1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2024 Intel Corporation. */
3
4 #include <linux/pci.h>
5 #include <linux/delay.h>
6 #include <linux/sched.h>
7 #include <linux/netdevice.h>
8
9 #include "ixgbe.h"
10 #include "ixgbe_common.h"
11 #include "ixgbe_phy.h"
12
13 static int ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
14 static int ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
15 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
16 static int ixgbe_ready_eeprom(struct ixgbe_hw *hw);
17 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
18 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
19 u16 count);
20 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
21 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
22 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
23 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
24
25 static int ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
26 static int ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
27 static int ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
28 u16 words, u16 *data);
29 static int ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
30 u16 words, u16 *data);
31 static int ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
32 u16 offset);
33 static int ixgbe_disable_pcie_primary(struct ixgbe_hw *hw);
34
35 /* Base table for registers values that change by MAC */
36 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
37 IXGBE_MVALS_INIT(8259X)
38 };
39
40 /**
41 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
42 * control
43 * @hw: pointer to hardware structure
44 *
45 * There are several phys that do not support autoneg flow control. This
46 * function check the device id to see if the associated phy supports
47 * autoneg flow control.
48 **/
ixgbe_device_supports_autoneg_fc(struct ixgbe_hw * hw)49 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
50 {
51 bool supported = false;
52 ixgbe_link_speed speed;
53 bool link_up;
54
55 switch (hw->phy.media_type) {
56 case ixgbe_media_type_fiber:
57 /* flow control autoneg black list */
58 switch (hw->device_id) {
59 case IXGBE_DEV_ID_X550EM_A_SFP:
60 case IXGBE_DEV_ID_X550EM_A_SFP_N:
61 case IXGBE_DEV_ID_E610_SFP:
62 supported = false;
63 break;
64 default:
65 hw->mac.ops.check_link(hw, &speed, &link_up, false);
66 /* if link is down, assume supported */
67 if (link_up)
68 supported = speed == IXGBE_LINK_SPEED_1GB_FULL;
69 else
70 supported = true;
71 }
72
73 break;
74 case ixgbe_media_type_backplane:
75 if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
76 supported = false;
77 else
78 supported = true;
79 break;
80 case ixgbe_media_type_copper:
81 /* only some copper devices support flow control autoneg */
82 switch (hw->device_id) {
83 case IXGBE_DEV_ID_82599_T3_LOM:
84 case IXGBE_DEV_ID_X540T:
85 case IXGBE_DEV_ID_X540T1:
86 case IXGBE_DEV_ID_X550T:
87 case IXGBE_DEV_ID_X550T1:
88 case IXGBE_DEV_ID_X550EM_X_10G_T:
89 case IXGBE_DEV_ID_X550EM_A_10G_T:
90 case IXGBE_DEV_ID_X550EM_A_1G_T:
91 case IXGBE_DEV_ID_X550EM_A_1G_T_L:
92 case IXGBE_DEV_ID_E610_10G_T:
93 case IXGBE_DEV_ID_E610_2_5G_T:
94 supported = true;
95 break;
96 default:
97 break;
98 }
99 break;
100 default:
101 break;
102 }
103
104 if (!supported)
105 hw_dbg(hw, "Device %x does not support flow control autoneg\n",
106 hw->device_id);
107
108 return supported;
109 }
110
111 /**
112 * ixgbe_setup_fc_generic - Set up flow control
113 * @hw: pointer to hardware structure
114 *
115 * Called at init time to set up flow control.
116 **/
ixgbe_setup_fc_generic(struct ixgbe_hw * hw)117 int ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
118 {
119 u32 reg = 0, reg_bp = 0;
120 bool locked = false;
121 int ret_val = 0;
122 u16 reg_cu = 0;
123
124 /*
125 * Validate the requested mode. Strict IEEE mode does not allow
126 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
127 */
128 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
129 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
130 return -EINVAL;
131 }
132
133 /*
134 * 10gig parts do not have a word in the EEPROM to determine the
135 * default flow control setting, so we explicitly set it to full.
136 */
137 if (hw->fc.requested_mode == ixgbe_fc_default)
138 hw->fc.requested_mode = ixgbe_fc_full;
139
140 /*
141 * Set up the 1G and 10G flow control advertisement registers so the
142 * HW will be able to do fc autoneg once the cable is plugged in. If
143 * we link at 10G, the 1G advertisement is harmless and vice versa.
144 */
145 switch (hw->phy.media_type) {
146 case ixgbe_media_type_backplane:
147 /* some MAC's need RMW protection on AUTOC */
148 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
149 if (ret_val)
150 return ret_val;
151
152 fallthrough; /* only backplane uses autoc */
153 case ixgbe_media_type_fiber:
154 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
155
156 break;
157 case ixgbe_media_type_copper:
158 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
159 MDIO_MMD_AN, ®_cu);
160 break;
161 default:
162 break;
163 }
164
165 /*
166 * The possible values of fc.requested_mode are:
167 * 0: Flow control is completely disabled
168 * 1: Rx flow control is enabled (we can receive pause frames,
169 * but not send pause frames).
170 * 2: Tx flow control is enabled (we can send pause frames but
171 * we do not support receiving pause frames).
172 * 3: Both Rx and Tx flow control (symmetric) are enabled.
173 * other: Invalid.
174 */
175 switch (hw->fc.requested_mode) {
176 case ixgbe_fc_none:
177 /* Flow control completely disabled by software override. */
178 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
179 if (hw->phy.media_type == ixgbe_media_type_backplane)
180 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
181 IXGBE_AUTOC_ASM_PAUSE);
182 else if (hw->phy.media_type == ixgbe_media_type_copper)
183 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
184 break;
185 case ixgbe_fc_tx_pause:
186 /*
187 * Tx Flow control is enabled, and Rx Flow control is
188 * disabled by software override.
189 */
190 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
191 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
192 if (hw->phy.media_type == ixgbe_media_type_backplane) {
193 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
194 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
195 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
196 reg_cu |= IXGBE_TAF_ASM_PAUSE;
197 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
198 }
199 break;
200 case ixgbe_fc_rx_pause:
201 /*
202 * Rx Flow control is enabled and Tx Flow control is
203 * disabled by software override. Since there really
204 * isn't a way to advertise that we are capable of RX
205 * Pause ONLY, we will advertise that we support both
206 * symmetric and asymmetric Rx PAUSE, as such we fall
207 * through to the fc_full statement. Later, we will
208 * disable the adapter's ability to send PAUSE frames.
209 */
210 case ixgbe_fc_full:
211 /* Flow control (both Rx and Tx) is enabled by SW override. */
212 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
213 if (hw->phy.media_type == ixgbe_media_type_backplane)
214 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
215 IXGBE_AUTOC_ASM_PAUSE;
216 else if (hw->phy.media_type == ixgbe_media_type_copper)
217 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
218 break;
219 default:
220 hw_dbg(hw, "Flow control param set incorrectly\n");
221 return -EIO;
222 }
223
224 if (hw->mac.type != ixgbe_mac_X540) {
225 /*
226 * Enable auto-negotiation between the MAC & PHY;
227 * the MAC will advertise clause 37 flow control.
228 */
229 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
230 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
231
232 /* Disable AN timeout */
233 if (hw->fc.strict_ieee)
234 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
235
236 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
237 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
238 }
239
240 /*
241 * AUTOC restart handles negotiation of 1G and 10G on backplane
242 * and copper. There is no need to set the PCS1GCTL register.
243 *
244 */
245 if (hw->phy.media_type == ixgbe_media_type_backplane) {
246 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
247 * LESM is on, likewise reset_pipeline requries the lock as
248 * it also writes AUTOC.
249 */
250 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
251 if (ret_val)
252 return ret_val;
253
254 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
255 ixgbe_device_supports_autoneg_fc(hw)) {
256 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
257 MDIO_MMD_AN, reg_cu);
258 }
259
260 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
261 return ret_val;
262 }
263
264 /**
265 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
266 * @hw: pointer to hardware structure
267 *
268 * Starts the hardware by filling the bus info structure and media type, clears
269 * all on chip counters, initializes receive address registers, multicast
270 * table, VLAN filter table, calls routine to set up link and flow control
271 * settings, and leaves transmit and receive units disabled and uninitialized
272 **/
ixgbe_start_hw_generic(struct ixgbe_hw * hw)273 int ixgbe_start_hw_generic(struct ixgbe_hw *hw)
274 {
275 u16 device_caps;
276 u32 ctrl_ext;
277 int ret_val;
278
279 /* Set the media type */
280 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
281
282 /* Identify the PHY */
283 hw->phy.ops.identify(hw);
284
285 /* Clear the VLAN filter table */
286 hw->mac.ops.clear_vfta(hw);
287
288 /* Clear statistics registers */
289 hw->mac.ops.clear_hw_cntrs(hw);
290
291 /* Set No Snoop Disable */
292 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
293 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
294 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
295 IXGBE_WRITE_FLUSH(hw);
296
297 /* Setup flow control if method for doing so */
298 if (hw->mac.ops.setup_fc) {
299 ret_val = hw->mac.ops.setup_fc(hw);
300 if (ret_val)
301 return ret_val;
302 }
303
304 /* Cashe bit indicating need for crosstalk fix */
305 switch (hw->mac.type) {
306 case ixgbe_mac_82599EB:
307 case ixgbe_mac_X550EM_x:
308 case ixgbe_mac_x550em_a:
309 hw->mac.ops.get_device_caps(hw, &device_caps);
310 if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
311 hw->need_crosstalk_fix = false;
312 else
313 hw->need_crosstalk_fix = true;
314 break;
315 default:
316 hw->need_crosstalk_fix = false;
317 break;
318 }
319
320 /* Clear adapter stopped flag */
321 hw->adapter_stopped = false;
322
323 return 0;
324 }
325
326 /**
327 * ixgbe_start_hw_gen2 - Init sequence for common device family
328 * @hw: pointer to hw structure
329 *
330 * Performs the init sequence common to the second generation
331 * of 10 GbE devices.
332 * Devices in the second generation:
333 * 82599
334 * X540
335 **/
ixgbe_start_hw_gen2(struct ixgbe_hw * hw)336 int ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
337 {
338 u32 i;
339
340 /* Clear the rate limiters */
341 for (i = 0; i < hw->mac.max_tx_queues; i++) {
342 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
343 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
344 }
345 IXGBE_WRITE_FLUSH(hw);
346
347 return 0;
348 }
349
350 /**
351 * ixgbe_init_hw_generic - Generic hardware initialization
352 * @hw: pointer to hardware structure
353 *
354 * Initialize the hardware by resetting the hardware, filling the bus info
355 * structure and media type, clears all on chip counters, initializes receive
356 * address registers, multicast table, VLAN filter table, calls routine to set
357 * up link and flow control settings, and leaves transmit and receive units
358 * disabled and uninitialized
359 **/
ixgbe_init_hw_generic(struct ixgbe_hw * hw)360 int ixgbe_init_hw_generic(struct ixgbe_hw *hw)
361 {
362 int status;
363
364 /* Reset the hardware */
365 status = hw->mac.ops.reset_hw(hw);
366
367 if (status == 0) {
368 /* Start the HW */
369 status = hw->mac.ops.start_hw(hw);
370 }
371
372 /* Initialize the LED link active for LED blink support */
373 if (hw->mac.ops.init_led_link_act)
374 hw->mac.ops.init_led_link_act(hw);
375
376 return status;
377 }
378
379 /**
380 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
381 * @hw: pointer to hardware structure
382 *
383 * Clears all hardware statistics counters by reading them from the hardware
384 * Statistics counters are clear on read.
385 **/
ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw * hw)386 int ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
387 {
388 u16 i = 0;
389
390 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
391 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
392 IXGBE_READ_REG(hw, IXGBE_ERRBC);
393 IXGBE_READ_REG(hw, IXGBE_MSPDC);
394 for (i = 0; i < 8; i++)
395 IXGBE_READ_REG(hw, IXGBE_MPC(i));
396
397 IXGBE_READ_REG(hw, IXGBE_MLFC);
398 IXGBE_READ_REG(hw, IXGBE_MRFC);
399 IXGBE_READ_REG(hw, IXGBE_RLEC);
400 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
401 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
402 if (hw->mac.type >= ixgbe_mac_82599EB) {
403 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
404 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
405 } else {
406 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
407 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
408 }
409
410 for (i = 0; i < 8; i++) {
411 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
412 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
413 if (hw->mac.type >= ixgbe_mac_82599EB) {
414 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
415 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
416 } else {
417 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
418 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
419 }
420 }
421 if (hw->mac.type >= ixgbe_mac_82599EB)
422 for (i = 0; i < 8; i++)
423 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
424 IXGBE_READ_REG(hw, IXGBE_PRC64);
425 IXGBE_READ_REG(hw, IXGBE_PRC127);
426 IXGBE_READ_REG(hw, IXGBE_PRC255);
427 IXGBE_READ_REG(hw, IXGBE_PRC511);
428 IXGBE_READ_REG(hw, IXGBE_PRC1023);
429 IXGBE_READ_REG(hw, IXGBE_PRC1522);
430 IXGBE_READ_REG(hw, IXGBE_GPRC);
431 IXGBE_READ_REG(hw, IXGBE_BPRC);
432 IXGBE_READ_REG(hw, IXGBE_MPRC);
433 IXGBE_READ_REG(hw, IXGBE_GPTC);
434 IXGBE_READ_REG(hw, IXGBE_GORCL);
435 IXGBE_READ_REG(hw, IXGBE_GORCH);
436 IXGBE_READ_REG(hw, IXGBE_GOTCL);
437 IXGBE_READ_REG(hw, IXGBE_GOTCH);
438 if (hw->mac.type == ixgbe_mac_82598EB)
439 for (i = 0; i < 8; i++)
440 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
441 IXGBE_READ_REG(hw, IXGBE_RUC);
442 IXGBE_READ_REG(hw, IXGBE_RFC);
443 IXGBE_READ_REG(hw, IXGBE_ROC);
444 IXGBE_READ_REG(hw, IXGBE_RJC);
445 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
446 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
447 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
448 IXGBE_READ_REG(hw, IXGBE_TORL);
449 IXGBE_READ_REG(hw, IXGBE_TORH);
450 IXGBE_READ_REG(hw, IXGBE_TPR);
451 IXGBE_READ_REG(hw, IXGBE_TPT);
452 IXGBE_READ_REG(hw, IXGBE_PTC64);
453 IXGBE_READ_REG(hw, IXGBE_PTC127);
454 IXGBE_READ_REG(hw, IXGBE_PTC255);
455 IXGBE_READ_REG(hw, IXGBE_PTC511);
456 IXGBE_READ_REG(hw, IXGBE_PTC1023);
457 IXGBE_READ_REG(hw, IXGBE_PTC1522);
458 IXGBE_READ_REG(hw, IXGBE_MPTC);
459 IXGBE_READ_REG(hw, IXGBE_BPTC);
460 for (i = 0; i < 16; i++) {
461 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
462 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
463 if (hw->mac.type >= ixgbe_mac_82599EB) {
464 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
465 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
466 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
467 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
468 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
469 } else {
470 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
471 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
472 }
473 }
474
475 if (hw->mac.type == ixgbe_mac_X550 ||
476 hw->mac.type == ixgbe_mac_X540 ||
477 hw->mac.type == ixgbe_mac_e610) {
478 if (hw->phy.id == 0)
479 hw->phy.ops.identify(hw);
480 }
481
482 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
483 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
484 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
485 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
486 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
487 }
488
489 return 0;
490 }
491
492 /**
493 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
494 * @hw: pointer to hardware structure
495 * @pba_num: stores the part number string from the EEPROM
496 * @pba_num_size: part number string buffer length
497 *
498 * Reads the part number string from the EEPROM.
499 **/
ixgbe_read_pba_string_generic(struct ixgbe_hw * hw,u8 * pba_num,u32 pba_num_size)500 int ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
501 u32 pba_num_size)
502 {
503 int ret_val;
504 u16 pba_ptr;
505 u16 offset;
506 u16 length;
507 u16 data;
508
509 if (pba_num == NULL) {
510 hw_dbg(hw, "PBA string buffer was null\n");
511 return -EINVAL;
512 }
513
514 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
515 if (ret_val) {
516 hw_dbg(hw, "NVM Read Error\n");
517 return ret_val;
518 }
519
520 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
521 if (ret_val) {
522 hw_dbg(hw, "NVM Read Error\n");
523 return ret_val;
524 }
525
526 /*
527 * if data is not ptr guard the PBA must be in legacy format which
528 * means pba_ptr is actually our second data word for the PBA number
529 * and we can decode it into an ascii string
530 */
531 if (data != IXGBE_PBANUM_PTR_GUARD) {
532 hw_dbg(hw, "NVM PBA number is not stored as string\n");
533
534 /* we will need 11 characters to store the PBA */
535 if (pba_num_size < 11) {
536 hw_dbg(hw, "PBA string buffer too small\n");
537 return -ENOSPC;
538 }
539
540 /* extract hex string from data and pba_ptr */
541 pba_num[0] = (data >> 12) & 0xF;
542 pba_num[1] = (data >> 8) & 0xF;
543 pba_num[2] = (data >> 4) & 0xF;
544 pba_num[3] = data & 0xF;
545 pba_num[4] = (pba_ptr >> 12) & 0xF;
546 pba_num[5] = (pba_ptr >> 8) & 0xF;
547 pba_num[6] = '-';
548 pba_num[7] = 0;
549 pba_num[8] = (pba_ptr >> 4) & 0xF;
550 pba_num[9] = pba_ptr & 0xF;
551
552 /* put a null character on the end of our string */
553 pba_num[10] = '\0';
554
555 /* switch all the data but the '-' to hex char */
556 for (offset = 0; offset < 10; offset++) {
557 if (pba_num[offset] < 0xA)
558 pba_num[offset] += '0';
559 else if (pba_num[offset] < 0x10)
560 pba_num[offset] += 'A' - 0xA;
561 }
562
563 return 0;
564 }
565
566 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
567 if (ret_val) {
568 hw_dbg(hw, "NVM Read Error\n");
569 return ret_val;
570 }
571
572 if (length == 0xFFFF || length == 0) {
573 hw_dbg(hw, "NVM PBA number section invalid length\n");
574 return -EIO;
575 }
576
577 /* check if pba_num buffer is big enough */
578 if (pba_num_size < (((u32)length * 2) - 1)) {
579 hw_dbg(hw, "PBA string buffer too small\n");
580 return -ENOSPC;
581 }
582
583 /* trim pba length from start of string */
584 pba_ptr++;
585 length--;
586
587 for (offset = 0; offset < length; offset++) {
588 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
589 if (ret_val) {
590 hw_dbg(hw, "NVM Read Error\n");
591 return ret_val;
592 }
593 pba_num[offset * 2] = (u8)(data >> 8);
594 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
595 }
596 pba_num[offset * 2] = '\0';
597
598 return 0;
599 }
600
601 /**
602 * ixgbe_get_mac_addr_generic - Generic get MAC address
603 * @hw: pointer to hardware structure
604 * @mac_addr: Adapter MAC address
605 *
606 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
607 * A reset of the adapter must be performed prior to calling this function
608 * in order for the MAC address to have been loaded from the EEPROM into RAR0
609 **/
ixgbe_get_mac_addr_generic(struct ixgbe_hw * hw,u8 * mac_addr)610 int ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
611 {
612 u32 rar_high;
613 u32 rar_low;
614 u16 i;
615
616 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
617 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
618
619 for (i = 0; i < 4; i++)
620 mac_addr[i] = (u8)(rar_low >> (i*8));
621
622 for (i = 0; i < 2; i++)
623 mac_addr[i+4] = (u8)(rar_high >> (i*8));
624
625 return 0;
626 }
627
ixgbe_convert_bus_width(u16 link_status)628 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
629 {
630 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
631 case IXGBE_PCI_LINK_WIDTH_1:
632 return ixgbe_bus_width_pcie_x1;
633 case IXGBE_PCI_LINK_WIDTH_2:
634 return ixgbe_bus_width_pcie_x2;
635 case IXGBE_PCI_LINK_WIDTH_4:
636 return ixgbe_bus_width_pcie_x4;
637 case IXGBE_PCI_LINK_WIDTH_8:
638 return ixgbe_bus_width_pcie_x8;
639 default:
640 return ixgbe_bus_width_unknown;
641 }
642 }
643
ixgbe_convert_bus_speed(u16 link_status)644 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
645 {
646 switch (link_status & IXGBE_PCI_LINK_SPEED) {
647 case IXGBE_PCI_LINK_SPEED_2500:
648 return ixgbe_bus_speed_2500;
649 case IXGBE_PCI_LINK_SPEED_5000:
650 return ixgbe_bus_speed_5000;
651 case IXGBE_PCI_LINK_SPEED_8000:
652 return ixgbe_bus_speed_8000;
653 default:
654 return ixgbe_bus_speed_unknown;
655 }
656 }
657
658 /**
659 * ixgbe_get_bus_info_generic - Generic set PCI bus info
660 * @hw: pointer to hardware structure
661 *
662 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
663 **/
ixgbe_get_bus_info_generic(struct ixgbe_hw * hw)664 int ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
665 {
666 u16 link_status;
667
668 hw->bus.type = ixgbe_bus_type_pci_express;
669
670 /* Get the negotiated link width and speed from PCI config space */
671 if (hw->mac.type == ixgbe_mac_e610)
672 link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS_E610);
673 else
674 link_status = ixgbe_read_pci_cfg_word(hw,
675 IXGBE_PCI_LINK_STATUS);
676
677 hw->bus.width = ixgbe_convert_bus_width(link_status);
678 hw->bus.speed = ixgbe_convert_bus_speed(link_status);
679
680 hw->mac.ops.set_lan_id(hw);
681
682 return 0;
683 }
684
685 /**
686 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
687 * @hw: pointer to the HW structure
688 *
689 * Determines the LAN function id by reading memory-mapped registers
690 * and swaps the port value if requested.
691 **/
ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw * hw)692 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
693 {
694 struct ixgbe_bus_info *bus = &hw->bus;
695 u16 ee_ctrl_4;
696 u32 reg;
697
698 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
699 bus->func = FIELD_GET(IXGBE_STATUS_LAN_ID, reg);
700 bus->lan_id = bus->func;
701
702 /* check for a port swap */
703 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
704 if (reg & IXGBE_FACTPS_LFS)
705 bus->func ^= 0x1;
706
707 /* Get MAC instance from EEPROM for configuring CS4227 */
708 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
709 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
710 bus->instance_id = FIELD_GET(IXGBE_EE_CTRL_4_INST_ID,
711 ee_ctrl_4);
712 }
713 }
714
715 /**
716 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
717 * @hw: pointer to hardware structure
718 *
719 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
720 * disables transmit and receive units. The adapter_stopped flag is used by
721 * the shared code and drivers to determine if the adapter is in a stopped
722 * state and should not touch the hardware.
723 **/
ixgbe_stop_adapter_generic(struct ixgbe_hw * hw)724 int ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
725 {
726 u32 reg_val;
727 u16 i;
728
729 /*
730 * Set the adapter_stopped flag so other driver functions stop touching
731 * the hardware
732 */
733 hw->adapter_stopped = true;
734
735 /* Disable the receive unit */
736 hw->mac.ops.disable_rx(hw);
737
738 /* Clear interrupt mask to stop interrupts from being generated */
739 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
740
741 /* Clear any pending interrupts, flush previous writes */
742 IXGBE_READ_REG(hw, IXGBE_EICR);
743
744 /* Disable the transmit unit. Each queue must be disabled. */
745 for (i = 0; i < hw->mac.max_tx_queues; i++)
746 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
747
748 /* Disable the receive unit by stopping each queue */
749 for (i = 0; i < hw->mac.max_rx_queues; i++) {
750 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
751 reg_val &= ~IXGBE_RXDCTL_ENABLE;
752 reg_val |= IXGBE_RXDCTL_SWFLSH;
753 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
754 }
755
756 /* flush all queues disables */
757 IXGBE_WRITE_FLUSH(hw);
758 usleep_range(1000, 2000);
759
760 /*
761 * Prevent the PCI-E bus from hanging by disabling PCI-E primary
762 * access and verify no pending requests
763 */
764 return ixgbe_disable_pcie_primary(hw);
765 }
766
767 /**
768 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
769 * @hw: pointer to hardware structure
770 *
771 * Store the index for the link active LED. This will be used to support
772 * blinking the LED.
773 **/
ixgbe_init_led_link_act_generic(struct ixgbe_hw * hw)774 int ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
775 {
776 struct ixgbe_mac_info *mac = &hw->mac;
777 u32 led_reg, led_mode;
778 u16 i;
779
780 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
781
782 /* Get LED link active from the LEDCTL register */
783 for (i = 0; i < 4; i++) {
784 led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
785
786 if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
787 IXGBE_LED_LINK_ACTIVE) {
788 mac->led_link_act = i;
789 return 0;
790 }
791 }
792
793 /* If LEDCTL register does not have the LED link active set, then use
794 * known MAC defaults.
795 */
796 switch (hw->mac.type) {
797 case ixgbe_mac_x550em_a:
798 mac->led_link_act = 0;
799 break;
800 case ixgbe_mac_X550EM_x:
801 mac->led_link_act = 1;
802 break;
803 default:
804 mac->led_link_act = 2;
805 }
806
807 return 0;
808 }
809
810 /**
811 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
812 * @hw: pointer to hardware structure
813 * @index: led number to turn on
814 **/
ixgbe_led_on_generic(struct ixgbe_hw * hw,u32 index)815 int ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
816 {
817 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
818
819 if (index > 3)
820 return -EINVAL;
821
822 /* To turn on the LED, set mode to ON. */
823 led_reg &= ~IXGBE_LED_MODE_MASK(index);
824 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
825 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
826 IXGBE_WRITE_FLUSH(hw);
827
828 return 0;
829 }
830
831 /**
832 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
833 * @hw: pointer to hardware structure
834 * @index: led number to turn off
835 **/
ixgbe_led_off_generic(struct ixgbe_hw * hw,u32 index)836 int ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
837 {
838 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
839
840 if (index > 3)
841 return -EINVAL;
842
843 /* To turn off the LED, set mode to OFF. */
844 led_reg &= ~IXGBE_LED_MODE_MASK(index);
845 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
846 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
847 IXGBE_WRITE_FLUSH(hw);
848
849 return 0;
850 }
851
852 /**
853 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
854 * @hw: pointer to hardware structure
855 *
856 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
857 * ixgbe_hw struct in order to set up EEPROM access.
858 **/
ixgbe_init_eeprom_params_generic(struct ixgbe_hw * hw)859 int ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
860 {
861 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
862 u32 eec;
863 u16 eeprom_size;
864
865 if (eeprom->type == ixgbe_eeprom_uninitialized) {
866 eeprom->type = ixgbe_eeprom_none;
867 /* Set default semaphore delay to 10ms which is a well
868 * tested value */
869 eeprom->semaphore_delay = 10;
870 /* Clear EEPROM page size, it will be initialized as needed */
871 eeprom->word_page_size = 0;
872
873 /*
874 * Check for EEPROM present first.
875 * If not present leave as none
876 */
877 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
878 if (eec & IXGBE_EEC_PRES) {
879 eeprom->type = ixgbe_eeprom_spi;
880
881 /*
882 * SPI EEPROM is assumed here. This code would need to
883 * change if a future EEPROM is not SPI.
884 */
885 eeprom_size = FIELD_GET(IXGBE_EEC_SIZE, eec);
886 eeprom->word_size = BIT(eeprom_size +
887 IXGBE_EEPROM_WORD_SIZE_SHIFT);
888 }
889
890 if (eec & IXGBE_EEC_ADDR_SIZE)
891 eeprom->address_bits = 16;
892 else
893 eeprom->address_bits = 8;
894 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
895 eeprom->type, eeprom->word_size, eeprom->address_bits);
896 }
897
898 return 0;
899 }
900
901 /**
902 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
903 * @hw: pointer to hardware structure
904 * @offset: offset within the EEPROM to write
905 * @words: number of words
906 * @data: 16 bit word(s) to write to EEPROM
907 *
908 * Reads 16 bit word(s) from EEPROM through bit-bang method
909 **/
ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)910 int ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
911 u16 words, u16 *data)
912 {
913 u16 i, count;
914 int status;
915
916 hw->eeprom.ops.init_params(hw);
917
918 if (words == 0 || (offset + words > hw->eeprom.word_size))
919 return -EINVAL;
920
921 /*
922 * The EEPROM page size cannot be queried from the chip. We do lazy
923 * initialization. It is worth to do that when we write large buffer.
924 */
925 if ((hw->eeprom.word_page_size == 0) &&
926 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
927 ixgbe_detect_eeprom_page_size_generic(hw, offset);
928
929 /*
930 * We cannot hold synchronization semaphores for too long
931 * to avoid other entity starvation. However it is more efficient
932 * to read in bursts than synchronizing access for each word.
933 */
934 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
935 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
936 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
937 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
938 count, &data[i]);
939
940 if (status != 0)
941 break;
942 }
943
944 return status;
945 }
946
947 /**
948 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
949 * @hw: pointer to hardware structure
950 * @offset: offset within the EEPROM to be written to
951 * @words: number of word(s)
952 * @data: 16 bit word(s) to be written to the EEPROM
953 *
954 * If ixgbe_eeprom_update_checksum is not called after this function, the
955 * EEPROM will most likely contain an invalid checksum.
956 **/
ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)957 static int ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
958 u16 words, u16 *data)
959 {
960 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
961 u16 page_size;
962 int status;
963 u16 word;
964 u16 i;
965
966 /* Prepare the EEPROM for writing */
967 status = ixgbe_acquire_eeprom(hw);
968 if (status)
969 return status;
970
971 if (ixgbe_ready_eeprom(hw) != 0) {
972 ixgbe_release_eeprom(hw);
973 return -EIO;
974 }
975
976 for (i = 0; i < words; i++) {
977 ixgbe_standby_eeprom(hw);
978
979 /* Send the WRITE ENABLE command (8 bit opcode) */
980 ixgbe_shift_out_eeprom_bits(hw,
981 IXGBE_EEPROM_WREN_OPCODE_SPI,
982 IXGBE_EEPROM_OPCODE_BITS);
983
984 ixgbe_standby_eeprom(hw);
985
986 /* Some SPI eeproms use the 8th address bit embedded
987 * in the opcode
988 */
989 if ((hw->eeprom.address_bits == 8) &&
990 ((offset + i) >= 128))
991 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
992
993 /* Send the Write command (8-bit opcode + addr) */
994 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
995 IXGBE_EEPROM_OPCODE_BITS);
996 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
997 hw->eeprom.address_bits);
998
999 page_size = hw->eeprom.word_page_size;
1000
1001 /* Send the data in burst via SPI */
1002 do {
1003 word = data[i];
1004 word = (word >> 8) | (word << 8);
1005 ixgbe_shift_out_eeprom_bits(hw, word, 16);
1006
1007 if (page_size == 0)
1008 break;
1009
1010 /* do not wrap around page */
1011 if (((offset + i) & (page_size - 1)) ==
1012 (page_size - 1))
1013 break;
1014 } while (++i < words);
1015
1016 ixgbe_standby_eeprom(hw);
1017 usleep_range(10000, 20000);
1018 }
1019 /* Done with writing - release the EEPROM */
1020 ixgbe_release_eeprom(hw);
1021
1022 return 0;
1023 }
1024
1025 /**
1026 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1027 * @hw: pointer to hardware structure
1028 * @offset: offset within the EEPROM to be written to
1029 * @data: 16 bit word to be written to the EEPROM
1030 *
1031 * If ixgbe_eeprom_update_checksum is not called after this function, the
1032 * EEPROM will most likely contain an invalid checksum.
1033 **/
ixgbe_write_eeprom_generic(struct ixgbe_hw * hw,u16 offset,u16 data)1034 int ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1035 {
1036 hw->eeprom.ops.init_params(hw);
1037
1038 if (offset >= hw->eeprom.word_size)
1039 return -EINVAL;
1040
1041 return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1042 }
1043
1044 /**
1045 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1046 * @hw: pointer to hardware structure
1047 * @offset: offset within the EEPROM to be read
1048 * @words: number of word(s)
1049 * @data: read 16 bit words(s) from EEPROM
1050 *
1051 * Reads 16 bit word(s) from EEPROM through bit-bang method
1052 **/
ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1053 int ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1054 u16 words, u16 *data)
1055 {
1056 u16 i, count;
1057 int status;
1058
1059 hw->eeprom.ops.init_params(hw);
1060
1061 if (words == 0 || (offset + words > hw->eeprom.word_size))
1062 return -EINVAL;
1063
1064 /*
1065 * We cannot hold synchronization semaphores for too long
1066 * to avoid other entity starvation. However it is more efficient
1067 * to read in bursts than synchronizing access for each word.
1068 */
1069 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1070 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1071 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1072
1073 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1074 count, &data[i]);
1075
1076 if (status)
1077 return status;
1078 }
1079
1080 return 0;
1081 }
1082
1083 /**
1084 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1085 * @hw: pointer to hardware structure
1086 * @offset: offset within the EEPROM to be read
1087 * @words: number of word(s)
1088 * @data: read 16 bit word(s) from EEPROM
1089 *
1090 * Reads 16 bit word(s) from EEPROM through bit-bang method
1091 **/
ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1092 static int ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1093 u16 words, u16 *data)
1094 {
1095 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1096 u16 word_in;
1097 int status;
1098 u16 i;
1099
1100 /* Prepare the EEPROM for reading */
1101 status = ixgbe_acquire_eeprom(hw);
1102 if (status)
1103 return status;
1104
1105 if (ixgbe_ready_eeprom(hw) != 0) {
1106 ixgbe_release_eeprom(hw);
1107 return -EIO;
1108 }
1109
1110 for (i = 0; i < words; i++) {
1111 ixgbe_standby_eeprom(hw);
1112 /* Some SPI eeproms use the 8th address bit embedded
1113 * in the opcode
1114 */
1115 if ((hw->eeprom.address_bits == 8) &&
1116 ((offset + i) >= 128))
1117 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1118
1119 /* Send the READ command (opcode + addr) */
1120 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1121 IXGBE_EEPROM_OPCODE_BITS);
1122 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1123 hw->eeprom.address_bits);
1124
1125 /* Read the data. */
1126 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1127 data[i] = (word_in >> 8) | (word_in << 8);
1128 }
1129
1130 /* End this read operation */
1131 ixgbe_release_eeprom(hw);
1132
1133 return 0;
1134 }
1135
1136 /**
1137 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1138 * @hw: pointer to hardware structure
1139 * @offset: offset within the EEPROM to be read
1140 * @data: read 16 bit value from EEPROM
1141 *
1142 * Reads 16 bit value from EEPROM through bit-bang method
1143 **/
ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw * hw,u16 offset,u16 * data)1144 int ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1145 u16 *data)
1146 {
1147 hw->eeprom.ops.init_params(hw);
1148
1149 if (offset >= hw->eeprom.word_size)
1150 return -EINVAL;
1151
1152 return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1153 }
1154
1155 /**
1156 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1157 * @hw: pointer to hardware structure
1158 * @offset: offset of word in the EEPROM to read
1159 * @words: number of word(s)
1160 * @data: 16 bit word(s) from the EEPROM
1161 *
1162 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1163 **/
ixgbe_read_eerd_buffer_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1164 int ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1165 u16 words, u16 *data)
1166 {
1167 int status;
1168 u32 eerd;
1169 u32 i;
1170
1171 hw->eeprom.ops.init_params(hw);
1172
1173 if (words == 0 || offset >= hw->eeprom.word_size)
1174 return -EINVAL;
1175
1176 for (i = 0; i < words; i++) {
1177 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1178 IXGBE_EEPROM_RW_REG_START;
1179
1180 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1181 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1182
1183 if (status == 0) {
1184 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1185 IXGBE_EEPROM_RW_REG_DATA);
1186 } else {
1187 hw_dbg(hw, "Eeprom read timed out\n");
1188 return status;
1189 }
1190 }
1191
1192 return 0;
1193 }
1194
1195 /**
1196 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1197 * @hw: pointer to hardware structure
1198 * @offset: offset within the EEPROM to be used as a scratch pad
1199 *
1200 * Discover EEPROM page size by writing marching data at given offset.
1201 * This function is called only when we are writing a new large buffer
1202 * at given offset so the data would be overwritten anyway.
1203 **/
ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw * hw,u16 offset)1204 static int ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1205 u16 offset)
1206 {
1207 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1208 int status;
1209 u16 i;
1210
1211 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1212 data[i] = i;
1213
1214 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1215 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1216 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1217 hw->eeprom.word_page_size = 0;
1218 if (status)
1219 return status;
1220
1221 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1222 if (status)
1223 return status;
1224
1225 /*
1226 * When writing in burst more than the actual page size
1227 * EEPROM address wraps around current page.
1228 */
1229 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1230
1231 hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1232 hw->eeprom.word_page_size);
1233 return 0;
1234 }
1235
1236 /**
1237 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1238 * @hw: pointer to hardware structure
1239 * @offset: offset of word in the EEPROM to read
1240 * @data: word read from the EEPROM
1241 *
1242 * Reads a 16 bit word from the EEPROM using the EERD register.
1243 **/
ixgbe_read_eerd_generic(struct ixgbe_hw * hw,u16 offset,u16 * data)1244 int ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1245 {
1246 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1247 }
1248
1249 /**
1250 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1251 * @hw: pointer to hardware structure
1252 * @offset: offset of word in the EEPROM to write
1253 * @words: number of words
1254 * @data: word(s) write to the EEPROM
1255 *
1256 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1257 **/
ixgbe_write_eewr_buffer_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1258 int ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1259 u16 words, u16 *data)
1260 {
1261 int status;
1262 u32 eewr;
1263 u16 i;
1264
1265 hw->eeprom.ops.init_params(hw);
1266
1267 if (words == 0 || offset >= hw->eeprom.word_size)
1268 return -EINVAL;
1269
1270 for (i = 0; i < words; i++) {
1271 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1272 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1273 IXGBE_EEPROM_RW_REG_START;
1274
1275 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1276 if (status) {
1277 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1278 return status;
1279 }
1280
1281 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1282
1283 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1284 if (status) {
1285 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1286 return status;
1287 }
1288 }
1289
1290 return 0;
1291 }
1292
1293 /**
1294 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1295 * @hw: pointer to hardware structure
1296 * @offset: offset of word in the EEPROM to write
1297 * @data: word write to the EEPROM
1298 *
1299 * Write a 16 bit word to the EEPROM using the EEWR register.
1300 **/
ixgbe_write_eewr_generic(struct ixgbe_hw * hw,u16 offset,u16 data)1301 int ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1302 {
1303 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1304 }
1305
1306 /**
1307 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1308 * @hw: pointer to hardware structure
1309 * @ee_reg: EEPROM flag for polling
1310 *
1311 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1312 * read or write is done respectively.
1313 **/
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw * hw,u32 ee_reg)1314 static int ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1315 {
1316 u32 i;
1317 u32 reg;
1318
1319 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1320 if (ee_reg == IXGBE_NVM_POLL_READ)
1321 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1322 else
1323 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1324
1325 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1326 return 0;
1327 }
1328 udelay(5);
1329 }
1330 return -EIO;
1331 }
1332
1333 /**
1334 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1335 * @hw: pointer to hardware structure
1336 *
1337 * Prepares EEPROM for access using bit-bang method. This function should
1338 * be called before issuing a command to the EEPROM.
1339 **/
ixgbe_acquire_eeprom(struct ixgbe_hw * hw)1340 static int ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1341 {
1342 u32 eec;
1343 u32 i;
1344
1345 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1346 return -EBUSY;
1347
1348 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1349
1350 /* Request EEPROM Access */
1351 eec |= IXGBE_EEC_REQ;
1352 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1353
1354 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1355 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1356 if (eec & IXGBE_EEC_GNT)
1357 break;
1358 udelay(5);
1359 }
1360
1361 /* Release if grant not acquired */
1362 if (!(eec & IXGBE_EEC_GNT)) {
1363 eec &= ~IXGBE_EEC_REQ;
1364 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1365 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1366
1367 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1368 return -EIO;
1369 }
1370
1371 /* Setup EEPROM for Read/Write */
1372 /* Clear CS and SK */
1373 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1374 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1375 IXGBE_WRITE_FLUSH(hw);
1376 udelay(1);
1377 return 0;
1378 }
1379
1380 /**
1381 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1382 * @hw: pointer to hardware structure
1383 *
1384 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1385 **/
ixgbe_get_eeprom_semaphore(struct ixgbe_hw * hw)1386 static int ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1387 {
1388 u32 timeout = 2000;
1389 u32 i;
1390 u32 swsm;
1391
1392 /* Get SMBI software semaphore between device drivers first */
1393 for (i = 0; i < timeout; i++) {
1394 /*
1395 * If the SMBI bit is 0 when we read it, then the bit will be
1396 * set and we have the semaphore
1397 */
1398 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1399 if (!(swsm & IXGBE_SWSM_SMBI))
1400 break;
1401 usleep_range(50, 100);
1402 }
1403
1404 if (i == timeout) {
1405 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1406 /* this release is particularly important because our attempts
1407 * above to get the semaphore may have succeeded, and if there
1408 * was a timeout, we should unconditionally clear the semaphore
1409 * bits to free the driver to make progress
1410 */
1411 ixgbe_release_eeprom_semaphore(hw);
1412
1413 usleep_range(50, 100);
1414 /* one last try
1415 * If the SMBI bit is 0 when we read it, then the bit will be
1416 * set and we have the semaphore
1417 */
1418 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1419 if (swsm & IXGBE_SWSM_SMBI) {
1420 hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1421 return -EIO;
1422 }
1423 }
1424
1425 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1426 for (i = 0; i < timeout; i++) {
1427 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1428
1429 /* Set the SW EEPROM semaphore bit to request access */
1430 swsm |= IXGBE_SWSM_SWESMBI;
1431 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1432
1433 /* If we set the bit successfully then we got the
1434 * semaphore.
1435 */
1436 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1437 if (swsm & IXGBE_SWSM_SWESMBI)
1438 break;
1439
1440 usleep_range(50, 100);
1441 }
1442
1443 /* Release semaphores and return error if SW EEPROM semaphore
1444 * was not granted because we don't have access to the EEPROM
1445 */
1446 if (i >= timeout) {
1447 hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1448 ixgbe_release_eeprom_semaphore(hw);
1449 return -EIO;
1450 }
1451
1452 return 0;
1453 }
1454
1455 /**
1456 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1457 * @hw: pointer to hardware structure
1458 *
1459 * This function clears hardware semaphore bits.
1460 **/
ixgbe_release_eeprom_semaphore(struct ixgbe_hw * hw)1461 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1462 {
1463 u32 swsm;
1464
1465 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1466
1467 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1468 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1469 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1470 IXGBE_WRITE_FLUSH(hw);
1471 }
1472
1473 /**
1474 * ixgbe_ready_eeprom - Polls for EEPROM ready
1475 * @hw: pointer to hardware structure
1476 **/
ixgbe_ready_eeprom(struct ixgbe_hw * hw)1477 static int ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1478 {
1479 u16 i;
1480 u8 spi_stat_reg;
1481
1482 /*
1483 * Read "Status Register" repeatedly until the LSB is cleared. The
1484 * EEPROM will signal that the command has been completed by clearing
1485 * bit 0 of the internal status register. If it's not cleared within
1486 * 5 milliseconds, then error out.
1487 */
1488 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1489 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1490 IXGBE_EEPROM_OPCODE_BITS);
1491 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1492 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1493 break;
1494
1495 udelay(5);
1496 ixgbe_standby_eeprom(hw);
1497 }
1498
1499 /*
1500 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1501 * devices (and only 0-5mSec on 5V devices)
1502 */
1503 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1504 hw_dbg(hw, "SPI EEPROM Status error\n");
1505 return -EIO;
1506 }
1507
1508 return 0;
1509 }
1510
1511 /**
1512 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1513 * @hw: pointer to hardware structure
1514 **/
ixgbe_standby_eeprom(struct ixgbe_hw * hw)1515 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1516 {
1517 u32 eec;
1518
1519 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1520
1521 /* Toggle CS to flush commands */
1522 eec |= IXGBE_EEC_CS;
1523 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1524 IXGBE_WRITE_FLUSH(hw);
1525 udelay(1);
1526 eec &= ~IXGBE_EEC_CS;
1527 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1528 IXGBE_WRITE_FLUSH(hw);
1529 udelay(1);
1530 }
1531
1532 /**
1533 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1534 * @hw: pointer to hardware structure
1535 * @data: data to send to the EEPROM
1536 * @count: number of bits to shift out
1537 **/
ixgbe_shift_out_eeprom_bits(struct ixgbe_hw * hw,u16 data,u16 count)1538 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1539 u16 count)
1540 {
1541 u32 eec;
1542 u32 mask;
1543 u32 i;
1544
1545 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1546
1547 /*
1548 * Mask is used to shift "count" bits of "data" out to the EEPROM
1549 * one bit at a time. Determine the starting bit based on count
1550 */
1551 mask = BIT(count - 1);
1552
1553 for (i = 0; i < count; i++) {
1554 /*
1555 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1556 * "1", and then raising and then lowering the clock (the SK
1557 * bit controls the clock input to the EEPROM). A "0" is
1558 * shifted out to the EEPROM by setting "DI" to "0" and then
1559 * raising and then lowering the clock.
1560 */
1561 if (data & mask)
1562 eec |= IXGBE_EEC_DI;
1563 else
1564 eec &= ~IXGBE_EEC_DI;
1565
1566 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1567 IXGBE_WRITE_FLUSH(hw);
1568
1569 udelay(1);
1570
1571 ixgbe_raise_eeprom_clk(hw, &eec);
1572 ixgbe_lower_eeprom_clk(hw, &eec);
1573
1574 /*
1575 * Shift mask to signify next bit of data to shift in to the
1576 * EEPROM
1577 */
1578 mask = mask >> 1;
1579 }
1580
1581 /* We leave the "DI" bit set to "0" when we leave this routine. */
1582 eec &= ~IXGBE_EEC_DI;
1583 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1584 IXGBE_WRITE_FLUSH(hw);
1585 }
1586
1587 /**
1588 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1589 * @hw: pointer to hardware structure
1590 * @count: number of bits to shift
1591 **/
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw * hw,u16 count)1592 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1593 {
1594 u32 eec;
1595 u32 i;
1596 u16 data = 0;
1597
1598 /*
1599 * In order to read a register from the EEPROM, we need to shift
1600 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1601 * the clock input to the EEPROM (setting the SK bit), and then reading
1602 * the value of the "DO" bit. During this "shifting in" process the
1603 * "DI" bit should always be clear.
1604 */
1605 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1606
1607 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1608
1609 for (i = 0; i < count; i++) {
1610 data = data << 1;
1611 ixgbe_raise_eeprom_clk(hw, &eec);
1612
1613 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1614
1615 eec &= ~(IXGBE_EEC_DI);
1616 if (eec & IXGBE_EEC_DO)
1617 data |= 1;
1618
1619 ixgbe_lower_eeprom_clk(hw, &eec);
1620 }
1621
1622 return data;
1623 }
1624
1625 /**
1626 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1627 * @hw: pointer to hardware structure
1628 * @eec: EEC register's current value
1629 **/
ixgbe_raise_eeprom_clk(struct ixgbe_hw * hw,u32 * eec)1630 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1631 {
1632 /*
1633 * Raise the clock input to the EEPROM
1634 * (setting the SK bit), then delay
1635 */
1636 *eec = *eec | IXGBE_EEC_SK;
1637 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1638 IXGBE_WRITE_FLUSH(hw);
1639 udelay(1);
1640 }
1641
1642 /**
1643 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1644 * @hw: pointer to hardware structure
1645 * @eec: EEC's current value
1646 **/
ixgbe_lower_eeprom_clk(struct ixgbe_hw * hw,u32 * eec)1647 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1648 {
1649 /*
1650 * Lower the clock input to the EEPROM (clearing the SK bit), then
1651 * delay
1652 */
1653 *eec = *eec & ~IXGBE_EEC_SK;
1654 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1655 IXGBE_WRITE_FLUSH(hw);
1656 udelay(1);
1657 }
1658
1659 /**
1660 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1661 * @hw: pointer to hardware structure
1662 **/
ixgbe_release_eeprom(struct ixgbe_hw * hw)1663 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1664 {
1665 u32 eec;
1666
1667 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1668
1669 eec |= IXGBE_EEC_CS; /* Pull CS high */
1670 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1671
1672 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1673 IXGBE_WRITE_FLUSH(hw);
1674
1675 udelay(1);
1676
1677 /* Stop requesting EEPROM access */
1678 eec &= ~IXGBE_EEC_REQ;
1679 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1680
1681 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1682
1683 /*
1684 * Delay before attempt to obtain semaphore again to allow FW
1685 * access. semaphore_delay is in ms we need us for usleep_range
1686 */
1687 usleep_range(hw->eeprom.semaphore_delay * 1000,
1688 hw->eeprom.semaphore_delay * 2000);
1689 }
1690
1691 /**
1692 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1693 * @hw: pointer to hardware structure
1694 **/
ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw * hw)1695 int ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1696 {
1697 u16 i;
1698 u16 j;
1699 u16 checksum = 0;
1700 u16 length = 0;
1701 u16 pointer = 0;
1702 u16 word = 0;
1703
1704 /* Include 0x0-0x3F in the checksum */
1705 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1706 if (hw->eeprom.ops.read(hw, i, &word)) {
1707 hw_dbg(hw, "EEPROM read failed\n");
1708 break;
1709 }
1710 checksum += word;
1711 }
1712
1713 /* Include all data from pointers except for the fw pointer */
1714 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1715 if (hw->eeprom.ops.read(hw, i, &pointer)) {
1716 hw_dbg(hw, "EEPROM read failed\n");
1717 return -EIO;
1718 }
1719
1720 /* If the pointer seems invalid */
1721 if (pointer == 0xFFFF || pointer == 0)
1722 continue;
1723
1724 if (hw->eeprom.ops.read(hw, pointer, &length)) {
1725 hw_dbg(hw, "EEPROM read failed\n");
1726 return -EIO;
1727 }
1728
1729 if (length == 0xFFFF || length == 0)
1730 continue;
1731
1732 for (j = pointer + 1; j <= pointer + length; j++) {
1733 if (hw->eeprom.ops.read(hw, j, &word)) {
1734 hw_dbg(hw, "EEPROM read failed\n");
1735 return -EIO;
1736 }
1737 checksum += word;
1738 }
1739 }
1740
1741 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1742
1743 return (int)checksum;
1744 }
1745
1746 /**
1747 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1748 * @hw: pointer to hardware structure
1749 * @checksum_val: calculated checksum
1750 *
1751 * Performs checksum calculation and validates the EEPROM checksum. If the
1752 * caller does not need checksum_val, the value can be NULL.
1753 **/
ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw * hw,u16 * checksum_val)1754 int ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1755 u16 *checksum_val)
1756 {
1757 u16 read_checksum = 0;
1758 u16 checksum;
1759 int status;
1760
1761 /*
1762 * Read the first word from the EEPROM. If this times out or fails, do
1763 * not continue or we could be in for a very long wait while every
1764 * EEPROM read fails
1765 */
1766 status = hw->eeprom.ops.read(hw, 0, &checksum);
1767 if (status) {
1768 hw_dbg(hw, "EEPROM read failed\n");
1769 return status;
1770 }
1771
1772 status = hw->eeprom.ops.calc_checksum(hw);
1773 if (status < 0)
1774 return status;
1775
1776 checksum = (u16)(status & 0xffff);
1777
1778 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1779 if (status) {
1780 hw_dbg(hw, "EEPROM read failed\n");
1781 return status;
1782 }
1783
1784 /* Verify read checksum from EEPROM is the same as
1785 * calculated checksum
1786 */
1787 if (read_checksum != checksum)
1788 status = -EIO;
1789
1790 /* If the user cares, return the calculated checksum */
1791 if (checksum_val)
1792 *checksum_val = checksum;
1793
1794 return status;
1795 }
1796
1797 /**
1798 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1799 * @hw: pointer to hardware structure
1800 **/
ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw * hw)1801 int ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1802 {
1803 u16 checksum;
1804 int status;
1805
1806 /*
1807 * Read the first word from the EEPROM. If this times out or fails, do
1808 * not continue or we could be in for a very long wait while every
1809 * EEPROM read fails
1810 */
1811 status = hw->eeprom.ops.read(hw, 0, &checksum);
1812 if (status) {
1813 hw_dbg(hw, "EEPROM read failed\n");
1814 return status;
1815 }
1816
1817 status = hw->eeprom.ops.calc_checksum(hw);
1818 if (status < 0)
1819 return status;
1820
1821 checksum = (u16)(status & 0xffff);
1822
1823 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1824
1825 return status;
1826 }
1827
1828 /**
1829 * ixgbe_set_rar_generic - Set Rx address register
1830 * @hw: pointer to hardware structure
1831 * @index: Receive address register to write
1832 * @addr: Address to put into receive address register
1833 * @vmdq: VMDq "set" or "pool" index
1834 * @enable_addr: set flag that address is active
1835 *
1836 * Puts an ethernet address into a receive address register.
1837 **/
ixgbe_set_rar_generic(struct ixgbe_hw * hw,u32 index,u8 * addr,u32 vmdq,u32 enable_addr)1838 int ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1839 u32 enable_addr)
1840 {
1841 u32 rar_low, rar_high;
1842 u32 rar_entries = hw->mac.num_rar_entries;
1843
1844 /* Make sure we are using a valid rar index range */
1845 if (index >= rar_entries) {
1846 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1847 return -EINVAL;
1848 }
1849
1850 /* setup VMDq pool selection before this RAR gets enabled */
1851 hw->mac.ops.set_vmdq(hw, index, vmdq);
1852
1853 /*
1854 * HW expects these in little endian so we reverse the byte
1855 * order from network order (big endian) to little endian
1856 */
1857 rar_low = ((u32)addr[0] |
1858 ((u32)addr[1] << 8) |
1859 ((u32)addr[2] << 16) |
1860 ((u32)addr[3] << 24));
1861 /*
1862 * Some parts put the VMDq setting in the extra RAH bits,
1863 * so save everything except the lower 16 bits that hold part
1864 * of the address and the address valid bit.
1865 */
1866 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1867 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1868 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1869
1870 if (enable_addr != 0)
1871 rar_high |= IXGBE_RAH_AV;
1872
1873 /* Record lower 32 bits of MAC address and then make
1874 * sure that write is flushed to hardware before writing
1875 * the upper 16 bits and setting the valid bit.
1876 */
1877 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1878 IXGBE_WRITE_FLUSH(hw);
1879 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1880
1881 return 0;
1882 }
1883
1884 /**
1885 * ixgbe_clear_rar_generic - Remove Rx address register
1886 * @hw: pointer to hardware structure
1887 * @index: Receive address register to write
1888 *
1889 * Clears an ethernet address from a receive address register.
1890 **/
ixgbe_clear_rar_generic(struct ixgbe_hw * hw,u32 index)1891 int ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1892 {
1893 u32 rar_high;
1894 u32 rar_entries = hw->mac.num_rar_entries;
1895
1896 /* Make sure we are using a valid rar index range */
1897 if (index >= rar_entries) {
1898 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1899 return -EINVAL;
1900 }
1901
1902 /*
1903 * Some parts put the VMDq setting in the extra RAH bits,
1904 * so save everything except the lower 16 bits that hold part
1905 * of the address and the address valid bit.
1906 */
1907 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1908 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1909
1910 /* Clear the address valid bit and upper 16 bits of the address
1911 * before clearing the lower bits. This way we aren't updating
1912 * a live filter.
1913 */
1914 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1915 IXGBE_WRITE_FLUSH(hw);
1916 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1917
1918 /* clear VMDq pool/queue selection for this RAR */
1919 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1920
1921 return 0;
1922 }
1923
1924 /**
1925 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1926 * @hw: pointer to hardware structure
1927 *
1928 * Places the MAC address in receive address register 0 and clears the rest
1929 * of the receive address registers. Clears the multicast table. Assumes
1930 * the receiver is in reset when the routine is called.
1931 **/
ixgbe_init_rx_addrs_generic(struct ixgbe_hw * hw)1932 int ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1933 {
1934 u32 i;
1935 u32 rar_entries = hw->mac.num_rar_entries;
1936
1937 /*
1938 * If the current mac address is valid, assume it is a software override
1939 * to the permanent address.
1940 * Otherwise, use the permanent address from the eeprom.
1941 */
1942 if (!is_valid_ether_addr(hw->mac.addr)) {
1943 /* Get the MAC address from the RAR0 for later reference */
1944 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1945
1946 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1947 } else {
1948 /* Setup the receive address. */
1949 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1950 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1951
1952 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1953 }
1954
1955 /* clear VMDq pool/queue selection for RAR 0 */
1956 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1957
1958 hw->addr_ctrl.overflow_promisc = 0;
1959
1960 hw->addr_ctrl.rar_used_count = 1;
1961
1962 /* Zero out the other receive addresses. */
1963 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1964 for (i = 1; i < rar_entries; i++) {
1965 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1966 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1967 }
1968
1969 /* Clear the MTA */
1970 hw->addr_ctrl.mta_in_use = 0;
1971 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1972
1973 hw_dbg(hw, " Clearing MTA\n");
1974 for (i = 0; i < hw->mac.mcft_size; i++)
1975 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1976
1977 if (hw->mac.ops.init_uta_tables)
1978 hw->mac.ops.init_uta_tables(hw);
1979
1980 return 0;
1981 }
1982
1983 /**
1984 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1985 * @hw: pointer to hardware structure
1986 * @mc_addr: the multicast address
1987 *
1988 * Extracts the 12 bits, from a multicast address, to determine which
1989 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1990 * incoming rx multicast addresses, to determine the bit-vector to check in
1991 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1992 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1993 * to mc_filter_type.
1994 **/
ixgbe_mta_vector(struct ixgbe_hw * hw,u8 * mc_addr)1995 static int ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1996 {
1997 u32 vector = 0;
1998
1999 switch (hw->mac.mc_filter_type) {
2000 case 0: /* use bits [47:36] of the address */
2001 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2002 break;
2003 case 1: /* use bits [46:35] of the address */
2004 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2005 break;
2006 case 2: /* use bits [45:34] of the address */
2007 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2008 break;
2009 case 3: /* use bits [43:32] of the address */
2010 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2011 break;
2012 default: /* Invalid mc_filter_type */
2013 hw_dbg(hw, "MC filter type param set incorrectly\n");
2014 break;
2015 }
2016
2017 /* vector can only be 12-bits or boundary will be exceeded */
2018 vector &= 0xFFF;
2019 return vector;
2020 }
2021
2022 /**
2023 * ixgbe_set_mta - Set bit-vector in multicast table
2024 * @hw: pointer to hardware structure
2025 * @mc_addr: Multicast address
2026 *
2027 * Sets the bit-vector in the multicast table.
2028 **/
ixgbe_set_mta(struct ixgbe_hw * hw,u8 * mc_addr)2029 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2030 {
2031 u32 vector;
2032 u32 vector_bit;
2033 u32 vector_reg;
2034
2035 hw->addr_ctrl.mta_in_use++;
2036
2037 vector = ixgbe_mta_vector(hw, mc_addr);
2038 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2039
2040 /*
2041 * The MTA is a register array of 128 32-bit registers. It is treated
2042 * like an array of 4096 bits. We want to set bit
2043 * BitArray[vector_value]. So we figure out what register the bit is
2044 * in, read it, OR in the new bit, then write back the new value. The
2045 * register is determined by the upper 7 bits of the vector value and
2046 * the bit within that register are determined by the lower 5 bits of
2047 * the value.
2048 */
2049 vector_reg = (vector >> 5) & 0x7F;
2050 vector_bit = vector & 0x1F;
2051 hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2052 }
2053
2054 /**
2055 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2056 * @hw: pointer to hardware structure
2057 * @netdev: pointer to net device structure
2058 *
2059 * The given list replaces any existing list. Clears the MC addrs from receive
2060 * address registers and the multicast table. Uses unused receive address
2061 * registers for the first multicast addresses, and hashes the rest into the
2062 * multicast table.
2063 **/
ixgbe_update_mc_addr_list_generic(struct ixgbe_hw * hw,struct net_device * netdev)2064 int ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2065 struct net_device *netdev)
2066 {
2067 struct netdev_hw_addr *ha;
2068 u32 i;
2069
2070 /*
2071 * Set the new number of MC addresses that we are being requested to
2072 * use.
2073 */
2074 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2075 hw->addr_ctrl.mta_in_use = 0;
2076
2077 /* Clear mta_shadow */
2078 hw_dbg(hw, " Clearing MTA\n");
2079 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2080
2081 /* Update mta shadow */
2082 netdev_for_each_mc_addr(ha, netdev) {
2083 hw_dbg(hw, " Adding the multicast addresses:\n");
2084 ixgbe_set_mta(hw, ha->addr);
2085 }
2086
2087 /* Enable mta */
2088 for (i = 0; i < hw->mac.mcft_size; i++)
2089 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2090 hw->mac.mta_shadow[i]);
2091
2092 if (hw->addr_ctrl.mta_in_use > 0)
2093 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2094 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2095
2096 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2097 return 0;
2098 }
2099
2100 /**
2101 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2102 * @hw: pointer to hardware structure
2103 *
2104 * Enables multicast address in RAR and the use of the multicast hash table.
2105 **/
ixgbe_enable_mc_generic(struct ixgbe_hw * hw)2106 int ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2107 {
2108 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2109
2110 if (a->mta_in_use > 0)
2111 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2112 hw->mac.mc_filter_type);
2113
2114 return 0;
2115 }
2116
2117 /**
2118 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2119 * @hw: pointer to hardware structure
2120 *
2121 * Disables multicast address in RAR and the use of the multicast hash table.
2122 **/
ixgbe_disable_mc_generic(struct ixgbe_hw * hw)2123 int ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2124 {
2125 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2126
2127 if (a->mta_in_use > 0)
2128 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2129
2130 return 0;
2131 }
2132
2133 /**
2134 * ixgbe_fc_enable_generic - Enable flow control
2135 * @hw: pointer to hardware structure
2136 *
2137 * Enable flow control according to the current settings.
2138 **/
ixgbe_fc_enable_generic(struct ixgbe_hw * hw)2139 int ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2140 {
2141 u32 mflcn_reg, fccfg_reg;
2142 u32 reg;
2143 u32 fcrtl, fcrth;
2144 int i;
2145
2146 /* Validate the water mark configuration. */
2147 if (!hw->fc.pause_time)
2148 return -EINVAL;
2149
2150 /* Low water mark of zero causes XOFF floods */
2151 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2152 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2153 hw->fc.high_water[i]) {
2154 if (!hw->fc.low_water[i] ||
2155 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2156 hw_dbg(hw, "Invalid water mark configuration\n");
2157 return -EINVAL;
2158 }
2159 }
2160 }
2161
2162 /* Negotiate the fc mode to use */
2163 hw->mac.ops.fc_autoneg(hw);
2164
2165 /* Disable any previous flow control settings */
2166 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2167 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2168
2169 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2170 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2171
2172 /*
2173 * The possible values of fc.current_mode are:
2174 * 0: Flow control is completely disabled
2175 * 1: Rx flow control is enabled (we can receive pause frames,
2176 * but not send pause frames).
2177 * 2: Tx flow control is enabled (we can send pause frames but
2178 * we do not support receiving pause frames).
2179 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2180 * other: Invalid.
2181 */
2182 switch (hw->fc.current_mode) {
2183 case ixgbe_fc_none:
2184 /*
2185 * Flow control is disabled by software override or autoneg.
2186 * The code below will actually disable it in the HW.
2187 */
2188 break;
2189 case ixgbe_fc_rx_pause:
2190 /*
2191 * Rx Flow control is enabled and Tx Flow control is
2192 * disabled by software override. Since there really
2193 * isn't a way to advertise that we are capable of RX
2194 * Pause ONLY, we will advertise that we support both
2195 * symmetric and asymmetric Rx PAUSE. Later, we will
2196 * disable the adapter's ability to send PAUSE frames.
2197 */
2198 mflcn_reg |= IXGBE_MFLCN_RFCE;
2199 break;
2200 case ixgbe_fc_tx_pause:
2201 /*
2202 * Tx Flow control is enabled, and Rx Flow control is
2203 * disabled by software override.
2204 */
2205 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2206 break;
2207 case ixgbe_fc_full:
2208 /* Flow control (both Rx and Tx) is enabled by SW override. */
2209 mflcn_reg |= IXGBE_MFLCN_RFCE;
2210 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2211 break;
2212 default:
2213 hw_dbg(hw, "Flow control param set incorrectly\n");
2214 return -EIO;
2215 }
2216
2217 /* Set 802.3x based flow control settings. */
2218 mflcn_reg |= IXGBE_MFLCN_DPF;
2219 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2220 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2221
2222 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2223 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2224 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2225 hw->fc.high_water[i]) {
2226 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2227 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2228 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2229 } else {
2230 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2231 /*
2232 * In order to prevent Tx hangs when the internal Tx
2233 * switch is enabled we must set the high water mark
2234 * to the Rx packet buffer size - 24KB. This allows
2235 * the Tx switch to function even under heavy Rx
2236 * workloads.
2237 */
2238 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2239 }
2240
2241 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2242 }
2243
2244 /* Configure pause time (2 TCs per register) */
2245 reg = hw->fc.pause_time * 0x00010001U;
2246 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2247 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2248
2249 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2250
2251 return 0;
2252 }
2253
2254 /**
2255 * ixgbe_negotiate_fc - Negotiate flow control
2256 * @hw: pointer to hardware structure
2257 * @adv_reg: flow control advertised settings
2258 * @lp_reg: link partner's flow control settings
2259 * @adv_sym: symmetric pause bit in advertisement
2260 * @adv_asm: asymmetric pause bit in advertisement
2261 * @lp_sym: symmetric pause bit in link partner advertisement
2262 * @lp_asm: asymmetric pause bit in link partner advertisement
2263 *
2264 * Find the intersection between advertised settings and link partner's
2265 * advertised settings
2266 **/
ixgbe_negotiate_fc(struct ixgbe_hw * hw,u32 adv_reg,u32 lp_reg,u32 adv_sym,u32 adv_asm,u32 lp_sym,u32 lp_asm)2267 int ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2268 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2269 {
2270 if ((!(adv_reg)) || (!(lp_reg)))
2271 return -EINVAL;
2272
2273 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2274 /*
2275 * Now we need to check if the user selected Rx ONLY
2276 * of pause frames. In this case, we had to advertise
2277 * FULL flow control because we could not advertise RX
2278 * ONLY. Hence, we must now check to see if we need to
2279 * turn OFF the TRANSMISSION of PAUSE frames.
2280 */
2281 if (hw->fc.requested_mode == ixgbe_fc_full) {
2282 hw->fc.current_mode = ixgbe_fc_full;
2283 hw_dbg(hw, "Flow Control = FULL.\n");
2284 } else {
2285 hw->fc.current_mode = ixgbe_fc_rx_pause;
2286 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2287 }
2288 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2289 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2290 hw->fc.current_mode = ixgbe_fc_tx_pause;
2291 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2292 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2293 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2294 hw->fc.current_mode = ixgbe_fc_rx_pause;
2295 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2296 } else {
2297 hw->fc.current_mode = ixgbe_fc_none;
2298 hw_dbg(hw, "Flow Control = NONE.\n");
2299 }
2300 return 0;
2301 }
2302
2303 /**
2304 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2305 * @hw: pointer to hardware structure
2306 *
2307 * Enable flow control according on 1 gig fiber.
2308 **/
ixgbe_fc_autoneg_fiber(struct ixgbe_hw * hw)2309 static int ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2310 {
2311 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2312 int ret_val;
2313
2314 /*
2315 * On multispeed fiber at 1g, bail out if
2316 * - link is up but AN did not complete, or if
2317 * - link is up and AN completed but timed out
2318 */
2319
2320 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2321 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2322 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2323 return -EIO;
2324
2325 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2326 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2327
2328 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2329 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2330 IXGBE_PCS1GANA_ASM_PAUSE,
2331 IXGBE_PCS1GANA_SYM_PAUSE,
2332 IXGBE_PCS1GANA_ASM_PAUSE);
2333
2334 return ret_val;
2335 }
2336
2337 /**
2338 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2339 * @hw: pointer to hardware structure
2340 *
2341 * Enable flow control according to IEEE clause 37.
2342 **/
ixgbe_fc_autoneg_backplane(struct ixgbe_hw * hw)2343 static int ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2344 {
2345 u32 links2, anlp1_reg, autoc_reg, links;
2346 int ret_val;
2347
2348 /*
2349 * On backplane, bail out if
2350 * - backplane autoneg was not completed, or if
2351 * - we are 82599 and link partner is not AN enabled
2352 */
2353 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2354 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2355 return -EIO;
2356
2357 if (hw->mac.type == ixgbe_mac_82599EB) {
2358 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2359 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2360 return -EIO;
2361 }
2362 /*
2363 * Read the 10g AN autoc and LP ability registers and resolve
2364 * local flow control settings accordingly
2365 */
2366 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2367 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2368
2369 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2370 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2371 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2372
2373 return ret_val;
2374 }
2375
2376 /**
2377 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2378 * @hw: pointer to hardware structure
2379 *
2380 * Enable flow control according to IEEE clause 37.
2381 **/
ixgbe_fc_autoneg_copper(struct ixgbe_hw * hw)2382 static int ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2383 {
2384 u16 technology_ability_reg = 0;
2385 u16 lp_technology_ability_reg = 0;
2386
2387 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2388 MDIO_MMD_AN,
2389 &technology_ability_reg);
2390 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2391 MDIO_MMD_AN,
2392 &lp_technology_ability_reg);
2393
2394 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2395 (u32)lp_technology_ability_reg,
2396 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2397 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2398 }
2399
2400 /**
2401 * ixgbe_fc_autoneg - Configure flow control
2402 * @hw: pointer to hardware structure
2403 *
2404 * Compares our advertised flow control capabilities to those advertised by
2405 * our link partner, and determines the proper flow control mode to use.
2406 **/
ixgbe_fc_autoneg(struct ixgbe_hw * hw)2407 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2408 {
2409 ixgbe_link_speed speed;
2410 int ret_val = -EIO;
2411 bool link_up;
2412
2413 /*
2414 * AN should have completed when the cable was plugged in.
2415 * Look for reasons to bail out. Bail out if:
2416 * - FC autoneg is disabled, or if
2417 * - link is not up.
2418 *
2419 * Since we're being called from an LSC, link is already known to be up.
2420 * So use link_up_wait_to_complete=false.
2421 */
2422 if (hw->fc.disable_fc_autoneg)
2423 goto out;
2424
2425 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2426 if (!link_up)
2427 goto out;
2428
2429 switch (hw->phy.media_type) {
2430 /* Autoneg flow control on fiber adapters */
2431 case ixgbe_media_type_fiber:
2432 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2433 ret_val = ixgbe_fc_autoneg_fiber(hw);
2434 break;
2435
2436 /* Autoneg flow control on backplane adapters */
2437 case ixgbe_media_type_backplane:
2438 ret_val = ixgbe_fc_autoneg_backplane(hw);
2439 break;
2440
2441 /* Autoneg flow control on copper adapters */
2442 case ixgbe_media_type_copper:
2443 if (ixgbe_device_supports_autoneg_fc(hw))
2444 ret_val = ixgbe_fc_autoneg_copper(hw);
2445 break;
2446
2447 default:
2448 break;
2449 }
2450
2451 out:
2452 if (ret_val == 0) {
2453 hw->fc.fc_was_autonegged = true;
2454 } else {
2455 hw->fc.fc_was_autonegged = false;
2456 hw->fc.current_mode = hw->fc.requested_mode;
2457 }
2458 }
2459
2460 /**
2461 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2462 * @hw: pointer to hardware structure
2463 *
2464 * System-wide timeout range is encoded in PCIe Device Control2 register.
2465 *
2466 * Add 10% to specified maximum and return the number of times to poll for
2467 * completion timeout, in units of 100 microsec. Never return less than
2468 * 800 = 80 millisec.
2469 **/
ixgbe_pcie_timeout_poll(struct ixgbe_hw * hw)2470 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2471 {
2472 s16 devctl2;
2473 u32 pollcnt;
2474
2475 devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2476 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2477
2478 switch (devctl2) {
2479 case IXGBE_PCIDEVCTRL2_65_130ms:
2480 pollcnt = 1300; /* 130 millisec */
2481 break;
2482 case IXGBE_PCIDEVCTRL2_260_520ms:
2483 pollcnt = 5200; /* 520 millisec */
2484 break;
2485 case IXGBE_PCIDEVCTRL2_1_2s:
2486 pollcnt = 20000; /* 2 sec */
2487 break;
2488 case IXGBE_PCIDEVCTRL2_4_8s:
2489 pollcnt = 80000; /* 8 sec */
2490 break;
2491 case IXGBE_PCIDEVCTRL2_17_34s:
2492 pollcnt = 34000; /* 34 sec */
2493 break;
2494 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
2495 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
2496 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
2497 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
2498 default:
2499 pollcnt = 800; /* 80 millisec minimum */
2500 break;
2501 }
2502
2503 /* add 10% to spec maximum */
2504 return (pollcnt * 11) / 10;
2505 }
2506
2507 /**
2508 * ixgbe_disable_pcie_primary - Disable PCI-express primary access
2509 * @hw: pointer to hardware structure
2510 *
2511 * Disables PCI-Express primary access and verifies there are no pending
2512 * requests. -EALREADY is returned if primary disable
2513 * bit hasn't caused the primary requests to be disabled, else 0
2514 * is returned signifying primary requests disabled.
2515 **/
ixgbe_disable_pcie_primary(struct ixgbe_hw * hw)2516 static int ixgbe_disable_pcie_primary(struct ixgbe_hw *hw)
2517 {
2518 u32 i, poll;
2519 u16 value;
2520
2521 /* Always set this bit to ensure any future transactions are blocked */
2522 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2523
2524 /* Poll for bit to read as set */
2525 for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2526 if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2527 break;
2528 usleep_range(100, 120);
2529 }
2530 if (i >= IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT) {
2531 hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2532 goto gio_disable_fail;
2533 }
2534
2535 /* Exit if primary requests are blocked */
2536 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2537 ixgbe_removed(hw->hw_addr))
2538 return 0;
2539
2540 /* Poll for primary request bit to clear */
2541 for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2542 udelay(100);
2543 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2544 return 0;
2545 }
2546
2547 /*
2548 * Two consecutive resets are required via CTRL.RST per datasheet
2549 * 5.2.5.3.2 Primary Disable. We set a flag to inform the reset routine
2550 * of this need. The first reset prevents new primary requests from
2551 * being issued by our device. We then must wait 1usec or more for any
2552 * remaining completions from the PCIe bus to trickle in, and then reset
2553 * again to clear out any effects they may have had on our device.
2554 */
2555 hw_dbg(hw, "GIO Primary Disable bit didn't clear - requesting resets\n");
2556 gio_disable_fail:
2557 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2558
2559 if (hw->mac.type >= ixgbe_mac_X550)
2560 return 0;
2561
2562 /*
2563 * Before proceeding, make sure that the PCIe block does not have
2564 * transactions pending.
2565 */
2566 poll = ixgbe_pcie_timeout_poll(hw);
2567 for (i = 0; i < poll; i++) {
2568 udelay(100);
2569 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2570 if (ixgbe_removed(hw->hw_addr))
2571 return 0;
2572 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2573 return 0;
2574 }
2575
2576 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2577 return -EALREADY;
2578 }
2579
2580 /**
2581 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2582 * @hw: pointer to hardware structure
2583 * @mask: Mask to specify which semaphore to acquire
2584 *
2585 * Acquires the SWFW semaphore through the GSSR register for the specified
2586 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2587 **/
ixgbe_acquire_swfw_sync(struct ixgbe_hw * hw,u32 mask)2588 int ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2589 {
2590 u32 gssr = 0;
2591 u32 swmask = mask;
2592 u32 fwmask = mask << 5;
2593 u32 timeout = 200;
2594 u32 i;
2595
2596 for (i = 0; i < timeout; i++) {
2597 /*
2598 * SW NVM semaphore bit is used for access to all
2599 * SW_FW_SYNC bits (not just NVM)
2600 */
2601 if (ixgbe_get_eeprom_semaphore(hw))
2602 return -EBUSY;
2603
2604 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2605 if (!(gssr & (fwmask | swmask))) {
2606 gssr |= swmask;
2607 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2608 ixgbe_release_eeprom_semaphore(hw);
2609 return 0;
2610 } else {
2611 /* Resource is currently in use by FW or SW */
2612 ixgbe_release_eeprom_semaphore(hw);
2613 usleep_range(5000, 10000);
2614 }
2615 }
2616
2617 /* If time expired clear the bits holding the lock and retry */
2618 if (gssr & (fwmask | swmask))
2619 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2620
2621 usleep_range(5000, 10000);
2622 return -EBUSY;
2623 }
2624
2625 /**
2626 * ixgbe_release_swfw_sync - Release SWFW semaphore
2627 * @hw: pointer to hardware structure
2628 * @mask: Mask to specify which semaphore to release
2629 *
2630 * Releases the SWFW semaphore through the GSSR register for the specified
2631 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2632 **/
ixgbe_release_swfw_sync(struct ixgbe_hw * hw,u32 mask)2633 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2634 {
2635 u32 gssr;
2636 u32 swmask = mask;
2637
2638 ixgbe_get_eeprom_semaphore(hw);
2639
2640 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2641 gssr &= ~swmask;
2642 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2643
2644 ixgbe_release_eeprom_semaphore(hw);
2645 }
2646
2647 /**
2648 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2649 * @hw: pointer to hardware structure
2650 * @reg_val: Value we read from AUTOC
2651 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2652 * true in this the generic case.
2653 *
2654 * The default case requires no protection so just to the register read.
2655 **/
prot_autoc_read_generic(struct ixgbe_hw * hw,bool * locked,u32 * reg_val)2656 int prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2657 {
2658 *locked = false;
2659 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2660 return 0;
2661 }
2662
2663 /**
2664 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2665 * @hw: pointer to hardware structure
2666 * @reg_val: value to write to AUTOC
2667 * @locked: bool to indicate whether the SW/FW lock was already taken by
2668 * previous read.
2669 **/
prot_autoc_write_generic(struct ixgbe_hw * hw,u32 reg_val,bool locked)2670 int prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2671 {
2672 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2673 return 0;
2674 }
2675
2676 /**
2677 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2678 * @hw: pointer to hardware structure
2679 *
2680 * Stops the receive data path and waits for the HW to internally
2681 * empty the Rx security block.
2682 **/
ixgbe_disable_rx_buff_generic(struct ixgbe_hw * hw)2683 int ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2684 {
2685 #define IXGBE_MAX_SECRX_POLL 40
2686 int i;
2687 int secrxreg;
2688
2689 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2690 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2691 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2692 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2693 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2694 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2695 break;
2696 else
2697 /* Use interrupt-safe sleep just in case */
2698 udelay(1000);
2699 }
2700
2701 /* For informational purposes only */
2702 if (i >= IXGBE_MAX_SECRX_POLL)
2703 hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2704
2705 return 0;
2706
2707 }
2708
2709 /**
2710 * ixgbe_enable_rx_buff_generic - Enables the receive data path
2711 * @hw: pointer to hardware structure
2712 *
2713 * Enables the receive data path
2714 **/
ixgbe_enable_rx_buff_generic(struct ixgbe_hw * hw)2715 int ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2716 {
2717 u32 secrxreg;
2718
2719 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2720 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2721 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2722 IXGBE_WRITE_FLUSH(hw);
2723
2724 return 0;
2725 }
2726
2727 /**
2728 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2729 * @hw: pointer to hardware structure
2730 * @regval: register value to write to RXCTRL
2731 *
2732 * Enables the Rx DMA unit
2733 **/
ixgbe_enable_rx_dma_generic(struct ixgbe_hw * hw,u32 regval)2734 int ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2735 {
2736 if (regval & IXGBE_RXCTRL_RXEN)
2737 hw->mac.ops.enable_rx(hw);
2738 else
2739 hw->mac.ops.disable_rx(hw);
2740
2741 return 0;
2742 }
2743
2744 /**
2745 * ixgbe_blink_led_start_generic - Blink LED based on index.
2746 * @hw: pointer to hardware structure
2747 * @index: led number to blink
2748 **/
ixgbe_blink_led_start_generic(struct ixgbe_hw * hw,u32 index)2749 int ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2750 {
2751 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2752 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2753 ixgbe_link_speed speed = 0;
2754 bool link_up = false;
2755 bool locked = false;
2756 int ret_val;
2757
2758 if (index > 3)
2759 return -EINVAL;
2760
2761 /*
2762 * Link must be up to auto-blink the LEDs;
2763 * Force it if link is down.
2764 */
2765 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2766
2767 if (!link_up) {
2768 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2769 if (ret_val)
2770 return ret_val;
2771
2772 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2773 autoc_reg |= IXGBE_AUTOC_FLU;
2774
2775 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2776 if (ret_val)
2777 return ret_val;
2778
2779 IXGBE_WRITE_FLUSH(hw);
2780
2781 usleep_range(10000, 20000);
2782 }
2783
2784 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2785 led_reg |= IXGBE_LED_BLINK(index);
2786 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2787 IXGBE_WRITE_FLUSH(hw);
2788
2789 return 0;
2790 }
2791
2792 /**
2793 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2794 * @hw: pointer to hardware structure
2795 * @index: led number to stop blinking
2796 **/
ixgbe_blink_led_stop_generic(struct ixgbe_hw * hw,u32 index)2797 int ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2798 {
2799 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2800 bool locked = false;
2801 u32 autoc_reg = 0;
2802 int ret_val;
2803
2804 if (index > 3)
2805 return -EINVAL;
2806
2807 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2808 if (ret_val)
2809 return ret_val;
2810
2811 autoc_reg &= ~IXGBE_AUTOC_FLU;
2812 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2813
2814 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2815 if (ret_val)
2816 return ret_val;
2817
2818 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2819 led_reg &= ~IXGBE_LED_BLINK(index);
2820 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2821 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2822 IXGBE_WRITE_FLUSH(hw);
2823
2824 return 0;
2825 }
2826
2827 /**
2828 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2829 * @hw: pointer to hardware structure
2830 * @san_mac_offset: SAN MAC address offset
2831 *
2832 * This function will read the EEPROM location for the SAN MAC address
2833 * pointer, and returns the value at that location. This is used in both
2834 * get and set mac_addr routines.
2835 **/
ixgbe_get_san_mac_addr_offset(struct ixgbe_hw * hw,u16 * san_mac_offset)2836 static int ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2837 u16 *san_mac_offset)
2838 {
2839 int ret_val;
2840
2841 /*
2842 * First read the EEPROM pointer to see if the MAC addresses are
2843 * available.
2844 */
2845 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2846 san_mac_offset);
2847 if (ret_val)
2848 hw_err(hw, "eeprom read at offset %d failed\n",
2849 IXGBE_SAN_MAC_ADDR_PTR);
2850
2851 return ret_val;
2852 }
2853
2854 /**
2855 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2856 * @hw: pointer to hardware structure
2857 * @san_mac_addr: SAN MAC address
2858 *
2859 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2860 * per-port, so set_lan_id() must be called before reading the addresses.
2861 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2862 * upon for non-SFP connections, so we must call it here.
2863 **/
ixgbe_get_san_mac_addr_generic(struct ixgbe_hw * hw,u8 * san_mac_addr)2864 int ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2865 {
2866 u16 san_mac_data, san_mac_offset;
2867 int ret_val;
2868 u8 i;
2869
2870 /*
2871 * First read the EEPROM pointer to see if the MAC addresses are
2872 * available. If they're not, no point in calling set_lan_id() here.
2873 */
2874 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2875 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2876
2877 goto san_mac_addr_clr;
2878
2879 /* make sure we know which port we need to program */
2880 hw->mac.ops.set_lan_id(hw);
2881 /* apply the port offset to the address offset */
2882 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2883 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2884 for (i = 0; i < 3; i++) {
2885 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2886 &san_mac_data);
2887 if (ret_val) {
2888 hw_err(hw, "eeprom read at offset %d failed\n",
2889 san_mac_offset);
2890 goto san_mac_addr_clr;
2891 }
2892 san_mac_addr[i * 2] = (u8)(san_mac_data);
2893 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2894 san_mac_offset++;
2895 }
2896 return 0;
2897
2898 san_mac_addr_clr:
2899 /* No addresses available in this EEPROM. It's not necessarily an
2900 * error though, so just wipe the local address and return.
2901 */
2902 for (i = 0; i < 6; i++)
2903 san_mac_addr[i] = 0xFF;
2904 return ret_val;
2905 }
2906
2907 /**
2908 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2909 * @hw: pointer to hardware structure
2910 *
2911 * Read PCIe configuration space, and get the MSI-X vector count from
2912 * the capabilities table.
2913 **/
ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw * hw)2914 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2915 {
2916 u16 msix_count;
2917 u16 max_msix_count;
2918 u16 pcie_offset;
2919
2920 switch (hw->mac.type) {
2921 case ixgbe_mac_82598EB:
2922 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2923 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2924 break;
2925 case ixgbe_mac_82599EB:
2926 case ixgbe_mac_X540:
2927 case ixgbe_mac_X550:
2928 case ixgbe_mac_X550EM_x:
2929 case ixgbe_mac_x550em_a:
2930 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2931 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2932 break;
2933 case ixgbe_mac_e610:
2934 pcie_offset = IXGBE_PCIE_MSIX_E610_CAPS;
2935 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2936 break;
2937 default:
2938 return 1;
2939 }
2940
2941 msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2942 if (ixgbe_removed(hw->hw_addr))
2943 msix_count = 0;
2944 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2945
2946 /* MSI-X count is zero-based in HW */
2947 msix_count++;
2948
2949 if (msix_count > max_msix_count)
2950 msix_count = max_msix_count;
2951
2952 return msix_count;
2953 }
2954
2955 /**
2956 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2957 * @hw: pointer to hardware struct
2958 * @rar: receive address register index to disassociate
2959 * @vmdq: VMDq pool index to remove from the rar
2960 **/
ixgbe_clear_vmdq_generic(struct ixgbe_hw * hw,u32 rar,u32 vmdq)2961 int ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2962 {
2963 u32 mpsar_lo, mpsar_hi;
2964 u32 rar_entries = hw->mac.num_rar_entries;
2965
2966 /* Make sure we are using a valid rar index range */
2967 if (rar >= rar_entries) {
2968 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2969 return -EINVAL;
2970 }
2971
2972 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2973 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2974
2975 if (ixgbe_removed(hw->hw_addr))
2976 return 0;
2977
2978 if (!mpsar_lo && !mpsar_hi)
2979 return 0;
2980
2981 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2982 if (mpsar_lo) {
2983 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2984 mpsar_lo = 0;
2985 }
2986 if (mpsar_hi) {
2987 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2988 mpsar_hi = 0;
2989 }
2990 } else if (vmdq < 32) {
2991 mpsar_lo &= ~BIT(vmdq);
2992 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2993 } else {
2994 mpsar_hi &= ~BIT(vmdq - 32);
2995 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2996 }
2997
2998 /* was that the last pool using this rar? */
2999 if (mpsar_lo == 0 && mpsar_hi == 0 &&
3000 rar != 0 && rar != hw->mac.san_mac_rar_index)
3001 hw->mac.ops.clear_rar(hw, rar);
3002
3003 return 0;
3004 }
3005
3006 /**
3007 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3008 * @hw: pointer to hardware struct
3009 * @rar: receive address register index to associate with a VMDq index
3010 * @vmdq: VMDq pool index
3011 **/
ixgbe_set_vmdq_generic(struct ixgbe_hw * hw,u32 rar,u32 vmdq)3012 int ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3013 {
3014 u32 mpsar;
3015 u32 rar_entries = hw->mac.num_rar_entries;
3016
3017 /* Make sure we are using a valid rar index range */
3018 if (rar >= rar_entries) {
3019 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3020 return -EINVAL;
3021 }
3022
3023 if (vmdq < 32) {
3024 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3025 mpsar |= BIT(vmdq);
3026 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3027 } else {
3028 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3029 mpsar |= BIT(vmdq - 32);
3030 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3031 }
3032 return 0;
3033 }
3034
3035 /**
3036 * ixgbe_set_vmdq_san_mac_generic - Associate VMDq pool index with a rx address
3037 * @hw: pointer to hardware struct
3038 * @vmdq: VMDq pool index
3039 *
3040 * This function should only be involved in the IOV mode.
3041 * In IOV mode, Default pool is next pool after the number of
3042 * VFs advertized and not 0.
3043 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3044 **/
ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw * hw,u32 vmdq)3045 int ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3046 {
3047 u32 rar = hw->mac.san_mac_rar_index;
3048
3049 if (vmdq < 32) {
3050 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3051 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3052 } else {
3053 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3054 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3055 }
3056
3057 return 0;
3058 }
3059
3060 /**
3061 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3062 * @hw: pointer to hardware structure
3063 **/
ixgbe_init_uta_tables_generic(struct ixgbe_hw * hw)3064 int ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3065 {
3066 int i;
3067
3068 for (i = 0; i < 128; i++)
3069 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3070
3071 return 0;
3072 }
3073
3074 /**
3075 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3076 * @hw: pointer to hardware structure
3077 * @vlan: VLAN id to write to VLAN filter
3078 * @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3079 * vlanid not found
3080 *
3081 * return the VLVF index where this VLAN id should be placed
3082 *
3083 **/
ixgbe_find_vlvf_slot(struct ixgbe_hw * hw,u32 vlan,bool vlvf_bypass)3084 static int ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3085 {
3086 int regindex, first_empty_slot;
3087 u32 bits;
3088
3089 /* short cut the special case */
3090 if (vlan == 0)
3091 return 0;
3092
3093 /* if vlvf_bypass is set we don't want to use an empty slot, we
3094 * will simply bypass the VLVF if there are no entries present in the
3095 * VLVF that contain our VLAN
3096 */
3097 first_empty_slot = vlvf_bypass ? -ENOSPC : 0;
3098
3099 /* add VLAN enable bit for comparison */
3100 vlan |= IXGBE_VLVF_VIEN;
3101
3102 /* Search for the vlan id in the VLVF entries. Save off the first empty
3103 * slot found along the way.
3104 *
3105 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3106 */
3107 for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3108 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3109 if (bits == vlan)
3110 return regindex;
3111 if (!first_empty_slot && !bits)
3112 first_empty_slot = regindex;
3113 }
3114
3115 /* If we are here then we didn't find the VLAN. Return first empty
3116 * slot we found during our search, else error.
3117 */
3118 if (!first_empty_slot)
3119 hw_dbg(hw, "No space in VLVF.\n");
3120
3121 return first_empty_slot ? : -ENOSPC;
3122 }
3123
3124 /**
3125 * ixgbe_set_vfta_generic - Set VLAN filter table
3126 * @hw: pointer to hardware structure
3127 * @vlan: VLAN id to write to VLAN filter
3128 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3129 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3130 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3131 *
3132 * Turn on/off specified VLAN in the VLAN filter table.
3133 **/
ixgbe_set_vfta_generic(struct ixgbe_hw * hw,u32 vlan,u32 vind,bool vlan_on,bool vlvf_bypass)3134 int ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3135 bool vlan_on, bool vlvf_bypass)
3136 {
3137 u32 regidx, vfta_delta, vfta, bits;
3138 int vlvf_index;
3139
3140 if ((vlan > 4095) || (vind > 63))
3141 return -EINVAL;
3142
3143 /*
3144 * this is a 2 part operation - first the VFTA, then the
3145 * VLVF and VLVFB if VT Mode is set
3146 * We don't write the VFTA until we know the VLVF part succeeded.
3147 */
3148
3149 /* Part 1
3150 * The VFTA is a bitstring made up of 128 32-bit registers
3151 * that enable the particular VLAN id, much like the MTA:
3152 * bits[11-5]: which register
3153 * bits[4-0]: which bit in the register
3154 */
3155 regidx = vlan / 32;
3156 vfta_delta = BIT(vlan % 32);
3157 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3158
3159 /* vfta_delta represents the difference between the current value
3160 * of vfta and the value we want in the register. Since the diff
3161 * is an XOR mask we can just update vfta using an XOR.
3162 */
3163 vfta_delta &= vlan_on ? ~vfta : vfta;
3164 vfta ^= vfta_delta;
3165
3166 /* Part 2
3167 * If VT Mode is set
3168 * Either vlan_on
3169 * make sure the vlan is in VLVF
3170 * set the vind bit in the matching VLVFB
3171 * Or !vlan_on
3172 * clear the pool bit and possibly the vind
3173 */
3174 if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3175 goto vfta_update;
3176
3177 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3178 if (vlvf_index < 0) {
3179 if (vlvf_bypass)
3180 goto vfta_update;
3181 return vlvf_index;
3182 }
3183
3184 bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3185
3186 /* set the pool bit */
3187 bits |= BIT(vind % 32);
3188 if (vlan_on)
3189 goto vlvf_update;
3190
3191 /* clear the pool bit */
3192 bits ^= BIT(vind % 32);
3193
3194 if (!bits &&
3195 !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3196 /* Clear VFTA first, then disable VLVF. Otherwise
3197 * we run the risk of stray packets leaking into
3198 * the PF via the default pool
3199 */
3200 if (vfta_delta)
3201 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3202
3203 /* disable VLVF and clear remaining bit from pool */
3204 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3205 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3206
3207 return 0;
3208 }
3209
3210 /* If there are still bits set in the VLVFB registers
3211 * for the VLAN ID indicated we need to see if the
3212 * caller is requesting that we clear the VFTA entry bit.
3213 * If the caller has requested that we clear the VFTA
3214 * entry bit but there are still pools/VFs using this VLAN
3215 * ID entry then ignore the request. We're not worried
3216 * about the case where we're turning the VFTA VLAN ID
3217 * entry bit on, only when requested to turn it off as
3218 * there may be multiple pools and/or VFs using the
3219 * VLAN ID entry. In that case we cannot clear the
3220 * VFTA bit until all pools/VFs using that VLAN ID have also
3221 * been cleared. This will be indicated by "bits" being
3222 * zero.
3223 */
3224 vfta_delta = 0;
3225
3226 vlvf_update:
3227 /* record pool change and enable VLAN ID if not already enabled */
3228 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3229 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3230
3231 vfta_update:
3232 /* Update VFTA now that we are ready for traffic */
3233 if (vfta_delta)
3234 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3235
3236 return 0;
3237 }
3238
3239 /**
3240 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3241 * @hw: pointer to hardware structure
3242 *
3243 * Clears the VLAN filter table, and the VMDq index associated with the filter
3244 **/
ixgbe_clear_vfta_generic(struct ixgbe_hw * hw)3245 int ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3246 {
3247 u32 offset;
3248
3249 for (offset = 0; offset < hw->mac.vft_size; offset++)
3250 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3251
3252 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3253 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3254 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3255 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3256 }
3257
3258 return 0;
3259 }
3260
3261 /**
3262 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3263 * @hw: pointer to hardware structure
3264 *
3265 * Contains the logic to identify if we need to verify link for the
3266 * crosstalk fix
3267 **/
ixgbe_need_crosstalk_fix(struct ixgbe_hw * hw)3268 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3269 {
3270 /* Does FW say we need the fix */
3271 if (!hw->need_crosstalk_fix)
3272 return false;
3273
3274 /* Only consider SFP+ PHYs i.e. media type fiber */
3275 switch (hw->mac.ops.get_media_type(hw)) {
3276 case ixgbe_media_type_fiber:
3277 case ixgbe_media_type_fiber_qsfp:
3278 break;
3279 default:
3280 return false;
3281 }
3282
3283 return true;
3284 }
3285
3286 /**
3287 * ixgbe_check_mac_link_generic - Determine link and speed status
3288 * @hw: pointer to hardware structure
3289 * @speed: pointer to link speed
3290 * @link_up: true when link is up
3291 * @link_up_wait_to_complete: bool used to wait for link up or not
3292 *
3293 * Reads the links register to determine if link is up and the current speed
3294 **/
ixgbe_check_mac_link_generic(struct ixgbe_hw * hw,ixgbe_link_speed * speed,bool * link_up,bool link_up_wait_to_complete)3295 int ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3296 bool *link_up, bool link_up_wait_to_complete)
3297 {
3298 bool crosstalk_fix_active = ixgbe_need_crosstalk_fix(hw);
3299 u32 links_reg, links_orig;
3300 u32 i;
3301
3302 /* If Crosstalk fix enabled do the sanity check of making sure
3303 * the SFP+ cage is full.
3304 */
3305 if (crosstalk_fix_active) {
3306 u32 sfp_cage_full;
3307
3308 switch (hw->mac.type) {
3309 case ixgbe_mac_82599EB:
3310 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3311 IXGBE_ESDP_SDP2;
3312 break;
3313 case ixgbe_mac_X550EM_x:
3314 case ixgbe_mac_x550em_a:
3315 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3316 IXGBE_ESDP_SDP0;
3317 break;
3318 default:
3319 /* sanity check - No SFP+ devices here */
3320 sfp_cage_full = false;
3321 break;
3322 }
3323
3324 if (!sfp_cage_full) {
3325 *link_up = false;
3326 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3327 return 0;
3328 }
3329 }
3330
3331 /* clear the old state */
3332 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3333
3334 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3335
3336 if (links_orig != links_reg) {
3337 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3338 links_orig, links_reg);
3339 }
3340
3341 if (link_up_wait_to_complete) {
3342 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3343 if (links_reg & IXGBE_LINKS_UP) {
3344 *link_up = true;
3345 break;
3346 } else {
3347 *link_up = false;
3348 }
3349 msleep(100);
3350 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3351 }
3352 } else {
3353 if (links_reg & IXGBE_LINKS_UP) {
3354 if (crosstalk_fix_active) {
3355 /* Check the link state again after a delay
3356 * to filter out spurious link up
3357 * notifications.
3358 */
3359 mdelay(5);
3360 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3361 if (!(links_reg & IXGBE_LINKS_UP)) {
3362 *link_up = false;
3363 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3364 return 0;
3365 }
3366 }
3367 *link_up = true;
3368 } else {
3369 *link_up = false;
3370 }
3371 }
3372
3373 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3374 case IXGBE_LINKS_SPEED_10G_82599:
3375 if ((hw->mac.type >= ixgbe_mac_X550) &&
3376 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3377 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3378 else
3379 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3380 break;
3381 case IXGBE_LINKS_SPEED_1G_82599:
3382 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3383 break;
3384 case IXGBE_LINKS_SPEED_100_82599:
3385 if ((hw->mac.type >= ixgbe_mac_X550 ||
3386 hw->mac.type == ixgbe_mac_e610) &&
3387 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3388 *speed = IXGBE_LINK_SPEED_5GB_FULL;
3389 else
3390 *speed = IXGBE_LINK_SPEED_100_FULL;
3391 break;
3392 case IXGBE_LINKS_SPEED_10_X550EM_A:
3393 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3394 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3395 hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3396 *speed = IXGBE_LINK_SPEED_10_FULL;
3397 }
3398 break;
3399 default:
3400 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3401 }
3402
3403 return 0;
3404 }
3405
3406 /**
3407 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3408 * the EEPROM
3409 * @hw: pointer to hardware structure
3410 * @wwnn_prefix: the alternative WWNN prefix
3411 * @wwpn_prefix: the alternative WWPN prefix
3412 *
3413 * This function will read the EEPROM from the alternative SAN MAC address
3414 * block to check the support for the alternative WWNN/WWPN prefix support.
3415 **/
ixgbe_get_wwn_prefix_generic(struct ixgbe_hw * hw,u16 * wwnn_prefix,u16 * wwpn_prefix)3416 int ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3417 u16 *wwpn_prefix)
3418 {
3419 u16 offset, caps;
3420 u16 alt_san_mac_blk_offset;
3421
3422 /* clear output first */
3423 *wwnn_prefix = 0xFFFF;
3424 *wwpn_prefix = 0xFFFF;
3425
3426 /* check if alternative SAN MAC is supported */
3427 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3428 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3429 goto wwn_prefix_err;
3430
3431 if ((alt_san_mac_blk_offset == 0) ||
3432 (alt_san_mac_blk_offset == 0xFFFF))
3433 return 0;
3434
3435 /* check capability in alternative san mac address block */
3436 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3437 if (hw->eeprom.ops.read(hw, offset, &caps))
3438 goto wwn_prefix_err;
3439 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3440 return 0;
3441
3442 /* get the corresponding prefix for WWNN/WWPN */
3443 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3444 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3445 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3446
3447 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3448 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3449 goto wwn_prefix_err;
3450
3451 return 0;
3452
3453 wwn_prefix_err:
3454 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3455 return 0;
3456 }
3457
3458 /**
3459 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3460 * @hw: pointer to hardware structure
3461 * @enable: enable or disable switch for MAC anti-spoofing
3462 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3463 *
3464 **/
ixgbe_set_mac_anti_spoofing(struct ixgbe_hw * hw,bool enable,int vf)3465 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3466 {
3467 int vf_target_reg = vf >> 3;
3468 int vf_target_shift = vf % 8;
3469 u32 pfvfspoof;
3470
3471 if (hw->mac.type == ixgbe_mac_82598EB)
3472 return;
3473
3474 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3475 if (enable)
3476 pfvfspoof |= BIT(vf_target_shift);
3477 else
3478 pfvfspoof &= ~BIT(vf_target_shift);
3479 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3480 }
3481
3482 /**
3483 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3484 * @hw: pointer to hardware structure
3485 * @enable: enable or disable switch for VLAN anti-spoofing
3486 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3487 *
3488 **/
ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw * hw,bool enable,int vf)3489 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3490 {
3491 int vf_target_reg = vf >> 3;
3492 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3493 u32 pfvfspoof;
3494
3495 if (hw->mac.type == ixgbe_mac_82598EB)
3496 return;
3497
3498 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3499 if (enable)
3500 pfvfspoof |= BIT(vf_target_shift);
3501 else
3502 pfvfspoof &= ~BIT(vf_target_shift);
3503 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3504 }
3505
3506 /**
3507 * ixgbe_get_device_caps_generic - Get additional device capabilities
3508 * @hw: pointer to hardware structure
3509 * @device_caps: the EEPROM word with the extra device capabilities
3510 *
3511 * This function will read the EEPROM location for the device capabilities,
3512 * and return the word through device_caps.
3513 **/
ixgbe_get_device_caps_generic(struct ixgbe_hw * hw,u16 * device_caps)3514 int ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3515 {
3516 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3517
3518 return 0;
3519 }
3520
3521 /**
3522 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3523 * @hw: pointer to hardware structure
3524 * @num_pb: number of packet buffers to allocate
3525 * @headroom: reserve n KB of headroom
3526 * @strategy: packet buffer allocation strategy
3527 **/
ixgbe_set_rxpba_generic(struct ixgbe_hw * hw,int num_pb,u32 headroom,int strategy)3528 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3529 int num_pb,
3530 u32 headroom,
3531 int strategy)
3532 {
3533 u32 pbsize = hw->mac.rx_pb_size;
3534 int i = 0;
3535 u32 rxpktsize, txpktsize, txpbthresh;
3536
3537 /* Reserve headroom */
3538 pbsize -= headroom;
3539
3540 if (!num_pb)
3541 num_pb = 1;
3542
3543 /* Divide remaining packet buffer space amongst the number
3544 * of packet buffers requested using supplied strategy.
3545 */
3546 switch (strategy) {
3547 case (PBA_STRATEGY_WEIGHTED):
3548 /* pba_80_48 strategy weight first half of packet buffer with
3549 * 5/8 of the packet buffer space.
3550 */
3551 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3552 pbsize -= rxpktsize * (num_pb / 2);
3553 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3554 for (; i < (num_pb / 2); i++)
3555 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3556 fallthrough; /* configure remaining packet buffers */
3557 case (PBA_STRATEGY_EQUAL):
3558 /* Divide the remaining Rx packet buffer evenly among the TCs */
3559 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3560 for (; i < num_pb; i++)
3561 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3562 break;
3563 default:
3564 break;
3565 }
3566
3567 /*
3568 * Setup Tx packet buffer and threshold equally for all TCs
3569 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3570 * 10 since the largest packet we support is just over 9K.
3571 */
3572 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3573 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3574 for (i = 0; i < num_pb; i++) {
3575 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3576 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3577 }
3578
3579 /* Clear unused TCs, if any, to zero buffer size*/
3580 for (; i < IXGBE_MAX_PB; i++) {
3581 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3582 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3583 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3584 }
3585 }
3586
3587 /**
3588 * ixgbe_calculate_checksum - Calculate checksum for buffer
3589 * @buffer: pointer to EEPROM
3590 * @length: size of EEPROM to calculate a checksum for
3591 *
3592 * Calculates the checksum for some buffer on a specified length. The
3593 * checksum calculated is returned.
3594 **/
ixgbe_calculate_checksum(u8 * buffer,u32 length)3595 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3596 {
3597 u32 i;
3598 u8 sum = 0;
3599
3600 if (!buffer)
3601 return 0;
3602
3603 for (i = 0; i < length; i++)
3604 sum += buffer[i];
3605
3606 return (u8) (0 - sum);
3607 }
3608
3609 /**
3610 * ixgbe_hic_unlocked - Issue command to manageability block unlocked
3611 * @hw: pointer to the HW structure
3612 * @buffer: command to write and where the return status will be placed
3613 * @length: length of buffer, must be multiple of 4 bytes
3614 * @timeout: time in ms to wait for command completion
3615 *
3616 * Communicates with the manageability block. On success return 0
3617 * else returns semaphore error when encountering an error acquiring
3618 * semaphore, -EINVAL when incorrect parameters passed or -EIO when
3619 * command fails.
3620 *
3621 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3622 * by the caller.
3623 **/
ixgbe_hic_unlocked(struct ixgbe_hw * hw,u32 * buffer,u32 length,u32 timeout)3624 int ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3625 u32 timeout)
3626 {
3627 u32 hicr, i, fwsts;
3628 u16 dword_len;
3629
3630 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3631 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3632 return -EINVAL;
3633 }
3634
3635 /* Set bit 9 of FWSTS clearing FW reset indication */
3636 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3637 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3638
3639 /* Check that the host interface is enabled. */
3640 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3641 if (!(hicr & IXGBE_HICR_EN)) {
3642 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3643 return -EIO;
3644 }
3645
3646 /* Calculate length in DWORDs. We must be DWORD aligned */
3647 if (length % sizeof(u32)) {
3648 hw_dbg(hw, "Buffer length failure, not aligned to dword");
3649 return -EINVAL;
3650 }
3651
3652 dword_len = length >> 2;
3653
3654 /* The device driver writes the relevant command block
3655 * into the ram area.
3656 */
3657 for (i = 0; i < dword_len; i++)
3658 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3659 i, (__force u32)cpu_to_le32(buffer[i]));
3660
3661 /* Setting this bit tells the ARC that a new command is pending. */
3662 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3663
3664 for (i = 0; i < timeout; i++) {
3665 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3666 if (!(hicr & IXGBE_HICR_C))
3667 break;
3668 usleep_range(1000, 2000);
3669 }
3670
3671 /* Check command successful completion. */
3672 if ((timeout && i == timeout) ||
3673 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3674 return -EIO;
3675
3676 return 0;
3677 }
3678
3679 /**
3680 * ixgbe_host_interface_command - Issue command to manageability block
3681 * @hw: pointer to the HW structure
3682 * @buffer: contains the command to write and where the return status will
3683 * be placed
3684 * @length: length of buffer, must be multiple of 4 bytes
3685 * @timeout: time in ms to wait for command completion
3686 * @return_data: read and return data from the buffer (true) or not (false)
3687 * Needed because FW structures are big endian and decoding of
3688 * these fields can be 8 bit or 16 bit based on command. Decoding
3689 * is not easily understood without making a table of commands.
3690 * So we will leave this up to the caller to read back the data
3691 * in these cases.
3692 *
3693 * Communicates with the manageability block. On success return 0
3694 * else return -EIO or -EINVAL.
3695 **/
ixgbe_host_interface_command(struct ixgbe_hw * hw,void * buffer,u32 length,u32 timeout,bool return_data)3696 int ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3697 u32 length, u32 timeout,
3698 bool return_data)
3699 {
3700 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3701 struct ixgbe_hic_hdr *hdr = buffer;
3702 u16 buf_len, dword_len;
3703 u32 *u32arr = buffer;
3704 int status;
3705 u32 bi;
3706
3707 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3708 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3709 return -EINVAL;
3710 }
3711 /* Take management host interface semaphore */
3712 status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3713 if (status)
3714 return status;
3715
3716 status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3717 if (status)
3718 goto rel_out;
3719
3720 if (!return_data)
3721 goto rel_out;
3722
3723 /* Calculate length in DWORDs */
3724 dword_len = hdr_size >> 2;
3725
3726 /* first pull in the header so we know the buffer length */
3727 for (bi = 0; bi < dword_len; bi++) {
3728 u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3729 le32_to_cpus(&u32arr[bi]);
3730 }
3731
3732 /* If there is any thing in data position pull it in */
3733 buf_len = hdr->buf_len;
3734 if (!buf_len)
3735 goto rel_out;
3736
3737 if (length < round_up(buf_len, 4) + hdr_size) {
3738 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3739 status = -EIO;
3740 goto rel_out;
3741 }
3742
3743 /* Calculate length in DWORDs, add 3 for odd lengths */
3744 dword_len = (buf_len + 3) >> 2;
3745
3746 /* Pull in the rest of the buffer (bi is where we left off) */
3747 for (; bi <= dword_len; bi++) {
3748 u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3749 le32_to_cpus(&u32arr[bi]);
3750 }
3751
3752 rel_out:
3753 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3754
3755 return status;
3756 }
3757
3758 /**
3759 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3760 * @hw: pointer to the HW structure
3761 * @maj: driver version major number
3762 * @min: driver version minor number
3763 * @build: driver version build number
3764 * @sub: driver version sub build number
3765 * @len: length of driver_ver string
3766 * @driver_ver: driver string
3767 *
3768 * Sends driver version number to firmware through the manageability
3769 * block. On success return 0
3770 * else returns -EBUSY when encountering an error acquiring
3771 * semaphore or -EIO when command fails.
3772 **/
ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw * hw,u8 maj,u8 min,u8 build,u8 sub,__always_unused u16 len,__always_unused const char * driver_ver)3773 int ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3774 u8 build, u8 sub, __always_unused u16 len,
3775 __always_unused const char *driver_ver)
3776 {
3777 struct ixgbe_hic_drv_info fw_cmd;
3778 int ret_val;
3779 int i;
3780
3781 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3782 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3783 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3784 fw_cmd.port_num = hw->bus.func;
3785 fw_cmd.ver_maj = maj;
3786 fw_cmd.ver_min = min;
3787 fw_cmd.ver_build = build;
3788 fw_cmd.ver_sub = sub;
3789 fw_cmd.hdr.checksum = 0;
3790 fw_cmd.pad = 0;
3791 fw_cmd.pad2 = 0;
3792 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3793 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3794
3795 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3796 ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3797 sizeof(fw_cmd),
3798 IXGBE_HI_COMMAND_TIMEOUT,
3799 true);
3800 if (ret_val != 0)
3801 continue;
3802
3803 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3804 FW_CEM_RESP_STATUS_SUCCESS)
3805 ret_val = 0;
3806 else
3807 ret_val = -EIO;
3808
3809 break;
3810 }
3811
3812 return ret_val;
3813 }
3814
3815 /**
3816 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3817 * @hw: pointer to the hardware structure
3818 *
3819 * The 82599 and x540 MACs can experience issues if TX work is still pending
3820 * when a reset occurs. This function prevents this by flushing the PCIe
3821 * buffers on the system.
3822 **/
ixgbe_clear_tx_pending(struct ixgbe_hw * hw)3823 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3824 {
3825 u32 gcr_ext, hlreg0, i, poll;
3826 u16 value;
3827
3828 /*
3829 * If double reset is not requested then all transactions should
3830 * already be clear and as such there is no work to do
3831 */
3832 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3833 return;
3834
3835 /*
3836 * Set loopback enable to prevent any transmits from being sent
3837 * should the link come up. This assumes that the RXCTRL.RXEN bit
3838 * has already been cleared.
3839 */
3840 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3841 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3842
3843 /* wait for a last completion before clearing buffers */
3844 IXGBE_WRITE_FLUSH(hw);
3845 usleep_range(3000, 6000);
3846
3847 /* Before proceeding, make sure that the PCIe block does not have
3848 * transactions pending.
3849 */
3850 poll = ixgbe_pcie_timeout_poll(hw);
3851 for (i = 0; i < poll; i++) {
3852 usleep_range(100, 200);
3853 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3854 if (ixgbe_removed(hw->hw_addr))
3855 break;
3856 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3857 break;
3858 }
3859
3860 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3861 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3862 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3863 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3864
3865 /* Flush all writes and allow 20usec for all transactions to clear */
3866 IXGBE_WRITE_FLUSH(hw);
3867 udelay(20);
3868
3869 /* restore previous register values */
3870 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3871 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3872 }
3873
3874 static const u8 ixgbe_emc_temp_data[4] = {
3875 IXGBE_EMC_INTERNAL_DATA,
3876 IXGBE_EMC_DIODE1_DATA,
3877 IXGBE_EMC_DIODE2_DATA,
3878 IXGBE_EMC_DIODE3_DATA
3879 };
3880 static const u8 ixgbe_emc_therm_limit[4] = {
3881 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3882 IXGBE_EMC_DIODE1_THERM_LIMIT,
3883 IXGBE_EMC_DIODE2_THERM_LIMIT,
3884 IXGBE_EMC_DIODE3_THERM_LIMIT
3885 };
3886
3887 /**
3888 * ixgbe_get_ets_data - Extracts the ETS bit data
3889 * @hw: pointer to hardware structure
3890 * @ets_cfg: extected ETS data
3891 * @ets_offset: offset of ETS data
3892 *
3893 * Returns error code.
3894 **/
ixgbe_get_ets_data(struct ixgbe_hw * hw,u16 * ets_cfg,u16 * ets_offset)3895 static int ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3896 u16 *ets_offset)
3897 {
3898 int status;
3899
3900 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3901 if (status)
3902 return status;
3903
3904 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3905 return -EOPNOTSUPP;
3906
3907 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3908 if (status)
3909 return status;
3910
3911 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3912 return -EOPNOTSUPP;
3913
3914 return 0;
3915 }
3916
3917 /**
3918 * ixgbe_get_thermal_sensor_data_generic - Gathers thermal sensor data
3919 * @hw: pointer to hardware structure
3920 *
3921 * Returns the thermal sensor data structure
3922 **/
ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw * hw)3923 int ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3924 {
3925 u16 ets_offset;
3926 u16 ets_sensor;
3927 u8 num_sensors;
3928 u16 ets_cfg;
3929 int status;
3930 u8 i;
3931 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3932
3933 /* Only support thermal sensors attached to physical port 0 */
3934 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3935 return -EOPNOTSUPP;
3936
3937 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3938 if (status)
3939 return status;
3940
3941 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3942 if (num_sensors > IXGBE_MAX_SENSORS)
3943 num_sensors = IXGBE_MAX_SENSORS;
3944
3945 for (i = 0; i < num_sensors; i++) {
3946 u8 sensor_index;
3947 u8 sensor_location;
3948
3949 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3950 &ets_sensor);
3951 if (status)
3952 return status;
3953
3954 sensor_index = FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK,
3955 ets_sensor);
3956 sensor_location = FIELD_GET(IXGBE_ETS_DATA_LOC_MASK,
3957 ets_sensor);
3958
3959 if (sensor_location != 0) {
3960 status = hw->phy.ops.read_i2c_byte(hw,
3961 ixgbe_emc_temp_data[sensor_index],
3962 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3963 &data->sensor[i].temp);
3964 if (status)
3965 return status;
3966 }
3967 }
3968
3969 return 0;
3970 }
3971
3972 /**
3973 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3974 * @hw: pointer to hardware structure
3975 *
3976 * Inits the thermal sensor thresholds according to the NVM map
3977 * and save off the threshold and location values into mac.thermal_sensor_data
3978 **/
ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw * hw)3979 int ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3980 {
3981 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3982 u8 low_thresh_delta;
3983 u8 num_sensors;
3984 u8 therm_limit;
3985 u16 ets_sensor;
3986 u16 ets_offset;
3987 u16 ets_cfg;
3988 int status;
3989 u8 i;
3990
3991 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3992
3993 /* Only support thermal sensors attached to physical port 0 */
3994 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3995 return -EOPNOTSUPP;
3996
3997 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3998 if (status)
3999 return status;
4000
4001 low_thresh_delta = FIELD_GET(IXGBE_ETS_LTHRES_DELTA_MASK, ets_cfg);
4002 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
4003 if (num_sensors > IXGBE_MAX_SENSORS)
4004 num_sensors = IXGBE_MAX_SENSORS;
4005
4006 for (i = 0; i < num_sensors; i++) {
4007 u8 sensor_index;
4008 u8 sensor_location;
4009
4010 if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
4011 hw_err(hw, "eeprom read at offset %d failed\n",
4012 ets_offset + 1 + i);
4013 continue;
4014 }
4015 sensor_index = FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK,
4016 ets_sensor);
4017 sensor_location = FIELD_GET(IXGBE_ETS_DATA_LOC_MASK,
4018 ets_sensor);
4019 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4020
4021 hw->phy.ops.write_i2c_byte(hw,
4022 ixgbe_emc_therm_limit[sensor_index],
4023 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4024
4025 if (sensor_location == 0)
4026 continue;
4027
4028 data->sensor[i].location = sensor_location;
4029 data->sensor[i].caution_thresh = therm_limit;
4030 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4031 }
4032
4033 return 0;
4034 }
4035
4036 /**
4037 * ixgbe_get_orom_version - Return option ROM from EEPROM
4038 *
4039 * @hw: pointer to hardware structure
4040 * @nvm_ver: pointer to output structure
4041 *
4042 * if valid option ROM version, nvm_ver->or_valid set to true
4043 * else nvm_ver->or_valid is false.
4044 **/
ixgbe_get_orom_version(struct ixgbe_hw * hw,struct ixgbe_nvm_version * nvm_ver)4045 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4046 struct ixgbe_nvm_version *nvm_ver)
4047 {
4048 u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4049
4050 nvm_ver->or_valid = false;
4051 /* Option Rom may or may not be present. Start with pointer */
4052 hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4053
4054 /* make sure offset is valid */
4055 if (offset == 0x0 || offset == NVM_INVALID_PTR)
4056 return;
4057
4058 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4059 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4060
4061 /* option rom exists and is valid */
4062 if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4063 eeprom_cfg_blkl == NVM_VER_INVALID ||
4064 eeprom_cfg_blkh == NVM_VER_INVALID)
4065 return;
4066
4067 nvm_ver->or_valid = true;
4068 nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4069 nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4070 (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4071 nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4072 }
4073
4074 /**
4075 * ixgbe_get_oem_prod_version - Etrack ID from EEPROM
4076 * @hw: pointer to hardware structure
4077 * @nvm_ver: pointer to output structure
4078 *
4079 * if valid OEM product version, nvm_ver->oem_valid set to true
4080 * else nvm_ver->oem_valid is false.
4081 **/
ixgbe_get_oem_prod_version(struct ixgbe_hw * hw,struct ixgbe_nvm_version * nvm_ver)4082 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4083 struct ixgbe_nvm_version *nvm_ver)
4084 {
4085 u16 rel_num, prod_ver, mod_len, cap, offset;
4086
4087 nvm_ver->oem_valid = false;
4088 hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4089
4090 /* Return is offset to OEM Product Version block is invalid */
4091 if (offset == 0x0 || offset == NVM_INVALID_PTR)
4092 return;
4093
4094 /* Read product version block */
4095 hw->eeprom.ops.read(hw, offset, &mod_len);
4096 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4097
4098 /* Return if OEM product version block is invalid */
4099 if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4100 (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4101 return;
4102
4103 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4104 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4105
4106 /* Return if version is invalid */
4107 if ((rel_num | prod_ver) == 0x0 ||
4108 rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4109 return;
4110
4111 nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4112 nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4113 nvm_ver->oem_release = rel_num;
4114 nvm_ver->oem_valid = true;
4115 }
4116
4117 /**
4118 * ixgbe_get_etk_id - Return Etrack ID from EEPROM
4119 *
4120 * @hw: pointer to hardware structure
4121 * @nvm_ver: pointer to output structure
4122 *
4123 * word read errors will return 0xFFFF
4124 **/
ixgbe_get_etk_id(struct ixgbe_hw * hw,struct ixgbe_nvm_version * nvm_ver)4125 void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4126 struct ixgbe_nvm_version *nvm_ver)
4127 {
4128 u16 etk_id_l, etk_id_h;
4129
4130 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4131 etk_id_l = NVM_VER_INVALID;
4132 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4133 etk_id_h = NVM_VER_INVALID;
4134
4135 /* The word order for the version format is determined by high order
4136 * word bit 15.
4137 */
4138 if ((etk_id_h & NVM_ETK_VALID) == 0) {
4139 nvm_ver->etk_id = etk_id_h;
4140 nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4141 } else {
4142 nvm_ver->etk_id = etk_id_l;
4143 nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4144 }
4145 }
4146
ixgbe_disable_rx_generic(struct ixgbe_hw * hw)4147 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4148 {
4149 u32 rxctrl;
4150
4151 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4152 if (rxctrl & IXGBE_RXCTRL_RXEN) {
4153 if (hw->mac.type != ixgbe_mac_82598EB) {
4154 u32 pfdtxgswc;
4155
4156 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4157 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4158 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4159 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4160 hw->mac.set_lben = true;
4161 } else {
4162 hw->mac.set_lben = false;
4163 }
4164 }
4165 rxctrl &= ~IXGBE_RXCTRL_RXEN;
4166 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4167 }
4168 }
4169
ixgbe_enable_rx_generic(struct ixgbe_hw * hw)4170 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4171 {
4172 u32 rxctrl;
4173
4174 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4175 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4176
4177 if (hw->mac.type != ixgbe_mac_82598EB) {
4178 if (hw->mac.set_lben) {
4179 u32 pfdtxgswc;
4180
4181 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4182 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4183 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4184 hw->mac.set_lben = false;
4185 }
4186 }
4187 }
4188
4189 /** ixgbe_mng_present - returns true when management capability is present
4190 * @hw: pointer to hardware structure
4191 **/
ixgbe_mng_present(struct ixgbe_hw * hw)4192 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4193 {
4194 u32 fwsm;
4195
4196 if (hw->mac.type < ixgbe_mac_82599EB)
4197 return false;
4198
4199 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4200
4201 return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4202 }
4203
4204 /**
4205 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4206 * @hw: pointer to hardware structure
4207 * @speed: new link speed
4208 * @autoneg_wait_to_complete: true when waiting for completion is needed
4209 *
4210 * Set the link speed in the MAC and/or PHY register and restarts link.
4211 */
ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw * hw,ixgbe_link_speed speed,bool autoneg_wait_to_complete)4212 int ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4213 ixgbe_link_speed speed,
4214 bool autoneg_wait_to_complete)
4215 {
4216 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4217 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4218 bool autoneg, link_up = false;
4219 u32 speedcnt = 0;
4220 int status = 0;
4221 u32 i = 0;
4222
4223 /* Mask off requested but non-supported speeds */
4224 status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4225 if (status)
4226 return status;
4227
4228 speed &= link_speed;
4229
4230 /* Try each speed one by one, highest priority first. We do this in
4231 * software because 10Gb fiber doesn't support speed autonegotiation.
4232 */
4233 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4234 speedcnt++;
4235 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4236
4237 /* Set the module link speed */
4238 switch (hw->phy.media_type) {
4239 case ixgbe_media_type_fiber:
4240 hw->mac.ops.set_rate_select_speed(hw,
4241 IXGBE_LINK_SPEED_10GB_FULL);
4242 break;
4243 case ixgbe_media_type_fiber_qsfp:
4244 /* QSFP module automatically detects MAC link speed */
4245 break;
4246 default:
4247 hw_dbg(hw, "Unexpected media type\n");
4248 break;
4249 }
4250
4251 /* Allow module to change analog characteristics (1G->10G) */
4252 msleep(40);
4253
4254 status = hw->mac.ops.setup_mac_link(hw,
4255 IXGBE_LINK_SPEED_10GB_FULL,
4256 autoneg_wait_to_complete);
4257 if (status)
4258 return status;
4259
4260 /* Flap the Tx laser if it has not already been done */
4261 if (hw->mac.ops.flap_tx_laser)
4262 hw->mac.ops.flap_tx_laser(hw);
4263
4264 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4265 * Section 73.10.2, we may have to wait up to 500ms if KR is
4266 * attempted. 82599 uses the same timing for 10g SFI.
4267 */
4268 for (i = 0; i < 5; i++) {
4269 /* Wait for the link partner to also set speed */
4270 msleep(100);
4271
4272 /* If we have link, just jump out */
4273 status = hw->mac.ops.check_link(hw, &link_speed,
4274 &link_up, false);
4275 if (status)
4276 return status;
4277
4278 if (link_up)
4279 goto out;
4280 }
4281 }
4282
4283 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4284 speedcnt++;
4285 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4286 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4287
4288 /* Set the module link speed */
4289 switch (hw->phy.media_type) {
4290 case ixgbe_media_type_fiber:
4291 hw->mac.ops.set_rate_select_speed(hw,
4292 IXGBE_LINK_SPEED_1GB_FULL);
4293 break;
4294 case ixgbe_media_type_fiber_qsfp:
4295 /* QSFP module automatically detects link speed */
4296 break;
4297 default:
4298 hw_dbg(hw, "Unexpected media type\n");
4299 break;
4300 }
4301
4302 /* Allow module to change analog characteristics (10G->1G) */
4303 msleep(40);
4304
4305 status = hw->mac.ops.setup_mac_link(hw,
4306 IXGBE_LINK_SPEED_1GB_FULL,
4307 autoneg_wait_to_complete);
4308 if (status)
4309 return status;
4310
4311 /* Flap the Tx laser if it has not already been done */
4312 if (hw->mac.ops.flap_tx_laser)
4313 hw->mac.ops.flap_tx_laser(hw);
4314
4315 /* Wait for the link partner to also set speed */
4316 msleep(100);
4317
4318 /* If we have link, just jump out */
4319 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4320 false);
4321 if (status)
4322 return status;
4323
4324 if (link_up)
4325 goto out;
4326 }
4327
4328 /* We didn't get link. Configure back to the highest speed we tried,
4329 * (if there was more than one). We call ourselves back with just the
4330 * single highest speed that the user requested.
4331 */
4332 if (speedcnt > 1)
4333 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4334 highest_link_speed,
4335 autoneg_wait_to_complete);
4336
4337 out:
4338 /* Set autoneg_advertised value based on input link speed */
4339 hw->phy.autoneg_advertised = 0;
4340
4341 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4342 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4343
4344 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4345 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4346
4347 return status;
4348 }
4349
4350 /**
4351 * ixgbe_set_soft_rate_select_speed - Set module link speed
4352 * @hw: pointer to hardware structure
4353 * @speed: link speed to set
4354 *
4355 * Set module link speed via the soft rate select.
4356 */
ixgbe_set_soft_rate_select_speed(struct ixgbe_hw * hw,ixgbe_link_speed speed)4357 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4358 ixgbe_link_speed speed)
4359 {
4360 u8 rs, eeprom_data;
4361 int status;
4362
4363 switch (speed) {
4364 case IXGBE_LINK_SPEED_10GB_FULL:
4365 /* one bit mask same as setting on */
4366 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4367 break;
4368 case IXGBE_LINK_SPEED_1GB_FULL:
4369 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4370 break;
4371 default:
4372 hw_dbg(hw, "Invalid fixed module speed\n");
4373 return;
4374 }
4375
4376 /* Set RS0 */
4377 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4378 IXGBE_I2C_EEPROM_DEV_ADDR2,
4379 &eeprom_data);
4380 if (status) {
4381 hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4382 return;
4383 }
4384
4385 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4386
4387 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4388 IXGBE_I2C_EEPROM_DEV_ADDR2,
4389 eeprom_data);
4390 if (status) {
4391 hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4392 return;
4393 }
4394
4395 /* Set RS1 */
4396 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4397 IXGBE_I2C_EEPROM_DEV_ADDR2,
4398 &eeprom_data);
4399 if (status) {
4400 hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4401 return;
4402 }
4403
4404 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4405
4406 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4407 IXGBE_I2C_EEPROM_DEV_ADDR2,
4408 eeprom_data);
4409 if (status) {
4410 hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4411 return;
4412 }
4413 }
4414