1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2024 Intel Corporation. */
3
4 /******************************************************************************
5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
6 ******************************************************************************/
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/types.h>
11 #include <linux/bitops.h>
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/netdevice.h>
15 #include <linux/vmalloc.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/tcp.h>
20 #include <linux/sctp.h>
21 #include <linux/ipv6.h>
22 #include <linux/slab.h>
23 #include <net/checksum.h>
24 #include <net/ip6_checksum.h>
25 #include <linux/ethtool.h>
26 #include <linux/if.h>
27 #include <linux/if_vlan.h>
28 #include <linux/prefetch.h>
29 #include <net/mpls.h>
30 #include <linux/bpf.h>
31 #include <linux/bpf_trace.h>
32 #include <linux/atomic.h>
33 #include <net/xfrm.h>
34
35 #include "ixgbevf.h"
36
37 const char ixgbevf_driver_name[] = "ixgbevf";
38 static const char ixgbevf_driver_string[] =
39 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
40
41 static char ixgbevf_copyright[] =
42 "Copyright (c) 2009 - 2024 Intel Corporation.";
43
44 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
45 [board_82599_vf] = &ixgbevf_82599_vf_info,
46 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info,
47 [board_X540_vf] = &ixgbevf_X540_vf_info,
48 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info,
49 [board_X550_vf] = &ixgbevf_X550_vf_info,
50 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info,
51 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info,
52 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info,
53 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info,
54 [board_e610_vf] = &ixgbevf_e610_vf_info,
55 [board_e610_vf_hv] = &ixgbevf_e610_vf_hv_info,
56 };
57
58 /* ixgbevf_pci_tbl - PCI Device ID Table
59 *
60 * Wildcard entries (PCI_ANY_ID) should come last
61 * Last entry must be all 0s
62 *
63 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
64 * Class, Class Mask, private data (not used) }
65 */
66 static const struct pci_device_id ixgbevf_pci_tbl[] = {
67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
74 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
75 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
76 {PCI_VDEVICE_SUB(INTEL, IXGBE_DEV_ID_E610_VF, PCI_ANY_ID,
77 IXGBE_SUBDEV_ID_E610_VF_HV), board_e610_vf_hv},
78 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_E610_VF), board_e610_vf},
79 /* required last entry */
80 {0, }
81 };
82 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
83
84 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
85 MODULE_LICENSE("GPL v2");
86
87 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
88 static int debug = -1;
89 module_param(debug, int, 0);
90 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
91
92 static struct workqueue_struct *ixgbevf_wq;
93
ixgbevf_service_event_schedule(struct ixgbevf_adapter * adapter)94 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
95 {
96 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
97 !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
98 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
99 queue_work(ixgbevf_wq, &adapter->service_task);
100 }
101
ixgbevf_service_event_complete(struct ixgbevf_adapter * adapter)102 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
103 {
104 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
105
106 /* flush memory to make sure state is correct before next watchdog */
107 smp_mb__before_atomic();
108 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
109 }
110
111 /* forward decls */
112 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
113 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
114 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
115 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer);
116 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
117 struct ixgbevf_rx_buffer *old_buff);
118
ixgbevf_remove_adapter(struct ixgbe_hw * hw)119 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
120 {
121 struct ixgbevf_adapter *adapter = hw->back;
122
123 if (!hw->hw_addr)
124 return;
125 hw->hw_addr = NULL;
126 dev_err(&adapter->pdev->dev, "Adapter removed\n");
127 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
128 ixgbevf_service_event_schedule(adapter);
129 }
130
ixgbevf_check_remove(struct ixgbe_hw * hw,u32 reg)131 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
132 {
133 u32 value;
134
135 /* The following check not only optimizes a bit by not
136 * performing a read on the status register when the
137 * register just read was a status register read that
138 * returned IXGBE_FAILED_READ_REG. It also blocks any
139 * potential recursion.
140 */
141 if (reg == IXGBE_VFSTATUS) {
142 ixgbevf_remove_adapter(hw);
143 return;
144 }
145 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
146 if (value == IXGBE_FAILED_READ_REG)
147 ixgbevf_remove_adapter(hw);
148 }
149
ixgbevf_read_reg(struct ixgbe_hw * hw,u32 reg)150 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
151 {
152 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr);
153 u32 value;
154
155 if (IXGBE_REMOVED(reg_addr))
156 return IXGBE_FAILED_READ_REG;
157 value = readl(reg_addr + reg);
158 if (unlikely(value == IXGBE_FAILED_READ_REG))
159 ixgbevf_check_remove(hw, reg);
160 return value;
161 }
162
163 /**
164 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
165 * @adapter: pointer to adapter struct
166 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
167 * @queue: queue to map the corresponding interrupt to
168 * @msix_vector: the vector to map to the corresponding queue
169 **/
ixgbevf_set_ivar(struct ixgbevf_adapter * adapter,s8 direction,u8 queue,u8 msix_vector)170 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
171 u8 queue, u8 msix_vector)
172 {
173 u32 ivar, index;
174 struct ixgbe_hw *hw = &adapter->hw;
175
176 if (direction == -1) {
177 /* other causes */
178 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
179 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
180 ivar &= ~0xFF;
181 ivar |= msix_vector;
182 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
183 } else {
184 /* Tx or Rx causes */
185 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
186 index = ((16 * (queue & 1)) + (8 * direction));
187 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
188 ivar &= ~(0xFF << index);
189 ivar |= (msix_vector << index);
190 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
191 }
192 }
193
ixgbevf_get_tx_completed(struct ixgbevf_ring * ring)194 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
195 {
196 return ring->stats.packets;
197 }
198
ixgbevf_get_tx_pending(struct ixgbevf_ring * ring)199 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
200 {
201 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
202 struct ixgbe_hw *hw = &adapter->hw;
203
204 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
205 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
206
207 if (head != tail)
208 return (head < tail) ?
209 tail - head : (tail + ring->count - head);
210
211 return 0;
212 }
213
ixgbevf_check_tx_hang(struct ixgbevf_ring * tx_ring)214 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
215 {
216 u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
217 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
218 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
219
220 clear_check_for_tx_hang(tx_ring);
221
222 /* Check for a hung queue, but be thorough. This verifies
223 * that a transmit has been completed since the previous
224 * check AND there is at least one packet pending. The
225 * ARMED bit is set to indicate a potential hang.
226 */
227 if ((tx_done_old == tx_done) && tx_pending) {
228 /* make sure it is true for two checks in a row */
229 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
230 &tx_ring->state);
231 }
232 /* reset the countdown */
233 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
234
235 /* update completed stats and continue */
236 tx_ring->tx_stats.tx_done_old = tx_done;
237
238 return false;
239 }
240
ixgbevf_tx_timeout_reset(struct ixgbevf_adapter * adapter)241 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
242 {
243 /* Do the reset outside of interrupt context */
244 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
245 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
246 ixgbevf_service_event_schedule(adapter);
247 }
248 }
249
250 /**
251 * ixgbevf_tx_timeout - Respond to a Tx Hang
252 * @netdev: network interface device structure
253 * @txqueue: transmit queue hanging (unused)
254 **/
ixgbevf_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)255 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
256 {
257 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
258
259 ixgbevf_tx_timeout_reset(adapter);
260 }
261
262 /**
263 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
264 * @q_vector: board private structure
265 * @tx_ring: tx ring to clean
266 * @napi_budget: Used to determine if we are in netpoll
267 **/
ixgbevf_clean_tx_irq(struct ixgbevf_q_vector * q_vector,struct ixgbevf_ring * tx_ring,int napi_budget)268 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
269 struct ixgbevf_ring *tx_ring, int napi_budget)
270 {
271 struct ixgbevf_adapter *adapter = q_vector->adapter;
272 struct ixgbevf_tx_buffer *tx_buffer;
273 union ixgbe_adv_tx_desc *tx_desc;
274 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0;
275 unsigned int budget = tx_ring->count / 2;
276 unsigned int i = tx_ring->next_to_clean;
277
278 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
279 return true;
280
281 tx_buffer = &tx_ring->tx_buffer_info[i];
282 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
283 i -= tx_ring->count;
284
285 do {
286 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
287
288 /* if next_to_watch is not set then there is no work pending */
289 if (!eop_desc)
290 break;
291
292 /* prevent any other reads prior to eop_desc */
293 smp_rmb();
294
295 /* if DD is not set pending work has not been completed */
296 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
297 break;
298
299 /* clear next_to_watch to prevent false hangs */
300 tx_buffer->next_to_watch = NULL;
301
302 /* update the statistics for this packet */
303 total_bytes += tx_buffer->bytecount;
304 total_packets += tx_buffer->gso_segs;
305 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC)
306 total_ipsec++;
307
308 /* free the skb */
309 if (ring_is_xdp(tx_ring))
310 page_frag_free(tx_buffer->data);
311 else
312 napi_consume_skb(tx_buffer->skb, napi_budget);
313
314 /* unmap skb header data */
315 dma_unmap_single(tx_ring->dev,
316 dma_unmap_addr(tx_buffer, dma),
317 dma_unmap_len(tx_buffer, len),
318 DMA_TO_DEVICE);
319
320 /* clear tx_buffer data */
321 dma_unmap_len_set(tx_buffer, len, 0);
322
323 /* unmap remaining buffers */
324 while (tx_desc != eop_desc) {
325 tx_buffer++;
326 tx_desc++;
327 i++;
328 if (unlikely(!i)) {
329 i -= tx_ring->count;
330 tx_buffer = tx_ring->tx_buffer_info;
331 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
332 }
333
334 /* unmap any remaining paged data */
335 if (dma_unmap_len(tx_buffer, len)) {
336 dma_unmap_page(tx_ring->dev,
337 dma_unmap_addr(tx_buffer, dma),
338 dma_unmap_len(tx_buffer, len),
339 DMA_TO_DEVICE);
340 dma_unmap_len_set(tx_buffer, len, 0);
341 }
342 }
343
344 /* move us one more past the eop_desc for start of next pkt */
345 tx_buffer++;
346 tx_desc++;
347 i++;
348 if (unlikely(!i)) {
349 i -= tx_ring->count;
350 tx_buffer = tx_ring->tx_buffer_info;
351 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
352 }
353
354 /* issue prefetch for next Tx descriptor */
355 prefetch(tx_desc);
356
357 /* update budget accounting */
358 budget--;
359 } while (likely(budget));
360
361 i += tx_ring->count;
362 tx_ring->next_to_clean = i;
363 u64_stats_update_begin(&tx_ring->syncp);
364 tx_ring->stats.bytes += total_bytes;
365 tx_ring->stats.packets += total_packets;
366 u64_stats_update_end(&tx_ring->syncp);
367 q_vector->tx.total_bytes += total_bytes;
368 q_vector->tx.total_packets += total_packets;
369 adapter->tx_ipsec += total_ipsec;
370
371 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
372 struct ixgbe_hw *hw = &adapter->hw;
373 union ixgbe_adv_tx_desc *eop_desc;
374
375 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
376
377 pr_err("Detected Tx Unit Hang%s\n"
378 " Tx Queue <%d>\n"
379 " TDH, TDT <%x>, <%x>\n"
380 " next_to_use <%x>\n"
381 " next_to_clean <%x>\n"
382 "tx_buffer_info[next_to_clean]\n"
383 " next_to_watch <%p>\n"
384 " eop_desc->wb.status <%x>\n"
385 " time_stamp <%lx>\n"
386 " jiffies <%lx>\n",
387 ring_is_xdp(tx_ring) ? " XDP" : "",
388 tx_ring->queue_index,
389 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
390 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
391 tx_ring->next_to_use, i,
392 eop_desc, (eop_desc ? eop_desc->wb.status : 0),
393 tx_ring->tx_buffer_info[i].time_stamp, jiffies);
394
395 if (!ring_is_xdp(tx_ring))
396 netif_stop_subqueue(tx_ring->netdev,
397 tx_ring->queue_index);
398
399 /* schedule immediate reset if we believe we hung */
400 ixgbevf_tx_timeout_reset(adapter);
401
402 return true;
403 }
404
405 if (ring_is_xdp(tx_ring))
406 return !!budget;
407
408 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
409 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
410 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
411 /* Make sure that anybody stopping the queue after this
412 * sees the new next_to_clean.
413 */
414 smp_mb();
415
416 if (__netif_subqueue_stopped(tx_ring->netdev,
417 tx_ring->queue_index) &&
418 !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
419 netif_wake_subqueue(tx_ring->netdev,
420 tx_ring->queue_index);
421 ++tx_ring->tx_stats.restart_queue;
422 }
423 }
424
425 return !!budget;
426 }
427
428 /**
429 * ixgbevf_rx_skb - Helper function to determine proper Rx method
430 * @q_vector: structure containing interrupt and ring information
431 * @skb: packet to send up
432 **/
ixgbevf_rx_skb(struct ixgbevf_q_vector * q_vector,struct sk_buff * skb)433 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
434 struct sk_buff *skb)
435 {
436 napi_gro_receive(&q_vector->napi, skb);
437 }
438
439 #define IXGBE_RSS_L4_TYPES_MASK \
440 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
441 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
442 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
443 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
444
ixgbevf_rx_hash(struct ixgbevf_ring * ring,union ixgbe_adv_rx_desc * rx_desc,struct sk_buff * skb)445 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
446 union ixgbe_adv_rx_desc *rx_desc,
447 struct sk_buff *skb)
448 {
449 u16 rss_type;
450
451 if (!(ring->netdev->features & NETIF_F_RXHASH))
452 return;
453
454 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
455 IXGBE_RXDADV_RSSTYPE_MASK;
456
457 if (!rss_type)
458 return;
459
460 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
461 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
462 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
463 }
464
465 /**
466 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
467 * @ring: structure containig ring specific data
468 * @rx_desc: current Rx descriptor being processed
469 * @skb: skb currently being received and modified
470 **/
ixgbevf_rx_checksum(struct ixgbevf_ring * ring,union ixgbe_adv_rx_desc * rx_desc,struct sk_buff * skb)471 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
472 union ixgbe_adv_rx_desc *rx_desc,
473 struct sk_buff *skb)
474 {
475 skb_checksum_none_assert(skb);
476
477 /* Rx csum disabled */
478 if (!(ring->netdev->features & NETIF_F_RXCSUM))
479 return;
480
481 /* if IP and error */
482 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
483 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
484 ring->rx_stats.csum_err++;
485 return;
486 }
487
488 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
489 return;
490
491 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
492 ring->rx_stats.csum_err++;
493 return;
494 }
495
496 /* It must be a TCP or UDP packet with a valid checksum */
497 skb->ip_summed = CHECKSUM_UNNECESSARY;
498 }
499
500 /**
501 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
502 * @rx_ring: rx descriptor ring packet is being transacted on
503 * @rx_desc: pointer to the EOP Rx descriptor
504 * @skb: pointer to current skb being populated
505 *
506 * This function checks the ring, descriptor, and packet information in
507 * order to populate the checksum, VLAN, protocol, and other fields within
508 * the skb.
509 **/
ixgbevf_process_skb_fields(struct ixgbevf_ring * rx_ring,union ixgbe_adv_rx_desc * rx_desc,struct sk_buff * skb)510 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
511 union ixgbe_adv_rx_desc *rx_desc,
512 struct sk_buff *skb)
513 {
514 ixgbevf_rx_hash(rx_ring, rx_desc, skb);
515 ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
516
517 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
518 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
519 unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
520
521 if (test_bit(vid & VLAN_VID_MASK, active_vlans))
522 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
523 }
524
525 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP))
526 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb);
527
528 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
529 }
530
531 static
ixgbevf_get_rx_buffer(struct ixgbevf_ring * rx_ring,const unsigned int size)532 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring,
533 const unsigned int size)
534 {
535 struct ixgbevf_rx_buffer *rx_buffer;
536
537 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
538 prefetchw(rx_buffer->page);
539
540 /* we are reusing so sync this buffer for CPU use */
541 dma_sync_single_range_for_cpu(rx_ring->dev,
542 rx_buffer->dma,
543 rx_buffer->page_offset,
544 size,
545 DMA_FROM_DEVICE);
546
547 rx_buffer->pagecnt_bias--;
548
549 return rx_buffer;
550 }
551
ixgbevf_put_rx_buffer(struct ixgbevf_ring * rx_ring,struct ixgbevf_rx_buffer * rx_buffer,struct sk_buff * skb)552 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring,
553 struct ixgbevf_rx_buffer *rx_buffer,
554 struct sk_buff *skb)
555 {
556 if (ixgbevf_can_reuse_rx_page(rx_buffer)) {
557 /* hand second half of page back to the ring */
558 ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
559 } else {
560 if (IS_ERR(skb))
561 /* We are not reusing the buffer so unmap it and free
562 * any references we are holding to it
563 */
564 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
565 ixgbevf_rx_pg_size(rx_ring),
566 DMA_FROM_DEVICE,
567 IXGBEVF_RX_DMA_ATTR);
568 __page_frag_cache_drain(rx_buffer->page,
569 rx_buffer->pagecnt_bias);
570 }
571
572 /* clear contents of rx_buffer */
573 rx_buffer->page = NULL;
574 }
575
576 /**
577 * ixgbevf_is_non_eop - process handling of non-EOP buffers
578 * @rx_ring: Rx ring being processed
579 * @rx_desc: Rx descriptor for current buffer
580 *
581 * This function updates next to clean. If the buffer is an EOP buffer
582 * this function exits returning false, otherwise it will place the
583 * sk_buff in the next buffer to be chained and return true indicating
584 * that this is in fact a non-EOP buffer.
585 **/
ixgbevf_is_non_eop(struct ixgbevf_ring * rx_ring,union ixgbe_adv_rx_desc * rx_desc)586 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
587 union ixgbe_adv_rx_desc *rx_desc)
588 {
589 u32 ntc = rx_ring->next_to_clean + 1;
590
591 /* fetch, update, and store next to clean */
592 ntc = (ntc < rx_ring->count) ? ntc : 0;
593 rx_ring->next_to_clean = ntc;
594
595 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
596
597 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
598 return false;
599
600 return true;
601 }
602
ixgbevf_rx_offset(struct ixgbevf_ring * rx_ring)603 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring)
604 {
605 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0;
606 }
607
ixgbevf_alloc_mapped_page(struct ixgbevf_ring * rx_ring,struct ixgbevf_rx_buffer * bi)608 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
609 struct ixgbevf_rx_buffer *bi)
610 {
611 struct page *page = bi->page;
612 dma_addr_t dma;
613
614 /* since we are recycling buffers we should seldom need to alloc */
615 if (likely(page))
616 return true;
617
618 /* alloc new page for storage */
619 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring));
620 if (unlikely(!page)) {
621 rx_ring->rx_stats.alloc_rx_page_failed++;
622 return false;
623 }
624
625 /* map page for use */
626 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
627 ixgbevf_rx_pg_size(rx_ring),
628 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR);
629
630 /* if mapping failed free memory back to system since
631 * there isn't much point in holding memory we can't use
632 */
633 if (dma_mapping_error(rx_ring->dev, dma)) {
634 __free_pages(page, ixgbevf_rx_pg_order(rx_ring));
635
636 rx_ring->rx_stats.alloc_rx_page_failed++;
637 return false;
638 }
639
640 bi->dma = dma;
641 bi->page = page;
642 bi->page_offset = ixgbevf_rx_offset(rx_ring);
643 bi->pagecnt_bias = 1;
644 rx_ring->rx_stats.alloc_rx_page++;
645
646 return true;
647 }
648
649 /**
650 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
651 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
652 * @cleaned_count: number of buffers to replace
653 **/
ixgbevf_alloc_rx_buffers(struct ixgbevf_ring * rx_ring,u16 cleaned_count)654 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
655 u16 cleaned_count)
656 {
657 union ixgbe_adv_rx_desc *rx_desc;
658 struct ixgbevf_rx_buffer *bi;
659 unsigned int i = rx_ring->next_to_use;
660
661 /* nothing to do or no valid netdev defined */
662 if (!cleaned_count || !rx_ring->netdev)
663 return;
664
665 rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
666 bi = &rx_ring->rx_buffer_info[i];
667 i -= rx_ring->count;
668
669 do {
670 if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
671 break;
672
673 /* sync the buffer for use by the device */
674 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
675 bi->page_offset,
676 ixgbevf_rx_bufsz(rx_ring),
677 DMA_FROM_DEVICE);
678
679 /* Refresh the desc even if pkt_addr didn't change
680 * because each write-back erases this info.
681 */
682 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
683
684 rx_desc++;
685 bi++;
686 i++;
687 if (unlikely(!i)) {
688 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
689 bi = rx_ring->rx_buffer_info;
690 i -= rx_ring->count;
691 }
692
693 /* clear the length for the next_to_use descriptor */
694 rx_desc->wb.upper.length = 0;
695
696 cleaned_count--;
697 } while (cleaned_count);
698
699 i += rx_ring->count;
700
701 if (rx_ring->next_to_use != i) {
702 /* record the next descriptor to use */
703 rx_ring->next_to_use = i;
704
705 /* update next to alloc since we have filled the ring */
706 rx_ring->next_to_alloc = i;
707
708 /* Force memory writes to complete before letting h/w
709 * know there are new descriptors to fetch. (Only
710 * applicable for weak-ordered memory model archs,
711 * such as IA-64).
712 */
713 wmb();
714 ixgbevf_write_tail(rx_ring, i);
715 }
716 }
717
718 /**
719 * ixgbevf_cleanup_headers - Correct corrupted or empty headers
720 * @rx_ring: rx descriptor ring packet is being transacted on
721 * @rx_desc: pointer to the EOP Rx descriptor
722 * @skb: pointer to current skb being fixed
723 *
724 * Check for corrupted packet headers caused by senders on the local L2
725 * embedded NIC switch not setting up their Tx Descriptors right. These
726 * should be very rare.
727 *
728 * Also address the case where we are pulling data in on pages only
729 * and as such no data is present in the skb header.
730 *
731 * In addition if skb is not at least 60 bytes we need to pad it so that
732 * it is large enough to qualify as a valid Ethernet frame.
733 *
734 * Returns true if an error was encountered and skb was freed.
735 **/
ixgbevf_cleanup_headers(struct ixgbevf_ring * rx_ring,union ixgbe_adv_rx_desc * rx_desc,struct sk_buff * skb)736 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
737 union ixgbe_adv_rx_desc *rx_desc,
738 struct sk_buff *skb)
739 {
740 /* verify that the packet does not have any known errors */
741 if (unlikely(ixgbevf_test_staterr(rx_desc,
742 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
743 struct net_device *netdev = rx_ring->netdev;
744
745 if (!(netdev->features & NETIF_F_RXALL)) {
746 dev_kfree_skb_any(skb);
747 return true;
748 }
749 }
750
751 /* if eth_skb_pad returns an error the skb was freed */
752 if (eth_skb_pad(skb))
753 return true;
754
755 return false;
756 }
757
758 /**
759 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
760 * @rx_ring: rx descriptor ring to store buffers on
761 * @old_buff: donor buffer to have page reused
762 *
763 * Synchronizes page for reuse by the adapter
764 **/
ixgbevf_reuse_rx_page(struct ixgbevf_ring * rx_ring,struct ixgbevf_rx_buffer * old_buff)765 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
766 struct ixgbevf_rx_buffer *old_buff)
767 {
768 struct ixgbevf_rx_buffer *new_buff;
769 u16 nta = rx_ring->next_to_alloc;
770
771 new_buff = &rx_ring->rx_buffer_info[nta];
772
773 /* update, and store next to alloc */
774 nta++;
775 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
776
777 /* transfer page from old buffer to new buffer */
778 new_buff->page = old_buff->page;
779 new_buff->dma = old_buff->dma;
780 new_buff->page_offset = old_buff->page_offset;
781 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
782 }
783
ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer * rx_buffer)784 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer)
785 {
786 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
787 struct page *page = rx_buffer->page;
788
789 /* avoid re-using remote and pfmemalloc pages */
790 if (!dev_page_is_reusable(page))
791 return false;
792
793 #if (PAGE_SIZE < 8192)
794 /* if we are only owner of page we can reuse it */
795 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
796 return false;
797 #else
798 #define IXGBEVF_LAST_OFFSET \
799 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048)
800
801 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET)
802 return false;
803
804 #endif
805
806 /* If we have drained the page fragment pool we need to update
807 * the pagecnt_bias and page count so that we fully restock the
808 * number of references the driver holds.
809 */
810 if (unlikely(!pagecnt_bias)) {
811 page_ref_add(page, USHRT_MAX);
812 rx_buffer->pagecnt_bias = USHRT_MAX;
813 }
814
815 return true;
816 }
817
818 /**
819 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
820 * @rx_ring: rx descriptor ring to transact packets on
821 * @rx_buffer: buffer containing page to add
822 * @skb: sk_buff to place the data into
823 * @size: size of buffer to be added
824 *
825 * This function will add the data contained in rx_buffer->page to the skb.
826 **/
ixgbevf_add_rx_frag(struct ixgbevf_ring * rx_ring,struct ixgbevf_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)827 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
828 struct ixgbevf_rx_buffer *rx_buffer,
829 struct sk_buff *skb,
830 unsigned int size)
831 {
832 #if (PAGE_SIZE < 8192)
833 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
834 #else
835 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
836 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
837 SKB_DATA_ALIGN(size);
838 #endif
839 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
840 rx_buffer->page_offset, size, truesize);
841 #if (PAGE_SIZE < 8192)
842 rx_buffer->page_offset ^= truesize;
843 #else
844 rx_buffer->page_offset += truesize;
845 #endif
846 }
847
848 static
ixgbevf_construct_skb(struct ixgbevf_ring * rx_ring,struct ixgbevf_rx_buffer * rx_buffer,struct xdp_buff * xdp,union ixgbe_adv_rx_desc * rx_desc)849 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring,
850 struct ixgbevf_rx_buffer *rx_buffer,
851 struct xdp_buff *xdp,
852 union ixgbe_adv_rx_desc *rx_desc)
853 {
854 unsigned int size = xdp->data_end - xdp->data;
855 #if (PAGE_SIZE < 8192)
856 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
857 #else
858 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
859 xdp->data_hard_start);
860 #endif
861 unsigned int headlen;
862 struct sk_buff *skb;
863
864 /* prefetch first cache line of first page */
865 net_prefetch(xdp->data);
866
867 /* Note, we get here by enabling legacy-rx via:
868 *
869 * ethtool --set-priv-flags <dev> legacy-rx on
870 *
871 * In this mode, we currently get 0 extra XDP headroom as
872 * opposed to having legacy-rx off, where we process XDP
873 * packets going to stack via ixgbevf_build_skb().
874 *
875 * For ixgbevf_construct_skb() mode it means that the
876 * xdp->data_meta will always point to xdp->data, since
877 * the helper cannot expand the head. Should this ever
878 * changed in future for legacy-rx mode on, then lets also
879 * add xdp->data_meta handling here.
880 */
881
882 /* allocate a skb to store the frags */
883 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE);
884 if (unlikely(!skb))
885 return NULL;
886
887 /* Determine available headroom for copy */
888 headlen = size;
889 if (headlen > IXGBEVF_RX_HDR_SIZE)
890 headlen = eth_get_headlen(skb->dev, xdp->data,
891 IXGBEVF_RX_HDR_SIZE);
892
893 /* align pull length to size of long to optimize memcpy performance */
894 memcpy(__skb_put(skb, headlen), xdp->data,
895 ALIGN(headlen, sizeof(long)));
896
897 /* update all of the pointers */
898 size -= headlen;
899 if (size) {
900 skb_add_rx_frag(skb, 0, rx_buffer->page,
901 (xdp->data + headlen) -
902 page_address(rx_buffer->page),
903 size, truesize);
904 #if (PAGE_SIZE < 8192)
905 rx_buffer->page_offset ^= truesize;
906 #else
907 rx_buffer->page_offset += truesize;
908 #endif
909 } else {
910 rx_buffer->pagecnt_bias++;
911 }
912
913 return skb;
914 }
915
ixgbevf_irq_enable_queues(struct ixgbevf_adapter * adapter,u32 qmask)916 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
917 u32 qmask)
918 {
919 struct ixgbe_hw *hw = &adapter->hw;
920
921 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
922 }
923
ixgbevf_build_skb(struct ixgbevf_ring * rx_ring,struct ixgbevf_rx_buffer * rx_buffer,struct xdp_buff * xdp,union ixgbe_adv_rx_desc * rx_desc)924 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring,
925 struct ixgbevf_rx_buffer *rx_buffer,
926 struct xdp_buff *xdp,
927 union ixgbe_adv_rx_desc *rx_desc)
928 {
929 unsigned int metasize = xdp->data - xdp->data_meta;
930 #if (PAGE_SIZE < 8192)
931 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
932 #else
933 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
934 SKB_DATA_ALIGN(xdp->data_end -
935 xdp->data_hard_start);
936 #endif
937 struct sk_buff *skb;
938
939 /* Prefetch first cache line of first page. If xdp->data_meta
940 * is unused, this points to xdp->data, otherwise, we likely
941 * have a consumer accessing first few bytes of meta data,
942 * and then actual data.
943 */
944 net_prefetch(xdp->data_meta);
945
946 /* build an skb around the page buffer */
947 skb = napi_build_skb(xdp->data_hard_start, truesize);
948 if (unlikely(!skb))
949 return NULL;
950
951 /* update pointers within the skb to store the data */
952 skb_reserve(skb, xdp->data - xdp->data_hard_start);
953 __skb_put(skb, xdp->data_end - xdp->data);
954 if (metasize)
955 skb_metadata_set(skb, metasize);
956
957 /* update buffer offset */
958 #if (PAGE_SIZE < 8192)
959 rx_buffer->page_offset ^= truesize;
960 #else
961 rx_buffer->page_offset += truesize;
962 #endif
963
964 return skb;
965 }
966
967 #define IXGBEVF_XDP_PASS 0
968 #define IXGBEVF_XDP_CONSUMED 1
969 #define IXGBEVF_XDP_TX 2
970
ixgbevf_xmit_xdp_ring(struct ixgbevf_ring * ring,struct xdp_buff * xdp)971 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring,
972 struct xdp_buff *xdp)
973 {
974 struct ixgbevf_tx_buffer *tx_buffer;
975 union ixgbe_adv_tx_desc *tx_desc;
976 u32 len, cmd_type;
977 dma_addr_t dma;
978 u16 i;
979
980 len = xdp->data_end - xdp->data;
981
982 if (unlikely(!ixgbevf_desc_unused(ring)))
983 return IXGBEVF_XDP_CONSUMED;
984
985 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE);
986 if (dma_mapping_error(ring->dev, dma))
987 return IXGBEVF_XDP_CONSUMED;
988
989 /* record the location of the first descriptor for this packet */
990 i = ring->next_to_use;
991 tx_buffer = &ring->tx_buffer_info[i];
992
993 dma_unmap_len_set(tx_buffer, len, len);
994 dma_unmap_addr_set(tx_buffer, dma, dma);
995 tx_buffer->data = xdp->data;
996 tx_buffer->bytecount = len;
997 tx_buffer->gso_segs = 1;
998 tx_buffer->protocol = 0;
999
1000 /* Populate minimal context descriptor that will provide for the
1001 * fact that we are expected to process Ethernet frames.
1002 */
1003 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) {
1004 struct ixgbe_adv_tx_context_desc *context_desc;
1005
1006 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1007
1008 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0);
1009 context_desc->vlan_macip_lens =
1010 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT);
1011 context_desc->fceof_saidx = 0;
1012 context_desc->type_tucmd_mlhl =
1013 cpu_to_le32(IXGBE_TXD_CMD_DEXT |
1014 IXGBE_ADVTXD_DTYP_CTXT);
1015 context_desc->mss_l4len_idx = 0;
1016
1017 i = 1;
1018 }
1019
1020 /* put descriptor type bits */
1021 cmd_type = IXGBE_ADVTXD_DTYP_DATA |
1022 IXGBE_ADVTXD_DCMD_DEXT |
1023 IXGBE_ADVTXD_DCMD_IFCS;
1024 cmd_type |= len | IXGBE_TXD_CMD;
1025
1026 tx_desc = IXGBEVF_TX_DESC(ring, i);
1027 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1028
1029 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1030 tx_desc->read.olinfo_status =
1031 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) |
1032 IXGBE_ADVTXD_CC);
1033
1034 /* Avoid any potential race with cleanup */
1035 smp_wmb();
1036
1037 /* set next_to_watch value indicating a packet is present */
1038 i++;
1039 if (i == ring->count)
1040 i = 0;
1041
1042 tx_buffer->next_to_watch = tx_desc;
1043 ring->next_to_use = i;
1044
1045 return IXGBEVF_XDP_TX;
1046 }
1047
ixgbevf_run_xdp(struct ixgbevf_adapter * adapter,struct ixgbevf_ring * rx_ring,struct xdp_buff * xdp)1048 static int ixgbevf_run_xdp(struct ixgbevf_adapter *adapter,
1049 struct ixgbevf_ring *rx_ring,
1050 struct xdp_buff *xdp)
1051 {
1052 int result = IXGBEVF_XDP_PASS;
1053 struct ixgbevf_ring *xdp_ring;
1054 struct bpf_prog *xdp_prog;
1055 u32 act;
1056
1057 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1058
1059 if (!xdp_prog)
1060 goto xdp_out;
1061
1062 act = bpf_prog_run_xdp(xdp_prog, xdp);
1063 switch (act) {
1064 case XDP_PASS:
1065 break;
1066 case XDP_TX:
1067 xdp_ring = adapter->xdp_ring[rx_ring->queue_index];
1068 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp);
1069 if (result == IXGBEVF_XDP_CONSUMED)
1070 goto out_failure;
1071 break;
1072 default:
1073 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
1074 fallthrough;
1075 case XDP_ABORTED:
1076 out_failure:
1077 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
1078 fallthrough; /* handle aborts by dropping packet */
1079 case XDP_DROP:
1080 result = IXGBEVF_XDP_CONSUMED;
1081 break;
1082 }
1083 xdp_out:
1084 return result;
1085 }
1086
ixgbevf_rx_frame_truesize(struct ixgbevf_ring * rx_ring,unsigned int size)1087 static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring,
1088 unsigned int size)
1089 {
1090 unsigned int truesize;
1091
1092 #if (PAGE_SIZE < 8192)
1093 truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1094 #else
1095 truesize = ring_uses_build_skb(rx_ring) ?
1096 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) +
1097 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1098 SKB_DATA_ALIGN(size);
1099 #endif
1100 return truesize;
1101 }
1102
ixgbevf_rx_buffer_flip(struct ixgbevf_ring * rx_ring,struct ixgbevf_rx_buffer * rx_buffer,unsigned int size)1103 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring,
1104 struct ixgbevf_rx_buffer *rx_buffer,
1105 unsigned int size)
1106 {
1107 unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size);
1108
1109 #if (PAGE_SIZE < 8192)
1110 rx_buffer->page_offset ^= truesize;
1111 #else
1112 rx_buffer->page_offset += truesize;
1113 #endif
1114 }
1115
ixgbevf_clean_rx_irq(struct ixgbevf_q_vector * q_vector,struct ixgbevf_ring * rx_ring,int budget)1116 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
1117 struct ixgbevf_ring *rx_ring,
1118 int budget)
1119 {
1120 unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
1121 struct ixgbevf_adapter *adapter = q_vector->adapter;
1122 u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
1123 struct sk_buff *skb = rx_ring->skb;
1124 bool xdp_xmit = false;
1125 struct xdp_buff xdp;
1126 int xdp_res = 0;
1127
1128 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1129 #if (PAGE_SIZE < 8192)
1130 frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0);
1131 #endif
1132 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
1133
1134 while (likely(total_rx_packets < budget)) {
1135 struct ixgbevf_rx_buffer *rx_buffer;
1136 union ixgbe_adv_rx_desc *rx_desc;
1137 unsigned int size;
1138
1139 /* return some buffers to hardware, one at a time is too slow */
1140 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
1141 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
1142 cleaned_count = 0;
1143 }
1144
1145 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1146 size = le16_to_cpu(rx_desc->wb.upper.length);
1147 if (!size)
1148 break;
1149
1150 /* This memory barrier is needed to keep us from reading
1151 * any other fields out of the rx_desc until we know the
1152 * RXD_STAT_DD bit is set
1153 */
1154 rmb();
1155
1156 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size);
1157
1158 /* retrieve a buffer from the ring */
1159 if (!skb) {
1160 unsigned int offset = ixgbevf_rx_offset(rx_ring);
1161 unsigned char *hard_start;
1162
1163 hard_start = page_address(rx_buffer->page) +
1164 rx_buffer->page_offset - offset;
1165 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
1166 #if (PAGE_SIZE > 4096)
1167 /* At larger PAGE_SIZE, frame_sz depend on len size */
1168 xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size);
1169 #endif
1170 xdp_res = ixgbevf_run_xdp(adapter, rx_ring, &xdp);
1171 }
1172
1173 if (xdp_res) {
1174 if (xdp_res == IXGBEVF_XDP_TX) {
1175 xdp_xmit = true;
1176 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer,
1177 size);
1178 } else {
1179 rx_buffer->pagecnt_bias++;
1180 }
1181 total_rx_packets++;
1182 total_rx_bytes += size;
1183 } else if (skb) {
1184 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1185 } else if (ring_uses_build_skb(rx_ring)) {
1186 skb = ixgbevf_build_skb(rx_ring, rx_buffer,
1187 &xdp, rx_desc);
1188 } else {
1189 skb = ixgbevf_construct_skb(rx_ring, rx_buffer,
1190 &xdp, rx_desc);
1191 }
1192
1193 /* exit if we failed to retrieve a buffer */
1194 if (!xdp_res && !skb) {
1195 rx_ring->rx_stats.alloc_rx_buff_failed++;
1196 rx_buffer->pagecnt_bias++;
1197 break;
1198 }
1199
1200 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb);
1201 cleaned_count++;
1202
1203 /* fetch next buffer in frame if non-eop */
1204 if (ixgbevf_is_non_eop(rx_ring, rx_desc))
1205 continue;
1206
1207 /* verify the packet layout is correct */
1208 if (xdp_res || ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
1209 skb = NULL;
1210 continue;
1211 }
1212
1213 /* probably a little skewed due to removing CRC */
1214 total_rx_bytes += skb->len;
1215
1216 /* Workaround hardware that can't do proper VEPA multicast
1217 * source pruning.
1218 */
1219 if ((skb->pkt_type == PACKET_BROADCAST ||
1220 skb->pkt_type == PACKET_MULTICAST) &&
1221 ether_addr_equal(rx_ring->netdev->dev_addr,
1222 eth_hdr(skb)->h_source)) {
1223 dev_kfree_skb_irq(skb);
1224 continue;
1225 }
1226
1227 /* populate checksum, VLAN, and protocol */
1228 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
1229
1230 ixgbevf_rx_skb(q_vector, skb);
1231
1232 /* reset skb pointer */
1233 skb = NULL;
1234
1235 /* update budget accounting */
1236 total_rx_packets++;
1237 }
1238
1239 /* place incomplete frames back on ring for completion */
1240 rx_ring->skb = skb;
1241
1242 if (xdp_xmit) {
1243 struct ixgbevf_ring *xdp_ring =
1244 adapter->xdp_ring[rx_ring->queue_index];
1245
1246 /* Force memory writes to complete before letting h/w
1247 * know there are new descriptors to fetch.
1248 */
1249 wmb();
1250 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use);
1251 }
1252
1253 u64_stats_update_begin(&rx_ring->syncp);
1254 rx_ring->stats.packets += total_rx_packets;
1255 rx_ring->stats.bytes += total_rx_bytes;
1256 u64_stats_update_end(&rx_ring->syncp);
1257 q_vector->rx.total_packets += total_rx_packets;
1258 q_vector->rx.total_bytes += total_rx_bytes;
1259
1260 return total_rx_packets;
1261 }
1262
1263 /**
1264 * ixgbevf_poll - NAPI polling calback
1265 * @napi: napi struct with our devices info in it
1266 * @budget: amount of work driver is allowed to do this pass, in packets
1267 *
1268 * This function will clean more than one or more rings associated with a
1269 * q_vector.
1270 **/
ixgbevf_poll(struct napi_struct * napi,int budget)1271 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1272 {
1273 struct ixgbevf_q_vector *q_vector =
1274 container_of(napi, struct ixgbevf_q_vector, napi);
1275 struct ixgbevf_adapter *adapter = q_vector->adapter;
1276 struct ixgbevf_ring *ring;
1277 int per_ring_budget, work_done = 0;
1278 bool clean_complete = true;
1279
1280 ixgbevf_for_each_ring(ring, q_vector->tx) {
1281 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1282 clean_complete = false;
1283 }
1284
1285 if (budget <= 0)
1286 return budget;
1287
1288 /* attempt to distribute budget to each queue fairly, but don't allow
1289 * the budget to go below 1 because we'll exit polling
1290 */
1291 if (q_vector->rx.count > 1)
1292 per_ring_budget = max(budget/q_vector->rx.count, 1);
1293 else
1294 per_ring_budget = budget;
1295
1296 ixgbevf_for_each_ring(ring, q_vector->rx) {
1297 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1298 per_ring_budget);
1299 work_done += cleaned;
1300 if (cleaned >= per_ring_budget)
1301 clean_complete = false;
1302 }
1303
1304 /* If all work not completed, return budget and keep polling */
1305 if (!clean_complete)
1306 return budget;
1307
1308 /* Exit the polling mode, but don't re-enable interrupts if stack might
1309 * poll us due to busy-polling
1310 */
1311 if (likely(napi_complete_done(napi, work_done))) {
1312 if (adapter->rx_itr_setting == 1)
1313 ixgbevf_set_itr(q_vector);
1314 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1315 !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1316 ixgbevf_irq_enable_queues(adapter,
1317 BIT(q_vector->v_idx));
1318 }
1319
1320 return min(work_done, budget - 1);
1321 }
1322
1323 /**
1324 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1325 * @q_vector: structure containing interrupt and ring information
1326 **/
ixgbevf_write_eitr(struct ixgbevf_q_vector * q_vector)1327 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1328 {
1329 struct ixgbevf_adapter *adapter = q_vector->adapter;
1330 struct ixgbe_hw *hw = &adapter->hw;
1331 int v_idx = q_vector->v_idx;
1332 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1333
1334 /* set the WDIS bit to not clear the timer bits and cause an
1335 * immediate assertion of the interrupt
1336 */
1337 itr_reg |= IXGBE_EITR_CNT_WDIS;
1338
1339 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1340 }
1341
1342 /**
1343 * ixgbevf_configure_msix - Configure MSI-X hardware
1344 * @adapter: board private structure
1345 *
1346 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1347 * interrupts.
1348 **/
ixgbevf_configure_msix(struct ixgbevf_adapter * adapter)1349 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1350 {
1351 struct ixgbevf_q_vector *q_vector;
1352 int q_vectors, v_idx;
1353
1354 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1355 adapter->eims_enable_mask = 0;
1356
1357 /* Populate the IVAR table and set the ITR values to the
1358 * corresponding register.
1359 */
1360 for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1361 struct ixgbevf_ring *ring;
1362
1363 q_vector = adapter->q_vector[v_idx];
1364
1365 ixgbevf_for_each_ring(ring, q_vector->rx)
1366 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1367
1368 ixgbevf_for_each_ring(ring, q_vector->tx)
1369 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1370
1371 if (q_vector->tx.ring && !q_vector->rx.ring) {
1372 /* Tx only vector */
1373 if (adapter->tx_itr_setting == 1)
1374 q_vector->itr = IXGBE_12K_ITR;
1375 else
1376 q_vector->itr = adapter->tx_itr_setting;
1377 } else {
1378 /* Rx or Rx/Tx vector */
1379 if (adapter->rx_itr_setting == 1)
1380 q_vector->itr = IXGBE_20K_ITR;
1381 else
1382 q_vector->itr = adapter->rx_itr_setting;
1383 }
1384
1385 /* add q_vector eims value to global eims_enable_mask */
1386 adapter->eims_enable_mask |= BIT(v_idx);
1387
1388 ixgbevf_write_eitr(q_vector);
1389 }
1390
1391 ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1392 /* setup eims_other and add value to global eims_enable_mask */
1393 adapter->eims_other = BIT(v_idx);
1394 adapter->eims_enable_mask |= adapter->eims_other;
1395 }
1396
1397 enum latency_range {
1398 lowest_latency = 0,
1399 low_latency = 1,
1400 bulk_latency = 2,
1401 latency_invalid = 255
1402 };
1403
1404 /**
1405 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1406 * @q_vector: structure containing interrupt and ring information
1407 * @ring_container: structure containing ring performance data
1408 *
1409 * Stores a new ITR value based on packets and byte
1410 * counts during the last interrupt. The advantage of per interrupt
1411 * computation is faster updates and more accurate ITR for the current
1412 * traffic pattern. Constants in this function were computed
1413 * based on theoretical maximum wire speed and thresholds were set based
1414 * on testing data as well as attempting to minimize response time
1415 * while increasing bulk throughput.
1416 **/
ixgbevf_update_itr(struct ixgbevf_q_vector * q_vector,struct ixgbevf_ring_container * ring_container)1417 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1418 struct ixgbevf_ring_container *ring_container)
1419 {
1420 int bytes = ring_container->total_bytes;
1421 int packets = ring_container->total_packets;
1422 u32 timepassed_us;
1423 u64 bytes_perint;
1424 u8 itr_setting = ring_container->itr;
1425
1426 if (packets == 0)
1427 return;
1428
1429 /* simple throttle rate management
1430 * 0-20MB/s lowest (100000 ints/s)
1431 * 20-100MB/s low (20000 ints/s)
1432 * 100-1249MB/s bulk (12000 ints/s)
1433 */
1434 /* what was last interrupt timeslice? */
1435 timepassed_us = q_vector->itr >> 2;
1436 if (timepassed_us == 0)
1437 return;
1438
1439 bytes_perint = bytes / timepassed_us; /* bytes/usec */
1440
1441 switch (itr_setting) {
1442 case lowest_latency:
1443 if (bytes_perint > 10)
1444 itr_setting = low_latency;
1445 break;
1446 case low_latency:
1447 if (bytes_perint > 20)
1448 itr_setting = bulk_latency;
1449 else if (bytes_perint <= 10)
1450 itr_setting = lowest_latency;
1451 break;
1452 case bulk_latency:
1453 if (bytes_perint <= 20)
1454 itr_setting = low_latency;
1455 break;
1456 }
1457
1458 /* clear work counters since we have the values we need */
1459 ring_container->total_bytes = 0;
1460 ring_container->total_packets = 0;
1461
1462 /* write updated itr to ring container */
1463 ring_container->itr = itr_setting;
1464 }
1465
ixgbevf_set_itr(struct ixgbevf_q_vector * q_vector)1466 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1467 {
1468 u32 new_itr = q_vector->itr;
1469 u8 current_itr;
1470
1471 ixgbevf_update_itr(q_vector, &q_vector->tx);
1472 ixgbevf_update_itr(q_vector, &q_vector->rx);
1473
1474 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1475
1476 switch (current_itr) {
1477 /* counts and packets in update_itr are dependent on these numbers */
1478 case lowest_latency:
1479 new_itr = IXGBE_100K_ITR;
1480 break;
1481 case low_latency:
1482 new_itr = IXGBE_20K_ITR;
1483 break;
1484 case bulk_latency:
1485 new_itr = IXGBE_12K_ITR;
1486 break;
1487 default:
1488 break;
1489 }
1490
1491 if (new_itr != q_vector->itr) {
1492 /* do an exponential smoothing */
1493 new_itr = (10 * new_itr * q_vector->itr) /
1494 ((9 * new_itr) + q_vector->itr);
1495
1496 /* save the algorithm value here */
1497 q_vector->itr = new_itr;
1498
1499 ixgbevf_write_eitr(q_vector);
1500 }
1501 }
1502
ixgbevf_msix_other(int irq,void * data)1503 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1504 {
1505 struct ixgbevf_adapter *adapter = data;
1506 struct ixgbe_hw *hw = &adapter->hw;
1507
1508 hw->mac.get_link_status = 1;
1509
1510 ixgbevf_service_event_schedule(adapter);
1511
1512 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1513
1514 return IRQ_HANDLED;
1515 }
1516
1517 /**
1518 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1519 * @irq: unused
1520 * @data: pointer to our q_vector struct for this interrupt vector
1521 **/
ixgbevf_msix_clean_rings(int irq,void * data)1522 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1523 {
1524 struct ixgbevf_q_vector *q_vector = data;
1525
1526 /* EIAM disabled interrupts (on this vector) for us */
1527 if (q_vector->rx.ring || q_vector->tx.ring)
1528 napi_schedule_irqoff(&q_vector->napi);
1529
1530 return IRQ_HANDLED;
1531 }
1532
1533 /**
1534 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1535 * @adapter: board private structure
1536 *
1537 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1538 * interrupts from the kernel.
1539 **/
ixgbevf_request_msix_irqs(struct ixgbevf_adapter * adapter)1540 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1541 {
1542 struct net_device *netdev = adapter->netdev;
1543 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1544 unsigned int ri = 0, ti = 0;
1545 int vector, err;
1546
1547 for (vector = 0; vector < q_vectors; vector++) {
1548 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1549 struct msix_entry *entry = &adapter->msix_entries[vector];
1550
1551 if (q_vector->tx.ring && q_vector->rx.ring) {
1552 snprintf(q_vector->name, sizeof(q_vector->name),
1553 "%s-TxRx-%u", netdev->name, ri++);
1554 ti++;
1555 } else if (q_vector->rx.ring) {
1556 snprintf(q_vector->name, sizeof(q_vector->name),
1557 "%s-rx-%u", netdev->name, ri++);
1558 } else if (q_vector->tx.ring) {
1559 snprintf(q_vector->name, sizeof(q_vector->name),
1560 "%s-tx-%u", netdev->name, ti++);
1561 } else {
1562 /* skip this unused q_vector */
1563 continue;
1564 }
1565 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1566 q_vector->name, q_vector);
1567 if (err) {
1568 hw_dbg(&adapter->hw,
1569 "request_irq failed for MSIX interrupt Error: %d\n",
1570 err);
1571 goto free_queue_irqs;
1572 }
1573 }
1574
1575 err = request_irq(adapter->msix_entries[vector].vector,
1576 &ixgbevf_msix_other, 0, netdev->name, adapter);
1577 if (err) {
1578 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1579 err);
1580 goto free_queue_irqs;
1581 }
1582
1583 return 0;
1584
1585 free_queue_irqs:
1586 while (vector) {
1587 vector--;
1588 free_irq(adapter->msix_entries[vector].vector,
1589 adapter->q_vector[vector]);
1590 }
1591 /* This failure is non-recoverable - it indicates the system is
1592 * out of MSIX vector resources and the VF driver cannot run
1593 * without them. Set the number of msix vectors to zero
1594 * indicating that not enough can be allocated. The error
1595 * will be returned to the user indicating device open failed.
1596 * Any further attempts to force the driver to open will also
1597 * fail. The only way to recover is to unload the driver and
1598 * reload it again. If the system has recovered some MSIX
1599 * vectors then it may succeed.
1600 */
1601 adapter->num_msix_vectors = 0;
1602 return err;
1603 }
1604
1605 /**
1606 * ixgbevf_request_irq - initialize interrupts
1607 * @adapter: board private structure
1608 *
1609 * Attempts to configure interrupts using the best available
1610 * capabilities of the hardware and kernel.
1611 **/
ixgbevf_request_irq(struct ixgbevf_adapter * adapter)1612 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1613 {
1614 int err = ixgbevf_request_msix_irqs(adapter);
1615
1616 if (err)
1617 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1618
1619 return err;
1620 }
1621
ixgbevf_free_irq(struct ixgbevf_adapter * adapter)1622 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1623 {
1624 int i, q_vectors;
1625
1626 if (!adapter->msix_entries)
1627 return;
1628
1629 q_vectors = adapter->num_msix_vectors;
1630 i = q_vectors - 1;
1631
1632 free_irq(adapter->msix_entries[i].vector, adapter);
1633 i--;
1634
1635 for (; i >= 0; i--) {
1636 /* free only the irqs that were actually requested */
1637 if (!adapter->q_vector[i]->rx.ring &&
1638 !adapter->q_vector[i]->tx.ring)
1639 continue;
1640
1641 free_irq(adapter->msix_entries[i].vector,
1642 adapter->q_vector[i]);
1643 }
1644 }
1645
1646 /**
1647 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1648 * @adapter: board private structure
1649 **/
ixgbevf_irq_disable(struct ixgbevf_adapter * adapter)1650 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1651 {
1652 struct ixgbe_hw *hw = &adapter->hw;
1653 int i;
1654
1655 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1656 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1657 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1658
1659 IXGBE_WRITE_FLUSH(hw);
1660
1661 for (i = 0; i < adapter->num_msix_vectors; i++)
1662 synchronize_irq(adapter->msix_entries[i].vector);
1663 }
1664
1665 /**
1666 * ixgbevf_irq_enable - Enable default interrupt generation settings
1667 * @adapter: board private structure
1668 **/
ixgbevf_irq_enable(struct ixgbevf_adapter * adapter)1669 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1670 {
1671 struct ixgbe_hw *hw = &adapter->hw;
1672
1673 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1674 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1675 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1676 }
1677
1678 /**
1679 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1680 * @adapter: board private structure
1681 * @ring: structure containing ring specific data
1682 *
1683 * Configure the Tx descriptor ring after a reset.
1684 **/
ixgbevf_configure_tx_ring(struct ixgbevf_adapter * adapter,struct ixgbevf_ring * ring)1685 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1686 struct ixgbevf_ring *ring)
1687 {
1688 struct ixgbe_hw *hw = &adapter->hw;
1689 u64 tdba = ring->dma;
1690 int wait_loop = 10;
1691 u32 txdctl = IXGBE_TXDCTL_ENABLE;
1692 u8 reg_idx = ring->reg_idx;
1693
1694 /* disable queue to avoid issues while updating state */
1695 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1696 IXGBE_WRITE_FLUSH(hw);
1697
1698 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1699 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1700 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1701 ring->count * sizeof(union ixgbe_adv_tx_desc));
1702
1703 /* disable head writeback */
1704 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1705 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1706
1707 /* enable relaxed ordering */
1708 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1709 (IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1710 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1711
1712 /* reset head and tail pointers */
1713 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1714 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1715 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1716
1717 /* reset ntu and ntc to place SW in sync with hardwdare */
1718 ring->next_to_clean = 0;
1719 ring->next_to_use = 0;
1720
1721 /* In order to avoid issues WTHRESH + PTHRESH should always be equal
1722 * to or less than the number of on chip descriptors, which is
1723 * currently 40.
1724 */
1725 txdctl |= (8 << 16); /* WTHRESH = 8 */
1726
1727 /* Setting PTHRESH to 32 both improves performance */
1728 txdctl |= (1u << 8) | /* HTHRESH = 1 */
1729 32; /* PTHRESH = 32 */
1730
1731 /* reinitialize tx_buffer_info */
1732 memset(ring->tx_buffer_info, 0,
1733 sizeof(struct ixgbevf_tx_buffer) * ring->count);
1734
1735 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1736 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1737
1738 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1739
1740 /* poll to verify queue is enabled */
1741 do {
1742 usleep_range(1000, 2000);
1743 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1744 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1745 if (!wait_loop)
1746 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
1747 }
1748
1749 /**
1750 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1751 * @adapter: board private structure
1752 *
1753 * Configure the Tx unit of the MAC after a reset.
1754 **/
ixgbevf_configure_tx(struct ixgbevf_adapter * adapter)1755 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1756 {
1757 u32 i;
1758
1759 /* Setup the HW Tx Head and Tail descriptor pointers */
1760 for (i = 0; i < adapter->num_tx_queues; i++)
1761 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1762 for (i = 0; i < adapter->num_xdp_queues; i++)
1763 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]);
1764 }
1765
1766 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1767
ixgbevf_configure_srrctl(struct ixgbevf_adapter * adapter,struct ixgbevf_ring * ring,int index)1768 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter,
1769 struct ixgbevf_ring *ring, int index)
1770 {
1771 struct ixgbe_hw *hw = &adapter->hw;
1772 u32 srrctl;
1773
1774 srrctl = IXGBE_SRRCTL_DROP_EN;
1775
1776 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1777 if (ring_uses_large_buffer(ring))
1778 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1779 else
1780 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1781 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1782
1783 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1784 }
1785
ixgbevf_setup_psrtype(struct ixgbevf_adapter * adapter)1786 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1787 {
1788 struct ixgbe_hw *hw = &adapter->hw;
1789
1790 /* PSRTYPE must be initialized in 82599 */
1791 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1792 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1793 IXGBE_PSRTYPE_L2HDR;
1794
1795 if (adapter->num_rx_queues > 1)
1796 psrtype |= BIT(29);
1797
1798 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1799 }
1800
1801 #define IXGBEVF_MAX_RX_DESC_POLL 10
ixgbevf_disable_rx_queue(struct ixgbevf_adapter * adapter,struct ixgbevf_ring * ring)1802 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1803 struct ixgbevf_ring *ring)
1804 {
1805 struct ixgbe_hw *hw = &adapter->hw;
1806 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1807 u32 rxdctl;
1808 u8 reg_idx = ring->reg_idx;
1809
1810 if (IXGBE_REMOVED(hw->hw_addr))
1811 return;
1812 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1813 rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1814
1815 /* write value back with RXDCTL.ENABLE bit cleared */
1816 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1817
1818 /* the hardware may take up to 100us to really disable the Rx queue */
1819 do {
1820 udelay(10);
1821 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1822 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1823
1824 if (!wait_loop)
1825 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1826 reg_idx);
1827 }
1828
ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter * adapter,struct ixgbevf_ring * ring)1829 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1830 struct ixgbevf_ring *ring)
1831 {
1832 struct ixgbe_hw *hw = &adapter->hw;
1833 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1834 u32 rxdctl;
1835 u8 reg_idx = ring->reg_idx;
1836
1837 if (IXGBE_REMOVED(hw->hw_addr))
1838 return;
1839 do {
1840 usleep_range(1000, 2000);
1841 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1842 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1843
1844 if (!wait_loop)
1845 pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1846 reg_idx);
1847 }
1848
1849 /**
1850 * ixgbevf_init_rss_key - Initialize adapter RSS key
1851 * @adapter: device handle
1852 *
1853 * Allocates and initializes the RSS key if it is not allocated.
1854 **/
ixgbevf_init_rss_key(struct ixgbevf_adapter * adapter)1855 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter)
1856 {
1857 u32 *rss_key;
1858
1859 if (!adapter->rss_key) {
1860 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL);
1861 if (unlikely(!rss_key))
1862 return -ENOMEM;
1863
1864 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE);
1865 adapter->rss_key = rss_key;
1866 }
1867
1868 return 0;
1869 }
1870
ixgbevf_setup_vfmrqc(struct ixgbevf_adapter * adapter)1871 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1872 {
1873 struct ixgbe_hw *hw = &adapter->hw;
1874 u32 vfmrqc = 0, vfreta = 0;
1875 u16 rss_i = adapter->num_rx_queues;
1876 u8 i, j;
1877
1878 /* Fill out hash function seeds */
1879 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1880 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i));
1881
1882 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1883 if (j == rss_i)
1884 j = 0;
1885
1886 adapter->rss_indir_tbl[i] = j;
1887
1888 vfreta |= j << (i & 0x3) * 8;
1889 if ((i & 3) == 3) {
1890 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1891 vfreta = 0;
1892 }
1893 }
1894
1895 /* Perform hash on these packet types */
1896 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1897 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1898 IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1899 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1900
1901 vfmrqc |= IXGBE_VFMRQC_RSSEN;
1902
1903 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1904 }
1905
ixgbevf_configure_rx_ring(struct ixgbevf_adapter * adapter,struct ixgbevf_ring * ring)1906 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1907 struct ixgbevf_ring *ring)
1908 {
1909 struct ixgbe_hw *hw = &adapter->hw;
1910 union ixgbe_adv_rx_desc *rx_desc;
1911 u64 rdba = ring->dma;
1912 u32 rxdctl;
1913 u8 reg_idx = ring->reg_idx;
1914
1915 /* disable queue to avoid issues while updating state */
1916 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1917 ixgbevf_disable_rx_queue(adapter, ring);
1918
1919 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1920 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1921 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1922 ring->count * sizeof(union ixgbe_adv_rx_desc));
1923
1924 #ifndef CONFIG_SPARC
1925 /* enable relaxed ordering */
1926 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1927 IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1928 #else
1929 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1930 IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1931 IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1932 #endif
1933
1934 /* reset head and tail pointers */
1935 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1936 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1937 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1938
1939 /* initialize rx_buffer_info */
1940 memset(ring->rx_buffer_info, 0,
1941 sizeof(struct ixgbevf_rx_buffer) * ring->count);
1942
1943 /* initialize Rx descriptor 0 */
1944 rx_desc = IXGBEVF_RX_DESC(ring, 0);
1945 rx_desc->wb.upper.length = 0;
1946
1947 /* reset ntu and ntc to place SW in sync with hardwdare */
1948 ring->next_to_clean = 0;
1949 ring->next_to_use = 0;
1950 ring->next_to_alloc = 0;
1951
1952 ixgbevf_configure_srrctl(adapter, ring, reg_idx);
1953
1954 /* RXDCTL.RLPML does not work on 82599 */
1955 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) {
1956 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK |
1957 IXGBE_RXDCTL_RLPML_EN);
1958
1959 #if (PAGE_SIZE < 8192)
1960 /* Limit the maximum frame size so we don't overrun the skb */
1961 if (ring_uses_build_skb(ring) &&
1962 !ring_uses_large_buffer(ring))
1963 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB |
1964 IXGBE_RXDCTL_RLPML_EN;
1965 #endif
1966 }
1967
1968 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1969 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1970
1971 ixgbevf_rx_desc_queue_enable(adapter, ring);
1972 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1973 }
1974
ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter * adapter,struct ixgbevf_ring * rx_ring)1975 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter,
1976 struct ixgbevf_ring *rx_ring)
1977 {
1978 struct net_device *netdev = adapter->netdev;
1979 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1980
1981 /* set build_skb and buffer size flags */
1982 clear_ring_build_skb_enabled(rx_ring);
1983 clear_ring_uses_large_buffer(rx_ring);
1984
1985 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX)
1986 return;
1987
1988 if (PAGE_SIZE < 8192)
1989 if (max_frame > IXGBEVF_MAX_FRAME_BUILD_SKB)
1990 set_ring_uses_large_buffer(rx_ring);
1991
1992 /* 82599 can't rely on RXDCTL.RLPML to restrict the size of the frame */
1993 if (adapter->hw.mac.type == ixgbe_mac_82599_vf && !ring_uses_large_buffer(rx_ring))
1994 return;
1995
1996 set_ring_build_skb_enabled(rx_ring);
1997 }
1998
1999 /**
2000 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
2001 * @adapter: board private structure
2002 *
2003 * Configure the Rx unit of the MAC after a reset.
2004 **/
ixgbevf_configure_rx(struct ixgbevf_adapter * adapter)2005 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
2006 {
2007 struct ixgbe_hw *hw = &adapter->hw;
2008 struct net_device *netdev = adapter->netdev;
2009 int i, ret;
2010
2011 ixgbevf_setup_psrtype(adapter);
2012 if (hw->mac.type >= ixgbe_mac_X550_vf)
2013 ixgbevf_setup_vfmrqc(adapter);
2014
2015 spin_lock_bh(&adapter->mbx_lock);
2016 /* notify the PF of our intent to use this size of frame */
2017 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
2018 spin_unlock_bh(&adapter->mbx_lock);
2019 if (ret)
2020 dev_err(&adapter->pdev->dev,
2021 "Failed to set MTU at %d\n", netdev->mtu);
2022
2023 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2024 * the Base and Length of the Rx Descriptor Ring
2025 */
2026 for (i = 0; i < adapter->num_rx_queues; i++) {
2027 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
2028
2029 ixgbevf_set_rx_buffer_len(adapter, rx_ring);
2030 ixgbevf_configure_rx_ring(adapter, rx_ring);
2031 }
2032 }
2033
ixgbevf_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)2034 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
2035 __be16 proto, u16 vid)
2036 {
2037 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2038 struct ixgbe_hw *hw = &adapter->hw;
2039 int err;
2040
2041 spin_lock_bh(&adapter->mbx_lock);
2042
2043 /* add VID to filter table */
2044 err = hw->mac.ops.set_vfta(hw, vid, 0, true);
2045
2046 spin_unlock_bh(&adapter->mbx_lock);
2047
2048 if (err) {
2049 netdev_err(netdev, "VF could not set VLAN %d\n", vid);
2050
2051 /* translate error return types so error makes sense */
2052 if (err == IXGBE_ERR_MBX)
2053 return -EIO;
2054
2055 if (err == IXGBE_ERR_INVALID_ARGUMENT)
2056 return -EACCES;
2057 }
2058
2059 set_bit(vid, adapter->active_vlans);
2060
2061 return err;
2062 }
2063
ixgbevf_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)2064 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
2065 __be16 proto, u16 vid)
2066 {
2067 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2068 struct ixgbe_hw *hw = &adapter->hw;
2069 int err;
2070
2071 spin_lock_bh(&adapter->mbx_lock);
2072
2073 /* remove VID from filter table */
2074 err = hw->mac.ops.set_vfta(hw, vid, 0, false);
2075
2076 spin_unlock_bh(&adapter->mbx_lock);
2077
2078 if (err)
2079 netdev_err(netdev, "Could not remove VLAN %d\n", vid);
2080
2081 clear_bit(vid, adapter->active_vlans);
2082
2083 return err;
2084 }
2085
ixgbevf_restore_vlan(struct ixgbevf_adapter * adapter)2086 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
2087 {
2088 u16 vid;
2089
2090 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2091 ixgbevf_vlan_rx_add_vid(adapter->netdev,
2092 htons(ETH_P_8021Q), vid);
2093 }
2094
ixgbevf_write_uc_addr_list(struct net_device * netdev)2095 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
2096 {
2097 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2098 struct ixgbe_hw *hw = &adapter->hw;
2099 int count = 0;
2100
2101 if (!netdev_uc_empty(netdev)) {
2102 struct netdev_hw_addr *ha;
2103
2104 netdev_for_each_uc_addr(ha, netdev) {
2105 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
2106 udelay(200);
2107 }
2108 } else {
2109 /* If the list is empty then send message to PF driver to
2110 * clear all MAC VLANs on this VF.
2111 */
2112 hw->mac.ops.set_uc_addr(hw, 0, NULL);
2113 }
2114
2115 return count;
2116 }
2117
2118 /**
2119 * ixgbevf_set_rx_mode - Multicast and unicast set
2120 * @netdev: network interface device structure
2121 *
2122 * The set_rx_method entry point is called whenever the multicast address
2123 * list, unicast address list or the network interface flags are updated.
2124 * This routine is responsible for configuring the hardware for proper
2125 * multicast mode and configuring requested unicast filters.
2126 **/
ixgbevf_set_rx_mode(struct net_device * netdev)2127 static void ixgbevf_set_rx_mode(struct net_device *netdev)
2128 {
2129 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2130 struct ixgbe_hw *hw = &adapter->hw;
2131 unsigned int flags = netdev->flags;
2132 int xcast_mode;
2133
2134 /* request the most inclusive mode we need */
2135 if (flags & IFF_PROMISC)
2136 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC;
2137 else if (flags & IFF_ALLMULTI)
2138 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI;
2139 else if (flags & (IFF_BROADCAST | IFF_MULTICAST))
2140 xcast_mode = IXGBEVF_XCAST_MODE_MULTI;
2141 else
2142 xcast_mode = IXGBEVF_XCAST_MODE_NONE;
2143
2144 spin_lock_bh(&adapter->mbx_lock);
2145
2146 hw->mac.ops.update_xcast_mode(hw, xcast_mode);
2147
2148 /* reprogram multicast list */
2149 hw->mac.ops.update_mc_addr_list(hw, netdev);
2150
2151 ixgbevf_write_uc_addr_list(netdev);
2152
2153 spin_unlock_bh(&adapter->mbx_lock);
2154 }
2155
ixgbevf_napi_enable_all(struct ixgbevf_adapter * adapter)2156 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
2157 {
2158 int q_idx;
2159 struct ixgbevf_q_vector *q_vector;
2160 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2161
2162 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2163 q_vector = adapter->q_vector[q_idx];
2164 napi_enable(&q_vector->napi);
2165 }
2166 }
2167
ixgbevf_napi_disable_all(struct ixgbevf_adapter * adapter)2168 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
2169 {
2170 int q_idx;
2171 struct ixgbevf_q_vector *q_vector;
2172 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2173
2174 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2175 q_vector = adapter->q_vector[q_idx];
2176 napi_disable(&q_vector->napi);
2177 }
2178 }
2179
ixgbevf_configure_dcb(struct ixgbevf_adapter * adapter)2180 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
2181 {
2182 struct ixgbe_hw *hw = &adapter->hw;
2183 unsigned int def_q = 0;
2184 unsigned int num_tcs = 0;
2185 unsigned int num_rx_queues = adapter->num_rx_queues;
2186 unsigned int num_tx_queues = adapter->num_tx_queues;
2187 int err;
2188
2189 spin_lock_bh(&adapter->mbx_lock);
2190
2191 /* fetch queue configuration from the PF */
2192 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2193
2194 spin_unlock_bh(&adapter->mbx_lock);
2195
2196 if (err)
2197 return err;
2198
2199 if (num_tcs > 1) {
2200 /* we need only one Tx queue */
2201 num_tx_queues = 1;
2202
2203 /* update default Tx ring register index */
2204 adapter->tx_ring[0]->reg_idx = def_q;
2205
2206 /* we need as many queues as traffic classes */
2207 num_rx_queues = num_tcs;
2208 }
2209
2210 /* if we have a bad config abort request queue reset */
2211 if ((adapter->num_rx_queues != num_rx_queues) ||
2212 (adapter->num_tx_queues != num_tx_queues)) {
2213 /* force mailbox timeout to prevent further messages */
2214 hw->mbx.timeout = 0;
2215
2216 /* wait for watchdog to come around and bail us out */
2217 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
2218 }
2219
2220 return 0;
2221 }
2222
ixgbevf_configure(struct ixgbevf_adapter * adapter)2223 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
2224 {
2225 ixgbevf_configure_dcb(adapter);
2226
2227 ixgbevf_set_rx_mode(adapter->netdev);
2228
2229 ixgbevf_restore_vlan(adapter);
2230 ixgbevf_ipsec_restore(adapter);
2231
2232 ixgbevf_configure_tx(adapter);
2233 ixgbevf_configure_rx(adapter);
2234 }
2235
ixgbevf_save_reset_stats(struct ixgbevf_adapter * adapter)2236 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2237 {
2238 /* Only save pre-reset stats if there are some */
2239 if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2240 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2241 adapter->stats.base_vfgprc;
2242 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2243 adapter->stats.base_vfgptc;
2244 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2245 adapter->stats.base_vfgorc;
2246 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2247 adapter->stats.base_vfgotc;
2248 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2249 adapter->stats.base_vfmprc;
2250 }
2251 }
2252
ixgbevf_init_last_counter_stats(struct ixgbevf_adapter * adapter)2253 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2254 {
2255 struct ixgbe_hw *hw = &adapter->hw;
2256
2257 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2258 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2259 adapter->stats.last_vfgorc |=
2260 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2261 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2262 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2263 adapter->stats.last_vfgotc |=
2264 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2265 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2266
2267 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2268 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2269 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2270 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2271 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2272 }
2273
ixgbevf_negotiate_api(struct ixgbevf_adapter * adapter)2274 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2275 {
2276 struct ixgbe_hw *hw = &adapter->hw;
2277 static const int api[] = {
2278 ixgbe_mbox_api_15,
2279 ixgbe_mbox_api_14,
2280 ixgbe_mbox_api_13,
2281 ixgbe_mbox_api_12,
2282 ixgbe_mbox_api_11,
2283 ixgbe_mbox_api_10,
2284 ixgbe_mbox_api_unknown
2285 };
2286 int err, idx = 0;
2287
2288 spin_lock_bh(&adapter->mbx_lock);
2289
2290 while (api[idx] != ixgbe_mbox_api_unknown) {
2291 err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2292 if (!err)
2293 break;
2294 idx++;
2295 }
2296
2297 if (hw->api_version >= ixgbe_mbox_api_15) {
2298 hw->mbx.ops.init_params(hw);
2299 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
2300 sizeof(struct ixgbe_mbx_operations));
2301 }
2302
2303 spin_unlock_bh(&adapter->mbx_lock);
2304 }
2305
ixgbevf_up_complete(struct ixgbevf_adapter * adapter)2306 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2307 {
2308 struct net_device *netdev = adapter->netdev;
2309 struct pci_dev *pdev = adapter->pdev;
2310 struct ixgbe_hw *hw = &adapter->hw;
2311 bool state;
2312
2313 ixgbevf_configure_msix(adapter);
2314
2315 spin_lock_bh(&adapter->mbx_lock);
2316
2317 if (is_valid_ether_addr(hw->mac.addr))
2318 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2319 else
2320 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2321
2322 spin_unlock_bh(&adapter->mbx_lock);
2323
2324 state = adapter->link_state;
2325 hw->mac.ops.get_link_state(hw, &adapter->link_state);
2326 if (state && state != adapter->link_state)
2327 dev_info(&pdev->dev, "VF is administratively disabled\n");
2328
2329 smp_mb__before_atomic();
2330 clear_bit(__IXGBEVF_DOWN, &adapter->state);
2331 ixgbevf_napi_enable_all(adapter);
2332
2333 /* clear any pending interrupts, may auto mask */
2334 IXGBE_READ_REG(hw, IXGBE_VTEICR);
2335 ixgbevf_irq_enable(adapter);
2336
2337 /* enable transmits */
2338 netif_tx_start_all_queues(netdev);
2339
2340 ixgbevf_save_reset_stats(adapter);
2341 ixgbevf_init_last_counter_stats(adapter);
2342
2343 hw->mac.get_link_status = 1;
2344 mod_timer(&adapter->service_timer, jiffies);
2345 }
2346
ixgbevf_up(struct ixgbevf_adapter * adapter)2347 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2348 {
2349 ixgbevf_configure(adapter);
2350
2351 ixgbevf_up_complete(adapter);
2352 }
2353
2354 /**
2355 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2356 * @rx_ring: ring to free buffers from
2357 **/
ixgbevf_clean_rx_ring(struct ixgbevf_ring * rx_ring)2358 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2359 {
2360 u16 i = rx_ring->next_to_clean;
2361
2362 /* Free Rx ring sk_buff */
2363 if (rx_ring->skb) {
2364 dev_kfree_skb(rx_ring->skb);
2365 rx_ring->skb = NULL;
2366 }
2367
2368 /* Free all the Rx ring pages */
2369 while (i != rx_ring->next_to_alloc) {
2370 struct ixgbevf_rx_buffer *rx_buffer;
2371
2372 rx_buffer = &rx_ring->rx_buffer_info[i];
2373
2374 /* Invalidate cache lines that may have been written to by
2375 * device so that we avoid corrupting memory.
2376 */
2377 dma_sync_single_range_for_cpu(rx_ring->dev,
2378 rx_buffer->dma,
2379 rx_buffer->page_offset,
2380 ixgbevf_rx_bufsz(rx_ring),
2381 DMA_FROM_DEVICE);
2382
2383 /* free resources associated with mapping */
2384 dma_unmap_page_attrs(rx_ring->dev,
2385 rx_buffer->dma,
2386 ixgbevf_rx_pg_size(rx_ring),
2387 DMA_FROM_DEVICE,
2388 IXGBEVF_RX_DMA_ATTR);
2389
2390 __page_frag_cache_drain(rx_buffer->page,
2391 rx_buffer->pagecnt_bias);
2392
2393 i++;
2394 if (i == rx_ring->count)
2395 i = 0;
2396 }
2397
2398 rx_ring->next_to_alloc = 0;
2399 rx_ring->next_to_clean = 0;
2400 rx_ring->next_to_use = 0;
2401 }
2402
2403 /**
2404 * ixgbevf_clean_tx_ring - Free Tx Buffers
2405 * @tx_ring: ring to be cleaned
2406 **/
ixgbevf_clean_tx_ring(struct ixgbevf_ring * tx_ring)2407 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2408 {
2409 u16 i = tx_ring->next_to_clean;
2410 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
2411
2412 while (i != tx_ring->next_to_use) {
2413 union ixgbe_adv_tx_desc *eop_desc, *tx_desc;
2414
2415 /* Free all the Tx ring sk_buffs */
2416 if (ring_is_xdp(tx_ring))
2417 page_frag_free(tx_buffer->data);
2418 else
2419 dev_kfree_skb_any(tx_buffer->skb);
2420
2421 /* unmap skb header data */
2422 dma_unmap_single(tx_ring->dev,
2423 dma_unmap_addr(tx_buffer, dma),
2424 dma_unmap_len(tx_buffer, len),
2425 DMA_TO_DEVICE);
2426
2427 /* check for eop_desc to determine the end of the packet */
2428 eop_desc = tx_buffer->next_to_watch;
2429 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
2430
2431 /* unmap remaining buffers */
2432 while (tx_desc != eop_desc) {
2433 tx_buffer++;
2434 tx_desc++;
2435 i++;
2436 if (unlikely(i == tx_ring->count)) {
2437 i = 0;
2438 tx_buffer = tx_ring->tx_buffer_info;
2439 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
2440 }
2441
2442 /* unmap any remaining paged data */
2443 if (dma_unmap_len(tx_buffer, len))
2444 dma_unmap_page(tx_ring->dev,
2445 dma_unmap_addr(tx_buffer, dma),
2446 dma_unmap_len(tx_buffer, len),
2447 DMA_TO_DEVICE);
2448 }
2449
2450 /* move us one more past the eop_desc for start of next pkt */
2451 tx_buffer++;
2452 i++;
2453 if (unlikely(i == tx_ring->count)) {
2454 i = 0;
2455 tx_buffer = tx_ring->tx_buffer_info;
2456 }
2457 }
2458
2459 /* reset next_to_use and next_to_clean */
2460 tx_ring->next_to_use = 0;
2461 tx_ring->next_to_clean = 0;
2462
2463 }
2464
2465 /**
2466 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2467 * @adapter: board private structure
2468 **/
ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter * adapter)2469 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2470 {
2471 int i;
2472
2473 for (i = 0; i < adapter->num_rx_queues; i++)
2474 ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2475 }
2476
2477 /**
2478 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2479 * @adapter: board private structure
2480 **/
ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter * adapter)2481 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2482 {
2483 int i;
2484
2485 for (i = 0; i < adapter->num_tx_queues; i++)
2486 ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2487 for (i = 0; i < adapter->num_xdp_queues; i++)
2488 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]);
2489 }
2490
ixgbevf_down(struct ixgbevf_adapter * adapter)2491 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2492 {
2493 struct net_device *netdev = adapter->netdev;
2494 struct ixgbe_hw *hw = &adapter->hw;
2495 int i;
2496
2497 /* signal that we are down to the interrupt handler */
2498 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2499 return; /* do nothing if already down */
2500
2501 /* disable all enabled Rx queues */
2502 for (i = 0; i < adapter->num_rx_queues; i++)
2503 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2504
2505 usleep_range(10000, 20000);
2506
2507 netif_tx_stop_all_queues(netdev);
2508
2509 /* call carrier off first to avoid false dev_watchdog timeouts */
2510 netif_carrier_off(netdev);
2511 netif_tx_disable(netdev);
2512
2513 ixgbevf_irq_disable(adapter);
2514
2515 ixgbevf_napi_disable_all(adapter);
2516
2517 del_timer_sync(&adapter->service_timer);
2518
2519 /* disable transmits in the hardware now that interrupts are off */
2520 for (i = 0; i < adapter->num_tx_queues; i++) {
2521 u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2522
2523 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2524 IXGBE_TXDCTL_SWFLSH);
2525 }
2526
2527 for (i = 0; i < adapter->num_xdp_queues; i++) {
2528 u8 reg_idx = adapter->xdp_ring[i]->reg_idx;
2529
2530 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2531 IXGBE_TXDCTL_SWFLSH);
2532 }
2533
2534 if (!pci_channel_offline(adapter->pdev))
2535 ixgbevf_reset(adapter);
2536
2537 ixgbevf_clean_all_tx_rings(adapter);
2538 ixgbevf_clean_all_rx_rings(adapter);
2539 }
2540
ixgbevf_reinit_locked(struct ixgbevf_adapter * adapter)2541 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2542 {
2543 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2544 msleep(1);
2545
2546 ixgbevf_down(adapter);
2547 pci_set_master(adapter->pdev);
2548 ixgbevf_up(adapter);
2549
2550 clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2551 }
2552
ixgbevf_reset(struct ixgbevf_adapter * adapter)2553 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2554 {
2555 struct ixgbe_hw *hw = &adapter->hw;
2556 struct net_device *netdev = adapter->netdev;
2557
2558 if (hw->mac.ops.reset_hw(hw)) {
2559 hw_dbg(hw, "PF still resetting\n");
2560 } else {
2561 hw->mac.ops.init_hw(hw);
2562 ixgbevf_negotiate_api(adapter);
2563 }
2564
2565 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2566 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2567 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2568 }
2569
2570 adapter->last_reset = jiffies;
2571 }
2572
ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter * adapter,int vectors)2573 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2574 int vectors)
2575 {
2576 int vector_threshold;
2577
2578 /* We'll want at least 2 (vector_threshold):
2579 * 1) TxQ[0] + RxQ[0] handler
2580 * 2) Other (Link Status Change, etc.)
2581 */
2582 vector_threshold = MIN_MSIX_COUNT;
2583
2584 /* The more we get, the more we will assign to Tx/Rx Cleanup
2585 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2586 * Right now, we simply care about how many we'll get; we'll
2587 * set them up later while requesting irq's.
2588 */
2589 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2590 vector_threshold, vectors);
2591
2592 if (vectors < 0) {
2593 dev_err(&adapter->pdev->dev,
2594 "Unable to allocate MSI-X interrupts\n");
2595 kfree(adapter->msix_entries);
2596 adapter->msix_entries = NULL;
2597 return vectors;
2598 }
2599
2600 /* Adjust for only the vectors we'll use, which is minimum
2601 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2602 * vectors we were allocated.
2603 */
2604 adapter->num_msix_vectors = vectors;
2605
2606 return 0;
2607 }
2608
2609 /**
2610 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2611 * @adapter: board private structure to initialize
2612 *
2613 * This is the top level queue allocation routine. The order here is very
2614 * important, starting with the "most" number of features turned on at once,
2615 * and ending with the smallest set of features. This way large combinations
2616 * can be allocated if they're turned on, and smaller combinations are the
2617 * fall through conditions.
2618 *
2619 **/
ixgbevf_set_num_queues(struct ixgbevf_adapter * adapter)2620 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2621 {
2622 struct ixgbe_hw *hw = &adapter->hw;
2623 unsigned int def_q = 0;
2624 unsigned int num_tcs = 0;
2625 int err;
2626
2627 /* Start with base case */
2628 adapter->num_rx_queues = 1;
2629 adapter->num_tx_queues = 1;
2630 adapter->num_xdp_queues = 0;
2631
2632 spin_lock_bh(&adapter->mbx_lock);
2633
2634 /* fetch queue configuration from the PF */
2635 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2636
2637 spin_unlock_bh(&adapter->mbx_lock);
2638
2639 if (err)
2640 return;
2641
2642 /* we need as many queues as traffic classes */
2643 if (num_tcs > 1) {
2644 adapter->num_rx_queues = num_tcs;
2645 } else {
2646 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2647
2648 switch (hw->api_version) {
2649 case ixgbe_mbox_api_11:
2650 case ixgbe_mbox_api_12:
2651 case ixgbe_mbox_api_13:
2652 case ixgbe_mbox_api_14:
2653 case ixgbe_mbox_api_15:
2654 if (adapter->xdp_prog &&
2655 hw->mac.max_tx_queues == rss)
2656 rss = rss > 3 ? 2 : 1;
2657
2658 adapter->num_rx_queues = rss;
2659 adapter->num_tx_queues = rss;
2660 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0;
2661 break;
2662 default:
2663 break;
2664 }
2665 }
2666 }
2667
2668 /**
2669 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2670 * @adapter: board private structure to initialize
2671 *
2672 * Attempt to configure the interrupts using the best available
2673 * capabilities of the hardware and the kernel.
2674 **/
ixgbevf_set_interrupt_capability(struct ixgbevf_adapter * adapter)2675 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2676 {
2677 int vector, v_budget;
2678
2679 /* It's easy to be greedy for MSI-X vectors, but it really
2680 * doesn't do us much good if we have a lot more vectors
2681 * than CPU's. So let's be conservative and only ask for
2682 * (roughly) the same number of vectors as there are CPU's.
2683 * The default is to use pairs of vectors.
2684 */
2685 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2686 v_budget = min_t(int, v_budget, num_online_cpus());
2687 v_budget += NON_Q_VECTORS;
2688
2689 adapter->msix_entries = kcalloc(v_budget,
2690 sizeof(struct msix_entry), GFP_KERNEL);
2691 if (!adapter->msix_entries)
2692 return -ENOMEM;
2693
2694 for (vector = 0; vector < v_budget; vector++)
2695 adapter->msix_entries[vector].entry = vector;
2696
2697 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver
2698 * does not support any other modes, so we will simply fail here. Note
2699 * that we clean up the msix_entries pointer else-where.
2700 */
2701 return ixgbevf_acquire_msix_vectors(adapter, v_budget);
2702 }
2703
ixgbevf_add_ring(struct ixgbevf_ring * ring,struct ixgbevf_ring_container * head)2704 static void ixgbevf_add_ring(struct ixgbevf_ring *ring,
2705 struct ixgbevf_ring_container *head)
2706 {
2707 ring->next = head->ring;
2708 head->ring = ring;
2709 head->count++;
2710 }
2711
2712 /**
2713 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector
2714 * @adapter: board private structure to initialize
2715 * @v_idx: index of vector in adapter struct
2716 * @txr_count: number of Tx rings for q vector
2717 * @txr_idx: index of first Tx ring to assign
2718 * @xdp_count: total number of XDP rings to allocate
2719 * @xdp_idx: index of first XDP ring to allocate
2720 * @rxr_count: number of Rx rings for q vector
2721 * @rxr_idx: index of first Rx ring to assign
2722 *
2723 * We allocate one q_vector. If allocation fails we return -ENOMEM.
2724 **/
ixgbevf_alloc_q_vector(struct ixgbevf_adapter * adapter,int v_idx,int txr_count,int txr_idx,int xdp_count,int xdp_idx,int rxr_count,int rxr_idx)2725 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx,
2726 int txr_count, int txr_idx,
2727 int xdp_count, int xdp_idx,
2728 int rxr_count, int rxr_idx)
2729 {
2730 struct ixgbevf_q_vector *q_vector;
2731 int reg_idx = txr_idx + xdp_idx;
2732 struct ixgbevf_ring *ring;
2733 int ring_count, size;
2734
2735 ring_count = txr_count + xdp_count + rxr_count;
2736 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count);
2737
2738 /* allocate q_vector and rings */
2739 q_vector = kzalloc(size, GFP_KERNEL);
2740 if (!q_vector)
2741 return -ENOMEM;
2742
2743 /* initialize NAPI */
2744 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll);
2745
2746 /* tie q_vector and adapter together */
2747 adapter->q_vector[v_idx] = q_vector;
2748 q_vector->adapter = adapter;
2749 q_vector->v_idx = v_idx;
2750
2751 /* initialize pointer to rings */
2752 ring = q_vector->ring;
2753
2754 while (txr_count) {
2755 /* assign generic ring traits */
2756 ring->dev = &adapter->pdev->dev;
2757 ring->netdev = adapter->netdev;
2758
2759 /* configure backlink on ring */
2760 ring->q_vector = q_vector;
2761
2762 /* update q_vector Tx values */
2763 ixgbevf_add_ring(ring, &q_vector->tx);
2764
2765 /* apply Tx specific ring traits */
2766 ring->count = adapter->tx_ring_count;
2767 ring->queue_index = txr_idx;
2768 ring->reg_idx = reg_idx;
2769
2770 /* assign ring to adapter */
2771 adapter->tx_ring[txr_idx] = ring;
2772
2773 /* update count and index */
2774 txr_count--;
2775 txr_idx++;
2776 reg_idx++;
2777
2778 /* push pointer to next ring */
2779 ring++;
2780 }
2781
2782 while (xdp_count) {
2783 /* assign generic ring traits */
2784 ring->dev = &adapter->pdev->dev;
2785 ring->netdev = adapter->netdev;
2786
2787 /* configure backlink on ring */
2788 ring->q_vector = q_vector;
2789
2790 /* update q_vector Tx values */
2791 ixgbevf_add_ring(ring, &q_vector->tx);
2792
2793 /* apply Tx specific ring traits */
2794 ring->count = adapter->tx_ring_count;
2795 ring->queue_index = xdp_idx;
2796 ring->reg_idx = reg_idx;
2797 set_ring_xdp(ring);
2798
2799 /* assign ring to adapter */
2800 adapter->xdp_ring[xdp_idx] = ring;
2801
2802 /* update count and index */
2803 xdp_count--;
2804 xdp_idx++;
2805 reg_idx++;
2806
2807 /* push pointer to next ring */
2808 ring++;
2809 }
2810
2811 while (rxr_count) {
2812 /* assign generic ring traits */
2813 ring->dev = &adapter->pdev->dev;
2814 ring->netdev = adapter->netdev;
2815
2816 /* configure backlink on ring */
2817 ring->q_vector = q_vector;
2818
2819 /* update q_vector Rx values */
2820 ixgbevf_add_ring(ring, &q_vector->rx);
2821
2822 /* apply Rx specific ring traits */
2823 ring->count = adapter->rx_ring_count;
2824 ring->queue_index = rxr_idx;
2825 ring->reg_idx = rxr_idx;
2826
2827 /* assign ring to adapter */
2828 adapter->rx_ring[rxr_idx] = ring;
2829
2830 /* update count and index */
2831 rxr_count--;
2832 rxr_idx++;
2833
2834 /* push pointer to next ring */
2835 ring++;
2836 }
2837
2838 return 0;
2839 }
2840
2841 /**
2842 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector
2843 * @adapter: board private structure to initialize
2844 * @v_idx: index of vector in adapter struct
2845 *
2846 * This function frees the memory allocated to the q_vector. In addition if
2847 * NAPI is enabled it will delete any references to the NAPI struct prior
2848 * to freeing the q_vector.
2849 **/
ixgbevf_free_q_vector(struct ixgbevf_adapter * adapter,int v_idx)2850 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx)
2851 {
2852 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx];
2853 struct ixgbevf_ring *ring;
2854
2855 ixgbevf_for_each_ring(ring, q_vector->tx) {
2856 if (ring_is_xdp(ring))
2857 adapter->xdp_ring[ring->queue_index] = NULL;
2858 else
2859 adapter->tx_ring[ring->queue_index] = NULL;
2860 }
2861
2862 ixgbevf_for_each_ring(ring, q_vector->rx)
2863 adapter->rx_ring[ring->queue_index] = NULL;
2864
2865 adapter->q_vector[v_idx] = NULL;
2866 netif_napi_del(&q_vector->napi);
2867
2868 /* ixgbevf_get_stats() might access the rings on this vector,
2869 * we must wait a grace period before freeing it.
2870 */
2871 kfree_rcu(q_vector, rcu);
2872 }
2873
2874 /**
2875 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2876 * @adapter: board private structure to initialize
2877 *
2878 * We allocate one q_vector per queue interrupt. If allocation fails we
2879 * return -ENOMEM.
2880 **/
ixgbevf_alloc_q_vectors(struct ixgbevf_adapter * adapter)2881 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2882 {
2883 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2884 int rxr_remaining = adapter->num_rx_queues;
2885 int txr_remaining = adapter->num_tx_queues;
2886 int xdp_remaining = adapter->num_xdp_queues;
2887 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0;
2888 int err;
2889
2890 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) {
2891 for (; rxr_remaining; v_idx++, q_vectors--) {
2892 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2893
2894 err = ixgbevf_alloc_q_vector(adapter, v_idx,
2895 0, 0, 0, 0, rqpv, rxr_idx);
2896 if (err)
2897 goto err_out;
2898
2899 /* update counts and index */
2900 rxr_remaining -= rqpv;
2901 rxr_idx += rqpv;
2902 }
2903 }
2904
2905 for (; q_vectors; v_idx++, q_vectors--) {
2906 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2907 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors);
2908 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors);
2909
2910 err = ixgbevf_alloc_q_vector(adapter, v_idx,
2911 tqpv, txr_idx,
2912 xqpv, xdp_idx,
2913 rqpv, rxr_idx);
2914
2915 if (err)
2916 goto err_out;
2917
2918 /* update counts and index */
2919 rxr_remaining -= rqpv;
2920 rxr_idx += rqpv;
2921 txr_remaining -= tqpv;
2922 txr_idx += tqpv;
2923 xdp_remaining -= xqpv;
2924 xdp_idx += xqpv;
2925 }
2926
2927 return 0;
2928
2929 err_out:
2930 while (v_idx) {
2931 v_idx--;
2932 ixgbevf_free_q_vector(adapter, v_idx);
2933 }
2934
2935 return -ENOMEM;
2936 }
2937
2938 /**
2939 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2940 * @adapter: board private structure to initialize
2941 *
2942 * This function frees the memory allocated to the q_vectors. In addition if
2943 * NAPI is enabled it will delete any references to the NAPI struct prior
2944 * to freeing the q_vector.
2945 **/
ixgbevf_free_q_vectors(struct ixgbevf_adapter * adapter)2946 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2947 {
2948 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2949
2950 while (q_vectors) {
2951 q_vectors--;
2952 ixgbevf_free_q_vector(adapter, q_vectors);
2953 }
2954 }
2955
2956 /**
2957 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2958 * @adapter: board private structure
2959 *
2960 **/
ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter * adapter)2961 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2962 {
2963 if (!adapter->msix_entries)
2964 return;
2965
2966 pci_disable_msix(adapter->pdev);
2967 kfree(adapter->msix_entries);
2968 adapter->msix_entries = NULL;
2969 }
2970
2971 /**
2972 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2973 * @adapter: board private structure to initialize
2974 *
2975 **/
ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter * adapter)2976 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2977 {
2978 int err;
2979
2980 /* Number of supported queues */
2981 ixgbevf_set_num_queues(adapter);
2982
2983 err = ixgbevf_set_interrupt_capability(adapter);
2984 if (err) {
2985 hw_dbg(&adapter->hw,
2986 "Unable to setup interrupt capabilities\n");
2987 goto err_set_interrupt;
2988 }
2989
2990 err = ixgbevf_alloc_q_vectors(adapter);
2991 if (err) {
2992 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2993 goto err_alloc_q_vectors;
2994 }
2995
2996 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n",
2997 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled",
2998 adapter->num_rx_queues, adapter->num_tx_queues,
2999 adapter->num_xdp_queues);
3000
3001 set_bit(__IXGBEVF_DOWN, &adapter->state);
3002
3003 return 0;
3004 err_alloc_q_vectors:
3005 ixgbevf_reset_interrupt_capability(adapter);
3006 err_set_interrupt:
3007 return err;
3008 }
3009
3010 /**
3011 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
3012 * @adapter: board private structure to clear interrupt scheme on
3013 *
3014 * We go through and clear interrupt specific resources and reset the structure
3015 * to pre-load conditions
3016 **/
ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter * adapter)3017 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
3018 {
3019 adapter->num_tx_queues = 0;
3020 adapter->num_xdp_queues = 0;
3021 adapter->num_rx_queues = 0;
3022
3023 ixgbevf_free_q_vectors(adapter);
3024 ixgbevf_reset_interrupt_capability(adapter);
3025 }
3026
3027 /**
3028 * ixgbevf_sw_init - Initialize general software structures
3029 * @adapter: board private structure to initialize
3030 *
3031 * ixgbevf_sw_init initializes the Adapter private data structure.
3032 * Fields are initialized based on PCI device information and
3033 * OS network device settings (MTU size).
3034 **/
ixgbevf_sw_init(struct ixgbevf_adapter * adapter)3035 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
3036 {
3037 struct ixgbe_hw *hw = &adapter->hw;
3038 struct pci_dev *pdev = adapter->pdev;
3039 struct net_device *netdev = adapter->netdev;
3040 int err;
3041
3042 /* PCI config space info */
3043 hw->vendor_id = pdev->vendor;
3044 hw->device_id = pdev->device;
3045 hw->revision_id = pdev->revision;
3046 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3047 hw->subsystem_device_id = pdev->subsystem_device;
3048
3049 hw->mbx.ops.init_params(hw);
3050
3051 if (hw->mac.type >= ixgbe_mac_X550_vf) {
3052 err = ixgbevf_init_rss_key(adapter);
3053 if (err)
3054 goto out;
3055 }
3056
3057 /* assume legacy case in which PF would only give VF 2 queues */
3058 hw->mac.max_tx_queues = 2;
3059 hw->mac.max_rx_queues = 2;
3060
3061 /* lock to protect mailbox accesses */
3062 spin_lock_init(&adapter->mbx_lock);
3063
3064 err = hw->mac.ops.reset_hw(hw);
3065 if (err) {
3066 dev_info(&pdev->dev,
3067 "PF still in reset state. Is the PF interface up?\n");
3068 } else {
3069 err = hw->mac.ops.init_hw(hw);
3070 if (err) {
3071 pr_err("init_shared_code failed: %d\n", err);
3072 goto out;
3073 }
3074 ixgbevf_negotiate_api(adapter);
3075 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
3076 if (err)
3077 dev_info(&pdev->dev, "Error reading MAC address\n");
3078 else if (is_zero_ether_addr(adapter->hw.mac.addr))
3079 dev_info(&pdev->dev,
3080 "MAC address not assigned by administrator.\n");
3081 eth_hw_addr_set(netdev, hw->mac.addr);
3082 }
3083
3084 if (!is_valid_ether_addr(netdev->dev_addr)) {
3085 dev_info(&pdev->dev, "Assigning random MAC address\n");
3086 eth_hw_addr_random(netdev);
3087 ether_addr_copy(hw->mac.addr, netdev->dev_addr);
3088 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
3089 }
3090
3091 /* Enable dynamic interrupt throttling rates */
3092 adapter->rx_itr_setting = 1;
3093 adapter->tx_itr_setting = 1;
3094
3095 /* set default ring sizes */
3096 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
3097 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
3098
3099 adapter->link_state = true;
3100
3101 set_bit(__IXGBEVF_DOWN, &adapter->state);
3102 return 0;
3103
3104 out:
3105 return err;
3106 }
3107
3108 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \
3109 { \
3110 u32 current_counter = IXGBE_READ_REG(hw, reg); \
3111 if (current_counter < last_counter) \
3112 counter += 0x100000000LL; \
3113 last_counter = current_counter; \
3114 counter &= 0xFFFFFFFF00000000LL; \
3115 counter |= current_counter; \
3116 }
3117
3118 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
3119 { \
3120 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \
3121 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \
3122 u64 current_counter = (current_counter_msb << 32) | \
3123 current_counter_lsb; \
3124 if (current_counter < last_counter) \
3125 counter += 0x1000000000LL; \
3126 last_counter = current_counter; \
3127 counter &= 0xFFFFFFF000000000LL; \
3128 counter |= current_counter; \
3129 }
3130 /**
3131 * ixgbevf_update_stats - Update the board statistics counters.
3132 * @adapter: board private structure
3133 **/
ixgbevf_update_stats(struct ixgbevf_adapter * adapter)3134 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
3135 {
3136 struct ixgbe_hw *hw = &adapter->hw;
3137 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0;
3138 u64 alloc_rx_page = 0, hw_csum_rx_error = 0;
3139 int i;
3140
3141 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3142 test_bit(__IXGBEVF_RESETTING, &adapter->state))
3143 return;
3144
3145 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
3146 adapter->stats.vfgprc);
3147 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
3148 adapter->stats.vfgptc);
3149 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
3150 adapter->stats.last_vfgorc,
3151 adapter->stats.vfgorc);
3152 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
3153 adapter->stats.last_vfgotc,
3154 adapter->stats.vfgotc);
3155 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
3156 adapter->stats.vfmprc);
3157
3158 for (i = 0; i < adapter->num_rx_queues; i++) {
3159 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
3160
3161 hw_csum_rx_error += rx_ring->rx_stats.csum_err;
3162 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed;
3163 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
3164 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page;
3165 }
3166
3167 adapter->hw_csum_rx_error = hw_csum_rx_error;
3168 adapter->alloc_rx_page_failed = alloc_rx_page_failed;
3169 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed;
3170 adapter->alloc_rx_page = alloc_rx_page;
3171 }
3172
3173 /**
3174 * ixgbevf_service_timer - Timer Call-back
3175 * @t: pointer to timer_list struct
3176 **/
ixgbevf_service_timer(struct timer_list * t)3177 static void ixgbevf_service_timer(struct timer_list *t)
3178 {
3179 struct ixgbevf_adapter *adapter = from_timer(adapter, t,
3180 service_timer);
3181
3182 /* Reset the timer */
3183 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
3184
3185 ixgbevf_service_event_schedule(adapter);
3186 }
3187
ixgbevf_reset_subtask(struct ixgbevf_adapter * adapter)3188 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
3189 {
3190 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
3191 return;
3192
3193 rtnl_lock();
3194 /* If we're already down or resetting, just bail */
3195 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3196 test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
3197 test_bit(__IXGBEVF_RESETTING, &adapter->state)) {
3198 rtnl_unlock();
3199 return;
3200 }
3201
3202 adapter->tx_timeout_count++;
3203
3204 ixgbevf_reinit_locked(adapter);
3205 rtnl_unlock();
3206 }
3207
3208 /**
3209 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
3210 * @adapter: pointer to the device adapter structure
3211 *
3212 * This function serves two purposes. First it strobes the interrupt lines
3213 * in order to make certain interrupts are occurring. Secondly it sets the
3214 * bits needed to check for TX hangs. As a result we should immediately
3215 * determine if a hang has occurred.
3216 **/
ixgbevf_check_hang_subtask(struct ixgbevf_adapter * adapter)3217 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
3218 {
3219 struct ixgbe_hw *hw = &adapter->hw;
3220 u32 eics = 0;
3221 int i;
3222
3223 /* If we're down or resetting, just bail */
3224 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3225 test_bit(__IXGBEVF_RESETTING, &adapter->state))
3226 return;
3227
3228 /* Force detection of hung controller */
3229 if (netif_carrier_ok(adapter->netdev)) {
3230 for (i = 0; i < adapter->num_tx_queues; i++)
3231 set_check_for_tx_hang(adapter->tx_ring[i]);
3232 for (i = 0; i < adapter->num_xdp_queues; i++)
3233 set_check_for_tx_hang(adapter->xdp_ring[i]);
3234 }
3235
3236 /* get one bit for every active Tx/Rx interrupt vector */
3237 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
3238 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
3239
3240 if (qv->rx.ring || qv->tx.ring)
3241 eics |= BIT(i);
3242 }
3243
3244 /* Cause software interrupt to ensure rings are cleaned */
3245 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
3246 }
3247
3248 /**
3249 * ixgbevf_watchdog_update_link - update the link status
3250 * @adapter: pointer to the device adapter structure
3251 **/
ixgbevf_watchdog_update_link(struct ixgbevf_adapter * adapter)3252 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
3253 {
3254 struct ixgbe_hw *hw = &adapter->hw;
3255 u32 link_speed = adapter->link_speed;
3256 bool link_up = adapter->link_up;
3257 s32 err;
3258
3259 spin_lock_bh(&adapter->mbx_lock);
3260
3261 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
3262
3263 spin_unlock_bh(&adapter->mbx_lock);
3264
3265 /* if check for link returns error we will need to reset */
3266 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
3267 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
3268 link_up = false;
3269 }
3270
3271 adapter->link_up = link_up;
3272 adapter->link_speed = link_speed;
3273 }
3274
3275 /**
3276 * ixgbevf_watchdog_link_is_up - update netif_carrier status and
3277 * print link up message
3278 * @adapter: pointer to the device adapter structure
3279 **/
ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter * adapter)3280 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
3281 {
3282 struct net_device *netdev = adapter->netdev;
3283
3284 /* only continue if link was previously down */
3285 if (netif_carrier_ok(netdev))
3286 return;
3287
3288 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
3289 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
3290 "10 Gbps" :
3291 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
3292 "1 Gbps" :
3293 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
3294 "100 Mbps" :
3295 "unknown speed");
3296
3297 netif_carrier_on(netdev);
3298 }
3299
3300 /**
3301 * ixgbevf_watchdog_link_is_down - update netif_carrier status and
3302 * print link down message
3303 * @adapter: pointer to the adapter structure
3304 **/
ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter * adapter)3305 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
3306 {
3307 struct net_device *netdev = adapter->netdev;
3308
3309 adapter->link_speed = 0;
3310
3311 /* only continue if link was up previously */
3312 if (!netif_carrier_ok(netdev))
3313 return;
3314
3315 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
3316
3317 netif_carrier_off(netdev);
3318 }
3319
3320 /**
3321 * ixgbevf_watchdog_subtask - worker thread to bring link up
3322 * @adapter: board private structure
3323 **/
ixgbevf_watchdog_subtask(struct ixgbevf_adapter * adapter)3324 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
3325 {
3326 /* if interface is down do nothing */
3327 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3328 test_bit(__IXGBEVF_RESETTING, &adapter->state))
3329 return;
3330
3331 ixgbevf_watchdog_update_link(adapter);
3332
3333 if (adapter->link_up && adapter->link_state)
3334 ixgbevf_watchdog_link_is_up(adapter);
3335 else
3336 ixgbevf_watchdog_link_is_down(adapter);
3337
3338 ixgbevf_update_stats(adapter);
3339 }
3340
3341 /**
3342 * ixgbevf_service_task - manages and runs subtasks
3343 * @work: pointer to work_struct containing our data
3344 **/
ixgbevf_service_task(struct work_struct * work)3345 static void ixgbevf_service_task(struct work_struct *work)
3346 {
3347 struct ixgbevf_adapter *adapter = container_of(work,
3348 struct ixgbevf_adapter,
3349 service_task);
3350 struct ixgbe_hw *hw = &adapter->hw;
3351
3352 if (IXGBE_REMOVED(hw->hw_addr)) {
3353 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
3354 rtnl_lock();
3355 ixgbevf_down(adapter);
3356 rtnl_unlock();
3357 }
3358 return;
3359 }
3360
3361 ixgbevf_queue_reset_subtask(adapter);
3362 ixgbevf_reset_subtask(adapter);
3363 ixgbevf_watchdog_subtask(adapter);
3364 ixgbevf_check_hang_subtask(adapter);
3365
3366 ixgbevf_service_event_complete(adapter);
3367 }
3368
3369 /**
3370 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
3371 * @tx_ring: Tx descriptor ring for a specific queue
3372 *
3373 * Free all transmit software resources
3374 **/
ixgbevf_free_tx_resources(struct ixgbevf_ring * tx_ring)3375 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
3376 {
3377 ixgbevf_clean_tx_ring(tx_ring);
3378
3379 vfree(tx_ring->tx_buffer_info);
3380 tx_ring->tx_buffer_info = NULL;
3381
3382 /* if not set, then don't free */
3383 if (!tx_ring->desc)
3384 return;
3385
3386 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
3387 tx_ring->dma);
3388
3389 tx_ring->desc = NULL;
3390 }
3391
3392 /**
3393 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
3394 * @adapter: board private structure
3395 *
3396 * Free all transmit software resources
3397 **/
ixgbevf_free_all_tx_resources(struct ixgbevf_adapter * adapter)3398 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
3399 {
3400 int i;
3401
3402 for (i = 0; i < adapter->num_tx_queues; i++)
3403 if (adapter->tx_ring[i]->desc)
3404 ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3405 for (i = 0; i < adapter->num_xdp_queues; i++)
3406 if (adapter->xdp_ring[i]->desc)
3407 ixgbevf_free_tx_resources(adapter->xdp_ring[i]);
3408 }
3409
3410 /**
3411 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
3412 * @tx_ring: Tx descriptor ring (for a specific queue) to setup
3413 *
3414 * Return 0 on success, negative on failure
3415 **/
ixgbevf_setup_tx_resources(struct ixgbevf_ring * tx_ring)3416 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
3417 {
3418 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
3419 int size;
3420
3421 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
3422 tx_ring->tx_buffer_info = vmalloc(size);
3423 if (!tx_ring->tx_buffer_info)
3424 goto err;
3425
3426 u64_stats_init(&tx_ring->syncp);
3427
3428 /* round up to nearest 4K */
3429 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
3430 tx_ring->size = ALIGN(tx_ring->size, 4096);
3431
3432 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
3433 &tx_ring->dma, GFP_KERNEL);
3434 if (!tx_ring->desc)
3435 goto err;
3436
3437 return 0;
3438
3439 err:
3440 vfree(tx_ring->tx_buffer_info);
3441 tx_ring->tx_buffer_info = NULL;
3442 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3443 return -ENOMEM;
3444 }
3445
3446 /**
3447 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3448 * @adapter: board private structure
3449 *
3450 * If this function returns with an error, then it's possible one or
3451 * more of the rings is populated (while the rest are not). It is the
3452 * callers duty to clean those orphaned rings.
3453 *
3454 * Return 0 on success, negative on failure
3455 **/
ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter * adapter)3456 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3457 {
3458 int i, j = 0, err = 0;
3459
3460 for (i = 0; i < adapter->num_tx_queues; i++) {
3461 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3462 if (!err)
3463 continue;
3464 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3465 goto err_setup_tx;
3466 }
3467
3468 for (j = 0; j < adapter->num_xdp_queues; j++) {
3469 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]);
3470 if (!err)
3471 continue;
3472 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j);
3473 goto err_setup_tx;
3474 }
3475
3476 return 0;
3477 err_setup_tx:
3478 /* rewind the index freeing the rings as we go */
3479 while (j--)
3480 ixgbevf_free_tx_resources(adapter->xdp_ring[j]);
3481 while (i--)
3482 ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3483
3484 return err;
3485 }
3486
3487 /**
3488 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3489 * @adapter: board private structure
3490 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3491 *
3492 * Returns 0 on success, negative on failure
3493 **/
ixgbevf_setup_rx_resources(struct ixgbevf_adapter * adapter,struct ixgbevf_ring * rx_ring)3494 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
3495 struct ixgbevf_ring *rx_ring)
3496 {
3497 int size;
3498
3499 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3500 rx_ring->rx_buffer_info = vmalloc(size);
3501 if (!rx_ring->rx_buffer_info)
3502 goto err;
3503
3504 u64_stats_init(&rx_ring->syncp);
3505
3506 /* Round up to nearest 4K */
3507 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3508 rx_ring->size = ALIGN(rx_ring->size, 4096);
3509
3510 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3511 &rx_ring->dma, GFP_KERNEL);
3512
3513 if (!rx_ring->desc)
3514 goto err;
3515
3516 /* XDP RX-queue info */
3517 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev,
3518 rx_ring->queue_index, 0) < 0)
3519 goto err;
3520
3521 rx_ring->xdp_prog = adapter->xdp_prog;
3522
3523 return 0;
3524 err:
3525 vfree(rx_ring->rx_buffer_info);
3526 rx_ring->rx_buffer_info = NULL;
3527 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3528 return -ENOMEM;
3529 }
3530
3531 /**
3532 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3533 * @adapter: board private structure
3534 *
3535 * If this function returns with an error, then it's possible one or
3536 * more of the rings is populated (while the rest are not). It is the
3537 * callers duty to clean those orphaned rings.
3538 *
3539 * Return 0 on success, negative on failure
3540 **/
ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter * adapter)3541 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3542 {
3543 int i, err = 0;
3544
3545 for (i = 0; i < adapter->num_rx_queues; i++) {
3546 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]);
3547 if (!err)
3548 continue;
3549 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3550 goto err_setup_rx;
3551 }
3552
3553 return 0;
3554 err_setup_rx:
3555 /* rewind the index freeing the rings as we go */
3556 while (i--)
3557 ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3558 return err;
3559 }
3560
3561 /**
3562 * ixgbevf_free_rx_resources - Free Rx Resources
3563 * @rx_ring: ring to clean the resources from
3564 *
3565 * Free all receive software resources
3566 **/
ixgbevf_free_rx_resources(struct ixgbevf_ring * rx_ring)3567 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3568 {
3569 ixgbevf_clean_rx_ring(rx_ring);
3570
3571 rx_ring->xdp_prog = NULL;
3572 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
3573 vfree(rx_ring->rx_buffer_info);
3574 rx_ring->rx_buffer_info = NULL;
3575
3576 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3577 rx_ring->dma);
3578
3579 rx_ring->desc = NULL;
3580 }
3581
3582 /**
3583 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3584 * @adapter: board private structure
3585 *
3586 * Free all receive software resources
3587 **/
ixgbevf_free_all_rx_resources(struct ixgbevf_adapter * adapter)3588 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3589 {
3590 int i;
3591
3592 for (i = 0; i < adapter->num_rx_queues; i++)
3593 if (adapter->rx_ring[i]->desc)
3594 ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3595 }
3596
3597 /**
3598 * ixgbevf_open - Called when a network interface is made active
3599 * @netdev: network interface device structure
3600 *
3601 * Returns 0 on success, negative value on failure
3602 *
3603 * The open entry point is called when a network interface is made
3604 * active by the system (IFF_UP). At this point all resources needed
3605 * for transmit and receive operations are allocated, the interrupt
3606 * handler is registered with the OS, the watchdog timer is started,
3607 * and the stack is notified that the interface is ready.
3608 **/
ixgbevf_open(struct net_device * netdev)3609 int ixgbevf_open(struct net_device *netdev)
3610 {
3611 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3612 struct ixgbe_hw *hw = &adapter->hw;
3613 int err;
3614
3615 /* A previous failure to open the device because of a lack of
3616 * available MSIX vector resources may have reset the number
3617 * of msix vectors variable to zero. The only way to recover
3618 * is to unload/reload the driver and hope that the system has
3619 * been able to recover some MSIX vector resources.
3620 */
3621 if (!adapter->num_msix_vectors)
3622 return -ENOMEM;
3623
3624 if (hw->adapter_stopped) {
3625 ixgbevf_reset(adapter);
3626 /* if adapter is still stopped then PF isn't up and
3627 * the VF can't start.
3628 */
3629 if (hw->adapter_stopped) {
3630 err = IXGBE_ERR_MBX;
3631 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3632 goto err_setup_reset;
3633 }
3634 }
3635
3636 /* disallow open during test */
3637 if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3638 return -EBUSY;
3639
3640 netif_carrier_off(netdev);
3641
3642 /* allocate transmit descriptors */
3643 err = ixgbevf_setup_all_tx_resources(adapter);
3644 if (err)
3645 goto err_setup_tx;
3646
3647 /* allocate receive descriptors */
3648 err = ixgbevf_setup_all_rx_resources(adapter);
3649 if (err)
3650 goto err_setup_rx;
3651
3652 ixgbevf_configure(adapter);
3653
3654 err = ixgbevf_request_irq(adapter);
3655 if (err)
3656 goto err_req_irq;
3657
3658 /* Notify the stack of the actual queue counts. */
3659 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3660 if (err)
3661 goto err_set_queues;
3662
3663 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3664 if (err)
3665 goto err_set_queues;
3666
3667 ixgbevf_up_complete(adapter);
3668
3669 return 0;
3670
3671 err_set_queues:
3672 ixgbevf_free_irq(adapter);
3673 err_req_irq:
3674 ixgbevf_free_all_rx_resources(adapter);
3675 err_setup_rx:
3676 ixgbevf_free_all_tx_resources(adapter);
3677 err_setup_tx:
3678 ixgbevf_reset(adapter);
3679 err_setup_reset:
3680
3681 return err;
3682 }
3683
3684 /**
3685 * ixgbevf_close_suspend - actions necessary to both suspend and close flows
3686 * @adapter: the private adapter struct
3687 *
3688 * This function should contain the necessary work common to both suspending
3689 * and closing of the device.
3690 */
ixgbevf_close_suspend(struct ixgbevf_adapter * adapter)3691 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter)
3692 {
3693 ixgbevf_down(adapter);
3694 ixgbevf_free_irq(adapter);
3695 ixgbevf_free_all_tx_resources(adapter);
3696 ixgbevf_free_all_rx_resources(adapter);
3697 }
3698
3699 /**
3700 * ixgbevf_close - Disables a network interface
3701 * @netdev: network interface device structure
3702 *
3703 * Returns 0, this is not allowed to fail
3704 *
3705 * The close entry point is called when an interface is de-activated
3706 * by the OS. The hardware is still under the drivers control, but
3707 * needs to be disabled. A global MAC reset is issued to stop the
3708 * hardware, and all transmit and receive resources are freed.
3709 **/
ixgbevf_close(struct net_device * netdev)3710 int ixgbevf_close(struct net_device *netdev)
3711 {
3712 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3713
3714 if (netif_device_present(netdev))
3715 ixgbevf_close_suspend(adapter);
3716
3717 return 0;
3718 }
3719
ixgbevf_queue_reset_subtask(struct ixgbevf_adapter * adapter)3720 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3721 {
3722 struct net_device *dev = adapter->netdev;
3723
3724 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3725 &adapter->state))
3726 return;
3727
3728 /* if interface is down do nothing */
3729 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3730 test_bit(__IXGBEVF_RESETTING, &adapter->state))
3731 return;
3732
3733 /* Hardware has to reinitialize queues and interrupts to
3734 * match packet buffer alignment. Unfortunately, the
3735 * hardware is not flexible enough to do this dynamically.
3736 */
3737 rtnl_lock();
3738
3739 if (netif_running(dev))
3740 ixgbevf_close(dev);
3741
3742 ixgbevf_clear_interrupt_scheme(adapter);
3743 ixgbevf_init_interrupt_scheme(adapter);
3744
3745 if (netif_running(dev))
3746 ixgbevf_open(dev);
3747
3748 rtnl_unlock();
3749 }
3750
ixgbevf_tx_ctxtdesc(struct ixgbevf_ring * tx_ring,u32 vlan_macip_lens,u32 fceof_saidx,u32 type_tucmd,u32 mss_l4len_idx)3751 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3752 u32 vlan_macip_lens, u32 fceof_saidx,
3753 u32 type_tucmd, u32 mss_l4len_idx)
3754 {
3755 struct ixgbe_adv_tx_context_desc *context_desc;
3756 u16 i = tx_ring->next_to_use;
3757
3758 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3759
3760 i++;
3761 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3762
3763 /* set bits to identify this as an advanced context descriptor */
3764 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3765
3766 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
3767 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx);
3768 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
3769 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3770 }
3771
ixgbevf_tso(struct ixgbevf_ring * tx_ring,struct ixgbevf_tx_buffer * first,u8 * hdr_len,struct ixgbevf_ipsec_tx_data * itd)3772 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3773 struct ixgbevf_tx_buffer *first,
3774 u8 *hdr_len,
3775 struct ixgbevf_ipsec_tx_data *itd)
3776 {
3777 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3778 struct sk_buff *skb = first->skb;
3779 union {
3780 struct iphdr *v4;
3781 struct ipv6hdr *v6;
3782 unsigned char *hdr;
3783 } ip;
3784 union {
3785 struct tcphdr *tcp;
3786 unsigned char *hdr;
3787 } l4;
3788 u32 paylen, l4_offset;
3789 u32 fceof_saidx = 0;
3790 int err;
3791
3792 if (skb->ip_summed != CHECKSUM_PARTIAL)
3793 return 0;
3794
3795 if (!skb_is_gso(skb))
3796 return 0;
3797
3798 err = skb_cow_head(skb, 0);
3799 if (err < 0)
3800 return err;
3801
3802 if (eth_p_mpls(first->protocol))
3803 ip.hdr = skb_inner_network_header(skb);
3804 else
3805 ip.hdr = skb_network_header(skb);
3806 l4.hdr = skb_checksum_start(skb);
3807
3808 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3809 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3810
3811 /* initialize outer IP header fields */
3812 if (ip.v4->version == 4) {
3813 unsigned char *csum_start = skb_checksum_start(skb);
3814 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
3815 int len = csum_start - trans_start;
3816
3817 /* IP header will have to cancel out any data that
3818 * is not a part of the outer IP header, so set to
3819 * a reverse csum if needed, else init check to 0.
3820 */
3821 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ?
3822 csum_fold(csum_partial(trans_start,
3823 len, 0)) : 0;
3824 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3825
3826 ip.v4->tot_len = 0;
3827 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3828 IXGBE_TX_FLAGS_CSUM |
3829 IXGBE_TX_FLAGS_IPV4;
3830 } else {
3831 ip.v6->payload_len = 0;
3832 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3833 IXGBE_TX_FLAGS_CSUM;
3834 }
3835
3836 /* determine offset of inner transport header */
3837 l4_offset = l4.hdr - skb->data;
3838
3839 /* compute length of segmentation header */
3840 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3841
3842 /* remove payload length from inner checksum */
3843 paylen = skb->len - l4_offset;
3844 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3845
3846 /* update gso size and bytecount with header size */
3847 first->gso_segs = skb_shinfo(skb)->gso_segs;
3848 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3849
3850 /* mss_l4len_id: use 1 as index for TSO */
3851 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3852 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3853 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3854
3855 fceof_saidx |= itd->pfsa;
3856 type_tucmd |= itd->flags | itd->trailer_len;
3857
3858 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3859 vlan_macip_lens = l4.hdr - ip.hdr;
3860 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3861 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3862
3863 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd,
3864 mss_l4len_idx);
3865
3866 return 1;
3867 }
3868
ixgbevf_tx_csum(struct ixgbevf_ring * tx_ring,struct ixgbevf_tx_buffer * first,struct ixgbevf_ipsec_tx_data * itd)3869 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3870 struct ixgbevf_tx_buffer *first,
3871 struct ixgbevf_ipsec_tx_data *itd)
3872 {
3873 struct sk_buff *skb = first->skb;
3874 u32 vlan_macip_lens = 0;
3875 u32 fceof_saidx = 0;
3876 u32 type_tucmd = 0;
3877
3878 if (skb->ip_summed != CHECKSUM_PARTIAL)
3879 goto no_csum;
3880
3881 switch (skb->csum_offset) {
3882 case offsetof(struct tcphdr, check):
3883 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3884 fallthrough;
3885 case offsetof(struct udphdr, check):
3886 break;
3887 case offsetof(struct sctphdr, checksum):
3888 /* validate that this is actually an SCTP request */
3889 if (skb_csum_is_sctp(skb)) {
3890 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3891 break;
3892 }
3893 fallthrough;
3894 default:
3895 skb_checksum_help(skb);
3896 goto no_csum;
3897 }
3898
3899 if (first->protocol == htons(ETH_P_IP))
3900 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3901
3902 /* update TX checksum flag */
3903 first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3904 vlan_macip_lens = skb_checksum_start_offset(skb) -
3905 skb_network_offset(skb);
3906 no_csum:
3907 /* vlan_macip_lens: MACLEN, VLAN tag */
3908 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3909 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3910
3911 fceof_saidx |= itd->pfsa;
3912 type_tucmd |= itd->flags | itd->trailer_len;
3913
3914 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3915 fceof_saidx, type_tucmd, 0);
3916 }
3917
ixgbevf_tx_cmd_type(u32 tx_flags)3918 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3919 {
3920 /* set type for advanced descriptor with frame checksum insertion */
3921 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3922 IXGBE_ADVTXD_DCMD_IFCS |
3923 IXGBE_ADVTXD_DCMD_DEXT);
3924
3925 /* set HW VLAN bit if VLAN is present */
3926 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3927 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3928
3929 /* set segmentation enable bits for TSO/FSO */
3930 if (tx_flags & IXGBE_TX_FLAGS_TSO)
3931 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3932
3933 return cmd_type;
3934 }
3935
ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)3936 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3937 u32 tx_flags, unsigned int paylen)
3938 {
3939 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3940
3941 /* enable L4 checksum for TSO and TX checksum offload */
3942 if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3943 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3944
3945 /* enble IPv4 checksum for TSO */
3946 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3947 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3948
3949 /* enable IPsec */
3950 if (tx_flags & IXGBE_TX_FLAGS_IPSEC)
3951 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC);
3952
3953 /* use index 1 context for TSO/FSO/FCOE/IPSEC */
3954 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC))
3955 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3956
3957 /* Check Context must be set if Tx switch is enabled, which it
3958 * always is for case where virtual functions are running
3959 */
3960 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3961
3962 tx_desc->read.olinfo_status = olinfo_status;
3963 }
3964
ixgbevf_tx_map(struct ixgbevf_ring * tx_ring,struct ixgbevf_tx_buffer * first,const u8 hdr_len)3965 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3966 struct ixgbevf_tx_buffer *first,
3967 const u8 hdr_len)
3968 {
3969 struct sk_buff *skb = first->skb;
3970 struct ixgbevf_tx_buffer *tx_buffer;
3971 union ixgbe_adv_tx_desc *tx_desc;
3972 skb_frag_t *frag;
3973 dma_addr_t dma;
3974 unsigned int data_len, size;
3975 u32 tx_flags = first->tx_flags;
3976 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3977 u16 i = tx_ring->next_to_use;
3978
3979 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3980
3981 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
3982
3983 size = skb_headlen(skb);
3984 data_len = skb->data_len;
3985
3986 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3987
3988 tx_buffer = first;
3989
3990 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3991 if (dma_mapping_error(tx_ring->dev, dma))
3992 goto dma_error;
3993
3994 /* record length, and DMA address */
3995 dma_unmap_len_set(tx_buffer, len, size);
3996 dma_unmap_addr_set(tx_buffer, dma, dma);
3997
3998 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3999
4000 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
4001 tx_desc->read.cmd_type_len =
4002 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
4003
4004 i++;
4005 tx_desc++;
4006 if (i == tx_ring->count) {
4007 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
4008 i = 0;
4009 }
4010 tx_desc->read.olinfo_status = 0;
4011
4012 dma += IXGBE_MAX_DATA_PER_TXD;
4013 size -= IXGBE_MAX_DATA_PER_TXD;
4014
4015 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4016 }
4017
4018 if (likely(!data_len))
4019 break;
4020
4021 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4022
4023 i++;
4024 tx_desc++;
4025 if (i == tx_ring->count) {
4026 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
4027 i = 0;
4028 }
4029 tx_desc->read.olinfo_status = 0;
4030
4031 size = skb_frag_size(frag);
4032 data_len -= size;
4033
4034 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
4035 DMA_TO_DEVICE);
4036
4037 tx_buffer = &tx_ring->tx_buffer_info[i];
4038 }
4039
4040 /* write last descriptor with RS and EOP bits */
4041 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
4042 tx_desc->read.cmd_type_len = cmd_type;
4043
4044 /* set the timestamp */
4045 first->time_stamp = jiffies;
4046
4047 skb_tx_timestamp(skb);
4048
4049 /* Force memory writes to complete before letting h/w know there
4050 * are new descriptors to fetch. (Only applicable for weak-ordered
4051 * memory model archs, such as IA-64).
4052 *
4053 * We also need this memory barrier (wmb) to make certain all of the
4054 * status bits have been updated before next_to_watch is written.
4055 */
4056 wmb();
4057
4058 /* set next_to_watch value indicating a packet is present */
4059 first->next_to_watch = tx_desc;
4060
4061 i++;
4062 if (i == tx_ring->count)
4063 i = 0;
4064
4065 tx_ring->next_to_use = i;
4066
4067 /* notify HW of packet */
4068 ixgbevf_write_tail(tx_ring, i);
4069
4070 return;
4071 dma_error:
4072 dev_err(tx_ring->dev, "TX DMA map failed\n");
4073 tx_buffer = &tx_ring->tx_buffer_info[i];
4074
4075 /* clear dma mappings for failed tx_buffer_info map */
4076 while (tx_buffer != first) {
4077 if (dma_unmap_len(tx_buffer, len))
4078 dma_unmap_page(tx_ring->dev,
4079 dma_unmap_addr(tx_buffer, dma),
4080 dma_unmap_len(tx_buffer, len),
4081 DMA_TO_DEVICE);
4082 dma_unmap_len_set(tx_buffer, len, 0);
4083
4084 if (i-- == 0)
4085 i += tx_ring->count;
4086 tx_buffer = &tx_ring->tx_buffer_info[i];
4087 }
4088
4089 if (dma_unmap_len(tx_buffer, len))
4090 dma_unmap_single(tx_ring->dev,
4091 dma_unmap_addr(tx_buffer, dma),
4092 dma_unmap_len(tx_buffer, len),
4093 DMA_TO_DEVICE);
4094 dma_unmap_len_set(tx_buffer, len, 0);
4095
4096 dev_kfree_skb_any(tx_buffer->skb);
4097 tx_buffer->skb = NULL;
4098
4099 tx_ring->next_to_use = i;
4100 }
4101
__ixgbevf_maybe_stop_tx(struct ixgbevf_ring * tx_ring,int size)4102 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4103 {
4104 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
4105 /* Herbert's original patch had:
4106 * smp_mb__after_netif_stop_queue();
4107 * but since that doesn't exist yet, just open code it.
4108 */
4109 smp_mb();
4110
4111 /* We need to check again in a case another CPU has just
4112 * made room available.
4113 */
4114 if (likely(ixgbevf_desc_unused(tx_ring) < size))
4115 return -EBUSY;
4116
4117 /* A reprieve! - use start_queue because it doesn't call schedule */
4118 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
4119 ++tx_ring->tx_stats.restart_queue;
4120
4121 return 0;
4122 }
4123
ixgbevf_maybe_stop_tx(struct ixgbevf_ring * tx_ring,int size)4124 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4125 {
4126 if (likely(ixgbevf_desc_unused(tx_ring) >= size))
4127 return 0;
4128 return __ixgbevf_maybe_stop_tx(tx_ring, size);
4129 }
4130
ixgbevf_xmit_frame_ring(struct sk_buff * skb,struct ixgbevf_ring * tx_ring)4131 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb,
4132 struct ixgbevf_ring *tx_ring)
4133 {
4134 struct ixgbevf_tx_buffer *first;
4135 int tso;
4136 u32 tx_flags = 0;
4137 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4138 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 };
4139 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4140 unsigned short f;
4141 #endif
4142 u8 hdr_len = 0;
4143 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
4144
4145 if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
4146 dev_kfree_skb_any(skb);
4147 return NETDEV_TX_OK;
4148 }
4149
4150 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
4151 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
4152 * + 2 desc gap to keep tail from touching head,
4153 * + 1 desc for context descriptor,
4154 * otherwise try next time
4155 */
4156 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4157 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
4158 skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
4159
4160 count += TXD_USE_COUNT(skb_frag_size(frag));
4161 }
4162 #else
4163 count += skb_shinfo(skb)->nr_frags;
4164 #endif
4165 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
4166 tx_ring->tx_stats.tx_busy++;
4167 return NETDEV_TX_BUSY;
4168 }
4169
4170 /* record the location of the first descriptor for this packet */
4171 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4172 first->skb = skb;
4173 first->bytecount = skb->len;
4174 first->gso_segs = 1;
4175
4176 if (skb_vlan_tag_present(skb)) {
4177 tx_flags |= skb_vlan_tag_get(skb);
4178 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
4179 tx_flags |= IXGBE_TX_FLAGS_VLAN;
4180 }
4181
4182 /* record initial flags and protocol */
4183 first->tx_flags = tx_flags;
4184 first->protocol = vlan_get_protocol(skb);
4185
4186 #ifdef CONFIG_IXGBEVF_IPSEC
4187 if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx))
4188 goto out_drop;
4189 #endif
4190 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx);
4191 if (tso < 0)
4192 goto out_drop;
4193 else if (!tso)
4194 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx);
4195
4196 ixgbevf_tx_map(tx_ring, first, hdr_len);
4197
4198 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
4199
4200 return NETDEV_TX_OK;
4201
4202 out_drop:
4203 dev_kfree_skb_any(first->skb);
4204 first->skb = NULL;
4205
4206 return NETDEV_TX_OK;
4207 }
4208
ixgbevf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)4209 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4210 {
4211 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4212 struct ixgbevf_ring *tx_ring;
4213
4214 if (skb->len <= 0) {
4215 dev_kfree_skb_any(skb);
4216 return NETDEV_TX_OK;
4217 }
4218
4219 /* The minimum packet size for olinfo paylen is 17 so pad the skb
4220 * in order to meet this minimum size requirement.
4221 */
4222 if (skb->len < 17) {
4223 if (skb_padto(skb, 17))
4224 return NETDEV_TX_OK;
4225 skb->len = 17;
4226 }
4227
4228 tx_ring = adapter->tx_ring[skb->queue_mapping];
4229 return ixgbevf_xmit_frame_ring(skb, tx_ring);
4230 }
4231
4232 /**
4233 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
4234 * @netdev: network interface device structure
4235 * @p: pointer to an address structure
4236 *
4237 * Returns 0 on success, negative on failure
4238 **/
ixgbevf_set_mac(struct net_device * netdev,void * p)4239 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
4240 {
4241 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4242 struct ixgbe_hw *hw = &adapter->hw;
4243 struct sockaddr *addr = p;
4244 int err;
4245
4246 if (!is_valid_ether_addr(addr->sa_data))
4247 return -EADDRNOTAVAIL;
4248
4249 spin_lock_bh(&adapter->mbx_lock);
4250
4251 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
4252
4253 spin_unlock_bh(&adapter->mbx_lock);
4254
4255 if (err)
4256 return -EPERM;
4257
4258 ether_addr_copy(hw->mac.addr, addr->sa_data);
4259 ether_addr_copy(hw->mac.perm_addr, addr->sa_data);
4260 eth_hw_addr_set(netdev, addr->sa_data);
4261
4262 return 0;
4263 }
4264
4265 /**
4266 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
4267 * @netdev: network interface device structure
4268 * @new_mtu: new value for maximum frame size
4269 *
4270 * Returns 0 on success, negative on failure
4271 **/
ixgbevf_change_mtu(struct net_device * netdev,int new_mtu)4272 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
4273 {
4274 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4275 struct ixgbe_hw *hw = &adapter->hw;
4276 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4277 int ret;
4278
4279 /* prevent MTU being changed to a size unsupported by XDP */
4280 if (adapter->xdp_prog) {
4281 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n");
4282 return -EPERM;
4283 }
4284
4285 spin_lock_bh(&adapter->mbx_lock);
4286 /* notify the PF of our intent to use this size of frame */
4287 ret = hw->mac.ops.set_rlpml(hw, max_frame);
4288 spin_unlock_bh(&adapter->mbx_lock);
4289 if (ret)
4290 return -EINVAL;
4291
4292 hw_dbg(hw, "changing MTU from %d to %d\n",
4293 netdev->mtu, new_mtu);
4294
4295 /* must set new MTU before calling down or up */
4296 WRITE_ONCE(netdev->mtu, new_mtu);
4297
4298 if (netif_running(netdev))
4299 ixgbevf_reinit_locked(adapter);
4300
4301 return 0;
4302 }
4303
ixgbevf_suspend(struct device * dev_d)4304 static int ixgbevf_suspend(struct device *dev_d)
4305 {
4306 struct net_device *netdev = dev_get_drvdata(dev_d);
4307 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4308
4309 rtnl_lock();
4310 netif_device_detach(netdev);
4311
4312 if (netif_running(netdev))
4313 ixgbevf_close_suspend(adapter);
4314
4315 ixgbevf_clear_interrupt_scheme(adapter);
4316 rtnl_unlock();
4317
4318 return 0;
4319 }
4320
ixgbevf_resume(struct device * dev_d)4321 static int ixgbevf_resume(struct device *dev_d)
4322 {
4323 struct pci_dev *pdev = to_pci_dev(dev_d);
4324 struct net_device *netdev = pci_get_drvdata(pdev);
4325 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4326 u32 err;
4327
4328 adapter->hw.hw_addr = adapter->io_addr;
4329 smp_mb__before_atomic();
4330 clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4331 pci_set_master(pdev);
4332
4333 ixgbevf_reset(adapter);
4334
4335 rtnl_lock();
4336 err = ixgbevf_init_interrupt_scheme(adapter);
4337 if (!err && netif_running(netdev))
4338 err = ixgbevf_open(netdev);
4339 rtnl_unlock();
4340 if (err)
4341 return err;
4342
4343 netif_device_attach(netdev);
4344
4345 return err;
4346 }
4347
ixgbevf_shutdown(struct pci_dev * pdev)4348 static void ixgbevf_shutdown(struct pci_dev *pdev)
4349 {
4350 ixgbevf_suspend(&pdev->dev);
4351 }
4352
ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 * stats,const struct ixgbevf_ring * ring)4353 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats,
4354 const struct ixgbevf_ring *ring)
4355 {
4356 u64 bytes, packets;
4357 unsigned int start;
4358
4359 if (ring) {
4360 do {
4361 start = u64_stats_fetch_begin(&ring->syncp);
4362 bytes = ring->stats.bytes;
4363 packets = ring->stats.packets;
4364 } while (u64_stats_fetch_retry(&ring->syncp, start));
4365 stats->tx_bytes += bytes;
4366 stats->tx_packets += packets;
4367 }
4368 }
4369
ixgbevf_get_stats(struct net_device * netdev,struct rtnl_link_stats64 * stats)4370 static void ixgbevf_get_stats(struct net_device *netdev,
4371 struct rtnl_link_stats64 *stats)
4372 {
4373 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4374 unsigned int start;
4375 u64 bytes, packets;
4376 const struct ixgbevf_ring *ring;
4377 int i;
4378
4379 ixgbevf_update_stats(adapter);
4380
4381 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
4382
4383 rcu_read_lock();
4384 for (i = 0; i < adapter->num_rx_queues; i++) {
4385 ring = adapter->rx_ring[i];
4386 do {
4387 start = u64_stats_fetch_begin(&ring->syncp);
4388 bytes = ring->stats.bytes;
4389 packets = ring->stats.packets;
4390 } while (u64_stats_fetch_retry(&ring->syncp, start));
4391 stats->rx_bytes += bytes;
4392 stats->rx_packets += packets;
4393 }
4394
4395 for (i = 0; i < adapter->num_tx_queues; i++) {
4396 ring = adapter->tx_ring[i];
4397 ixgbevf_get_tx_ring_stats(stats, ring);
4398 }
4399
4400 for (i = 0; i < adapter->num_xdp_queues; i++) {
4401 ring = adapter->xdp_ring[i];
4402 ixgbevf_get_tx_ring_stats(stats, ring);
4403 }
4404 rcu_read_unlock();
4405 }
4406
4407 #define IXGBEVF_MAX_MAC_HDR_LEN 127
4408 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511
4409
4410 static netdev_features_t
ixgbevf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)4411 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
4412 netdev_features_t features)
4413 {
4414 unsigned int network_hdr_len, mac_hdr_len;
4415
4416 /* Make certain the headers can be described by a context descriptor */
4417 mac_hdr_len = skb_network_offset(skb);
4418 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
4419 return features & ~(NETIF_F_HW_CSUM |
4420 NETIF_F_SCTP_CRC |
4421 NETIF_F_HW_VLAN_CTAG_TX |
4422 NETIF_F_TSO |
4423 NETIF_F_TSO6);
4424
4425 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4426 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN))
4427 return features & ~(NETIF_F_HW_CSUM |
4428 NETIF_F_SCTP_CRC |
4429 NETIF_F_TSO |
4430 NETIF_F_TSO6);
4431
4432 /* We can only support IPV4 TSO in tunnels if we can mangle the
4433 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4434 */
4435 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4436 features &= ~NETIF_F_TSO;
4437
4438 return features;
4439 }
4440
ixgbevf_xdp_setup(struct net_device * dev,struct bpf_prog * prog)4441 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog)
4442 {
4443 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4444 struct ixgbevf_adapter *adapter = netdev_priv(dev);
4445 struct bpf_prog *old_prog;
4446
4447 /* verify ixgbevf ring attributes are sufficient for XDP */
4448 for (i = 0; i < adapter->num_rx_queues; i++) {
4449 struct ixgbevf_ring *ring = adapter->rx_ring[i];
4450
4451 if (frame_size > ixgbevf_rx_bufsz(ring))
4452 return -EINVAL;
4453 }
4454
4455 old_prog = xchg(&adapter->xdp_prog, prog);
4456
4457 /* If transitioning XDP modes reconfigure rings */
4458 if (!!prog != !!old_prog) {
4459 /* Hardware has to reinitialize queues and interrupts to
4460 * match packet buffer alignment. Unfortunately, the
4461 * hardware is not flexible enough to do this dynamically.
4462 */
4463 if (netif_running(dev))
4464 ixgbevf_close(dev);
4465
4466 ixgbevf_clear_interrupt_scheme(adapter);
4467 ixgbevf_init_interrupt_scheme(adapter);
4468
4469 if (netif_running(dev))
4470 ixgbevf_open(dev);
4471 } else {
4472 for (i = 0; i < adapter->num_rx_queues; i++)
4473 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog);
4474 }
4475
4476 if (old_prog)
4477 bpf_prog_put(old_prog);
4478
4479 return 0;
4480 }
4481
ixgbevf_xdp(struct net_device * dev,struct netdev_bpf * xdp)4482 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4483 {
4484 switch (xdp->command) {
4485 case XDP_SETUP_PROG:
4486 return ixgbevf_xdp_setup(dev, xdp->prog);
4487 default:
4488 return -EINVAL;
4489 }
4490 }
4491
4492 static const struct net_device_ops ixgbevf_netdev_ops = {
4493 .ndo_open = ixgbevf_open,
4494 .ndo_stop = ixgbevf_close,
4495 .ndo_start_xmit = ixgbevf_xmit_frame,
4496 .ndo_set_rx_mode = ixgbevf_set_rx_mode,
4497 .ndo_get_stats64 = ixgbevf_get_stats,
4498 .ndo_validate_addr = eth_validate_addr,
4499 .ndo_set_mac_address = ixgbevf_set_mac,
4500 .ndo_change_mtu = ixgbevf_change_mtu,
4501 .ndo_tx_timeout = ixgbevf_tx_timeout,
4502 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid,
4503 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid,
4504 .ndo_features_check = ixgbevf_features_check,
4505 .ndo_bpf = ixgbevf_xdp,
4506 };
4507
ixgbevf_assign_netdev_ops(struct net_device * dev)4508 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
4509 {
4510 dev->netdev_ops = &ixgbevf_netdev_ops;
4511 ixgbevf_set_ethtool_ops(dev);
4512 dev->watchdog_timeo = 5 * HZ;
4513 }
4514
4515 /**
4516 * ixgbevf_probe - Device Initialization Routine
4517 * @pdev: PCI device information struct
4518 * @ent: entry in ixgbevf_pci_tbl
4519 *
4520 * Returns 0 on success, negative on failure
4521 *
4522 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
4523 * The OS initialization, configuring of the adapter private structure,
4524 * and a hardware reset occur.
4525 **/
ixgbevf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)4526 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4527 {
4528 struct net_device *netdev;
4529 struct ixgbevf_adapter *adapter = NULL;
4530 struct ixgbe_hw *hw = NULL;
4531 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
4532 bool disable_dev = false;
4533 int err;
4534
4535 err = pci_enable_device(pdev);
4536 if (err)
4537 return err;
4538
4539 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4540 if (err) {
4541 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4542 goto err_dma;
4543 }
4544
4545 err = pci_request_regions(pdev, ixgbevf_driver_name);
4546 if (err) {
4547 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4548 goto err_pci_reg;
4549 }
4550
4551 pci_set_master(pdev);
4552
4553 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4554 MAX_TX_QUEUES);
4555 if (!netdev) {
4556 err = -ENOMEM;
4557 goto err_alloc_etherdev;
4558 }
4559
4560 SET_NETDEV_DEV(netdev, &pdev->dev);
4561
4562 adapter = netdev_priv(netdev);
4563
4564 adapter->netdev = netdev;
4565 adapter->pdev = pdev;
4566 hw = &adapter->hw;
4567 hw->back = adapter;
4568 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4569
4570 /* call save state here in standalone driver because it relies on
4571 * adapter struct to exist, and needs to call netdev_priv
4572 */
4573 pci_save_state(pdev);
4574
4575 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4576 pci_resource_len(pdev, 0));
4577 adapter->io_addr = hw->hw_addr;
4578 if (!hw->hw_addr) {
4579 err = -EIO;
4580 goto err_ioremap;
4581 }
4582
4583 ixgbevf_assign_netdev_ops(netdev);
4584
4585 /* Setup HW API */
4586 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4587 hw->mac.type = ii->mac;
4588
4589 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops_legacy,
4590 sizeof(struct ixgbe_mbx_operations));
4591
4592 /* setup the private structure */
4593 err = ixgbevf_sw_init(adapter);
4594 if (err)
4595 goto err_sw_init;
4596
4597 /* The HW MAC address was set and/or determined in sw_init */
4598 if (!is_valid_ether_addr(netdev->dev_addr)) {
4599 pr_err("invalid MAC address\n");
4600 err = -EIO;
4601 goto err_sw_init;
4602 }
4603
4604 netdev->hw_features = NETIF_F_SG |
4605 NETIF_F_TSO |
4606 NETIF_F_TSO6 |
4607 NETIF_F_RXCSUM |
4608 NETIF_F_HW_CSUM |
4609 NETIF_F_SCTP_CRC;
4610
4611 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4612 NETIF_F_GSO_GRE_CSUM | \
4613 NETIF_F_GSO_IPXIP4 | \
4614 NETIF_F_GSO_IPXIP6 | \
4615 NETIF_F_GSO_UDP_TUNNEL | \
4616 NETIF_F_GSO_UDP_TUNNEL_CSUM)
4617
4618 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4619 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4620 IXGBEVF_GSO_PARTIAL_FEATURES;
4621
4622 netdev->features = netdev->hw_features | NETIF_F_HIGHDMA;
4623
4624 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4625 netdev->mpls_features |= NETIF_F_SG |
4626 NETIF_F_TSO |
4627 NETIF_F_TSO6 |
4628 NETIF_F_HW_CSUM;
4629 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES;
4630 netdev->hw_enc_features |= netdev->vlan_features;
4631
4632 /* set this bit last since it cannot be part of vlan_features */
4633 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4634 NETIF_F_HW_VLAN_CTAG_RX |
4635 NETIF_F_HW_VLAN_CTAG_TX;
4636
4637 netdev->priv_flags |= IFF_UNICAST_FLT;
4638 netdev->xdp_features = NETDEV_XDP_ACT_BASIC;
4639
4640 /* MTU range: 68 - 1504 or 9710 */
4641 netdev->min_mtu = ETH_MIN_MTU;
4642 switch (adapter->hw.api_version) {
4643 case ixgbe_mbox_api_11:
4644 case ixgbe_mbox_api_12:
4645 case ixgbe_mbox_api_13:
4646 case ixgbe_mbox_api_14:
4647 case ixgbe_mbox_api_15:
4648 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4649 (ETH_HLEN + ETH_FCS_LEN);
4650 break;
4651 default:
4652 if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
4653 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4654 (ETH_HLEN + ETH_FCS_LEN);
4655 else
4656 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN;
4657 break;
4658 }
4659
4660 if (IXGBE_REMOVED(hw->hw_addr)) {
4661 err = -EIO;
4662 goto err_sw_init;
4663 }
4664
4665 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0);
4666
4667 INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4668 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4669 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4670
4671 err = ixgbevf_init_interrupt_scheme(adapter);
4672 if (err)
4673 goto err_sw_init;
4674
4675 strcpy(netdev->name, "eth%d");
4676
4677 err = register_netdev(netdev);
4678 if (err)
4679 goto err_register;
4680
4681 pci_set_drvdata(pdev, netdev);
4682 netif_carrier_off(netdev);
4683 ixgbevf_init_ipsec_offload(adapter);
4684
4685 ixgbevf_init_last_counter_stats(adapter);
4686
4687 /* print the VF info */
4688 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4689 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4690
4691 switch (hw->mac.type) {
4692 case ixgbe_mac_X550_vf:
4693 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4694 break;
4695 case ixgbe_mac_X540_vf:
4696 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4697 break;
4698 case ixgbe_mac_e610_vf:
4699 dev_info(&pdev->dev, "Intel(R) E610 Virtual Function\n");
4700 break;
4701 case ixgbe_mac_82599_vf:
4702 default:
4703 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4704 break;
4705 }
4706
4707 return 0;
4708
4709 err_register:
4710 ixgbevf_clear_interrupt_scheme(adapter);
4711 err_sw_init:
4712 ixgbevf_reset_interrupt_capability(adapter);
4713 iounmap(adapter->io_addr);
4714 kfree(adapter->rss_key);
4715 err_ioremap:
4716 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4717 free_netdev(netdev);
4718 err_alloc_etherdev:
4719 pci_release_regions(pdev);
4720 err_pci_reg:
4721 err_dma:
4722 if (!adapter || disable_dev)
4723 pci_disable_device(pdev);
4724 return err;
4725 }
4726
4727 /**
4728 * ixgbevf_remove - Device Removal Routine
4729 * @pdev: PCI device information struct
4730 *
4731 * ixgbevf_remove is called by the PCI subsystem to alert the driver
4732 * that it should release a PCI device. The could be caused by a
4733 * Hot-Plug event, or because the driver is going to be removed from
4734 * memory.
4735 **/
ixgbevf_remove(struct pci_dev * pdev)4736 static void ixgbevf_remove(struct pci_dev *pdev)
4737 {
4738 struct net_device *netdev = pci_get_drvdata(pdev);
4739 struct ixgbevf_adapter *adapter;
4740 bool disable_dev;
4741
4742 if (!netdev)
4743 return;
4744
4745 adapter = netdev_priv(netdev);
4746
4747 set_bit(__IXGBEVF_REMOVING, &adapter->state);
4748 cancel_work_sync(&adapter->service_task);
4749
4750 if (netdev->reg_state == NETREG_REGISTERED)
4751 unregister_netdev(netdev);
4752
4753 ixgbevf_stop_ipsec_offload(adapter);
4754 ixgbevf_clear_interrupt_scheme(adapter);
4755 ixgbevf_reset_interrupt_capability(adapter);
4756
4757 iounmap(adapter->io_addr);
4758 pci_release_regions(pdev);
4759
4760 hw_dbg(&adapter->hw, "Remove complete\n");
4761
4762 kfree(adapter->rss_key);
4763 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4764 free_netdev(netdev);
4765
4766 if (disable_dev)
4767 pci_disable_device(pdev);
4768 }
4769
4770 /**
4771 * ixgbevf_io_error_detected - called when PCI error is detected
4772 * @pdev: Pointer to PCI device
4773 * @state: The current pci connection state
4774 *
4775 * This function is called after a PCI bus error affecting
4776 * this device has been detected.
4777 **/
ixgbevf_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)4778 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4779 pci_channel_state_t state)
4780 {
4781 struct net_device *netdev = pci_get_drvdata(pdev);
4782 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4783
4784 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4785 return PCI_ERS_RESULT_DISCONNECT;
4786
4787 rtnl_lock();
4788 netif_device_detach(netdev);
4789
4790 if (netif_running(netdev))
4791 ixgbevf_close_suspend(adapter);
4792
4793 if (state == pci_channel_io_perm_failure) {
4794 rtnl_unlock();
4795 return PCI_ERS_RESULT_DISCONNECT;
4796 }
4797
4798 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4799 pci_disable_device(pdev);
4800 rtnl_unlock();
4801
4802 /* Request a slot reset. */
4803 return PCI_ERS_RESULT_NEED_RESET;
4804 }
4805
4806 /**
4807 * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4808 * @pdev: Pointer to PCI device
4809 *
4810 * Restart the card from scratch, as if from a cold-boot. Implementation
4811 * resembles the first-half of the ixgbevf_resume routine.
4812 **/
ixgbevf_io_slot_reset(struct pci_dev * pdev)4813 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4814 {
4815 struct net_device *netdev = pci_get_drvdata(pdev);
4816 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4817
4818 if (pci_enable_device_mem(pdev)) {
4819 dev_err(&pdev->dev,
4820 "Cannot re-enable PCI device after reset.\n");
4821 return PCI_ERS_RESULT_DISCONNECT;
4822 }
4823
4824 adapter->hw.hw_addr = adapter->io_addr;
4825 smp_mb__before_atomic();
4826 clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4827 pci_set_master(pdev);
4828
4829 ixgbevf_reset(adapter);
4830
4831 return PCI_ERS_RESULT_RECOVERED;
4832 }
4833
4834 /**
4835 * ixgbevf_io_resume - called when traffic can start flowing again.
4836 * @pdev: Pointer to PCI device
4837 *
4838 * This callback is called when the error recovery driver tells us that
4839 * its OK to resume normal operation. Implementation resembles the
4840 * second-half of the ixgbevf_resume routine.
4841 **/
ixgbevf_io_resume(struct pci_dev * pdev)4842 static void ixgbevf_io_resume(struct pci_dev *pdev)
4843 {
4844 struct net_device *netdev = pci_get_drvdata(pdev);
4845
4846 rtnl_lock();
4847 if (netif_running(netdev))
4848 ixgbevf_open(netdev);
4849
4850 netif_device_attach(netdev);
4851 rtnl_unlock();
4852 }
4853
4854 /* PCI Error Recovery (ERS) */
4855 static const struct pci_error_handlers ixgbevf_err_handler = {
4856 .error_detected = ixgbevf_io_error_detected,
4857 .slot_reset = ixgbevf_io_slot_reset,
4858 .resume = ixgbevf_io_resume,
4859 };
4860
4861 static DEFINE_SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume);
4862
4863 static struct pci_driver ixgbevf_driver = {
4864 .name = ixgbevf_driver_name,
4865 .id_table = ixgbevf_pci_tbl,
4866 .probe = ixgbevf_probe,
4867 .remove = ixgbevf_remove,
4868
4869 /* Power Management Hooks */
4870 .driver.pm = pm_sleep_ptr(&ixgbevf_pm_ops),
4871
4872 .shutdown = ixgbevf_shutdown,
4873 .err_handler = &ixgbevf_err_handler
4874 };
4875
4876 /**
4877 * ixgbevf_init_module - Driver Registration Routine
4878 *
4879 * ixgbevf_init_module is the first routine called when the driver is
4880 * loaded. All it does is register with the PCI subsystem.
4881 **/
ixgbevf_init_module(void)4882 static int __init ixgbevf_init_module(void)
4883 {
4884 int err;
4885
4886 pr_info("%s\n", ixgbevf_driver_string);
4887 pr_info("%s\n", ixgbevf_copyright);
4888 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4889 if (!ixgbevf_wq) {
4890 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4891 return -ENOMEM;
4892 }
4893
4894 err = pci_register_driver(&ixgbevf_driver);
4895 if (err) {
4896 destroy_workqueue(ixgbevf_wq);
4897 return err;
4898 }
4899
4900 return 0;
4901 }
4902
4903 module_init(ixgbevf_init_module);
4904
4905 /**
4906 * ixgbevf_exit_module - Driver Exit Cleanup Routine
4907 *
4908 * ixgbevf_exit_module is called just before the driver is removed
4909 * from memory.
4910 **/
ixgbevf_exit_module(void)4911 static void __exit ixgbevf_exit_module(void)
4912 {
4913 pci_unregister_driver(&ixgbevf_driver);
4914 if (ixgbevf_wq) {
4915 destroy_workqueue(ixgbevf_wq);
4916 ixgbevf_wq = NULL;
4917 }
4918 }
4919
4920 #ifdef DEBUG
4921 /**
4922 * ixgbevf_get_hw_dev_name - return device name string
4923 * used by hardware layer to print debugging information
4924 * @hw: pointer to private hardware struct
4925 **/
ixgbevf_get_hw_dev_name(struct ixgbe_hw * hw)4926 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4927 {
4928 struct ixgbevf_adapter *adapter = hw->back;
4929
4930 return adapter->netdev->name;
4931 }
4932
4933 #endif
4934 module_exit(ixgbevf_exit_module);
4935
4936 /* ixgbevf_main.c */
4937