1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell Octeon EP (EndPoint) VF Ethernet Driver
3  *
4  * Copyright (C) 2020 Marvell.
5  *
6  */
7 
8 #include <linux/types.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/aer.h>
12 #include <linux/netdevice.h>
13 #include <linux/etherdevice.h>
14 #include <linux/rtnetlink.h>
15 #include <linux/vmalloc.h>
16 #include <net/netdev_queues.h>
17 
18 #include "octep_vf_config.h"
19 #include "octep_vf_main.h"
20 
21 struct workqueue_struct *octep_vf_wq;
22 
23 /* Supported Devices */
24 static const struct pci_device_id octep_vf_pci_id_tbl[] = {
25 	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN93_VF)},
26 	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF95N_VF)},
27 	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN98_VF)},
28 	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN10KA_VF)},
29 	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF10KA_VF)},
30 	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF10KB_VF)},
31 	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN10KB_VF)},
32 	{0, },
33 };
34 MODULE_DEVICE_TABLE(pci, octep_vf_pci_id_tbl);
35 
36 MODULE_AUTHOR("Veerasenareddy Burru <[email protected]>");
37 MODULE_DESCRIPTION(OCTEP_VF_DRV_STRING);
38 MODULE_LICENSE("GPL");
39 
40 /**
41  * octep_vf_alloc_ioq_vectors() - Allocate Tx/Rx Queue interrupt info.
42  *
43  * @oct: Octeon device private data structure.
44  *
45  * Allocate resources to hold per Tx/Rx queue interrupt info.
46  * This is the information passed to interrupt handler, from which napi poll
47  * is scheduled and includes quick access to private data of Tx/Rx queue
48  * corresponding to the interrupt being handled.
49  *
50  * Return: 0, on successful allocation of resources for all queue interrupts.
51  *         -1, if failed to allocate any resource.
52  */
octep_vf_alloc_ioq_vectors(struct octep_vf_device * oct)53 static int octep_vf_alloc_ioq_vectors(struct octep_vf_device *oct)
54 {
55 	struct octep_vf_ioq_vector *ioq_vector;
56 	int i;
57 
58 	for (i = 0; i < oct->num_oqs; i++) {
59 		oct->ioq_vector[i] = vzalloc(sizeof(*oct->ioq_vector[i]));
60 		if (!oct->ioq_vector[i])
61 			goto free_ioq_vector;
62 
63 		ioq_vector = oct->ioq_vector[i];
64 		ioq_vector->iq = oct->iq[i];
65 		ioq_vector->oq = oct->oq[i];
66 		ioq_vector->octep_vf_dev = oct;
67 	}
68 
69 	dev_info(&oct->pdev->dev, "Allocated %d IOQ vectors\n", oct->num_oqs);
70 	return 0;
71 
72 free_ioq_vector:
73 	while (i) {
74 		i--;
75 		vfree(oct->ioq_vector[i]);
76 		oct->ioq_vector[i] = NULL;
77 	}
78 	return -1;
79 }
80 
81 /**
82  * octep_vf_free_ioq_vectors() - Free Tx/Rx Queue interrupt vector info.
83  *
84  * @oct: Octeon device private data structure.
85  */
octep_vf_free_ioq_vectors(struct octep_vf_device * oct)86 static void octep_vf_free_ioq_vectors(struct octep_vf_device *oct)
87 {
88 	int i;
89 
90 	for (i = 0; i < oct->num_oqs; i++) {
91 		if (oct->ioq_vector[i]) {
92 			vfree(oct->ioq_vector[i]);
93 			oct->ioq_vector[i] = NULL;
94 		}
95 	}
96 	netdev_info(oct->netdev, "Freed IOQ Vectors\n");
97 }
98 
99 /**
100  * octep_vf_enable_msix_range() - enable MSI-x interrupts.
101  *
102  * @oct: Octeon device private data structure.
103  *
104  * Allocate and enable all MSI-x interrupts (queue and non-queue interrupts)
105  * for the Octeon device.
106  *
107  * Return: 0, on successfully enabling all MSI-x interrupts.
108  *         -1, if failed to enable any MSI-x interrupt.
109  */
octep_vf_enable_msix_range(struct octep_vf_device * oct)110 static int octep_vf_enable_msix_range(struct octep_vf_device *oct)
111 {
112 	int num_msix, msix_allocated;
113 	int i;
114 
115 	/* Generic interrupts apart from input/output queues */
116 	//num_msix = oct->num_oqs + CFG_GET_NON_IOQ_MSIX(oct->conf);
117 	num_msix = oct->num_oqs;
118 	oct->msix_entries = kcalloc(num_msix, sizeof(struct msix_entry), GFP_KERNEL);
119 	if (!oct->msix_entries)
120 		goto msix_alloc_err;
121 
122 	for (i = 0; i < num_msix; i++)
123 		oct->msix_entries[i].entry = i;
124 
125 	msix_allocated = pci_enable_msix_range(oct->pdev, oct->msix_entries,
126 					       num_msix, num_msix);
127 	if (msix_allocated != num_msix) {
128 		dev_err(&oct->pdev->dev,
129 			"Failed to enable %d msix irqs; got only %d\n",
130 			num_msix, msix_allocated);
131 		goto enable_msix_err;
132 	}
133 	oct->num_irqs = msix_allocated;
134 	dev_info(&oct->pdev->dev, "MSI-X enabled successfully\n");
135 
136 	return 0;
137 
138 enable_msix_err:
139 	if (msix_allocated > 0)
140 		pci_disable_msix(oct->pdev);
141 	kfree(oct->msix_entries);
142 	oct->msix_entries = NULL;
143 msix_alloc_err:
144 	return -1;
145 }
146 
147 /**
148  * octep_vf_disable_msix() - disable MSI-x interrupts.
149  *
150  * @oct: Octeon device private data structure.
151  *
152  * Disable MSI-x on the Octeon device.
153  */
octep_vf_disable_msix(struct octep_vf_device * oct)154 static void octep_vf_disable_msix(struct octep_vf_device *oct)
155 {
156 	pci_disable_msix(oct->pdev);
157 	kfree(oct->msix_entries);
158 	oct->msix_entries = NULL;
159 	dev_info(&oct->pdev->dev, "Disabled MSI-X\n");
160 }
161 
162 /**
163  * octep_vf_ioq_intr_handler() - handler for all Tx/Rx queue interrupts.
164  *
165  * @irq: Interrupt number.
166  * @data: interrupt data contains pointers to Tx/Rx queue private data
167  *         and correspong NAPI context.
168  *
169  * this is common handler for all non-queue (generic) interrupts.
170  */
octep_vf_ioq_intr_handler(int irq,void * data)171 static irqreturn_t octep_vf_ioq_intr_handler(int irq, void *data)
172 {
173 	struct octep_vf_ioq_vector *ioq_vector = data;
174 	struct octep_vf_device *oct = ioq_vector->octep_vf_dev;
175 
176 	return oct->hw_ops.ioq_intr_handler(ioq_vector);
177 }
178 
179 /**
180  * octep_vf_request_irqs() - Register interrupt handlers.
181  *
182  * @oct: Octeon device private data structure.
183  *
184  * Register handlers for all queue and non-queue interrupts.
185  *
186  * Return: 0, on successful registration of all interrupt handlers.
187  *         -1, on any error.
188  */
octep_vf_request_irqs(struct octep_vf_device * oct)189 static int octep_vf_request_irqs(struct octep_vf_device *oct)
190 {
191 	struct net_device *netdev = oct->netdev;
192 	struct octep_vf_ioq_vector *ioq_vector;
193 	struct msix_entry *msix_entry;
194 	int ret, i;
195 
196 	/* Request IRQs for Tx/Rx queues */
197 	for (i = 0; i < oct->num_oqs; i++) {
198 		ioq_vector = oct->ioq_vector[i];
199 		msix_entry = &oct->msix_entries[i];
200 
201 		snprintf(ioq_vector->name, sizeof(ioq_vector->name),
202 			 "%s-q%d", netdev->name, i);
203 		ret = request_irq(msix_entry->vector,
204 				  octep_vf_ioq_intr_handler, 0,
205 				  ioq_vector->name, ioq_vector);
206 		if (ret) {
207 			netdev_err(netdev,
208 				   "request_irq failed for Q-%d; err=%d",
209 				   i, ret);
210 			goto ioq_irq_err;
211 		}
212 
213 		cpumask_set_cpu(i % num_online_cpus(),
214 				&ioq_vector->affinity_mask);
215 		irq_set_affinity_hint(msix_entry->vector,
216 				      &ioq_vector->affinity_mask);
217 	}
218 
219 	return 0;
220 ioq_irq_err:
221 	while (i) {
222 		--i;
223 		free_irq(oct->msix_entries[i].vector, oct);
224 	}
225 	return -1;
226 }
227 
228 /**
229  * octep_vf_free_irqs() - free all registered interrupts.
230  *
231  * @oct: Octeon device private data structure.
232  *
233  * Free all queue and non-queue interrupts of the Octeon device.
234  */
octep_vf_free_irqs(struct octep_vf_device * oct)235 static void octep_vf_free_irqs(struct octep_vf_device *oct)
236 {
237 	int i;
238 
239 	for (i = 0; i < oct->num_irqs; i++) {
240 		irq_set_affinity_hint(oct->msix_entries[i].vector, NULL);
241 		free_irq(oct->msix_entries[i].vector, oct->ioq_vector[i]);
242 	}
243 	netdev_info(oct->netdev, "IRQs freed\n");
244 }
245 
246 /**
247  * octep_vf_setup_irqs() - setup interrupts for the Octeon device.
248  *
249  * @oct: Octeon device private data structure.
250  *
251  * Allocate data structures to hold per interrupt information, allocate/enable
252  * MSI-x interrupt and register interrupt handlers.
253  *
254  * Return: 0, on successful allocation and registration of all interrupts.
255  *         -1, on any error.
256  */
octep_vf_setup_irqs(struct octep_vf_device * oct)257 static int octep_vf_setup_irqs(struct octep_vf_device *oct)
258 {
259 	if (octep_vf_alloc_ioq_vectors(oct))
260 		goto ioq_vector_err;
261 
262 	if (octep_vf_enable_msix_range(oct))
263 		goto enable_msix_err;
264 
265 	if (octep_vf_request_irqs(oct))
266 		goto request_irq_err;
267 
268 	return 0;
269 
270 request_irq_err:
271 	octep_vf_disable_msix(oct);
272 enable_msix_err:
273 	octep_vf_free_ioq_vectors(oct);
274 ioq_vector_err:
275 	return -1;
276 }
277 
278 /**
279  * octep_vf_clean_irqs() - free all interrupts and its resources.
280  *
281  * @oct: Octeon device private data structure.
282  */
octep_vf_clean_irqs(struct octep_vf_device * oct)283 static void octep_vf_clean_irqs(struct octep_vf_device *oct)
284 {
285 	octep_vf_free_irqs(oct);
286 	octep_vf_disable_msix(oct);
287 	octep_vf_free_ioq_vectors(oct);
288 }
289 
290 /**
291  * octep_vf_enable_ioq_irq() - Enable MSI-x interrupt of a Tx/Rx queue.
292  *
293  * @iq: Octeon Tx queue data structure.
294  * @oq: Octeon Rx queue data structure.
295  */
octep_vf_enable_ioq_irq(struct octep_vf_iq * iq,struct octep_vf_oq * oq)296 static void octep_vf_enable_ioq_irq(struct octep_vf_iq *iq, struct octep_vf_oq *oq)
297 {
298 	u32 pkts_pend = oq->pkts_pending;
299 
300 	netdev_dbg(iq->netdev, "enabling intr for Q-%u\n", iq->q_no);
301 	if (iq->pkts_processed) {
302 		writel(iq->pkts_processed, iq->inst_cnt_reg);
303 		iq->pkt_in_done -= iq->pkts_processed;
304 		iq->pkts_processed = 0;
305 	}
306 	if (oq->last_pkt_count - pkts_pend) {
307 		writel(oq->last_pkt_count - pkts_pend, oq->pkts_sent_reg);
308 		oq->last_pkt_count = pkts_pend;
309 	}
310 
311 	/* Flush the previous wrties before writing to RESEND bit */
312 	smp_wmb();
313 	writeq(1UL << OCTEP_VF_OQ_INTR_RESEND_BIT, oq->pkts_sent_reg);
314 	writeq(1UL << OCTEP_VF_IQ_INTR_RESEND_BIT, iq->inst_cnt_reg);
315 }
316 
317 /**
318  * octep_vf_napi_poll() - NAPI poll function for Tx/Rx.
319  *
320  * @napi: pointer to napi context.
321  * @budget: max number of packets to be processed in single invocation.
322  */
octep_vf_napi_poll(struct napi_struct * napi,int budget)323 static int octep_vf_napi_poll(struct napi_struct *napi, int budget)
324 {
325 	struct octep_vf_ioq_vector *ioq_vector =
326 		container_of(napi, struct octep_vf_ioq_vector, napi);
327 	u32 tx_pending, rx_done;
328 
329 	tx_pending = octep_vf_iq_process_completions(ioq_vector->iq, 64);
330 	rx_done = octep_vf_oq_process_rx(ioq_vector->oq, budget);
331 
332 	/* need more polling if tx completion processing is still pending or
333 	 * processed at least 'budget' number of rx packets.
334 	 */
335 	if (tx_pending || rx_done >= budget)
336 		return budget;
337 
338 	if (likely(napi_complete_done(napi, rx_done)))
339 		octep_vf_enable_ioq_irq(ioq_vector->iq, ioq_vector->oq);
340 
341 	return rx_done;
342 }
343 
344 /**
345  * octep_vf_napi_add() - Add NAPI poll for all Tx/Rx queues.
346  *
347  * @oct: Octeon device private data structure.
348  */
octep_vf_napi_add(struct octep_vf_device * oct)349 static void octep_vf_napi_add(struct octep_vf_device *oct)
350 {
351 	int i;
352 
353 	for (i = 0; i < oct->num_oqs; i++) {
354 		netdev_dbg(oct->netdev, "Adding NAPI on Q-%d\n", i);
355 		netif_napi_add(oct->netdev, &oct->ioq_vector[i]->napi, octep_vf_napi_poll);
356 		oct->oq[i]->napi = &oct->ioq_vector[i]->napi;
357 	}
358 }
359 
360 /**
361  * octep_vf_napi_delete() - delete NAPI poll callback for all Tx/Rx queues.
362  *
363  * @oct: Octeon device private data structure.
364  */
octep_vf_napi_delete(struct octep_vf_device * oct)365 static void octep_vf_napi_delete(struct octep_vf_device *oct)
366 {
367 	int i;
368 
369 	for (i = 0; i < oct->num_oqs; i++) {
370 		netdev_dbg(oct->netdev, "Deleting NAPI on Q-%d\n", i);
371 		netif_napi_del(&oct->ioq_vector[i]->napi);
372 		oct->oq[i]->napi = NULL;
373 	}
374 }
375 
376 /**
377  * octep_vf_napi_enable() - enable NAPI for all Tx/Rx queues.
378  *
379  * @oct: Octeon device private data structure.
380  */
octep_vf_napi_enable(struct octep_vf_device * oct)381 static void octep_vf_napi_enable(struct octep_vf_device *oct)
382 {
383 	int i;
384 
385 	for (i = 0; i < oct->num_oqs; i++) {
386 		netdev_dbg(oct->netdev, "Enabling NAPI on Q-%d\n", i);
387 		napi_enable(&oct->ioq_vector[i]->napi);
388 	}
389 }
390 
391 /**
392  * octep_vf_napi_disable() - disable NAPI for all Tx/Rx queues.
393  *
394  * @oct: Octeon device private data structure.
395  */
octep_vf_napi_disable(struct octep_vf_device * oct)396 static void octep_vf_napi_disable(struct octep_vf_device *oct)
397 {
398 	int i;
399 
400 	for (i = 0; i < oct->num_oqs; i++) {
401 		netdev_dbg(oct->netdev, "Disabling NAPI on Q-%d\n", i);
402 		napi_disable(&oct->ioq_vector[i]->napi);
403 	}
404 }
405 
octep_vf_link_up(struct net_device * netdev)406 static void octep_vf_link_up(struct net_device *netdev)
407 {
408 	netif_carrier_on(netdev);
409 	netif_tx_start_all_queues(netdev);
410 }
411 
octep_vf_set_rx_state(struct octep_vf_device * oct,bool up)412 static void octep_vf_set_rx_state(struct octep_vf_device *oct, bool up)
413 {
414 	int err;
415 
416 	err = octep_vf_mbox_set_rx_state(oct, up);
417 	if (err)
418 		netdev_err(oct->netdev, "Set Rx state to %d failed with err:%d\n", up, err);
419 }
420 
octep_vf_get_link_status(struct octep_vf_device * oct)421 static int octep_vf_get_link_status(struct octep_vf_device *oct)
422 {
423 	int err;
424 
425 	err = octep_vf_mbox_get_link_status(oct, &oct->link_info.oper_up);
426 	if (err)
427 		netdev_err(oct->netdev, "Get link status failed with err:%d\n", err);
428 	return oct->link_info.oper_up;
429 }
430 
octep_vf_set_link_status(struct octep_vf_device * oct,bool up)431 static void octep_vf_set_link_status(struct octep_vf_device *oct, bool up)
432 {
433 	int err;
434 
435 	err = octep_vf_mbox_set_link_status(oct, up);
436 	if (err) {
437 		netdev_err(oct->netdev, "Set link status to %d failed with err:%d\n", up, err);
438 		return;
439 	}
440 	oct->link_info.oper_up = up;
441 }
442 
443 /**
444  * octep_vf_open() - start the octeon network device.
445  *
446  * @netdev: pointer to kernel network device.
447  *
448  * setup Tx/Rx queues, interrupts and enable hardware operation of Tx/Rx queues
449  * and interrupts..
450  *
451  * Return: 0, on successfully setting up device and bring it up.
452  *         -1, on any error.
453  */
octep_vf_open(struct net_device * netdev)454 static int octep_vf_open(struct net_device *netdev)
455 {
456 	struct octep_vf_device *oct = netdev_priv(netdev);
457 	int err, ret;
458 
459 	netdev_info(netdev, "Starting netdev ...\n");
460 	netif_carrier_off(netdev);
461 
462 	oct->hw_ops.reset_io_queues(oct);
463 
464 	if (octep_vf_setup_iqs(oct))
465 		goto setup_iq_err;
466 	if (octep_vf_setup_oqs(oct))
467 		goto setup_oq_err;
468 	if (octep_vf_setup_irqs(oct))
469 		goto setup_irq_err;
470 
471 	err = netif_set_real_num_tx_queues(netdev, oct->num_oqs);
472 	if (err)
473 		goto set_queues_err;
474 	err = netif_set_real_num_rx_queues(netdev, oct->num_iqs);
475 	if (err)
476 		goto set_queues_err;
477 
478 	octep_vf_napi_add(oct);
479 	octep_vf_napi_enable(oct);
480 
481 	oct->link_info.admin_up = 1;
482 	octep_vf_set_rx_state(oct, true);
483 
484 	ret = octep_vf_get_link_status(oct);
485 	if (!ret)
486 		octep_vf_set_link_status(oct, true);
487 
488 	/* Enable the input and output queues for this Octeon device */
489 	oct->hw_ops.enable_io_queues(oct);
490 
491 	/* Enable Octeon device interrupts */
492 	oct->hw_ops.enable_interrupts(oct);
493 
494 	octep_vf_oq_dbell_init(oct);
495 
496 	ret = octep_vf_get_link_status(oct);
497 	if (ret)
498 		octep_vf_link_up(netdev);
499 
500 	return 0;
501 
502 set_queues_err:
503 	octep_vf_napi_disable(oct);
504 	octep_vf_napi_delete(oct);
505 	octep_vf_clean_irqs(oct);
506 setup_irq_err:
507 	octep_vf_free_oqs(oct);
508 setup_oq_err:
509 	octep_vf_free_iqs(oct);
510 setup_iq_err:
511 	return -1;
512 }
513 
514 /**
515  * octep_vf_stop() - stop the octeon network device.
516  *
517  * @netdev: pointer to kernel network device.
518  *
519  * stop the device Tx/Rx operations, bring down the link and
520  * free up all resources allocated for Tx/Rx queues and interrupts.
521  */
octep_vf_stop(struct net_device * netdev)522 static int octep_vf_stop(struct net_device *netdev)
523 {
524 	struct octep_vf_device *oct = netdev_priv(netdev);
525 
526 	netdev_info(netdev, "Stopping the device ...\n");
527 
528 	/* Stop Tx from stack */
529 	netif_carrier_off(netdev);
530 	netif_tx_disable(netdev);
531 
532 	octep_vf_set_link_status(oct, false);
533 	octep_vf_set_rx_state(oct, false);
534 
535 	oct->link_info.admin_up = 0;
536 	oct->link_info.oper_up = 0;
537 
538 	oct->hw_ops.disable_interrupts(oct);
539 	octep_vf_napi_disable(oct);
540 	octep_vf_napi_delete(oct);
541 
542 	octep_vf_clean_irqs(oct);
543 	octep_vf_clean_iqs(oct);
544 
545 	oct->hw_ops.disable_io_queues(oct);
546 	oct->hw_ops.reset_io_queues(oct);
547 	octep_vf_free_oqs(oct);
548 	octep_vf_free_iqs(oct);
549 	netdev_info(netdev, "Device stopped !!\n");
550 	return 0;
551 }
552 
553 /**
554  * octep_vf_iq_full_check() - check if a Tx queue is full.
555  *
556  * @iq: Octeon Tx queue data structure.
557  *
558  * Return: 0, if the Tx queue is not full.
559  *         1, if the Tx queue is full.
560  */
octep_vf_iq_full_check(struct octep_vf_iq * iq)561 static int octep_vf_iq_full_check(struct octep_vf_iq *iq)
562 {
563 	int ret;
564 
565 	ret = netif_subqueue_maybe_stop(iq->netdev, iq->q_no, IQ_INSTR_SPACE(iq),
566 					OCTEP_VF_WAKE_QUEUE_THRESHOLD,
567 					OCTEP_VF_WAKE_QUEUE_THRESHOLD);
568 	switch (ret) {
569 	case 0: /* Stopped the queue, since IQ is full */
570 		return 1;
571 	case -1: /*
572 		  * Pending updates in write index from
573 		  * iq_process_completion in other cpus
574 		  * caused queues to get re-enabled after
575 		  * being stopped
576 		  */
577 		iq->stats->restart_cnt++;
578 		fallthrough;
579 	case 1: /* Queue left enabled, since IQ is not yet full*/
580 		return 0;
581 	}
582 
583 	return 1;
584 }
585 
586 /**
587  * octep_vf_start_xmit() - Enqueue packet to Octoen hardware Tx Queue.
588  *
589  * @skb: packet skbuff pointer.
590  * @netdev: kernel network device.
591  *
592  * Return: NETDEV_TX_BUSY, if Tx Queue is full.
593  *         NETDEV_TX_OK, if successfully enqueued to hardware Tx queue.
594  */
octep_vf_start_xmit(struct sk_buff * skb,struct net_device * netdev)595 static netdev_tx_t octep_vf_start_xmit(struct sk_buff *skb,
596 				       struct net_device *netdev)
597 {
598 	struct octep_vf_device *oct = netdev_priv(netdev);
599 	netdev_features_t feat  = netdev->features;
600 	struct octep_vf_tx_sglist_desc *sglist;
601 	struct octep_vf_tx_buffer *tx_buffer;
602 	struct octep_vf_tx_desc_hw *hw_desc;
603 	struct skb_shared_info *shinfo;
604 	struct octep_vf_instr_hdr *ih;
605 	struct octep_vf_iq *iq;
606 	skb_frag_t *frag;
607 	u16 nr_frags, si;
608 	int xmit_more;
609 	u16 q_no, wi;
610 
611 	if (skb_put_padto(skb, ETH_ZLEN))
612 		return NETDEV_TX_OK;
613 
614 	q_no = skb_get_queue_mapping(skb);
615 	if (q_no >= oct->num_iqs) {
616 		netdev_err(netdev, "Invalid Tx skb->queue_mapping=%d\n", q_no);
617 		q_no = q_no % oct->num_iqs;
618 	}
619 
620 	iq = oct->iq[q_no];
621 
622 	shinfo = skb_shinfo(skb);
623 	nr_frags = shinfo->nr_frags;
624 
625 	wi = iq->host_write_index;
626 	hw_desc = &iq->desc_ring[wi];
627 	hw_desc->ih64 = 0;
628 
629 	tx_buffer = iq->buff_info + wi;
630 	tx_buffer->skb = skb;
631 
632 	ih = &hw_desc->ih;
633 	ih->tlen = skb->len;
634 	ih->pkind = oct->fw_info.pkind;
635 	ih->fsz = oct->fw_info.fsz;
636 	ih->tlen = skb->len + ih->fsz;
637 
638 	if (!nr_frags) {
639 		tx_buffer->gather = 0;
640 		tx_buffer->dma = dma_map_single(iq->dev, skb->data,
641 						skb->len, DMA_TO_DEVICE);
642 		if (dma_mapping_error(iq->dev, tx_buffer->dma))
643 			goto dma_map_err;
644 		hw_desc->dptr = tx_buffer->dma;
645 	} else {
646 		/* Scatter/Gather */
647 		dma_addr_t dma;
648 		u16 len;
649 
650 		sglist = tx_buffer->sglist;
651 
652 		ih->gsz = nr_frags + 1;
653 		ih->gather = 1;
654 		tx_buffer->gather = 1;
655 
656 		len = skb_headlen(skb);
657 		dma = dma_map_single(iq->dev, skb->data, len, DMA_TO_DEVICE);
658 		if (dma_mapping_error(iq->dev, dma))
659 			goto dma_map_err;
660 
661 		memset(sglist, 0, OCTEP_VF_SGLIST_SIZE_PER_PKT);
662 		sglist[0].len[3] = len;
663 		sglist[0].dma_ptr[0] = dma;
664 
665 		si = 1; /* entry 0 is main skb, mapped above */
666 		frag = &shinfo->frags[0];
667 		while (nr_frags--) {
668 			len = skb_frag_size(frag);
669 			dma = skb_frag_dma_map(iq->dev, frag, 0,
670 					       len, DMA_TO_DEVICE);
671 			if (dma_mapping_error(iq->dev, dma))
672 				goto dma_map_sg_err;
673 
674 			sglist[si >> 2].len[3 - (si & 3)] = len;
675 			sglist[si >> 2].dma_ptr[si & 3] = dma;
676 
677 			frag++;
678 			si++;
679 		}
680 		hw_desc->dptr = tx_buffer->sglist_dma;
681 	}
682 	if (oct->fw_info.tx_ol_flags) {
683 		if ((feat & (NETIF_F_TSO)) && (skb_is_gso(skb))) {
684 			hw_desc->txm.ol_flags = OCTEP_VF_TX_OFFLOAD_CKSUM;
685 			hw_desc->txm.ol_flags |= OCTEP_VF_TX_OFFLOAD_TSO;
686 			hw_desc->txm.gso_size =  skb_shinfo(skb)->gso_size;
687 			hw_desc->txm.gso_segs =  skb_shinfo(skb)->gso_segs;
688 		} else if (feat & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
689 			hw_desc->txm.ol_flags = OCTEP_VF_TX_OFFLOAD_CKSUM;
690 		}
691 		/* due to ESR txm will be swapped by hw */
692 		hw_desc->txm64[0] = (__force u64)cpu_to_be64(hw_desc->txm64[0]);
693 	}
694 
695 	xmit_more = netdev_xmit_more();
696 
697 	netdev_tx_sent_queue(iq->netdev_q, skb->len);
698 
699 	skb_tx_timestamp(skb);
700 	iq->fill_cnt++;
701 	wi++;
702 	iq->host_write_index = wi & iq->ring_size_mask;
703 
704 	/* octep_iq_full_check stops the queue and returns
705 	 * true if so, in case the queue has become full
706 	 * by inserting current packet. If so, we can
707 	 * go ahead and ring doorbell.
708 	 */
709 	if (!octep_vf_iq_full_check(iq) && xmit_more &&
710 	    iq->fill_cnt < iq->fill_threshold)
711 		return NETDEV_TX_OK;
712 
713 	goto ring_dbell;
714 
715 dma_map_sg_err:
716 	if (si > 0) {
717 		dma_unmap_single(iq->dev, sglist[0].dma_ptr[0],
718 				 sglist[0].len[0], DMA_TO_DEVICE);
719 		sglist[0].len[0] = 0;
720 	}
721 	while (si > 1) {
722 		dma_unmap_page(iq->dev, sglist[si >> 2].dma_ptr[si & 3],
723 			       sglist[si >> 2].len[si & 3], DMA_TO_DEVICE);
724 		sglist[si >> 2].len[si & 3] = 0;
725 		si--;
726 	}
727 	tx_buffer->gather = 0;
728 dma_map_err:
729 	dev_kfree_skb_any(skb);
730 ring_dbell:
731 	/* Flush the hw descriptors before writing to doorbell */
732 	smp_wmb();
733 	writel(iq->fill_cnt, iq->doorbell_reg);
734 	iq->stats->instr_posted += iq->fill_cnt;
735 	iq->fill_cnt = 0;
736 	return NETDEV_TX_OK;
737 }
738 
octep_vf_get_if_stats(struct octep_vf_device * oct)739 int octep_vf_get_if_stats(struct octep_vf_device *oct)
740 {
741 	struct octep_vf_iface_rxtx_stats vf_stats;
742 	int ret, size;
743 
744 	memset(&vf_stats, 0, sizeof(struct octep_vf_iface_rxtx_stats));
745 	ret = octep_vf_mbox_bulk_read(oct, OCTEP_PFVF_MBOX_CMD_GET_STATS,
746 				      (u8 *)&vf_stats, &size);
747 
748 	if (ret)
749 		return ret;
750 
751 	memcpy(&oct->iface_rx_stats, &vf_stats.iface_rx_stats,
752 	       sizeof(struct octep_vf_iface_rx_stats));
753 	memcpy(&oct->iface_tx_stats, &vf_stats.iface_tx_stats,
754 	       sizeof(struct octep_vf_iface_tx_stats));
755 
756 	return 0;
757 }
758 
octep_vf_get_link_info(struct octep_vf_device * oct)759 int octep_vf_get_link_info(struct octep_vf_device *oct)
760 {
761 	int ret, size;
762 
763 	ret = octep_vf_mbox_bulk_read(oct, OCTEP_PFVF_MBOX_CMD_GET_LINK_INFO,
764 				      (u8 *)&oct->link_info, &size);
765 	if (ret) {
766 		dev_err(&oct->pdev->dev, "Get VF link info failed via VF Mbox\n");
767 		return ret;
768 	}
769 	return 0;
770 }
771 
772 /**
773  * octep_vf_get_stats64() - Get Octeon network device statistics.
774  *
775  * @netdev: kernel network device.
776  * @stats: pointer to stats structure to be filled in.
777  */
octep_vf_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)778 static void octep_vf_get_stats64(struct net_device *netdev,
779 				 struct rtnl_link_stats64 *stats)
780 {
781 	struct octep_vf_device *oct = netdev_priv(netdev);
782 	u64 tx_packets, tx_bytes, rx_packets, rx_bytes;
783 	int q;
784 
785 	tx_packets = 0;
786 	tx_bytes = 0;
787 	rx_packets = 0;
788 	rx_bytes = 0;
789 	for (q = 0; q < OCTEP_VF_MAX_QUEUES; q++) {
790 		tx_packets += oct->stats_iq[q].instr_completed;
791 		tx_bytes += oct->stats_iq[q].bytes_sent;
792 		rx_packets += oct->stats_oq[q].packets;
793 		rx_bytes += oct->stats_oq[q].bytes;
794 	}
795 	stats->tx_packets = tx_packets;
796 	stats->tx_bytes = tx_bytes;
797 	stats->rx_packets = rx_packets;
798 	stats->rx_bytes = rx_bytes;
799 }
800 
801 /**
802  * octep_vf_tx_timeout_task - work queue task to Handle Tx queue timeout.
803  *
804  * @work: pointer to Tx queue timeout work_struct
805  *
806  * Stop and start the device so that it frees up all queue resources
807  * and restarts the queues, that potentially clears a Tx queue timeout
808  * condition.
809  **/
octep_vf_tx_timeout_task(struct work_struct * work)810 static void octep_vf_tx_timeout_task(struct work_struct *work)
811 {
812 	struct octep_vf_device *oct = container_of(work, struct octep_vf_device,
813 						tx_timeout_task);
814 	struct net_device *netdev = oct->netdev;
815 
816 	rtnl_lock();
817 	if (netif_running(netdev)) {
818 		octep_vf_stop(netdev);
819 		octep_vf_open(netdev);
820 	}
821 	rtnl_unlock();
822 	netdev_put(netdev, NULL);
823 }
824 
825 /**
826  * octep_vf_tx_timeout() - Handle Tx Queue timeout.
827  *
828  * @netdev: pointer to kernel network device.
829  * @txqueue: Timed out Tx queue number.
830  *
831  * Schedule a work to handle Tx queue timeout.
832  */
octep_vf_tx_timeout(struct net_device * netdev,unsigned int txqueue)833 static void octep_vf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
834 {
835 	struct octep_vf_device *oct = netdev_priv(netdev);
836 
837 	netdev_hold(netdev, NULL, GFP_ATOMIC);
838 	schedule_work(&oct->tx_timeout_task);
839 }
840 
octep_vf_set_mac(struct net_device * netdev,void * p)841 static int octep_vf_set_mac(struct net_device *netdev, void *p)
842 {
843 	struct octep_vf_device *oct = netdev_priv(netdev);
844 	struct sockaddr *addr = (struct sockaddr *)p;
845 	int err;
846 
847 	if (!is_valid_ether_addr(addr->sa_data))
848 		return -EADDRNOTAVAIL;
849 
850 	err = octep_vf_mbox_set_mac_addr(oct, addr->sa_data);
851 	if (err)
852 		return err;
853 
854 	memcpy(oct->mac_addr, addr->sa_data, ETH_ALEN);
855 	eth_hw_addr_set(netdev, addr->sa_data);
856 
857 	return 0;
858 }
859 
octep_vf_change_mtu(struct net_device * netdev,int new_mtu)860 static int octep_vf_change_mtu(struct net_device *netdev, int new_mtu)
861 {
862 	struct octep_vf_device *oct = netdev_priv(netdev);
863 	struct octep_vf_iface_link_info *link_info;
864 	int err;
865 
866 	link_info = &oct->link_info;
867 	if (link_info->mtu == new_mtu)
868 		return 0;
869 
870 	err = octep_vf_mbox_set_mtu(oct, new_mtu);
871 	if (!err) {
872 		oct->link_info.mtu = new_mtu;
873 		WRITE_ONCE(netdev->mtu, new_mtu);
874 	}
875 	return err;
876 }
877 
octep_vf_set_features(struct net_device * netdev,netdev_features_t features)878 static int octep_vf_set_features(struct net_device *netdev,
879 				 netdev_features_t features)
880 {
881 	struct octep_vf_device *oct = netdev_priv(netdev);
882 	u16 rx_offloads = 0, tx_offloads = 0;
883 	int err;
884 
885 	/* We only support features received from firmware */
886 	if ((features & netdev->hw_features) != features)
887 		return -EINVAL;
888 
889 	if (features & NETIF_F_TSO)
890 		tx_offloads |= OCTEP_VF_TX_OFFLOAD_TSO;
891 
892 	if (features & NETIF_F_TSO6)
893 		tx_offloads |= OCTEP_VF_TX_OFFLOAD_TSO;
894 
895 	if (features & NETIF_F_IP_CSUM)
896 		tx_offloads |= OCTEP_VF_TX_OFFLOAD_CKSUM;
897 
898 	if (features & NETIF_F_IPV6_CSUM)
899 		tx_offloads |= OCTEP_VF_TX_OFFLOAD_CKSUM;
900 
901 	if (features & NETIF_F_RXCSUM)
902 		rx_offloads |= OCTEP_VF_RX_OFFLOAD_CKSUM;
903 
904 	err = octep_vf_mbox_set_offloads(oct, tx_offloads, rx_offloads);
905 	if (!err)
906 		netdev->features = features;
907 
908 	return err;
909 }
910 
911 static const struct net_device_ops octep_vf_netdev_ops = {
912 	.ndo_open                = octep_vf_open,
913 	.ndo_stop                = octep_vf_stop,
914 	.ndo_start_xmit          = octep_vf_start_xmit,
915 	.ndo_get_stats64         = octep_vf_get_stats64,
916 	.ndo_tx_timeout          = octep_vf_tx_timeout,
917 	.ndo_set_mac_address     = octep_vf_set_mac,
918 	.ndo_change_mtu          = octep_vf_change_mtu,
919 	.ndo_set_features        = octep_vf_set_features,
920 };
921 
octep_vf_devid_to_str(struct octep_vf_device * oct)922 static const char *octep_vf_devid_to_str(struct octep_vf_device *oct)
923 {
924 	switch (oct->chip_id) {
925 	case OCTEP_PCI_DEVICE_ID_CN93_VF:
926 		return "CN93XX";
927 	case OCTEP_PCI_DEVICE_ID_CNF95N_VF:
928 		return "CNF95N";
929 	case OCTEP_PCI_DEVICE_ID_CN10KA_VF:
930 		return "CN10KA";
931 	case OCTEP_PCI_DEVICE_ID_CNF10KA_VF:
932 		return "CNF10KA";
933 	case OCTEP_PCI_DEVICE_ID_CNF10KB_VF:
934 		return "CNF10KB";
935 	case OCTEP_PCI_DEVICE_ID_CN10KB_VF:
936 		return "CN10KB";
937 	default:
938 		return "Unsupported";
939 	}
940 }
941 
942 /**
943  * octep_vf_device_setup() - Setup Octeon Device.
944  *
945  * @oct: Octeon device private data structure.
946  *
947  * Setup Octeon device hardware operations, configuration, etc ...
948  */
octep_vf_device_setup(struct octep_vf_device * oct)949 int octep_vf_device_setup(struct octep_vf_device *oct)
950 {
951 	struct pci_dev *pdev = oct->pdev;
952 
953 	/* allocate memory for oct->conf */
954 	oct->conf = kzalloc(sizeof(*oct->conf), GFP_KERNEL);
955 	if (!oct->conf)
956 		return -ENOMEM;
957 
958 	/* Map BAR region 0 */
959 	oct->mmio.hw_addr = ioremap(pci_resource_start(oct->pdev, 0),
960 				    pci_resource_len(oct->pdev, 0));
961 	if (!oct->mmio.hw_addr) {
962 		dev_err(&pdev->dev,
963 			"Failed to remap BAR0; start=0x%llx len=0x%llx\n",
964 			pci_resource_start(oct->pdev, 0),
965 			pci_resource_len(oct->pdev, 0));
966 		goto ioremap_err;
967 	}
968 	oct->mmio.mapped = 1;
969 
970 	oct->chip_id = pdev->device;
971 	oct->rev_id = pdev->revision;
972 	dev_info(&pdev->dev, "chip_id = 0x%x\n", pdev->device);
973 
974 	switch (oct->chip_id) {
975 	case OCTEP_PCI_DEVICE_ID_CN93_VF:
976 	case OCTEP_PCI_DEVICE_ID_CNF95N_VF:
977 	case OCTEP_PCI_DEVICE_ID_CN98_VF:
978 		dev_info(&pdev->dev, "Setting up OCTEON %s VF PASS%d.%d\n",
979 			 octep_vf_devid_to_str(oct), OCTEP_VF_MAJOR_REV(oct),
980 			 OCTEP_VF_MINOR_REV(oct));
981 		octep_vf_device_setup_cn93(oct);
982 		break;
983 	case OCTEP_PCI_DEVICE_ID_CNF10KA_VF:
984 	case OCTEP_PCI_DEVICE_ID_CN10KA_VF:
985 	case OCTEP_PCI_DEVICE_ID_CNF10KB_VF:
986 	case OCTEP_PCI_DEVICE_ID_CN10KB_VF:
987 		dev_info(&pdev->dev, "Setting up OCTEON %s VF PASS%d.%d\n",
988 			 octep_vf_devid_to_str(oct), OCTEP_VF_MAJOR_REV(oct),
989 			 OCTEP_VF_MINOR_REV(oct));
990 		octep_vf_device_setup_cnxk(oct);
991 		break;
992 	default:
993 		dev_err(&pdev->dev, "Unsupported device\n");
994 		goto unsupported_dev;
995 	}
996 
997 	return 0;
998 
999 unsupported_dev:
1000 	iounmap(oct->mmio.hw_addr);
1001 ioremap_err:
1002 	kfree(oct->conf);
1003 	return -EOPNOTSUPP;
1004 }
1005 
1006 /**
1007  * octep_vf_device_cleanup() - Cleanup Octeon Device.
1008  *
1009  * @oct: Octeon device private data structure.
1010  *
1011  * Cleanup Octeon device allocated resources.
1012  */
octep_vf_device_cleanup(struct octep_vf_device * oct)1013 static void octep_vf_device_cleanup(struct octep_vf_device *oct)
1014 {
1015 	dev_info(&oct->pdev->dev, "Cleaning up Octeon Device ...\n");
1016 
1017 	if (oct->mmio.mapped)
1018 		iounmap(oct->mmio.hw_addr);
1019 
1020 	kfree(oct->conf);
1021 	oct->conf = NULL;
1022 }
1023 
octep_vf_get_mac_addr(struct octep_vf_device * oct,u8 * addr)1024 static int octep_vf_get_mac_addr(struct octep_vf_device *oct, u8 *addr)
1025 {
1026 	return octep_vf_mbox_get_mac_addr(oct, addr);
1027 }
1028 
1029 /**
1030  * octep_vf_probe() - Octeon PCI device probe handler.
1031  *
1032  * @pdev: PCI device structure.
1033  * @ent: entry in Octeon PCI device ID table.
1034  *
1035  * Initializes and enables the Octeon PCI device for network operations.
1036  * Initializes Octeon private data structure and registers a network device.
1037  */
octep_vf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1038 static int octep_vf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1039 {
1040 	struct octep_vf_device *octep_vf_dev;
1041 	struct net_device *netdev;
1042 	int err;
1043 
1044 	err = pci_enable_device(pdev);
1045 	if (err) {
1046 		dev_err(&pdev->dev, "Failed to enable PCI device\n");
1047 		return  err;
1048 	}
1049 
1050 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1051 	if (err) {
1052 		dev_err(&pdev->dev, "Failed to set DMA mask !!\n");
1053 		goto disable_pci_device;
1054 	}
1055 
1056 	err = pci_request_mem_regions(pdev, OCTEP_VF_DRV_NAME);
1057 	if (err) {
1058 		dev_err(&pdev->dev, "Failed to map PCI memory regions\n");
1059 		goto disable_pci_device;
1060 	}
1061 
1062 	pci_set_master(pdev);
1063 
1064 	netdev = alloc_etherdev_mq(sizeof(struct octep_vf_device),
1065 				   OCTEP_VF_MAX_QUEUES);
1066 	if (!netdev) {
1067 		dev_err(&pdev->dev, "Failed to allocate netdev\n");
1068 		err = -ENOMEM;
1069 		goto mem_regions_release;
1070 	}
1071 	SET_NETDEV_DEV(netdev, &pdev->dev);
1072 
1073 	octep_vf_dev = netdev_priv(netdev);
1074 	octep_vf_dev->netdev = netdev;
1075 	octep_vf_dev->pdev = pdev;
1076 	octep_vf_dev->dev = &pdev->dev;
1077 	pci_set_drvdata(pdev, octep_vf_dev);
1078 
1079 	err = octep_vf_device_setup(octep_vf_dev);
1080 	if (err) {
1081 		dev_err(&pdev->dev, "Device setup failed\n");
1082 		goto netdevice_free;
1083 	}
1084 	INIT_WORK(&octep_vf_dev->tx_timeout_task, octep_vf_tx_timeout_task);
1085 
1086 	netdev->netdev_ops = &octep_vf_netdev_ops;
1087 	octep_vf_set_ethtool_ops(netdev);
1088 	netif_carrier_off(netdev);
1089 
1090 	if (octep_vf_setup_mbox(octep_vf_dev)) {
1091 		dev_err(&pdev->dev, "VF Mailbox setup failed\n");
1092 		err = -ENOMEM;
1093 		goto device_cleanup;
1094 	}
1095 
1096 	if (octep_vf_mbox_version_check(octep_vf_dev)) {
1097 		dev_err(&pdev->dev, "PF VF Mailbox version mismatch\n");
1098 		err = -EINVAL;
1099 		goto delete_mbox;
1100 	}
1101 
1102 	if (octep_vf_mbox_get_fw_info(octep_vf_dev)) {
1103 		dev_err(&pdev->dev, "unable to get fw info\n");
1104 		err = -EINVAL;
1105 		goto delete_mbox;
1106 	}
1107 
1108 	netdev->hw_features = NETIF_F_SG;
1109 	if (OCTEP_VF_TX_IP_CSUM(octep_vf_dev->fw_info.tx_ol_flags))
1110 		netdev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
1111 
1112 	if (OCTEP_VF_RX_IP_CSUM(octep_vf_dev->fw_info.rx_ol_flags))
1113 		netdev->hw_features |= NETIF_F_RXCSUM;
1114 
1115 	netdev->min_mtu = OCTEP_VF_MIN_MTU;
1116 	netdev->max_mtu = OCTEP_VF_MAX_MTU;
1117 	netdev->mtu = OCTEP_VF_DEFAULT_MTU;
1118 
1119 	if (OCTEP_VF_TX_TSO(octep_vf_dev->fw_info.tx_ol_flags)) {
1120 		netdev->hw_features |= NETIF_F_TSO;
1121 		netif_set_tso_max_size(netdev, netdev->max_mtu);
1122 	}
1123 
1124 	netdev->features |= netdev->hw_features;
1125 	octep_vf_get_mac_addr(octep_vf_dev, octep_vf_dev->mac_addr);
1126 	eth_hw_addr_set(netdev, octep_vf_dev->mac_addr);
1127 	err = register_netdev(netdev);
1128 	if (err) {
1129 		dev_err(&pdev->dev, "Failed to register netdev\n");
1130 		goto delete_mbox;
1131 	}
1132 	dev_info(&pdev->dev, "Device probe successful\n");
1133 	return 0;
1134 
1135 delete_mbox:
1136 	octep_vf_delete_mbox(octep_vf_dev);
1137 device_cleanup:
1138 	octep_vf_device_cleanup(octep_vf_dev);
1139 netdevice_free:
1140 	free_netdev(netdev);
1141 mem_regions_release:
1142 	pci_release_mem_regions(pdev);
1143 disable_pci_device:
1144 	pci_disable_device(pdev);
1145 	dev_err(&pdev->dev, "Device probe failed\n");
1146 	return err;
1147 }
1148 
1149 /**
1150  * octep_vf_remove() - Remove Octeon PCI device from driver control.
1151  *
1152  * @pdev: PCI device structure of the Octeon device.
1153  *
1154  * Cleanup all resources allocated for the Octeon device.
1155  * Unregister from network device and disable the PCI device.
1156  */
octep_vf_remove(struct pci_dev * pdev)1157 static void octep_vf_remove(struct pci_dev *pdev)
1158 {
1159 	struct octep_vf_device *oct = pci_get_drvdata(pdev);
1160 	struct net_device *netdev;
1161 
1162 	if (!oct)
1163 		return;
1164 
1165 	octep_vf_mbox_dev_remove(oct);
1166 	cancel_work_sync(&oct->tx_timeout_task);
1167 	netdev = oct->netdev;
1168 	if (netdev->reg_state == NETREG_REGISTERED)
1169 		unregister_netdev(netdev);
1170 	octep_vf_delete_mbox(oct);
1171 	octep_vf_device_cleanup(oct);
1172 	pci_release_mem_regions(pdev);
1173 	free_netdev(netdev);
1174 	pci_disable_device(pdev);
1175 }
1176 
1177 static struct pci_driver octep_vf_driver = {
1178 	.name = OCTEP_VF_DRV_NAME,
1179 	.id_table = octep_vf_pci_id_tbl,
1180 	.probe = octep_vf_probe,
1181 	.remove = octep_vf_remove,
1182 };
1183 
1184 /**
1185  * octep_vf_init_module() - Module initialization.
1186  *
1187  * create common resource for the driver and register PCI driver.
1188  */
octep_vf_init_module(void)1189 static int __init octep_vf_init_module(void)
1190 {
1191 	int ret;
1192 
1193 	pr_info("%s: Loading %s ...\n", OCTEP_VF_DRV_NAME, OCTEP_VF_DRV_STRING);
1194 
1195 	ret = pci_register_driver(&octep_vf_driver);
1196 	if (ret < 0) {
1197 		pr_err("%s: Failed to register PCI driver; err=%d\n",
1198 		       OCTEP_VF_DRV_NAME, ret);
1199 		return ret;
1200 	}
1201 
1202 	return ret;
1203 }
1204 
1205 /**
1206  * octep_vf_exit_module() - Module exit routine.
1207  *
1208  * unregister the driver with PCI subsystem and cleanup common resources.
1209  */
octep_vf_exit_module(void)1210 static void __exit octep_vf_exit_module(void)
1211 {
1212 	pr_info("%s: Unloading ...\n", OCTEP_VF_DRV_NAME);
1213 
1214 	pci_unregister_driver(&octep_vf_driver);
1215 
1216 	pr_info("%s: Unloading complete\n", OCTEP_VF_DRV_NAME);
1217 }
1218 
1219 module_init(octep_vf_init_module);
1220 module_exit(octep_vf_exit_module);
1221