1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell Octeon EP (EndPoint) Ethernet Driver
3 *
4 * Copyright (C) 2020 Marvell.
5 *
6 */
7
8 #include <linux/types.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/vmalloc.h>
15
16 #include "octep_config.h"
17 #include "octep_main.h"
18 #include "octep_ctrl_net.h"
19 #include "octep_pfvf_mbox.h"
20
21 #define OCTEP_INTR_POLL_TIME_MSECS 100
22 struct workqueue_struct *octep_wq;
23
24 /* Supported Devices */
25 static const struct pci_device_id octep_pci_id_tbl[] = {
26 {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN98_PF)},
27 {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN93_PF)},
28 {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF95N_PF)},
29 {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN10KA_PF)},
30 {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF10KA_PF)},
31 {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF10KB_PF)},
32 {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN10KB_PF)},
33 {0, },
34 };
35 MODULE_DEVICE_TABLE(pci, octep_pci_id_tbl);
36
37 MODULE_AUTHOR("Veerasenareddy Burru <[email protected]>");
38 MODULE_DESCRIPTION(OCTEP_DRV_STRING);
39 MODULE_LICENSE("GPL");
40
41 /**
42 * octep_alloc_ioq_vectors() - Allocate Tx/Rx Queue interrupt info.
43 *
44 * @oct: Octeon device private data structure.
45 *
46 * Allocate resources to hold per Tx/Rx queue interrupt info.
47 * This is the information passed to interrupt handler, from which napi poll
48 * is scheduled and includes quick access to private data of Tx/Rx queue
49 * corresponding to the interrupt being handled.
50 *
51 * Return: 0, on successful allocation of resources for all queue interrupts.
52 * -1, if failed to allocate any resource.
53 */
octep_alloc_ioq_vectors(struct octep_device * oct)54 static int octep_alloc_ioq_vectors(struct octep_device *oct)
55 {
56 int i;
57 struct octep_ioq_vector *ioq_vector;
58
59 for (i = 0; i < oct->num_oqs; i++) {
60 oct->ioq_vector[i] = vzalloc(sizeof(*oct->ioq_vector[i]));
61 if (!oct->ioq_vector[i])
62 goto free_ioq_vector;
63
64 ioq_vector = oct->ioq_vector[i];
65 ioq_vector->iq = oct->iq[i];
66 ioq_vector->oq = oct->oq[i];
67 ioq_vector->octep_dev = oct;
68 }
69
70 dev_info(&oct->pdev->dev, "Allocated %d IOQ vectors\n", oct->num_oqs);
71 return 0;
72
73 free_ioq_vector:
74 while (i) {
75 i--;
76 vfree(oct->ioq_vector[i]);
77 oct->ioq_vector[i] = NULL;
78 }
79 return -1;
80 }
81
82 /**
83 * octep_free_ioq_vectors() - Free Tx/Rx Queue interrupt vector info.
84 *
85 * @oct: Octeon device private data structure.
86 */
octep_free_ioq_vectors(struct octep_device * oct)87 static void octep_free_ioq_vectors(struct octep_device *oct)
88 {
89 int i;
90
91 for (i = 0; i < oct->num_oqs; i++) {
92 if (oct->ioq_vector[i]) {
93 vfree(oct->ioq_vector[i]);
94 oct->ioq_vector[i] = NULL;
95 }
96 }
97 netdev_info(oct->netdev, "Freed IOQ Vectors\n");
98 }
99
100 /**
101 * octep_enable_msix_range() - enable MSI-x interrupts.
102 *
103 * @oct: Octeon device private data structure.
104 *
105 * Allocate and enable all MSI-x interrupts (queue and non-queue interrupts)
106 * for the Octeon device.
107 *
108 * Return: 0, on successfully enabling all MSI-x interrupts.
109 * -1, if failed to enable any MSI-x interrupt.
110 */
octep_enable_msix_range(struct octep_device * oct)111 static int octep_enable_msix_range(struct octep_device *oct)
112 {
113 int num_msix, msix_allocated;
114 int i;
115
116 /* Generic interrupts apart from input/output queues */
117 num_msix = oct->num_oqs + CFG_GET_NON_IOQ_MSIX(oct->conf);
118 oct->msix_entries = kcalloc(num_msix,
119 sizeof(struct msix_entry), GFP_KERNEL);
120 if (!oct->msix_entries)
121 goto msix_alloc_err;
122
123 for (i = 0; i < num_msix; i++)
124 oct->msix_entries[i].entry = i;
125
126 msix_allocated = pci_enable_msix_range(oct->pdev, oct->msix_entries,
127 num_msix, num_msix);
128 if (msix_allocated != num_msix) {
129 dev_err(&oct->pdev->dev,
130 "Failed to enable %d msix irqs; got only %d\n",
131 num_msix, msix_allocated);
132 goto enable_msix_err;
133 }
134 oct->num_irqs = msix_allocated;
135 dev_info(&oct->pdev->dev, "MSI-X enabled successfully\n");
136
137 return 0;
138
139 enable_msix_err:
140 if (msix_allocated > 0)
141 pci_disable_msix(oct->pdev);
142 kfree(oct->msix_entries);
143 oct->msix_entries = NULL;
144 msix_alloc_err:
145 return -1;
146 }
147
148 /**
149 * octep_disable_msix() - disable MSI-x interrupts.
150 *
151 * @oct: Octeon device private data structure.
152 *
153 * Disable MSI-x on the Octeon device.
154 */
octep_disable_msix(struct octep_device * oct)155 static void octep_disable_msix(struct octep_device *oct)
156 {
157 pci_disable_msix(oct->pdev);
158 kfree(oct->msix_entries);
159 oct->msix_entries = NULL;
160 dev_info(&oct->pdev->dev, "Disabled MSI-X\n");
161 }
162
163 /**
164 * octep_mbox_intr_handler() - common handler for pfvf mbox interrupts.
165 *
166 * @irq: Interrupt number.
167 * @data: interrupt data.
168 *
169 * this is common handler for pfvf mbox interrupts.
170 */
octep_mbox_intr_handler(int irq,void * data)171 static irqreturn_t octep_mbox_intr_handler(int irq, void *data)
172 {
173 struct octep_device *oct = data;
174
175 return oct->hw_ops.mbox_intr_handler(oct);
176 }
177
178 /**
179 * octep_oei_intr_handler() - common handler for output endpoint interrupts.
180 *
181 * @irq: Interrupt number.
182 * @data: interrupt data.
183 *
184 * this is common handler for all output endpoint interrupts.
185 */
octep_oei_intr_handler(int irq,void * data)186 static irqreturn_t octep_oei_intr_handler(int irq, void *data)
187 {
188 struct octep_device *oct = data;
189
190 return oct->hw_ops.oei_intr_handler(oct);
191 }
192
193 /**
194 * octep_ire_intr_handler() - common handler for input ring error interrupts.
195 *
196 * @irq: Interrupt number.
197 * @data: interrupt data.
198 *
199 * this is common handler for input ring error interrupts.
200 */
octep_ire_intr_handler(int irq,void * data)201 static irqreturn_t octep_ire_intr_handler(int irq, void *data)
202 {
203 struct octep_device *oct = data;
204
205 return oct->hw_ops.ire_intr_handler(oct);
206 }
207
208 /**
209 * octep_ore_intr_handler() - common handler for output ring error interrupts.
210 *
211 * @irq: Interrupt number.
212 * @data: interrupt data.
213 *
214 * this is common handler for output ring error interrupts.
215 */
octep_ore_intr_handler(int irq,void * data)216 static irqreturn_t octep_ore_intr_handler(int irq, void *data)
217 {
218 struct octep_device *oct = data;
219
220 return oct->hw_ops.ore_intr_handler(oct);
221 }
222
223 /**
224 * octep_vfire_intr_handler() - common handler for vf input ring error interrupts.
225 *
226 * @irq: Interrupt number.
227 * @data: interrupt data.
228 *
229 * this is common handler for vf input ring error interrupts.
230 */
octep_vfire_intr_handler(int irq,void * data)231 static irqreturn_t octep_vfire_intr_handler(int irq, void *data)
232 {
233 struct octep_device *oct = data;
234
235 return oct->hw_ops.vfire_intr_handler(oct);
236 }
237
238 /**
239 * octep_vfore_intr_handler() - common handler for vf output ring error interrupts.
240 *
241 * @irq: Interrupt number.
242 * @data: interrupt data.
243 *
244 * this is common handler for vf output ring error interrupts.
245 */
octep_vfore_intr_handler(int irq,void * data)246 static irqreturn_t octep_vfore_intr_handler(int irq, void *data)
247 {
248 struct octep_device *oct = data;
249
250 return oct->hw_ops.vfore_intr_handler(oct);
251 }
252
253 /**
254 * octep_dma_intr_handler() - common handler for dpi dma related interrupts.
255 *
256 * @irq: Interrupt number.
257 * @data: interrupt data.
258 *
259 * this is common handler for dpi dma related interrupts.
260 */
octep_dma_intr_handler(int irq,void * data)261 static irqreturn_t octep_dma_intr_handler(int irq, void *data)
262 {
263 struct octep_device *oct = data;
264
265 return oct->hw_ops.dma_intr_handler(oct);
266 }
267
268 /**
269 * octep_dma_vf_intr_handler() - common handler for dpi dma transaction error interrupts for VFs.
270 *
271 * @irq: Interrupt number.
272 * @data: interrupt data.
273 *
274 * this is common handler for dpi dma transaction error interrupts for VFs.
275 */
octep_dma_vf_intr_handler(int irq,void * data)276 static irqreturn_t octep_dma_vf_intr_handler(int irq, void *data)
277 {
278 struct octep_device *oct = data;
279
280 return oct->hw_ops.dma_vf_intr_handler(oct);
281 }
282
283 /**
284 * octep_pp_vf_intr_handler() - common handler for pp transaction error interrupts for VFs.
285 *
286 * @irq: Interrupt number.
287 * @data: interrupt data.
288 *
289 * this is common handler for pp transaction error interrupts for VFs.
290 */
octep_pp_vf_intr_handler(int irq,void * data)291 static irqreturn_t octep_pp_vf_intr_handler(int irq, void *data)
292 {
293 struct octep_device *oct = data;
294
295 return oct->hw_ops.pp_vf_intr_handler(oct);
296 }
297
298 /**
299 * octep_misc_intr_handler() - common handler for mac related interrupts.
300 *
301 * @irq: Interrupt number.
302 * @data: interrupt data.
303 *
304 * this is common handler for mac related interrupts.
305 */
octep_misc_intr_handler(int irq,void * data)306 static irqreturn_t octep_misc_intr_handler(int irq, void *data)
307 {
308 struct octep_device *oct = data;
309
310 return oct->hw_ops.misc_intr_handler(oct);
311 }
312
313 /**
314 * octep_rsvd_intr_handler() - common handler for reserved interrupts (future use).
315 *
316 * @irq: Interrupt number.
317 * @data: interrupt data.
318 *
319 * this is common handler for all reserved interrupts.
320 */
octep_rsvd_intr_handler(int irq,void * data)321 static irqreturn_t octep_rsvd_intr_handler(int irq, void *data)
322 {
323 struct octep_device *oct = data;
324
325 return oct->hw_ops.rsvd_intr_handler(oct);
326 }
327
328 /**
329 * octep_ioq_intr_handler() - handler for all Tx/Rx queue interrupts.
330 *
331 * @irq: Interrupt number.
332 * @data: interrupt data contains pointers to Tx/Rx queue private data
333 * and correspong NAPI context.
334 *
335 * this is common handler for all non-queue (generic) interrupts.
336 */
octep_ioq_intr_handler(int irq,void * data)337 static irqreturn_t octep_ioq_intr_handler(int irq, void *data)
338 {
339 struct octep_ioq_vector *ioq_vector = data;
340 struct octep_device *oct = ioq_vector->octep_dev;
341
342 return oct->hw_ops.ioq_intr_handler(ioq_vector);
343 }
344
345 /**
346 * octep_request_irqs() - Register interrupt handlers.
347 *
348 * @oct: Octeon device private data structure.
349 *
350 * Register handlers for all queue and non-queue interrupts.
351 *
352 * Return: 0, on successful registration of all interrupt handlers.
353 * -1, on any error.
354 */
octep_request_irqs(struct octep_device * oct)355 static int octep_request_irqs(struct octep_device *oct)
356 {
357 struct net_device *netdev = oct->netdev;
358 struct octep_ioq_vector *ioq_vector;
359 struct msix_entry *msix_entry;
360 char **non_ioq_msix_names;
361 int num_non_ioq_msix;
362 int ret, i, j;
363
364 num_non_ioq_msix = CFG_GET_NON_IOQ_MSIX(oct->conf);
365 non_ioq_msix_names = CFG_GET_NON_IOQ_MSIX_NAMES(oct->conf);
366
367 oct->non_ioq_irq_names = kcalloc(num_non_ioq_msix,
368 OCTEP_MSIX_NAME_SIZE, GFP_KERNEL);
369 if (!oct->non_ioq_irq_names)
370 goto alloc_err;
371
372 /* First few MSI-X interrupts are non-queue interrupts */
373 for (i = 0; i < num_non_ioq_msix; i++) {
374 char *irq_name;
375
376 irq_name = &oct->non_ioq_irq_names[i * OCTEP_MSIX_NAME_SIZE];
377 msix_entry = &oct->msix_entries[i];
378
379 snprintf(irq_name, OCTEP_MSIX_NAME_SIZE,
380 "%s-%s", netdev->name, non_ioq_msix_names[i]);
381 if (!strncmp(non_ioq_msix_names[i], "epf_mbox_rint", strlen("epf_mbox_rint"))) {
382 ret = request_irq(msix_entry->vector,
383 octep_mbox_intr_handler, 0,
384 irq_name, oct);
385 } else if (!strncmp(non_ioq_msix_names[i], "epf_oei_rint",
386 strlen("epf_oei_rint"))) {
387 ret = request_irq(msix_entry->vector,
388 octep_oei_intr_handler, 0,
389 irq_name, oct);
390 } else if (!strncmp(non_ioq_msix_names[i], "epf_ire_rint",
391 strlen("epf_ire_rint"))) {
392 ret = request_irq(msix_entry->vector,
393 octep_ire_intr_handler, 0,
394 irq_name, oct);
395 } else if (!strncmp(non_ioq_msix_names[i], "epf_ore_rint",
396 strlen("epf_ore_rint"))) {
397 ret = request_irq(msix_entry->vector,
398 octep_ore_intr_handler, 0,
399 irq_name, oct);
400 } else if (!strncmp(non_ioq_msix_names[i], "epf_vfire_rint",
401 strlen("epf_vfire_rint"))) {
402 ret = request_irq(msix_entry->vector,
403 octep_vfire_intr_handler, 0,
404 irq_name, oct);
405 } else if (!strncmp(non_ioq_msix_names[i], "epf_vfore_rint",
406 strlen("epf_vfore_rint"))) {
407 ret = request_irq(msix_entry->vector,
408 octep_vfore_intr_handler, 0,
409 irq_name, oct);
410 } else if (!strncmp(non_ioq_msix_names[i], "epf_dma_rint",
411 strlen("epf_dma_rint"))) {
412 ret = request_irq(msix_entry->vector,
413 octep_dma_intr_handler, 0,
414 irq_name, oct);
415 } else if (!strncmp(non_ioq_msix_names[i], "epf_dma_vf_rint",
416 strlen("epf_dma_vf_rint"))) {
417 ret = request_irq(msix_entry->vector,
418 octep_dma_vf_intr_handler, 0,
419 irq_name, oct);
420 } else if (!strncmp(non_ioq_msix_names[i], "epf_pp_vf_rint",
421 strlen("epf_pp_vf_rint"))) {
422 ret = request_irq(msix_entry->vector,
423 octep_pp_vf_intr_handler, 0,
424 irq_name, oct);
425 } else if (!strncmp(non_ioq_msix_names[i], "epf_misc_rint",
426 strlen("epf_misc_rint"))) {
427 ret = request_irq(msix_entry->vector,
428 octep_misc_intr_handler, 0,
429 irq_name, oct);
430 } else {
431 ret = request_irq(msix_entry->vector,
432 octep_rsvd_intr_handler, 0,
433 irq_name, oct);
434 }
435
436 if (ret) {
437 netdev_err(netdev,
438 "request_irq failed for %s; err=%d",
439 irq_name, ret);
440 goto non_ioq_irq_err;
441 }
442 }
443
444 /* Request IRQs for Tx/Rx queues */
445 for (j = 0; j < oct->num_oqs; j++) {
446 ioq_vector = oct->ioq_vector[j];
447 msix_entry = &oct->msix_entries[j + num_non_ioq_msix];
448
449 snprintf(ioq_vector->name, sizeof(ioq_vector->name),
450 "%s-q%d", netdev->name, j);
451 ret = request_irq(msix_entry->vector,
452 octep_ioq_intr_handler, 0,
453 ioq_vector->name, ioq_vector);
454 if (ret) {
455 netdev_err(netdev,
456 "request_irq failed for Q-%d; err=%d",
457 j, ret);
458 goto ioq_irq_err;
459 }
460
461 cpumask_set_cpu(j % num_online_cpus(),
462 &ioq_vector->affinity_mask);
463 irq_set_affinity_hint(msix_entry->vector,
464 &ioq_vector->affinity_mask);
465 }
466
467 return 0;
468 ioq_irq_err:
469 while (j) {
470 --j;
471 ioq_vector = oct->ioq_vector[j];
472 msix_entry = &oct->msix_entries[j + num_non_ioq_msix];
473
474 irq_set_affinity_hint(msix_entry->vector, NULL);
475 free_irq(msix_entry->vector, ioq_vector);
476 }
477 non_ioq_irq_err:
478 while (i) {
479 --i;
480 free_irq(oct->msix_entries[i].vector, oct);
481 }
482 kfree(oct->non_ioq_irq_names);
483 oct->non_ioq_irq_names = NULL;
484 alloc_err:
485 return -1;
486 }
487
488 /**
489 * octep_free_irqs() - free all registered interrupts.
490 *
491 * @oct: Octeon device private data structure.
492 *
493 * Free all queue and non-queue interrupts of the Octeon device.
494 */
octep_free_irqs(struct octep_device * oct)495 static void octep_free_irqs(struct octep_device *oct)
496 {
497 int i;
498
499 /* First few MSI-X interrupts are non queue interrupts; free them */
500 for (i = 0; i < CFG_GET_NON_IOQ_MSIX(oct->conf); i++)
501 free_irq(oct->msix_entries[i].vector, oct);
502 kfree(oct->non_ioq_irq_names);
503
504 /* Free IRQs for Input/Output (Tx/Rx) queues */
505 for (i = CFG_GET_NON_IOQ_MSIX(oct->conf); i < oct->num_irqs; i++) {
506 irq_set_affinity_hint(oct->msix_entries[i].vector, NULL);
507 free_irq(oct->msix_entries[i].vector,
508 oct->ioq_vector[i - CFG_GET_NON_IOQ_MSIX(oct->conf)]);
509 }
510 netdev_info(oct->netdev, "IRQs freed\n");
511 }
512
513 /**
514 * octep_setup_irqs() - setup interrupts for the Octeon device.
515 *
516 * @oct: Octeon device private data structure.
517 *
518 * Allocate data structures to hold per interrupt information, allocate/enable
519 * MSI-x interrupt and register interrupt handlers.
520 *
521 * Return: 0, on successful allocation and registration of all interrupts.
522 * -1, on any error.
523 */
octep_setup_irqs(struct octep_device * oct)524 static int octep_setup_irqs(struct octep_device *oct)
525 {
526 if (octep_alloc_ioq_vectors(oct))
527 goto ioq_vector_err;
528
529 if (octep_enable_msix_range(oct))
530 goto enable_msix_err;
531
532 if (octep_request_irqs(oct))
533 goto request_irq_err;
534
535 return 0;
536
537 request_irq_err:
538 octep_disable_msix(oct);
539 enable_msix_err:
540 octep_free_ioq_vectors(oct);
541 ioq_vector_err:
542 return -1;
543 }
544
545 /**
546 * octep_clean_irqs() - free all interrupts and its resources.
547 *
548 * @oct: Octeon device private data structure.
549 */
octep_clean_irqs(struct octep_device * oct)550 static void octep_clean_irqs(struct octep_device *oct)
551 {
552 octep_free_irqs(oct);
553 octep_disable_msix(oct);
554 octep_free_ioq_vectors(oct);
555 }
556
557 /**
558 * octep_enable_ioq_irq() - Enable MSI-x interrupt of a Tx/Rx queue.
559 *
560 * @iq: Octeon Tx queue data structure.
561 * @oq: Octeon Rx queue data structure.
562 */
octep_enable_ioq_irq(struct octep_iq * iq,struct octep_oq * oq)563 static void octep_enable_ioq_irq(struct octep_iq *iq, struct octep_oq *oq)
564 {
565 u32 pkts_pend = oq->pkts_pending;
566
567 netdev_dbg(iq->netdev, "enabling intr for Q-%u\n", iq->q_no);
568 if (iq->pkts_processed) {
569 writel(iq->pkts_processed, iq->inst_cnt_reg);
570 iq->pkt_in_done -= iq->pkts_processed;
571 iq->pkts_processed = 0;
572 }
573 if (oq->last_pkt_count - pkts_pend) {
574 writel(oq->last_pkt_count - pkts_pend, oq->pkts_sent_reg);
575 oq->last_pkt_count = pkts_pend;
576 }
577
578 /* Flush the previous wrties before writing to RESEND bit */
579 wmb();
580 writeq(1UL << OCTEP_OQ_INTR_RESEND_BIT, oq->pkts_sent_reg);
581 writeq(1UL << OCTEP_IQ_INTR_RESEND_BIT, iq->inst_cnt_reg);
582 }
583
584 /**
585 * octep_napi_poll() - NAPI poll function for Tx/Rx.
586 *
587 * @napi: pointer to napi context.
588 * @budget: max number of packets to be processed in single invocation.
589 */
octep_napi_poll(struct napi_struct * napi,int budget)590 static int octep_napi_poll(struct napi_struct *napi, int budget)
591 {
592 struct octep_ioq_vector *ioq_vector =
593 container_of(napi, struct octep_ioq_vector, napi);
594 u32 tx_pending, rx_done;
595
596 tx_pending = octep_iq_process_completions(ioq_vector->iq, budget);
597 rx_done = octep_oq_process_rx(ioq_vector->oq, budget);
598
599 /* need more polling if tx completion processing is still pending or
600 * processed at least 'budget' number of rx packets.
601 */
602 if (tx_pending || rx_done >= budget)
603 return budget;
604
605 napi_complete(napi);
606 octep_enable_ioq_irq(ioq_vector->iq, ioq_vector->oq);
607 return rx_done;
608 }
609
610 /**
611 * octep_napi_add() - Add NAPI poll for all Tx/Rx queues.
612 *
613 * @oct: Octeon device private data structure.
614 */
octep_napi_add(struct octep_device * oct)615 static void octep_napi_add(struct octep_device *oct)
616 {
617 int i;
618
619 for (i = 0; i < oct->num_oqs; i++) {
620 netdev_dbg(oct->netdev, "Adding NAPI on Q-%d\n", i);
621 netif_napi_add(oct->netdev, &oct->ioq_vector[i]->napi,
622 octep_napi_poll);
623 oct->oq[i]->napi = &oct->ioq_vector[i]->napi;
624 }
625 }
626
627 /**
628 * octep_napi_delete() - delete NAPI poll callback for all Tx/Rx queues.
629 *
630 * @oct: Octeon device private data structure.
631 */
octep_napi_delete(struct octep_device * oct)632 static void octep_napi_delete(struct octep_device *oct)
633 {
634 int i;
635
636 for (i = 0; i < oct->num_oqs; i++) {
637 netdev_dbg(oct->netdev, "Deleting NAPI on Q-%d\n", i);
638 netif_napi_del(&oct->ioq_vector[i]->napi);
639 oct->oq[i]->napi = NULL;
640 }
641 }
642
643 /**
644 * octep_napi_enable() - enable NAPI for all Tx/Rx queues.
645 *
646 * @oct: Octeon device private data structure.
647 */
octep_napi_enable(struct octep_device * oct)648 static void octep_napi_enable(struct octep_device *oct)
649 {
650 int i;
651
652 for (i = 0; i < oct->num_oqs; i++) {
653 netdev_dbg(oct->netdev, "Enabling NAPI on Q-%d\n", i);
654 napi_enable(&oct->ioq_vector[i]->napi);
655 }
656 }
657
658 /**
659 * octep_napi_disable() - disable NAPI for all Tx/Rx queues.
660 *
661 * @oct: Octeon device private data structure.
662 */
octep_napi_disable(struct octep_device * oct)663 static void octep_napi_disable(struct octep_device *oct)
664 {
665 int i;
666
667 for (i = 0; i < oct->num_oqs; i++) {
668 netdev_dbg(oct->netdev, "Disabling NAPI on Q-%d\n", i);
669 napi_disable(&oct->ioq_vector[i]->napi);
670 }
671 }
672
octep_link_up(struct net_device * netdev)673 static void octep_link_up(struct net_device *netdev)
674 {
675 netif_carrier_on(netdev);
676 netif_tx_start_all_queues(netdev);
677 }
678
679 /**
680 * octep_open() - start the octeon network device.
681 *
682 * @netdev: pointer to kernel network device.
683 *
684 * setup Tx/Rx queues, interrupts and enable hardware operation of Tx/Rx queues
685 * and interrupts..
686 *
687 * Return: 0, on successfully setting up device and bring it up.
688 * -1, on any error.
689 */
octep_open(struct net_device * netdev)690 static int octep_open(struct net_device *netdev)
691 {
692 struct octep_device *oct = netdev_priv(netdev);
693 int err, ret;
694
695 netdev_info(netdev, "Starting netdev ...\n");
696 netif_carrier_off(netdev);
697
698 oct->hw_ops.reset_io_queues(oct);
699
700 if (octep_setup_iqs(oct))
701 goto setup_iq_err;
702 if (octep_setup_oqs(oct))
703 goto setup_oq_err;
704 if (octep_setup_irqs(oct))
705 goto setup_irq_err;
706
707 err = netif_set_real_num_tx_queues(netdev, oct->num_oqs);
708 if (err)
709 goto set_queues_err;
710 err = netif_set_real_num_rx_queues(netdev, oct->num_iqs);
711 if (err)
712 goto set_queues_err;
713
714 octep_napi_add(oct);
715 octep_napi_enable(oct);
716
717 oct->link_info.admin_up = 1;
718 octep_ctrl_net_set_rx_state(oct, OCTEP_CTRL_NET_INVALID_VFID, true,
719 false);
720 octep_ctrl_net_set_link_status(oct, OCTEP_CTRL_NET_INVALID_VFID, true,
721 false);
722 oct->poll_non_ioq_intr = false;
723
724 /* Enable the input and output queues for this Octeon device */
725 oct->hw_ops.enable_io_queues(oct);
726
727 /* Enable Octeon device interrupts */
728 oct->hw_ops.enable_interrupts(oct);
729
730 octep_oq_dbell_init(oct);
731
732 ret = octep_ctrl_net_get_link_status(oct, OCTEP_CTRL_NET_INVALID_VFID);
733 if (ret > 0)
734 octep_link_up(netdev);
735
736 return 0;
737
738 set_queues_err:
739 octep_clean_irqs(oct);
740 setup_irq_err:
741 octep_free_oqs(oct);
742 setup_oq_err:
743 octep_free_iqs(oct);
744 setup_iq_err:
745 return -1;
746 }
747
748 /**
749 * octep_stop() - stop the octeon network device.
750 *
751 * @netdev: pointer to kernel network device.
752 *
753 * stop the device Tx/Rx operations, bring down the link and
754 * free up all resources allocated for Tx/Rx queues and interrupts.
755 */
octep_stop(struct net_device * netdev)756 static int octep_stop(struct net_device *netdev)
757 {
758 struct octep_device *oct = netdev_priv(netdev);
759
760 netdev_info(netdev, "Stopping the device ...\n");
761
762 octep_ctrl_net_set_link_status(oct, OCTEP_CTRL_NET_INVALID_VFID, false,
763 false);
764 octep_ctrl_net_set_rx_state(oct, OCTEP_CTRL_NET_INVALID_VFID, false,
765 false);
766
767 /* Stop Tx from stack */
768 netif_tx_stop_all_queues(netdev);
769 netif_carrier_off(netdev);
770 netif_tx_disable(netdev);
771
772 oct->link_info.admin_up = 0;
773 oct->link_info.oper_up = 0;
774
775 oct->hw_ops.disable_interrupts(oct);
776 octep_napi_disable(oct);
777 octep_napi_delete(oct);
778
779 octep_clean_irqs(oct);
780 octep_clean_iqs(oct);
781
782 oct->hw_ops.disable_io_queues(oct);
783 oct->hw_ops.reset_io_queues(oct);
784 octep_free_oqs(oct);
785 octep_free_iqs(oct);
786
787 oct->poll_non_ioq_intr = true;
788 queue_delayed_work(octep_wq, &oct->intr_poll_task,
789 msecs_to_jiffies(OCTEP_INTR_POLL_TIME_MSECS));
790
791 netdev_info(netdev, "Device stopped !!\n");
792 return 0;
793 }
794
795 /**
796 * octep_iq_full_check() - check if a Tx queue is full.
797 *
798 * @iq: Octeon Tx queue data structure.
799 *
800 * Return: 0, if the Tx queue is not full.
801 * 1, if the Tx queue is full.
802 */
octep_iq_full_check(struct octep_iq * iq)803 static inline int octep_iq_full_check(struct octep_iq *iq)
804 {
805 if (likely((IQ_INSTR_SPACE(iq)) >
806 OCTEP_WAKE_QUEUE_THRESHOLD))
807 return 0;
808
809 /* Stop the queue if unable to send */
810 netif_stop_subqueue(iq->netdev, iq->q_no);
811
812 /* Allow for pending updates in write index
813 * from iq_process_completion in other cpus
814 * to reflect, in case queue gets free
815 * entries.
816 */
817 smp_mb();
818
819 /* check again and restart the queue, in case NAPI has just freed
820 * enough Tx ring entries.
821 */
822 if (unlikely(IQ_INSTR_SPACE(iq) >
823 OCTEP_WAKE_QUEUE_THRESHOLD)) {
824 netif_start_subqueue(iq->netdev, iq->q_no);
825 iq->stats->restart_cnt++;
826 return 0;
827 }
828
829 return 1;
830 }
831
832 /**
833 * octep_start_xmit() - Enqueue packet to Octoen hardware Tx Queue.
834 *
835 * @skb: packet skbuff pointer.
836 * @netdev: kernel network device.
837 *
838 * Return: NETDEV_TX_BUSY, if Tx Queue is full.
839 * NETDEV_TX_OK, if successfully enqueued to hardware Tx queue.
840 */
octep_start_xmit(struct sk_buff * skb,struct net_device * netdev)841 static netdev_tx_t octep_start_xmit(struct sk_buff *skb,
842 struct net_device *netdev)
843 {
844 struct octep_device *oct = netdev_priv(netdev);
845 netdev_features_t feat = netdev->features;
846 struct octep_tx_sglist_desc *sglist;
847 struct octep_tx_buffer *tx_buffer;
848 struct octep_tx_desc_hw *hw_desc;
849 struct skb_shared_info *shinfo;
850 struct octep_instr_hdr *ih;
851 struct octep_iq *iq;
852 skb_frag_t *frag;
853 u16 nr_frags, si;
854 int xmit_more;
855 u16 q_no, wi;
856
857 if (skb_put_padto(skb, ETH_ZLEN))
858 return NETDEV_TX_OK;
859
860 q_no = skb_get_queue_mapping(skb);
861 if (q_no >= oct->num_iqs) {
862 netdev_err(netdev, "Invalid Tx skb->queue_mapping=%d\n", q_no);
863 q_no = q_no % oct->num_iqs;
864 }
865
866 iq = oct->iq[q_no];
867
868 shinfo = skb_shinfo(skb);
869 nr_frags = shinfo->nr_frags;
870
871 wi = iq->host_write_index;
872 hw_desc = &iq->desc_ring[wi];
873 hw_desc->ih64 = 0;
874
875 tx_buffer = iq->buff_info + wi;
876 tx_buffer->skb = skb;
877
878 ih = &hw_desc->ih;
879 ih->pkind = oct->conf->fw_info.pkind;
880 ih->fsz = oct->conf->fw_info.fsz;
881 ih->tlen = skb->len + ih->fsz;
882
883 if (!nr_frags) {
884 tx_buffer->gather = 0;
885 tx_buffer->dma = dma_map_single(iq->dev, skb->data,
886 skb->len, DMA_TO_DEVICE);
887 if (dma_mapping_error(iq->dev, tx_buffer->dma))
888 goto dma_map_err;
889 hw_desc->dptr = tx_buffer->dma;
890 } else {
891 /* Scatter/Gather */
892 dma_addr_t dma;
893 u16 len;
894
895 sglist = tx_buffer->sglist;
896
897 ih->gsz = nr_frags + 1;
898 ih->gather = 1;
899 tx_buffer->gather = 1;
900
901 len = skb_headlen(skb);
902 dma = dma_map_single(iq->dev, skb->data, len, DMA_TO_DEVICE);
903 if (dma_mapping_error(iq->dev, dma))
904 goto dma_map_err;
905
906 memset(sglist, 0, OCTEP_SGLIST_SIZE_PER_PKT);
907 sglist[0].len[3] = len;
908 sglist[0].dma_ptr[0] = dma;
909
910 si = 1; /* entry 0 is main skb, mapped above */
911 frag = &shinfo->frags[0];
912 while (nr_frags--) {
913 len = skb_frag_size(frag);
914 dma = skb_frag_dma_map(iq->dev, frag, 0,
915 len, DMA_TO_DEVICE);
916 if (dma_mapping_error(iq->dev, dma))
917 goto dma_map_sg_err;
918
919 sglist[si >> 2].len[3 - (si & 3)] = len;
920 sglist[si >> 2].dma_ptr[si & 3] = dma;
921
922 frag++;
923 si++;
924 }
925 hw_desc->dptr = tx_buffer->sglist_dma;
926 }
927
928 if (oct->conf->fw_info.tx_ol_flags) {
929 if ((feat & (NETIF_F_TSO)) && (skb_is_gso(skb))) {
930 hw_desc->txm.ol_flags = OCTEP_TX_OFFLOAD_CKSUM;
931 hw_desc->txm.ol_flags |= OCTEP_TX_OFFLOAD_TSO;
932 hw_desc->txm.gso_size = skb_shinfo(skb)->gso_size;
933 hw_desc->txm.gso_segs = skb_shinfo(skb)->gso_segs;
934 } else if (feat & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
935 hw_desc->txm.ol_flags = OCTEP_TX_OFFLOAD_CKSUM;
936 }
937 /* due to ESR txm will be swapped by hw */
938 hw_desc->txm64[0] = (__force u64)cpu_to_be64(hw_desc->txm64[0]);
939 }
940
941 xmit_more = netdev_xmit_more();
942
943 __netdev_tx_sent_queue(iq->netdev_q, skb->len, xmit_more);
944
945 skb_tx_timestamp(skb);
946 iq->fill_cnt++;
947 wi++;
948 iq->host_write_index = wi & iq->ring_size_mask;
949
950 /* octep_iq_full_check stops the queue and returns
951 * true if so, in case the queue has become full
952 * by inserting current packet. If so, we can
953 * go ahead and ring doorbell.
954 */
955 if (!octep_iq_full_check(iq) && xmit_more &&
956 iq->fill_cnt < iq->fill_threshold)
957 return NETDEV_TX_OK;
958
959 /* Flush the hw descriptor before writing to doorbell */
960 wmb();
961 /* Ring Doorbell to notify the NIC of new packets */
962 writel(iq->fill_cnt, iq->doorbell_reg);
963 iq->stats->instr_posted += iq->fill_cnt;
964 iq->fill_cnt = 0;
965 return NETDEV_TX_OK;
966
967 dma_map_sg_err:
968 if (si > 0) {
969 dma_unmap_single(iq->dev, sglist[0].dma_ptr[0],
970 sglist[0].len[3], DMA_TO_DEVICE);
971 sglist[0].len[3] = 0;
972 }
973 while (si > 1) {
974 dma_unmap_page(iq->dev, sglist[si >> 2].dma_ptr[si & 3],
975 sglist[si >> 2].len[3 - (si & 3)], DMA_TO_DEVICE);
976 sglist[si >> 2].len[3 - (si & 3)] = 0;
977 si--;
978 }
979 tx_buffer->gather = 0;
980 dma_map_err:
981 dev_kfree_skb_any(skb);
982 return NETDEV_TX_OK;
983 }
984
985 /**
986 * octep_get_stats64() - Get Octeon network device statistics.
987 *
988 * @netdev: kernel network device.
989 * @stats: pointer to stats structure to be filled in.
990 */
octep_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)991 static void octep_get_stats64(struct net_device *netdev,
992 struct rtnl_link_stats64 *stats)
993 {
994 struct octep_device *oct = netdev_priv(netdev);
995 u64 tx_packets, tx_bytes, rx_packets, rx_bytes;
996 int q;
997
998 tx_packets = 0;
999 tx_bytes = 0;
1000 rx_packets = 0;
1001 rx_bytes = 0;
1002 for (q = 0; q < OCTEP_MAX_QUEUES; q++) {
1003 tx_packets += oct->stats_iq[q].instr_completed;
1004 tx_bytes += oct->stats_iq[q].bytes_sent;
1005 rx_packets += oct->stats_oq[q].packets;
1006 rx_bytes += oct->stats_oq[q].bytes;
1007 }
1008 stats->tx_packets = tx_packets;
1009 stats->tx_bytes = tx_bytes;
1010 stats->rx_packets = rx_packets;
1011 stats->rx_bytes = rx_bytes;
1012 }
1013
1014 /**
1015 * octep_tx_timeout_task - work queue task to Handle Tx queue timeout.
1016 *
1017 * @work: pointer to Tx queue timeout work_struct
1018 *
1019 * Stop and start the device so that it frees up all queue resources
1020 * and restarts the queues, that potentially clears a Tx queue timeout
1021 * condition.
1022 **/
octep_tx_timeout_task(struct work_struct * work)1023 static void octep_tx_timeout_task(struct work_struct *work)
1024 {
1025 struct octep_device *oct = container_of(work, struct octep_device,
1026 tx_timeout_task);
1027 struct net_device *netdev = oct->netdev;
1028
1029 rtnl_lock();
1030 if (netif_running(netdev)) {
1031 octep_stop(netdev);
1032 octep_open(netdev);
1033 }
1034 rtnl_unlock();
1035 }
1036
1037 /**
1038 * octep_tx_timeout() - Handle Tx Queue timeout.
1039 *
1040 * @netdev: pointer to kernel network device.
1041 * @txqueue: Timed out Tx queue number.
1042 *
1043 * Schedule a work to handle Tx queue timeout.
1044 */
octep_tx_timeout(struct net_device * netdev,unsigned int txqueue)1045 static void octep_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1046 {
1047 struct octep_device *oct = netdev_priv(netdev);
1048
1049 queue_work(octep_wq, &oct->tx_timeout_task);
1050 }
1051
octep_set_mac(struct net_device * netdev,void * p)1052 static int octep_set_mac(struct net_device *netdev, void *p)
1053 {
1054 struct octep_device *oct = netdev_priv(netdev);
1055 struct sockaddr *addr = (struct sockaddr *)p;
1056 int err;
1057
1058 if (!is_valid_ether_addr(addr->sa_data))
1059 return -EADDRNOTAVAIL;
1060
1061 err = octep_ctrl_net_set_mac_addr(oct, OCTEP_CTRL_NET_INVALID_VFID,
1062 addr->sa_data, true);
1063 if (err)
1064 return err;
1065
1066 memcpy(oct->mac_addr, addr->sa_data, ETH_ALEN);
1067 eth_hw_addr_set(netdev, addr->sa_data);
1068
1069 return 0;
1070 }
1071
octep_change_mtu(struct net_device * netdev,int new_mtu)1072 static int octep_change_mtu(struct net_device *netdev, int new_mtu)
1073 {
1074 struct octep_device *oct = netdev_priv(netdev);
1075 struct octep_iface_link_info *link_info;
1076 int err = 0;
1077
1078 link_info = &oct->link_info;
1079 if (link_info->mtu == new_mtu)
1080 return 0;
1081
1082 err = octep_ctrl_net_set_mtu(oct, OCTEP_CTRL_NET_INVALID_VFID, new_mtu,
1083 true);
1084 if (!err) {
1085 oct->link_info.mtu = new_mtu;
1086 WRITE_ONCE(netdev->mtu, new_mtu);
1087 }
1088
1089 return err;
1090 }
1091
octep_set_features(struct net_device * dev,netdev_features_t features)1092 static int octep_set_features(struct net_device *dev, netdev_features_t features)
1093 {
1094 struct octep_ctrl_net_offloads offloads = { 0 };
1095 struct octep_device *oct = netdev_priv(dev);
1096 int err;
1097
1098 /* We only support features received from firmware */
1099 if ((features & dev->hw_features) != features)
1100 return -EINVAL;
1101
1102 if (features & NETIF_F_TSO)
1103 offloads.tx_offloads |= OCTEP_TX_OFFLOAD_TSO;
1104
1105 if (features & NETIF_F_TSO6)
1106 offloads.tx_offloads |= OCTEP_TX_OFFLOAD_TSO;
1107
1108 if (features & NETIF_F_IP_CSUM)
1109 offloads.tx_offloads |= OCTEP_TX_OFFLOAD_CKSUM;
1110
1111 if (features & NETIF_F_IPV6_CSUM)
1112 offloads.tx_offloads |= OCTEP_TX_OFFLOAD_CKSUM;
1113
1114 if (features & NETIF_F_RXCSUM)
1115 offloads.rx_offloads |= OCTEP_RX_OFFLOAD_CKSUM;
1116
1117 err = octep_ctrl_net_set_offloads(oct,
1118 OCTEP_CTRL_NET_INVALID_VFID,
1119 &offloads,
1120 true);
1121 if (!err)
1122 dev->features = features;
1123
1124 return err;
1125 }
1126
octep_get_vf_config(struct net_device * dev,int vf,struct ifla_vf_info * ivi)1127 static int octep_get_vf_config(struct net_device *dev, int vf,
1128 struct ifla_vf_info *ivi)
1129 {
1130 struct octep_device *oct = netdev_priv(dev);
1131
1132 ivi->vf = vf;
1133 ether_addr_copy(ivi->mac, oct->vf_info[vf].mac_addr);
1134 ivi->spoofchk = true;
1135 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1136 ivi->trusted = false;
1137
1138 return 0;
1139 }
1140
octep_set_vf_mac(struct net_device * dev,int vf,u8 * mac)1141 static int octep_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
1142 {
1143 struct octep_device *oct = netdev_priv(dev);
1144 int err;
1145
1146 if (!is_valid_ether_addr(mac)) {
1147 dev_err(&oct->pdev->dev, "Invalid MAC Address %pM\n", mac);
1148 return -EADDRNOTAVAIL;
1149 }
1150
1151 dev_dbg(&oct->pdev->dev, "set vf-%d mac to %pM\n", vf, mac);
1152 ether_addr_copy(oct->vf_info[vf].mac_addr, mac);
1153 oct->vf_info[vf].flags |= OCTEON_PFVF_FLAG_MAC_SET_BY_PF;
1154
1155 err = octep_ctrl_net_set_mac_addr(oct, vf, mac, true);
1156 if (err)
1157 dev_err(&oct->pdev->dev,
1158 "Set VF%d MAC address failed via host control Mbox\n",
1159 vf);
1160
1161 return err;
1162 }
1163
1164 static const struct net_device_ops octep_netdev_ops = {
1165 .ndo_open = octep_open,
1166 .ndo_stop = octep_stop,
1167 .ndo_start_xmit = octep_start_xmit,
1168 .ndo_get_stats64 = octep_get_stats64,
1169 .ndo_tx_timeout = octep_tx_timeout,
1170 .ndo_set_mac_address = octep_set_mac,
1171 .ndo_change_mtu = octep_change_mtu,
1172 .ndo_set_features = octep_set_features,
1173 .ndo_get_vf_config = octep_get_vf_config,
1174 .ndo_set_vf_mac = octep_set_vf_mac
1175 };
1176
1177 /**
1178 * octep_intr_poll_task - work queue task to process non-ioq interrupts.
1179 *
1180 * @work: pointer to mbox work_struct
1181 *
1182 * Process non-ioq interrupts to handle control mailbox, pfvf mailbox.
1183 **/
octep_intr_poll_task(struct work_struct * work)1184 static void octep_intr_poll_task(struct work_struct *work)
1185 {
1186 struct octep_device *oct = container_of(work, struct octep_device,
1187 intr_poll_task.work);
1188
1189 if (!oct->poll_non_ioq_intr) {
1190 dev_info(&oct->pdev->dev, "Interrupt poll task stopped.\n");
1191 return;
1192 }
1193
1194 oct->hw_ops.poll_non_ioq_interrupts(oct);
1195 queue_delayed_work(octep_wq, &oct->intr_poll_task,
1196 msecs_to_jiffies(OCTEP_INTR_POLL_TIME_MSECS));
1197 }
1198
1199 /**
1200 * octep_hb_timeout_task - work queue task to check firmware heartbeat.
1201 *
1202 * @work: pointer to hb work_struct
1203 *
1204 * Check for heartbeat miss count. Uninitialize oct device if miss count
1205 * exceeds configured max heartbeat miss count.
1206 *
1207 **/
octep_hb_timeout_task(struct work_struct * work)1208 static void octep_hb_timeout_task(struct work_struct *work)
1209 {
1210 struct octep_device *oct = container_of(work, struct octep_device,
1211 hb_task.work);
1212
1213 int miss_cnt;
1214
1215 miss_cnt = atomic_inc_return(&oct->hb_miss_cnt);
1216 if (miss_cnt < oct->conf->fw_info.hb_miss_count) {
1217 queue_delayed_work(octep_wq, &oct->hb_task,
1218 msecs_to_jiffies(oct->conf->fw_info.hb_interval));
1219 return;
1220 }
1221
1222 dev_err(&oct->pdev->dev, "Missed %u heartbeats. Uninitializing\n",
1223 miss_cnt);
1224 rtnl_lock();
1225 if (netif_running(oct->netdev))
1226 octep_stop(oct->netdev);
1227 rtnl_unlock();
1228 }
1229
1230 /**
1231 * octep_ctrl_mbox_task - work queue task to handle ctrl mbox messages.
1232 *
1233 * @work: pointer to ctrl mbox work_struct
1234 *
1235 * Poll ctrl mbox message queue and handle control messages from firmware.
1236 **/
octep_ctrl_mbox_task(struct work_struct * work)1237 static void octep_ctrl_mbox_task(struct work_struct *work)
1238 {
1239 struct octep_device *oct = container_of(work, struct octep_device,
1240 ctrl_mbox_task);
1241
1242 octep_ctrl_net_recv_fw_messages(oct);
1243 }
1244
octep_devid_to_str(struct octep_device * oct)1245 static const char *octep_devid_to_str(struct octep_device *oct)
1246 {
1247 switch (oct->chip_id) {
1248 case OCTEP_PCI_DEVICE_ID_CN98_PF:
1249 return "CN98XX";
1250 case OCTEP_PCI_DEVICE_ID_CN93_PF:
1251 return "CN93XX";
1252 case OCTEP_PCI_DEVICE_ID_CNF95N_PF:
1253 return "CNF95N";
1254 case OCTEP_PCI_DEVICE_ID_CN10KA_PF:
1255 return "CN10KA";
1256 case OCTEP_PCI_DEVICE_ID_CNF10KA_PF:
1257 return "CNF10KA";
1258 case OCTEP_PCI_DEVICE_ID_CNF10KB_PF:
1259 return "CNF10KB";
1260 case OCTEP_PCI_DEVICE_ID_CN10KB_PF:
1261 return "CN10KB";
1262 default:
1263 return "Unsupported";
1264 }
1265 }
1266
1267 /**
1268 * octep_device_setup() - Setup Octeon Device.
1269 *
1270 * @oct: Octeon device private data structure.
1271 *
1272 * Setup Octeon device hardware operations, configuration, etc ...
1273 */
octep_device_setup(struct octep_device * oct)1274 int octep_device_setup(struct octep_device *oct)
1275 {
1276 struct pci_dev *pdev = oct->pdev;
1277 int i, ret;
1278
1279 /* allocate memory for oct->conf */
1280 oct->conf = kzalloc(sizeof(*oct->conf), GFP_KERNEL);
1281 if (!oct->conf)
1282 return -ENOMEM;
1283
1284 /* Map BAR regions */
1285 for (i = 0; i < OCTEP_MMIO_REGIONS; i++) {
1286 oct->mmio[i].hw_addr =
1287 ioremap(pci_resource_start(oct->pdev, i * 2),
1288 pci_resource_len(oct->pdev, i * 2));
1289 if (!oct->mmio[i].hw_addr)
1290 goto unmap_prev;
1291
1292 oct->mmio[i].mapped = 1;
1293 }
1294
1295 oct->chip_id = pdev->device;
1296 oct->rev_id = pdev->revision;
1297 dev_info(&pdev->dev, "chip_id = 0x%x\n", pdev->device);
1298
1299 switch (oct->chip_id) {
1300 case OCTEP_PCI_DEVICE_ID_CN98_PF:
1301 case OCTEP_PCI_DEVICE_ID_CN93_PF:
1302 case OCTEP_PCI_DEVICE_ID_CNF95N_PF:
1303 dev_info(&pdev->dev, "Setting up OCTEON %s PF PASS%d.%d\n",
1304 octep_devid_to_str(oct), OCTEP_MAJOR_REV(oct),
1305 OCTEP_MINOR_REV(oct));
1306 octep_device_setup_cn93_pf(oct);
1307 break;
1308 case OCTEP_PCI_DEVICE_ID_CNF10KA_PF:
1309 case OCTEP_PCI_DEVICE_ID_CN10KA_PF:
1310 case OCTEP_PCI_DEVICE_ID_CNF10KB_PF:
1311 case OCTEP_PCI_DEVICE_ID_CN10KB_PF:
1312 dev_info(&pdev->dev, "Setting up OCTEON %s PF PASS%d.%d\n",
1313 octep_devid_to_str(oct), OCTEP_MAJOR_REV(oct), OCTEP_MINOR_REV(oct));
1314 octep_device_setup_cnxk_pf(oct);
1315 break;
1316 default:
1317 dev_err(&pdev->dev,
1318 "%s: unsupported device\n", __func__);
1319 goto unsupported_dev;
1320 }
1321
1322
1323 ret = octep_ctrl_net_init(oct);
1324 if (ret)
1325 return ret;
1326
1327 INIT_WORK(&oct->tx_timeout_task, octep_tx_timeout_task);
1328 INIT_WORK(&oct->ctrl_mbox_task, octep_ctrl_mbox_task);
1329 INIT_DELAYED_WORK(&oct->intr_poll_task, octep_intr_poll_task);
1330 oct->poll_non_ioq_intr = true;
1331 queue_delayed_work(octep_wq, &oct->intr_poll_task,
1332 msecs_to_jiffies(OCTEP_INTR_POLL_TIME_MSECS));
1333
1334 atomic_set(&oct->hb_miss_cnt, 0);
1335 INIT_DELAYED_WORK(&oct->hb_task, octep_hb_timeout_task);
1336
1337 return 0;
1338
1339 unsupported_dev:
1340 i = OCTEP_MMIO_REGIONS;
1341 unmap_prev:
1342 while (i--)
1343 iounmap(oct->mmio[i].hw_addr);
1344
1345 kfree(oct->conf);
1346 return -1;
1347 }
1348
1349 /**
1350 * octep_device_cleanup() - Cleanup Octeon Device.
1351 *
1352 * @oct: Octeon device private data structure.
1353 *
1354 * Cleanup Octeon device allocated resources.
1355 */
octep_device_cleanup(struct octep_device * oct)1356 static void octep_device_cleanup(struct octep_device *oct)
1357 {
1358 int i;
1359
1360 oct->poll_non_ioq_intr = false;
1361 cancel_delayed_work_sync(&oct->intr_poll_task);
1362 cancel_work_sync(&oct->ctrl_mbox_task);
1363
1364 dev_info(&oct->pdev->dev, "Cleaning up Octeon Device ...\n");
1365
1366 for (i = 0; i < OCTEP_MAX_VF; i++) {
1367 vfree(oct->mbox[i]);
1368 oct->mbox[i] = NULL;
1369 }
1370
1371 octep_delete_pfvf_mbox(oct);
1372 octep_ctrl_net_uninit(oct);
1373 cancel_delayed_work_sync(&oct->hb_task);
1374
1375 oct->hw_ops.soft_reset(oct);
1376 for (i = 0; i < OCTEP_MMIO_REGIONS; i++) {
1377 if (oct->mmio[i].mapped)
1378 iounmap(oct->mmio[i].hw_addr);
1379 }
1380
1381 kfree(oct->conf);
1382 oct->conf = NULL;
1383 }
1384
get_fw_ready_status(struct pci_dev * pdev)1385 static bool get_fw_ready_status(struct pci_dev *pdev)
1386 {
1387 u32 pos = 0;
1388 u16 vsec_id;
1389 u8 status;
1390
1391 while ((pos = pci_find_next_ext_capability(pdev, pos,
1392 PCI_EXT_CAP_ID_VNDR))) {
1393 pci_read_config_word(pdev, pos + 4, &vsec_id);
1394 #define FW_STATUS_VSEC_ID 0xA3
1395 if (vsec_id != FW_STATUS_VSEC_ID)
1396 continue;
1397
1398 pci_read_config_byte(pdev, (pos + 8), &status);
1399 dev_info(&pdev->dev, "Firmware ready status = %u\n", status);
1400 #define FW_STATUS_READY 1ULL
1401 return status == FW_STATUS_READY;
1402 }
1403 return false;
1404 }
1405
1406 /**
1407 * octep_probe() - Octeon PCI device probe handler.
1408 *
1409 * @pdev: PCI device structure.
1410 * @ent: entry in Octeon PCI device ID table.
1411 *
1412 * Initializes and enables the Octeon PCI device for network operations.
1413 * Initializes Octeon private data structure and registers a network device.
1414 */
octep_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1415 static int octep_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1416 {
1417 struct octep_device *octep_dev = NULL;
1418 struct net_device *netdev;
1419 int max_rx_pktlen;
1420 int err;
1421
1422 err = pci_enable_device(pdev);
1423 if (err) {
1424 dev_err(&pdev->dev, "Failed to enable PCI device\n");
1425 return err;
1426 }
1427
1428 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1429 if (err) {
1430 dev_err(&pdev->dev, "Failed to set DMA mask !!\n");
1431 goto err_dma_mask;
1432 }
1433
1434 err = pci_request_mem_regions(pdev, OCTEP_DRV_NAME);
1435 if (err) {
1436 dev_err(&pdev->dev, "Failed to map PCI memory regions\n");
1437 goto err_pci_regions;
1438 }
1439
1440 pci_set_master(pdev);
1441
1442 if (!get_fw_ready_status(pdev)) {
1443 dev_notice(&pdev->dev, "Firmware not ready; defer probe.\n");
1444 err = -EPROBE_DEFER;
1445 goto err_alloc_netdev;
1446 }
1447
1448 netdev = alloc_etherdev_mq(sizeof(struct octep_device),
1449 OCTEP_MAX_QUEUES);
1450 if (!netdev) {
1451 dev_err(&pdev->dev, "Failed to allocate netdev\n");
1452 err = -ENOMEM;
1453 goto err_alloc_netdev;
1454 }
1455 SET_NETDEV_DEV(netdev, &pdev->dev);
1456
1457 octep_dev = netdev_priv(netdev);
1458 octep_dev->netdev = netdev;
1459 octep_dev->pdev = pdev;
1460 octep_dev->dev = &pdev->dev;
1461 pci_set_drvdata(pdev, octep_dev);
1462
1463 err = octep_device_setup(octep_dev);
1464 if (err) {
1465 dev_err(&pdev->dev, "Device setup failed\n");
1466 goto err_octep_config;
1467 }
1468
1469 err = octep_setup_pfvf_mbox(octep_dev);
1470 if (err) {
1471 dev_err(&pdev->dev, "PF-VF mailbox setup failed\n");
1472 goto register_dev_err;
1473 }
1474
1475 err = octep_ctrl_net_get_info(octep_dev, OCTEP_CTRL_NET_INVALID_VFID,
1476 &octep_dev->conf->fw_info);
1477 if (err) {
1478 dev_err(&pdev->dev, "Failed to get firmware info\n");
1479 goto register_dev_err;
1480 }
1481 dev_info(&octep_dev->pdev->dev, "Heartbeat interval %u msecs Heartbeat miss count %u\n",
1482 octep_dev->conf->fw_info.hb_interval,
1483 octep_dev->conf->fw_info.hb_miss_count);
1484 queue_delayed_work(octep_wq, &octep_dev->hb_task,
1485 msecs_to_jiffies(octep_dev->conf->fw_info.hb_interval));
1486
1487 netdev->netdev_ops = &octep_netdev_ops;
1488 octep_set_ethtool_ops(netdev);
1489 netif_carrier_off(netdev);
1490
1491 netdev->hw_features = NETIF_F_SG;
1492 if (OCTEP_TX_IP_CSUM(octep_dev->conf->fw_info.tx_ol_flags))
1493 netdev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
1494
1495 if (OCTEP_RX_IP_CSUM(octep_dev->conf->fw_info.rx_ol_flags))
1496 netdev->hw_features |= NETIF_F_RXCSUM;
1497
1498 max_rx_pktlen = octep_ctrl_net_get_mtu(octep_dev, OCTEP_CTRL_NET_INVALID_VFID);
1499 if (max_rx_pktlen < 0) {
1500 dev_err(&octep_dev->pdev->dev,
1501 "Failed to get max receive packet size; err = %d\n", max_rx_pktlen);
1502 err = max_rx_pktlen;
1503 goto register_dev_err;
1504 }
1505 netdev->min_mtu = OCTEP_MIN_MTU;
1506 netdev->max_mtu = max_rx_pktlen - (ETH_HLEN + ETH_FCS_LEN);
1507 netdev->mtu = OCTEP_DEFAULT_MTU;
1508
1509 if (OCTEP_TX_TSO(octep_dev->conf->fw_info.tx_ol_flags)) {
1510 netdev->hw_features |= NETIF_F_TSO;
1511 netif_set_tso_max_size(netdev, netdev->max_mtu);
1512 }
1513
1514 netdev->features |= netdev->hw_features;
1515 err = octep_ctrl_net_get_mac_addr(octep_dev, OCTEP_CTRL_NET_INVALID_VFID,
1516 octep_dev->mac_addr);
1517 if (err) {
1518 dev_err(&pdev->dev, "Failed to get mac address\n");
1519 goto register_dev_err;
1520 }
1521 eth_hw_addr_set(netdev, octep_dev->mac_addr);
1522
1523 err = register_netdev(netdev);
1524 if (err) {
1525 dev_err(&pdev->dev, "Failed to register netdev\n");
1526 goto register_dev_err;
1527 }
1528 dev_info(&pdev->dev, "Device probe successful\n");
1529 return 0;
1530
1531 register_dev_err:
1532 octep_device_cleanup(octep_dev);
1533 err_octep_config:
1534 free_netdev(netdev);
1535 err_alloc_netdev:
1536 pci_release_mem_regions(pdev);
1537 err_pci_regions:
1538 err_dma_mask:
1539 pci_disable_device(pdev);
1540 return err;
1541 }
1542
octep_sriov_disable(struct octep_device * oct)1543 static int octep_sriov_disable(struct octep_device *oct)
1544 {
1545 struct pci_dev *pdev = oct->pdev;
1546
1547 if (pci_vfs_assigned(oct->pdev)) {
1548 dev_warn(&pdev->dev, "Can't disable SRIOV while VFs are assigned\n");
1549 return -EPERM;
1550 }
1551
1552 pci_disable_sriov(pdev);
1553 CFG_GET_ACTIVE_VFS(oct->conf) = 0;
1554
1555 return 0;
1556 }
1557
1558 /**
1559 * octep_remove() - Remove Octeon PCI device from driver control.
1560 *
1561 * @pdev: PCI device structure of the Octeon device.
1562 *
1563 * Cleanup all resources allocated for the Octeon device.
1564 * Unregister from network device and disable the PCI device.
1565 */
octep_remove(struct pci_dev * pdev)1566 static void octep_remove(struct pci_dev *pdev)
1567 {
1568 struct octep_device *oct = pci_get_drvdata(pdev);
1569 struct net_device *netdev;
1570
1571 if (!oct)
1572 return;
1573
1574 netdev = oct->netdev;
1575 octep_sriov_disable(oct);
1576 if (netdev->reg_state == NETREG_REGISTERED)
1577 unregister_netdev(netdev);
1578
1579 cancel_work_sync(&oct->tx_timeout_task);
1580 octep_device_cleanup(oct);
1581 pci_release_mem_regions(pdev);
1582 free_netdev(netdev);
1583 pci_disable_device(pdev);
1584 }
1585
octep_sriov_enable(struct octep_device * oct,int num_vfs)1586 static int octep_sriov_enable(struct octep_device *oct, int num_vfs)
1587 {
1588 struct pci_dev *pdev = oct->pdev;
1589 int err;
1590
1591 CFG_GET_ACTIVE_VFS(oct->conf) = num_vfs;
1592 err = pci_enable_sriov(pdev, num_vfs);
1593 if (err) {
1594 dev_warn(&pdev->dev, "Failed to enable SRIOV err=%d\n", err);
1595 CFG_GET_ACTIVE_VFS(oct->conf) = 0;
1596 return err;
1597 }
1598
1599 return num_vfs;
1600 }
1601
octep_sriov_configure(struct pci_dev * pdev,int num_vfs)1602 static int octep_sriov_configure(struct pci_dev *pdev, int num_vfs)
1603 {
1604 struct octep_device *oct = pci_get_drvdata(pdev);
1605 int max_nvfs;
1606
1607 if (num_vfs == 0)
1608 return octep_sriov_disable(oct);
1609
1610 max_nvfs = CFG_GET_MAX_VFS(oct->conf);
1611
1612 if (num_vfs > max_nvfs) {
1613 dev_err(&pdev->dev, "Invalid VF count Max supported VFs = %d\n",
1614 max_nvfs);
1615 return -EINVAL;
1616 }
1617
1618 return octep_sriov_enable(oct, num_vfs);
1619 }
1620
1621 static struct pci_driver octep_driver = {
1622 .name = OCTEP_DRV_NAME,
1623 .id_table = octep_pci_id_tbl,
1624 .probe = octep_probe,
1625 .remove = octep_remove,
1626 .sriov_configure = octep_sriov_configure,
1627 };
1628
1629 /**
1630 * octep_init_module() - Module initialiation.
1631 *
1632 * create common resource for the driver and register PCI driver.
1633 */
octep_init_module(void)1634 static int __init octep_init_module(void)
1635 {
1636 int ret;
1637
1638 pr_info("%s: Loading %s ...\n", OCTEP_DRV_NAME, OCTEP_DRV_STRING);
1639
1640 /* work queue for all deferred tasks */
1641 octep_wq = create_singlethread_workqueue(OCTEP_DRV_NAME);
1642 if (!octep_wq) {
1643 pr_err("%s: Failed to create common workqueue\n",
1644 OCTEP_DRV_NAME);
1645 return -ENOMEM;
1646 }
1647
1648 ret = pci_register_driver(&octep_driver);
1649 if (ret < 0) {
1650 pr_err("%s: Failed to register PCI driver; err=%d\n",
1651 OCTEP_DRV_NAME, ret);
1652 destroy_workqueue(octep_wq);
1653 return ret;
1654 }
1655
1656 pr_info("%s: Loaded successfully !\n", OCTEP_DRV_NAME);
1657
1658 return ret;
1659 }
1660
1661 /**
1662 * octep_exit_module() - Module exit routine.
1663 *
1664 * unregister the driver with PCI subsystem and cleanup common resources.
1665 */
octep_exit_module(void)1666 static void __exit octep_exit_module(void)
1667 {
1668 pr_info("%s: Unloading ...\n", OCTEP_DRV_NAME);
1669
1670 pci_unregister_driver(&octep_driver);
1671 destroy_workqueue(octep_wq);
1672
1673 pr_info("%s: Unloading complete\n", OCTEP_DRV_NAME);
1674 }
1675
1676 module_init(octep_init_module);
1677 module_exit(octep_exit_module);
1678