u32 out[MLX5_ST_SZ_DW(mtctr_reg)] = {0};
178 	u32 in[MLX5_ST_SZ_DW(mtctr_reg)] = {0};
179 	struct mlx5_core_dev *mdev = ctx;
180 	bool real_time_mode;
181 	u64 host, device;
182 	int err;
183 
184 	real_time_mode = mlx5_real_time_mode(mdev);
185 
186 	MLX5_SET(mtctr_reg, in, first_clock_timestamp_request,
187 		 MLX5_MTCTR_REQUEST_PTM_ROOT_CLOCK);
188 	MLX5_SET(mtctr_reg, in, second_clock_timestamp_request,
189 		 real_time_mode ? MLX5_MTCTR_REQUEST_REAL_TIME_CLOCK :
190 		 MLX5_MTCTR_REQUEST_FREE_RUNNING_COUNTER);
191 
192 	err = mlx5_core_access_reg(mdev, in, sizeof(in), out, sizeof(out), MLX5_REG_MTCTR,
193 				   0, 0);
194 	if (err)
195 		return err;
196 
197 	if (!MLX5_GET(mtctr_reg, out, first_clock_valid) ||
198 	    !MLX5_GET(mtctr_reg, out, second_clock_valid))
199 		return -EINVAL;
200 
201 	host = MLX5_GET64(mtctr_reg, out, first_clock_timestamp);
202 	*sys_counterval = (struct system_counterval_t) {
203 			.cycles = host,
204 			.cs_id = CSID_X86_ART,
205 			.use_nsecs = true,
206 	};
207 
208 	device = MLX5_GET64(mtctr_reg, out, second_clock_timestamp);
209 	if (real_time_mode)
210 		*device_time = ns_to_ktime(REAL_TIME_TO_NS(device >> 32, device & U32_MAX));
211 	else
212 		*device_time = mlx5_timecounter_cyc2time(&mdev->clock, device);
213 
214 	return 0;
215 }
216 
mlx5_ptp_getcrosststamp(struct ptp_clock_info * ptp,struct system_device_crosststamp * cts)217 static int mlx5_ptp_getcrosststamp(struct ptp_clock_info *ptp,
218 				   struct system_device_crosststamp *cts)
219 {
220 	struct mlx5_clock *clock = container_of(ptp, struct mlx5_clock, ptp_info);
221 	struct system_time_snapshot history_begin = {0};
222 	struct mlx5_core_dev *mdev;
223 
224 	mdev = container_of(clock, struct mlx5_core_dev, clock);
225 
226 	if (!mlx5_is_ptm_source_time_available(mdev))
227 		return -EBUSY;
228 
229 	ktime_get_snapshot(&history_begin);
230 
231 	return get_device_system_crosststamp(mlx5_mtctr_syncdevicetime, mdev,
232 					     &history_begin, cts);
233 }
234 #endif /* CONFIG_X86 */
235 
mlx5_read_time(struct mlx5_core_dev * dev,struct ptp_system_timestamp * sts,bool real_time)236 static u64 mlx5_read_time(struct mlx5_core_dev *dev,
237 			  struct ptp_system_timestamp *sts,
238 			  bool real_time)
239 {
240 	u32 timer_h, timer_h1, timer_l;
241 
242 	timer_h = ioread32be(real_time ? &dev->iseg->real_time_h :
243 			     &dev->iseg->internal_timer_h);
244 	ptp_read_system_prets(sts);
245 	timer_l = ioread32be(real_time ? &dev->iseg->real_time_l :
246 			     &dev->iseg->internal_timer_l);
247 	ptp_read_system_postts(sts);
248 	timer_h1 = ioread32be(real_time ? &dev->iseg->real_time_h :
249 			      &dev->iseg->internal_timer_h);
250 	if (timer_h != timer_h1) {
251 		/* wrap around */
252 		ptp_read_system_prets(sts);
253 		timer_l = ioread32be(real_time ? &dev->iseg->real_time_l :
254 				     &dev->iseg->internal_timer_l);
255 		ptp_read_system_postts(sts);
256 	}
257 
258 	return real_time ? REAL_TIME_TO_NS(timer_h1, timer_l) :
259 			   (u64)timer_l | (u64)timer_h1 << 32;
260 }
261 
read_internal_timer(const struct cyclecounter * cc)262 static u64 read_internal_timer(const struct cyclecounter *cc)
263 {
264 	struct mlx5_timer *timer = container_of(cc, struct mlx5_timer, cycles);
265 	struct mlx5_clock *clock = container_of(timer, struct mlx5_clock, timer);
266 	struct mlx5_core_dev *mdev = container_of(clock, struct mlx5_core_dev,
267 						  clock);
268 
269 	return mlx5_read_time(mdev, NULL, false) & cc->mask;
270 }
271 
mlx5_update_clock_info_page(struct mlx5_core_dev * mdev)272 static void mlx5_update_clock_info_page(struct mlx5_core_dev *mdev)
273 {
274 	struct mlx5_ib_clock_info *clock_info = mdev->clock_info;
275 	struct mlx5_clock *clock = &mdev->clock;
276 	struct mlx5_timer *timer;
277 	u32 sign;
278 
279 	if (!clock_info)
280 		return;
281 
282 	sign = smp_load_acquire(&clock_info->sign);
283 	smp_store_mb(clock_info->sign,
284 		     sign | MLX5_IB_CLOCK_INFO_KERNEL_UPDATING);
285 
286 	timer = &clock->timer;
287 	clock_info->cycles = timer->tc.cycle_last;
288 	clock_info->mult   = timer->cycles.mult;
289 	clock_info->nsec   = timer->tc.nsec;
290 	clock_info->frac   = timer->tc.frac;
291 
292 	smp_store_release(&clock_info->sign,
293 			  sign + MLX5_IB_CLOCK_INFO_KERNEL_UPDATING * 2);
294 }
295 
mlx5_pps_out(struct work_struct * work)296 static void mlx5_pps_out(struct work_struct *work)
297 {
298 	struct mlx5_pps *pps_info = container_of(work, struct mlx5_pps,
299 						 out_work);
300 	struct mlx5_clock *clock = container_of(pps_info, struct mlx5_clock,
301 						pps_info);
302 	struct mlx5_core_dev *mdev = container_of(clock, struct mlx5_core_dev,
303 						  clock);
304 	u32 in[MLX5_ST_SZ_DW(mtpps_reg)] = {0};
305 	unsigned long flags;
306 	int i;
307 
308 	for (i = 0; i < clock->ptp_info.n_pins; i++) {
309 		u64 tstart;
310 
311 		write_seqlock_irqsave(&clock->lock, flags);
312 		tstart = clock->pps_info.start[i];
313 		clock->pps_info.start[i] = 0;
314 		write_sequnlock_irqrestore(&clock->lock, flags);
315 		if (!tstart)
316 			continue;
317 
318 		MLX5_SET(mtpps_reg, in, pin, i);
319 		MLX5_SET64(mtpps_reg, in, time_stamp, tstart);
320 		MLX5_SET(mtpps_reg, in, field_select, MLX5_MTPPS_FS_TIME_STAMP);
321 		mlx5_set_mtpps(mdev, in, sizeof(in));
322 	}
323 }
324 
mlx5_timestamp_overflow(struct ptp_clock_info * ptp_info)325 static long mlx5_timestamp_overflow(struct ptp_clock_info *ptp_info)
326 {
327 	struct mlx5_core_dev *mdev;
328 	struct mlx5_timer *timer;
329 	struct mlx5_clock *clock;
330 	unsigned long flags;
331 
332 	clock = container_of(ptp_info, struct mlx5_clock, ptp_info);
333 	mdev = container_of(clock, struct mlx5_core_dev, clock);
334 	timer = &clock->timer;
335 
336 	if (mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
337 		goto out;
338 
339 	write_seqlock_irqsave(&clock->lock, flags);
340 	timecounter_read(&timer->tc);
341 	mlx5_update_clock_info_page(mdev);
342 	write_sequnlock_irqrestore(&clock->lock, flags);
343 
344 out:
345 	return timer->overflow_period;
346 }
347 
mlx5_ptp_settime_real_time(struct mlx5_core_dev * mdev,const struct timespec64 * ts)348 static int mlx5_ptp_settime_real_time(struct mlx5_core_dev *mdev,
349 				      const struct timespec64 *ts)
350 {
351 	u32 in[MLX5_ST_SZ_DW(mtutc_reg)] = {};
352 
353 	if (ts->tv_sec < 0 || ts->tv_sec > U32_MAX ||
354 	    ts->tv_nsec < 0 || ts->tv_nsec > NSEC_PER_SEC)
355 		return -EINVAL;
356 
357 	MLX5_SET(mtutc_reg, in, operation, MLX5_MTUTC_OPERATION_SET_TIME_IMMEDIATE);
358 	MLX5_SET(mtutc_reg, in, utc_sec, ts->tv_sec);
359 	MLX5_SET(mtutc_reg, in, utc_nsec, ts->tv_nsec);
360 
361 	return mlx5_set_mtutc(mdev, in, sizeof(in));
362 }
363 
mlx5_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)364 static int mlx5_ptp_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts)
365 {
366 	struct mlx5_clock *clock = container_of(ptp, struct mlx5_clock, ptp_info);
367 	struct mlx5_timer *timer = &clock->timer;
368 	struct mlx5_core_dev *mdev;
369 	unsigned long flags;
370 
371 	mdev = container_of(clock, struct mlx5_core_dev, clock);
372 
373 	if (mlx5_modify_mtutc_allowed(mdev)) {
374 		int err = mlx5_ptp_settime_real_time(mdev, ts);
375 
376 		if (err)
377 			return err;
378 	}
379 
380 	write_seqlock_irqsave(&clock->lock, flags);
381 	timecounter_init(&timer->tc, &timer->cycles, timespec64_to_ns(ts));
382 	mlx5_update_clock_info_page(mdev);
383 	write_sequnlock_irqrestore(&clock->lock, flags);
384 
385 	return 0;
386 }
387 
388 static
mlx5_ptp_gettimex_real_time(struct mlx5_core_dev * mdev,struct ptp_system_timestamp * sts)389 struct timespec64 mlx5_ptp_gettimex_real_time(struct mlx5_core_dev *mdev,
390 					      struct ptp_system_timestamp *sts)
391 {
392 	struct timespec64 ts;
393 	u64 time;
394 
395 	time = mlx5_read_time(mdev, sts, true);
396 	ts = ns_to_timespec64(time);
397 	return ts;
398 }
399 
mlx5_ptp_gettimex(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)400 static int mlx5_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
401 			     struct ptp_system_timestamp *sts)
402 {
403 	struct mlx5_clock *clock = container_of(ptp, struct mlx5_clock, ptp_info);
404 	struct mlx5_core_dev *mdev;
405 	u64 cycles, ns;
406 
407 	mdev = container_of(clock, struct mlx5_core_dev, clock);
408 	if (mlx5_real_time_mode(mdev)) {
409 		*ts = mlx5_ptp_gettimex_real_time(mdev, sts);
410 		goto out;
411 	}
412 
413 	cycles = mlx5_read_time(mdev, sts, false);
414 	ns = mlx5_timecounter_cyc2time(clock, cycles);
415 	*ts = ns_to_timespec64(ns);
416 out:
417 	return 0;
418 }
419 
mlx5_ptp_adjtime_real_time(struct mlx5_core_dev * mdev,s64 delta)420 static int mlx5_ptp_adjtime_real_time(struct mlx5_core_dev *mdev, s64 delta)
421 {
422 	u32 in[MLX5_ST_SZ_DW(mtutc_reg)] = {};
423 
424 	/* HW time adjustment range is checked. If out of range, settime instead */
425 	if (!mlx5_is_mtutc_time_adj_cap(mdev, delta)) {
426 		struct timespec64 ts;
427 		s64 ns;
428 
429 		ts = mlx5_ptp_gettimex_real_time(mdev, NULL);
430 		ns = timespec64_to_ns(&ts) + delta;
431 		ts = ns_to_timespec64(ns);
432 		return mlx5_ptp_settime_real_time(mdev, &ts);
433 	}
434 
435 	MLX5_SET(mtutc_reg, in, operation, MLX5_MTUTC_OPERATION_ADJUST_TIME);
436 	MLX5_SET(mtutc_reg, in, time_adjustment, delta);
437 
438 	return mlx5_set_mtutc(mdev, in, sizeof(in));
439 }
440 
mlx5_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)441 static int mlx5_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
442 {
443 	struct mlx5_clock *clock = container_of(ptp, struct mlx5_clock, ptp_info);
444 	struct mlx5_timer *timer = &clock->timer;
445 	struct mlx5_core_dev *mdev;
446 	unsigned long flags;
447 
448 	mdev = container_of(clock, struct mlx5_core_dev, clock);
449 
450 	if (mlx5_modify_mtutc_allowed(mdev)) {
451 		int err = mlx5_ptp_adjtime_real_time(mdev, delta);
452 
453 		if (err)
454 			return err;
455 	}
456 
457 	write_seqlock_irqsave(&clock->lock, flags);
458 	timecounter_adjtime(&timer->tc, delta);
459 	mlx5_update_clock_info_page(mdev);
460 	write_sequnlock_irqrestore(&clock->lock, flags);
461 
462 	return 0;
463 }
464 
mlx5_ptp_adjphase(struct ptp_clock_info * ptp,s32 delta)465 static int mlx5_ptp_adjphase(struct ptp_clock_info *ptp, s32 delta)
466 {
467 	struct mlx5_clock *clock = container_of(ptp, struct mlx5_clock, ptp_info);
468 	struct mlx5_core_dev *mdev;
469 
470 	mdev = container_of(clock, struct mlx5_core_dev, clock);
471 
472 	return mlx5_ptp_adjtime_real_time(mdev, delta);
473 }
474 
mlx5_ptp_freq_adj_real_time(struct mlx5_core_dev * mdev,long scaled_ppm)475 static int mlx5_ptp_freq_adj_real_time(struct mlx5_core_dev *mdev, long scaled_ppm)
476 {
477 	u32 in[MLX5_ST_SZ_DW(mtutc_reg)] = {};
478 
479 	MLX5_SET(mtutc_reg, in, operation, MLX5_MTUTC_OPERATION_ADJUST_FREQ_UTC);
480 
481 	if (MLX5_CAP_MCAM_FEATURE(mdev, mtutc_freq_adj_units) &&
482 	    scaled_ppm <= S32_MAX && scaled_ppm >= S32_MIN) {
483 		/* HW scaled_ppm support on mlx5 devices only supports a 32-bit value */
484 		MLX5_SET(mtutc_reg, in, freq_adj_units,
485 			 MLX5_MTUTC_FREQ_ADJ_UNITS_SCALED_PPM);
486 		MLX5_SET(mtutc_reg, in, freq_adjustment, (s32)scaled_ppm);
487 	} else {
488 		MLX5_SET(mtutc_reg, in, freq_adj_units, MLX5_MTUTC_FREQ_ADJ_UNITS_PPB);
489 		MLX5_SET(mtutc_reg, in, freq_adjustment, scaled_ppm_to_ppb(scaled_ppm));
490 	}
491 
492 	return mlx5_set_mtutc(mdev, in, sizeof(in));
493 }
494 
mlx5_ptp_adjfine(struct ptp_clock_info * ptp,long scaled_ppm)495 static int mlx5_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
496 {
497 	struct mlx5_clock *clock = container_of(ptp, struct mlx5_clock, ptp_info);
498 	struct mlx5_timer *timer = &clock->timer;
499 	struct mlx5_core_dev *mdev;
500 	unsigned long flags;
501 	u32 mult;
502 
503 	mdev = container_of(clock, struct mlx5_core_dev, clock);
504 
505 	if (mlx5_modify_mtutc_allowed(mdev)) {
506 		int err = mlx5_ptp_freq_adj_real_time(mdev, scaled_ppm);
507 
508 		if (err)
509 			return err;
510 	}
511 
512 	mult = (u32)adjust_by_scaled_ppm(timer->nominal_c_mult, scaled_ppm);
513 
514 	write_seqlock_irqsave(&clock->lock, flags);
515 	timecounter_read(&timer->tc);
516 	timer->cycles.mult = mult;
517 	mlx5_update_clock_info_page(mdev);
518 	write_sequnlock_irqrestore(&clock->lock, flags);
519 	ptp_schedule_worker(clock->ptp, timer->overflow_period);
520 
521 	return 0;
522 }
523 
mlx5_extts_configure(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)524 static int mlx5_extts_configure(struct ptp_clock_info *ptp,
525 				struct ptp_clock_request *rq,
526 				int on)
527 {
528 	struct mlx5_clock *clock =
529 			container_of(ptp, struct mlx5_clock, ptp_info);
530 	struct mlx5_core_dev *mdev =
531 			container_of(clock, struct mlx5_core_dev, clock);
532 	u32 in[MLX5_ST_SZ_DW(mtpps_reg)] = {0};
533 	u32 field_select = 0;
534 	u8 pin_mode = 0;
535 	u8 pattern = 0;
536 	int pin = -1;
537 	int err = 0;
538 
539 	if (!MLX5_PPS_CAP(mdev))
540 		return -EOPNOTSUPP;
541 
542 	/* Reject requests with unsupported flags */
543 	if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
544 				PTP_RISING_EDGE |
545 				PTP_FALLING_EDGE |
546 				PTP_STRICT_FLAGS))
547 		return -EOPNOTSUPP;
548 
549 	/* Reject requests to enable time stamping on both edges. */
550 	if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
551 	    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
552 	    (rq->extts.flags & PTP_EXTTS_EDGES) == PTP_EXTTS_EDGES)
553 		return -EOPNOTSUPP;
554 
555 	if (rq->extts.index >= clock->ptp_info.n_pins)
556 		return -EINVAL;
557 
558 	pin = ptp_find_pin(clock->ptp, PTP_PF_EXTTS, rq->extts.index);
559 	if (pin < 0)
560 		return -EBUSY;
561 
562 	if (on) {
563 		pin_mode = MLX5_PIN_MODE_IN;
564 		pattern = !!(rq->extts.flags & PTP_FALLING_EDGE);
565 		field_select = MLX5_MTPPS_FS_PIN_MODE |
566 			       MLX5_MTPPS_FS_PATTERN |
567 			       MLX5_MTPPS_FS_ENABLE;
568 	} else {
569 		field_select = MLX5_MTPPS_FS_ENABLE;
570 	}
571 
572 	MLX5_SET(mtpps_reg, in, pin, pin);
573 	MLX5_SET(mtpps_reg, in, pin_mode, pin_mode);
574 	MLX5_SET(mtpps_reg, in, pattern, pattern);
575 	MLX5_SET(mtpps_reg, in, enable, on);
576 	MLX5_SET(mtpps_reg, in, field_select, field_select);
577 
578 	err = mlx5_set_mtpps(mdev, in, sizeof(in));
579 	if (err)
580 		return err;
581 
582 	return mlx5_set_mtppse(mdev, pin, 0,
583 			       MLX5_EVENT_MODE_REPETETIVE & on);
584 }
585 
find_target_cycles(struct mlx5_core_dev * mdev,s64 target_ns)586 static u64 find_target_cycles(struct mlx5_core_dev *mdev, s64 target_ns)
587 {
588 	struct mlx5_clock *clock = &mdev->clock;
589 	u64 cycles_now, cycles_delta;
590 	u64 nsec_now, nsec_delta;
591 	struct mlx5_timer *timer;
592 	unsigned long flags;
593 
594 	timer = &clock->timer;
595 
596 	cycles_now = mlx5_read_time(mdev, NULL, false);
597 	write_seqlock_irqsave(&clock->lock, flags);
598 	nsec_now = timecounter_cyc2time(&timer->tc, cycles_now);
599 	nsec_delta = target_ns - nsec_now;
600 	cycles_delta = div64_u64(nsec_delta << timer->cycles.shift,
601 				 timer->cycles.mult);
602 	write_sequnlock_irqrestore(&clock->lock, flags);
603 
604 	return cycles_now + cycles_delta;
605 }
606 
perout_conf_internal_timer(struct mlx5_core_dev * mdev,s64 sec)607 static u64 perout_conf_internal_timer(struct mlx5_core_dev *mdev, s64 sec)
608 {
609 	struct timespec64 ts = {};
610 	s64 target_ns;
611 
612 	ts.tv_sec = sec;
613 	target_ns = timespec64_to_ns(&ts);
614 
615 	return find_target_cycles(mdev, target_ns);
616 }
617 
perout_conf_real_time(s64 sec,u32 nsec)618 static u64 perout_conf_real_time(s64 sec, u32 nsec)
619 {
620 	return (u64)nsec | (u64)sec << 32;
621 }
622 
perout_conf_1pps(struct mlx5_core_dev * mdev,struct ptp_clock_request * rq,u64 * time_stamp,bool real_time)623 static int perout_conf_1pps(struct mlx5_core_dev *mdev, struct ptp_clock_request *rq,
624 			    u64 *time_stamp, bool real_time)
625 {
626 	struct timespec64 ts;
627 	s64 ns;
628 
629 	ts.tv_nsec = rq->perout.period.nsec;
630 	ts.tv_sec = rq->perout.period.sec;
631 	ns = timespec64_to_ns(&ts);
632 
633 	if ((ns >> 1) != 500000000LL)
634 		return -EINVAL;
635 
636 	*time_stamp = real_time ? perout_conf_real_time(rq->perout.start.sec, 0) :
637 		      perout_conf_internal_timer(mdev, rq->perout.start.sec);
638 
639 	return 0;
640 }
641 
642 #define MLX5_MAX_PULSE_DURATION (BIT(__mlx5_bit_sz(mtpps_reg, out_pulse_duration_ns)) - 1)
mlx5_perout_conf_out_pulse_duration(struct mlx5_core_dev * mdev,struct ptp_clock_request * rq,u32 * out_pulse_duration_ns)643 static int mlx5_perout_conf_out_pulse_duration(struct mlx5_core_dev *mdev,
644 					       struct ptp_clock_request *rq,
645 					       u32 *out_pulse_duration_ns)
646 {
647 	struct mlx5_pps *pps_info = &mdev->clock.pps_info;
648 	u32 out_pulse_duration;
649 	struct timespec64 ts;
650 
651 	if (rq->perout.flags & PTP_PEROUT_DUTY_CYCLE) {
652 		ts.tv_sec = rq->perout.on.sec;
653 		ts.tv_nsec = rq->perout.on.nsec;
654 		out_pulse_duration = (u32)timespec64_to_ns(&ts);
655 	} else {
656 		/* out_pulse_duration_ns should be up to 50% of the
657 		 * pulse period as default
658 		 */
659 		ts.tv_sec = rq->perout.period.sec;
660 		ts.tv_nsec = rq->perout.period.nsec;
661 		out_pulse_duration = (u32)timespec64_to_ns(&ts) >> 1;
662 	}
663 
664 	if (out_pulse_duration < pps_info->min_out_pulse_duration_ns ||
665 	    out_pulse_duration > MLX5_MAX_PULSE_DURATION) {
666 		mlx5_core_err(mdev, "NPPS pulse duration %u is not in [%llu, %lu]\n",
667 			      out_pulse_duration, pps_info->min_out_pulse_duration_ns,
668 			      MLX5_MAX_PULSE_DURATION);
669 		return -EINVAL;
670 	}
671 	*out_pulse_duration_ns = out_pulse_duration;
672 
673 	return 0;
674 }
675 
perout_conf_npps_real_time(struct mlx5_core_dev * mdev,struct ptp_clock_request * rq,u32 * field_select,u32 * out_pulse_duration_ns,u64 * period,u64 * time_stamp)676 static int perout_conf_npps_real_time(struct mlx5_core_dev *mdev, struct ptp_clock_request *rq,
677 				      u32 *field_select, u32 *out_pulse_duration_ns,
678 				      u64 *period, u64 *time_stamp)
679 {
680 	struct mlx5_pps *pps_info = &mdev->clock.pps_info;
681 	struct ptp_clock_time *time = &rq->perout.start;
682 	struct timespec64 ts;
683 
684 	ts.tv_sec = rq->perout.period.sec;
685 	ts.tv_nsec = rq->perout.period.nsec;
686 	if (timespec64_to_ns(&ts) < pps_info->min_npps_period) {
687 		mlx5_core_err(mdev, "NPPS period is lower than minimal npps period %llu\n",
688 			      pps_info->min_npps_period);
689 		return -EINVAL;
690 	}
691 	*period = perout_conf_real_time(rq->perout.period.sec, rq->perout.period.nsec);
692 
693 	if (mlx5_perout_conf_out_pulse_duration(mdev, rq, out_pulse_duration_ns))
694 		return -EINVAL;
695 
696 	*time_stamp = perout_conf_real_time(time->sec, time->nsec);
697 	*field_select |= MLX5_MTPPS_FS_NPPS_PERIOD |
698 			 MLX5_MTPPS_FS_OUT_PULSE_DURATION_NS;
699 
700 	return 0;
701 }
702 
mlx5_perout_verify_flags(struct mlx5_core_dev * mdev,unsigned int flags)703 static bool mlx5_perout_verify_flags(struct mlx5_core_dev *mdev, unsigned int flags)
704 {
705 	return ((!mlx5_npps_real_time_supported(mdev) && flags) ||
706 		(mlx5_npps_real_time_supported(mdev) && flags & ~PTP_PEROUT_DUTY_CYCLE));
707 }
708 
mlx5_perout_configure(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)709 static int mlx5_perout_configure(struct ptp_clock_info *ptp,
710 				 struct ptp_clock_request *rq,
711 				 int on)
712 {
713 	struct mlx5_clock *clock =
714 			container_of(ptp, struct mlx5_clock, ptp_info);
715 	struct mlx5_core_dev *mdev =
716 			container_of(clock, struct mlx5_core_dev, clock);
717 	bool rt_mode = mlx5_real_time_mode(mdev);
718 	u32 in[MLX5_ST_SZ_DW(mtpps_reg)] = {0};
719 	u32 out_pulse_duration_ns = 0;
720 	u32 field_select = 0;
721 	u64 npps_period = 0;
722 	u64 time_stamp = 0;
723 	u8 pin_mode = 0;
724 	u8 pattern = 0;
725 	int pin = -1;
726 	int err = 0;
727 
728 	if (!MLX5_PPS_CAP(mdev))
729 		return -EOPNOTSUPP;
730 
731 	/* Reject requests with unsupported flags */
732 	if (mlx5_perout_verify_flags(mdev, rq->perout.flags))
733 		return -EOPNOTSUPP;
734 
735 	if (rq->perout.index >= clock->ptp_info.n_pins)
736 		return -EINVAL;
737 
738 	field_select = MLX5_MTPPS_FS_ENABLE;
739 	pin = ptp_find_pin(clock->ptp, PTP_PF_PEROUT, rq->perout.index);
740 	if (pin < 0)
741 		return -EBUSY;
742 
743 	if (on) {
744 		bool rt_mode = mlx5_real_time_mode(mdev);
745 
746 		pin_mode = MLX5_PIN_MODE_OUT;
747 		pattern = MLX5_OUT_PATTERN_PERIODIC;
748 
749 		if (rt_mode &&  rq->perout.start.sec > U32_MAX)
750 			return -EINVAL;
751 
752 		field_select |= MLX5_MTPPS_FS_PIN_MODE |
753 				MLX5_MTPPS_FS_PATTERN |
754 				MLX5_MTPPS_FS_TIME_STAMP;
755 
756 		if (mlx5_npps_real_time_supported(mdev))
757 			err = perout_conf_npps_real_time(mdev, rq, &field_select,
758 							 &out_pulse_duration_ns, &npps_period,
759 							 &time_stamp);
760 		else
761 			err = perout_conf_1pps(mdev, rq, &time_stamp, rt_mode);
762 		if (err)
763 			return err;
764 	}
765 
766 	MLX5_SET(mtpps_reg, in, pin, pin);
767 	MLX5_SET(mtpps_reg, in, pin_mode, pin_mode);
768 	MLX5_SET(mtpps_reg, in, pattern, pattern);
769 	MLX5_SET(mtpps_reg, in, enable, on);
770 	MLX5_SET64(mtpps_reg, in, time_stamp, time_stamp);
771 	MLX5_SET(mtpps_reg, in, field_select, field_select);
772 	MLX5_SET64(mtpps_reg, in, npps_period, npps_period);
773 	MLX5_SET(mtpps_reg, in, out_pulse_duration_ns, out_pulse_duration_ns);
774 	err = mlx5_set_mtpps(mdev, in, sizeof(in));
775 	if (err)
776 		return err;
777 
778 	if (rt_mode)
779 		return 0;
780 
781 	return mlx5_set_mtppse(mdev, pin, 0,
782 			       MLX5_EVENT_MODE_REPETETIVE & on);
783 }
784 
mlx5_pps_configure(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)785 static int mlx5_pps_configure(struct ptp_clock_info *ptp,
786 			      struct ptp_clock_request *rq,
787 			      int on)
788 {
789 	struct mlx5_clock *clock =
790 			container_of(ptp, struct mlx5_clock, ptp_info);
791 
792 	clock->pps_info.enabled = !!on;
793 	return 0;
794 }
795 
mlx5_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)796 static int mlx5_ptp_enable(struct ptp_clock_info *ptp,
797 			   struct ptp_clock_request *rq,
798 			   int on)
799 {
800 	switch (rq->type) {
801 	case PTP_CLK_REQ_EXTTS:
802 		return mlx5_extts_configure(ptp, rq, on);
803 	case PTP_CLK_REQ_PEROUT:
804 		return mlx5_perout_configure(ptp, rq, on);
805 	case PTP_CLK_REQ_PPS:
806 		return mlx5_pps_configure(ptp, rq, on);
807 	default:
808 		return -EOPNOTSUPP;
809 	}
810 	return 0;
811 }
812 
813 enum {
814 	MLX5_MTPPS_REG_CAP_PIN_X_MODE_SUPPORT_PPS_IN = BIT(0),
815 	MLX5_MTPPS_REG_CAP_PIN_X_MODE_SUPPORT_PPS_OUT = BIT(1),
816 };
817 
mlx5_ptp_verify(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)818 static int mlx5_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
819 			   enum ptp_pin_function func, unsigned int chan)
820 {
821 	struct mlx5_clock *clock = container_of(ptp, struct mlx5_clock,
822 						ptp_info);
823 
824 	switch (func) {
825 	case PTP_PF_NONE:
826 		return 0;
827 	case PTP_PF_EXTTS:
828 		return !(clock->pps_info.pin_caps[pin] &
829 			 MLX5_MTPPS_REG_CAP_PIN_X_MODE_SUPPORT_PPS_IN);
830 	case PTP_PF_PEROUT:
831 		return !(clock->pps_info.pin_caps[pin] &
832 			 MLX5_MTPPS_REG_CAP_PIN_X_MODE_SUPPORT_PPS_OUT);
833 	default:
834 		return -EOPNOTSUPP;
835 	}
836 }
837 
838 static const struct ptp_clock_info mlx5_ptp_clock_info = {
839 	.owner		= THIS_MODULE,
840 	.name		= "mlx5_ptp",
841 	.max_adj	= 50000000,
842 	.n_alarm	= 0,
843 	.n_ext_ts	= 0,
844 	.n_per_out	= 0,
845 	.n_pins		= 0,
846 	.pps		= 0,
847 	.adjfine	= mlx5_ptp_adjfine,
848 	.adjphase	= mlx5_ptp_adjphase,
849 	.getmaxphase    = mlx5_ptp_getmaxphase,
850 	.adjtime	= mlx5_ptp_adjtime,
851 	.gettimex64	= mlx5_ptp_gettimex,
852 	.settime64	= mlx5_ptp_settime,
853 	.enable		= NULL,
854 	.verify		= NULL,
855 	.do_aux_work	= mlx5_timestamp_overflow,
856 };
857 
mlx5_query_mtpps_pin_mode(struct mlx5_core_dev * mdev,u8 pin,u32 * mtpps,u32 mtpps_size)858 static int mlx5_query_mtpps_pin_mode(struct mlx5_core_dev *mdev, u8 pin,
859 				     u32 *mtpps, u32 mtpps_size)
860 {
861 	u32 in[MLX5_ST_SZ_DW(mtpps_reg)] = {};
862 
863 	MLX5_SET(mtpps_reg, in, pin, pin);
864 
865 	return mlx5_core_access_reg(mdev, in, sizeof(in), mtpps,
866 				    mtpps_size, MLX5_REG_MTPPS, 0, 0);
867 }
868 
mlx5_get_pps_pin_mode(struct mlx5_clock * clock,u8 pin)869 static int mlx5_get_pps_pin_mode(struct mlx5_clock *clock, u8 pin)
870 {
871 	struct mlx5_core_dev *mdev = container_of(clock, struct mlx5_core_dev, clock);
872 
873 	u32 out[MLX5_ST_SZ_DW(mtpps_reg)] = {};
874 	u8 mode;
875 	int err;
876 
877 	err = mlx5_query_mtpps_pin_mode(mdev, pin, out, sizeof(out));
878 	if (err || !MLX5_GET(mtpps_reg, out, enable))
879 		return PTP_PF_NONE;
880 
881 	mode = MLX5_GET(mtpps_reg, out, pin_mode);
882 
883 	if (mode == MLX5_PIN_MODE_IN)
884 		return PTP_PF_EXTTS;
885 	else if (mode == MLX5_PIN_MODE_OUT)
886 		return PTP_PF_PEROUT;
887 
888 	return PTP_PF_NONE;
889 }
890 
mlx5_init_pin_config(struct mlx5_clock * clock)891 static void mlx5_init_pin_config(struct mlx5_clock *clock)
892 {
893 	int i;
894 
895 	if (!clock->ptp_info.n_pins)
896 		return;
897 
898 	clock->ptp_info.pin_config =
899 			kcalloc(clock->ptp_info.n_pins,
900 				sizeof(*clock->ptp_info.pin_config),
901 				GFP_KERNEL);
902 	if (!clock->ptp_info.pin_config)
903 		return;
904 	clock->ptp_info.enable = mlx5_ptp_enable;
905 	clock->ptp_info.verify = mlx5_ptp_verify;
906 	clock->ptp_info.pps = 1;
907 
908 	for (i = 0; i < clock->ptp_info.n_pins; i++) {
909 		snprintf(clock->ptp_info.pin_config[i].name,
910 			 sizeof(clock->ptp_info.pin_config[i].name),
911 			 "mlx5_pps%d", i);
912 		clock->ptp_info.pin_config[i].index = i;
913 		clock->ptp_info.pin_config[i].func = mlx5_get_pps_pin_mode(clock, i);
914 		clock->ptp_info.pin_config[i].chan = 0;
915 	}
916 }
917 
mlx5_get_pps_caps(struct mlx5_core_dev * mdev)918 static void mlx5_get_pps_caps(struct mlx5_core_dev *mdev)
919 {
920 	struct mlx5_clock *clock = &mdev->clock;
921 	u32 out[MLX5_ST_SZ_DW(mtpps_reg)] = {0};
922 
923 	mlx5_query_mtpps(mdev, out, sizeof(out));
924 
925 	clock->ptp_info.n_pins = MLX5_GET(mtpps_reg, out,
926 					  cap_number_of_pps_pins);
927 	clock->ptp_info.n_ext_ts = MLX5_GET(mtpps_reg, out,
928 					    cap_max_num_of_pps_in_pins);
929 	clock->ptp_info.n_per_out = MLX5_GET(mtpps_reg, out,
930 					     cap_max_num_of_pps_out_pins);
931 
932 	if (MLX5_CAP_MCAM_FEATURE(mdev, npps_period))
933 		clock->pps_info.min_npps_period = 1 << MLX5_GET(mtpps_reg, out,
934 								cap_log_min_npps_period);
935 	if (MLX5_CAP_MCAM_FEATURE(mdev, out_pulse_duration_ns))
936 		clock->pps_info.min_out_pulse_duration_ns = 1 << MLX5_GET(mtpps_reg, out,
937 								cap_log_min_out_pulse_duration_ns);
938 
939 	clock->pps_info.pin_caps[0] = MLX5_GET(mtpps_reg, out, cap_pin_0_mode);
940 	clock->pps_info.pin_caps[1] = MLX5_GET(mtpps_reg, out, cap_pin_1_mode);
941 	clock->pps_info.pin_caps[2] = MLX5_GET(mtpps_reg, out, cap_pin_2_mode);
942 	clock->pps_info.pin_caps[3] = MLX5_GET(mtpps_reg, out, cap_pin_3_mode);
943 	clock->pps_info.pin_caps[4] = MLX5_GET(mtpps_reg, out, cap_pin_4_mode);
944 	clock->pps_info.pin_caps[5] = MLX5_GET(mtpps_reg, out, cap_pin_5_mode);
945 	clock->pps_info.pin_caps[6] = MLX5_GET(mtpps_reg, out, cap_pin_6_mode);
946 	clock->pps_info.pin_caps[7] = MLX5_GET(mtpps_reg, out, cap_pin_7_mode);
947 }
948 
ts_next_sec(struct timespec64 * ts)949 static void ts_next_sec(struct timespec64 *ts)
950 {
951 	ts->tv_sec += 1;
952 	ts->tv_nsec = 0;
953 }
954 
perout_conf_next_event_timer(struct mlx5_core_dev * mdev,struct mlx5_clock * clock)955 static u64 perout_conf_next_event_timer(struct mlx5_core_dev *mdev,
956 					struct mlx5_clock *clock)
957 {
958 	struct timespec64 ts;
959 	s64 target_ns;
960 
961 	mlx5_ptp_gettimex(&clock->ptp_info, &ts, NULL);
962 	ts_next_sec(&ts);
963 	target_ns = timespec64_to_ns(&ts);
964 
965 	return find_target_cycles(mdev, target_ns);
966 }
967 
mlx5_pps_event(struct notifier_block * nb,unsigned long type,void * data)968 static int mlx5_pps_event(struct notifier_block *nb,
969 			  unsigned long type, void *data)
970 {
971 	struct mlx5_clock *clock = mlx5_nb_cof(nb, struct mlx5_clock, pps_nb);
972 	struct ptp_clock_event ptp_event;
973 	struct mlx5_eqe *eqe = data;
974 	int pin = eqe->data.pps.pin;
975 	struct mlx5_core_dev *mdev;
976 	unsigned long flags;
977 	u64 ns;
978 
979 	mdev = container_of(clock, struct mlx5_core_dev, clock);
980 
981 	switch (clock->ptp_info.pin_config[pin].func) {
982 	case PTP_PF_EXTTS:
983 		ptp_event.index = pin;
984 		ptp_event.timestamp = mlx5_real_time_mode(mdev) ?
985 			mlx5_real_time_cyc2time(clock,
986 						be64_to_cpu(eqe->data.pps.time_stamp)) :
987 			mlx5_timecounter_cyc2time(clock,
988 						  be64_to_cpu(eqe->data.pps.time_stamp));
989 		if (clock->pps_info.enabled) {
990 			ptp_event.type = PTP_CLOCK_PPSUSR;
991 			ptp_event.pps_times.ts_real =
992 					ns_to_timespec64(ptp_event.timestamp);
993 		} else {
994 			ptp_event.type = PTP_CLOCK_EXTTS;
995 		}
996 		/* TODOL clock->ptp can be NULL if ptp_clock_register fails */
997 		ptp_clock_event(clock->ptp, &ptp_event);
998 		break;
999 	case PTP_PF_PEROUT:
1000 		ns = perout_conf_next_event_timer(mdev, clock);
1001 		write_seqlock_irqsave(&clock->lock, flags);
1002 		clock->pps_info.start[pin] = ns;
1003 		write_sequnlock_irqrestore(&clock->lock, flags);
1004 		schedule_work(&clock->pps_info.out_work);
1005 		break;
1006 	default:
1007 		mlx5_core_err(mdev, " Unhandled clock PPS event, func %d\n",
1008 			      clock->ptp_info.pin_config[pin].func);
1009 	}
1010 
1011 	return NOTIFY_OK;
1012 }
1013 
mlx5_timecounter_init(struct mlx5_core_dev * mdev)1014 static void mlx5_timecounter_init(struct mlx5_core_dev *mdev)
1015 {
1016 	struct mlx5_clock *clock = &mdev->clock;
1017 	struct mlx5_timer *timer = &clock->timer;
1018 	u32 dev_freq;
1019 
1020 	dev_freq = MLX5_CAP_GEN(mdev, device_frequency_khz);
1021 	timer->cycles.read = read_internal_timer;
1022 	timer->cycles.shift = mlx5_ptp_shift_constant(dev_freq);
1023 	timer->cycles.mult = clocksource_khz2mult(dev_freq,
1024 						  timer->cycles.shift);
1025 	timer->nominal_c_mult = timer->cycles.mult;
1026 	timer->cycles.mask = CLOCKSOURCE_MASK(41);
1027 
1028 	timecounter_init(&timer->tc, &timer->cycles,
1029 			 ktime_to_ns(ktime_get_real()));
1030 }
1031 
mlx5_init_overflow_period(struct mlx5_clock * clock)1032 static void mlx5_init_overflow_period(struct mlx5_clock *clock)
1033 {
1034 	struct mlx5_core_dev *mdev = container_of(clock, struct mlx5_core_dev, clock);
1035 	struct mlx5_ib_clock_info *clock_info = mdev->clock_info;
1036 	struct mlx5_timer *timer = &clock->timer;
1037 	u64 overflow_cycles;
1038 	u64 frac = 0;
1039 	u64 ns;
1040 
1041 	/* Calculate period in seconds to call the overflow watchdog - to make
1042 	 * sure counter is checked at least twice every wrap around.
1043 	 * The period is calculated as the minimum between max HW cycles count
1044 	 * (The clock source mask) and max amount of cycles that can be
1045 	 * multiplied by clock multiplier where the result doesn't exceed
1046 	 * 64bits.
1047 	 */
1048 	overflow_cycles = div64_u64(~0ULL >> 1, timer->cycles.mult);
1049 	overflow_cycles = min(overflow_cycles, div_u64(timer->cycles.mask, 3));
1050 
1051 	ns = cyclecounter_cyc2ns(&timer->cycles, overflow_cycles,
1052 				 frac, &frac);
1053 	do_div(ns, NSEC_PER_SEC / HZ);
1054 	timer->overflow_period = ns;
1055 
1056 	if (!timer->overflow_period) {
1057 		timer->overflow_period = HZ;
1058 		mlx5_core_warn(mdev,
1059 			       "invalid overflow period, overflow_work is scheduled once per second\n");
1060 	}
1061 
1062 	if (clock_info)
1063 		clock_info->overflow_period = timer->overflow_period;
1064 }
1065 
mlx5_init_clock_info(struct mlx5_core_dev * mdev)1066 static void mlx5_init_clock_info(struct mlx5_core_dev *mdev)
1067 {
1068 	struct mlx5_clock *clock = &mdev->clock;
1069 	struct mlx5_ib_clock_info *info;
1070 	struct mlx5_timer *timer;
1071 
1072 	mdev->clock_info = (struct mlx5_ib_clock_info *)get_zeroed_page(GFP_KERNEL);
1073 	if (!mdev->clock_info) {
1074 		mlx5_core_warn(mdev, "Failed to allocate IB clock info page\n");
1075 		return;
1076 	}
1077 
1078 	info = mdev->clock_info;
1079 	timer = &clock->timer;
1080 
1081 	info->nsec = timer->tc.nsec;
1082 	info->cycles = timer->tc.cycle_last;
1083 	info->mask = timer->cycles.mask;
1084 	info->mult = timer->nominal_c_mult;
1085 	info->shift = timer->cycles.shift;
1086 	info->frac = timer->tc.frac;
1087 }
1088 
mlx5_init_timer_max_freq_adjustment(struct mlx5_core_dev * mdev)1089 static void mlx5_init_timer_max_freq_adjustment(struct mlx5_core_dev *mdev)
1090 {
1091 	struct mlx5_clock *clock = &mdev->clock;
1092 	u32 out[MLX5_ST_SZ_DW(mtutc_reg)] = {};
1093 	u32 in[MLX5_ST_SZ_DW(mtutc_reg)] = {};
1094 	u8 log_max_freq_adjustment = 0;
1095 	int err;
1096 
1097 	err = mlx5_core_access_reg(mdev, in, sizeof(in), out, sizeof(out),
1098 				   MLX5_REG_MTUTC, 0, 0);
1099 	if (!err)
1100 		log_max_freq_adjustment =
1101 			MLX5_GET(mtutc_reg, out, log_max_freq_adjustment);
1102 
1103 	if (log_max_freq_adjustment)
1104 		clock->ptp_info.max_adj =
1105 			min(S32_MAX, 1 << log_max_freq_adjustment);
1106 }
1107 
mlx5_init_timer_clock(struct mlx5_core_dev * mdev)1108 static void mlx5_init_timer_clock(struct mlx5_core_dev *mdev)
1109 {
1110 	struct mlx5_clock *clock = &mdev->clock;
1111 
1112 	/* Configure the PHC */
1113 	clock->ptp_info = mlx5_ptp_clock_info;
1114 
1115 	if (MLX5_CAP_MCAM_REG(mdev, mtutc))
1116 		mlx5_init_timer_max_freq_adjustment(mdev);
1117 
1118 #ifdef CONFIG_X86
1119 	if (MLX5_CAP_MCAM_REG3(mdev, mtptm) &&
1120 	    MLX5_CAP_MCAM_REG3(mdev, mtctr) && boot_cpu_has(X86_FEATURE_ART))
1121 		clock->ptp_info.getcrosststamp = mlx5_ptp_getcrosststamp;
1122 #endif /* CONFIG_X86 */
1123 
1124 	mlx5_timecounter_init(mdev);
1125 	mlx5_init_clock_info(mdev);
1126 	mlx5_init_overflow_period(clock);
1127 
1128 	if (mlx5_real_time_mode(mdev)) {
1129 		struct timespec64 ts;
1130 
1131 		ktime_get_real_ts64(&ts);
1132 		mlx5_ptp_settime(&clock->ptp_info, &ts);
1133 	}
1134 }
1135 
mlx5_init_pps(struct mlx5_core_dev * mdev)1136 static void mlx5_init_pps(struct mlx5_core_dev *mdev)
1137 {
1138 	struct mlx5_clock *clock = &mdev->clock;
1139 
1140 	if (!MLX5_PPS_CAP(mdev))
1141 		return;
1142 
1143 	mlx5_get_pps_caps(mdev);
1144 	mlx5_init_pin_config(clock);
1145 }
1146 
mlx5_init_clock(struct mlx5_core_dev * mdev)1147 void mlx5_init_clock(struct mlx5_core_dev *mdev)
1148 {
1149 	struct mlx5_clock *clock = &mdev->clock;
1150 
1151 	if (!MLX5_CAP_GEN(mdev, device_frequency_khz)) {
1152 		mlx5_core_warn(mdev, "invalid device_frequency_khz, aborting HW clock init\n");
1153 		return;
1154 	}
1155 
1156 	seqlock_init(&clock->lock);
1157 	INIT_WORK(&clock->pps_info.out_work, mlx5_pps_out);
1158 
1159 	/* Initialize the device clock */
1160 	mlx5_init_timer_clock(mdev);
1161 
1162 	/* Initialize 1PPS data structures */
1163 	mlx5_init_pps(mdev);
1164 
1165 	clock->ptp = ptp_clock_register(&clock->ptp_info,
1166 					&mdev->pdev->dev);
1167 	if (IS_ERR(clock->ptp)) {
1168 		mlx5_core_warn(mdev, "ptp_clock_register failed %ld\n",
1169 			       PTR_ERR(clock->ptp));
1170 		clock->ptp = NULL;
1171 	}
1172 
1173 	MLX5_NB_INIT(&clock->pps_nb, mlx5_pps_event, PPS_EVENT);
1174 	mlx5_eq_notifier_register(mdev, &clock->pps_nb);
1175 
1176 	if (clock->ptp)
1177 		ptp_schedule_worker(clock->ptp, 0);
1178 }
1179 
mlx5_cleanup_clock(struct mlx5_core_dev * mdev)1180 void mlx5_cleanup_clock(struct mlx5_core_dev *mdev)
1181 {
1182 	struct mlx5_clock *clock = &mdev->clock;
1183 
1184 	if (!MLX5_CAP_GEN(mdev, device_frequency_khz))
1185 		return;
1186 
1187 	mlx5_eq_notifier_unregister(mdev, &clock->pps_nb);
1188 	if (clock->ptp) {
1189 		ptp_clock_unregister(clock->ptp);
1190 		clock->ptp = NULL;
1191 	}
1192 
1193 	cancel_work_sync(&clock->pps_info.out_work);
1194 
1195 	if (mdev->clock_info) {
1196 		free_page((unsigned long)mdev->clock_info);
1197 		mdev->clock_info = NULL;
1198 	}
1199 
1200 	kfree(clock->ptp_info.pin_config);
1201 }
1202