1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <[email protected]> */
3
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8
9 #include "igb.h"
10
11 #define INCVALUE_MASK 0x7fffffff
12 #define ISGN 0x80000000
13
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15 * and this update value cannot be reprogrammed.
16 *
17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
18 * nanoseconds time values for very long. For the 82580, SYSTIM always
19 * counts nanoseconds, but the upper 24 bits are not available. The
20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
21 * register, TIMINCA.
22 *
23 * For the 82576, the SYSTIM register time unit is affect by the
24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25 * field are needed to provide the nominal 16 nanosecond period,
26 * leaving 19 bits for fractional nanoseconds.
27 *
28 * We scale the NIC clock cycle by a large factor so that relatively
29 * small clock corrections can be added or subtracted at each clock
30 * tick. The drawbacks of a large factor are a) that the clock
31 * register overflows more quickly (not such a big deal) and b) that
32 * the increment per tick has to fit into 24 bits. As a result we
33 * need to use a shift of 19 so we can fit a value of 16 into the
34 * TIMINCA register.
35 *
36 *
37 * SYSTIMH SYSTIML
38 * +--------------+ +---+---+------+
39 * 82576 | 32 | | 8 | 5 | 19 |
40 * +--------------+ +---+---+------+
41 * \________ 45 bits _______/ fract
42 *
43 * +----------+---+ +--------------+
44 * 82580 | 24 | 8 | | 32 |
45 * +----------+---+ +--------------+
46 * reserved \______ 40 bits _____/
47 *
48 *
49 * The 45 bit 82576 SYSTIM overflows every
50 * 2^45 * 10^-9 / 3600 = 9.77 hours.
51 *
52 * The 40 bit 82580 SYSTIM overflows every
53 * 2^40 * 10^-9 / 60 = 18.3 minutes.
54 *
55 * SYSTIM is converted to real time using a timecounter. As
56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
57 * to be updated at least once per half of the SYSTIM interval.
58 * Scheduling of delayed work is not very accurate, and also the NIC
59 * clock can be adjusted to run up to 6% faster and the system clock
60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
61 * interval in the NIC time is shorter than 9.16 minutes.
62 */
63
64 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT (HZ * 15)
66 #define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580 40
70 #define IGB_82580_BASE_PERIOD 0x800000000
71
72 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
73 static void igb_ptp_sdp_init(struct igb_adapter *adapter);
74
75 /* SYSTIM read access for the 82576 */
igb_ptp_read_82576(const struct cyclecounter * cc)76 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
77 {
78 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
79 struct e1000_hw *hw = &igb->hw;
80 u64 val;
81 u32 lo, hi;
82
83 lo = rd32(E1000_SYSTIML);
84 hi = rd32(E1000_SYSTIMH);
85
86 val = ((u64) hi) << 32;
87 val |= lo;
88
89 return val;
90 }
91
92 /* SYSTIM read access for the 82580 */
igb_ptp_read_82580(const struct cyclecounter * cc)93 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
94 {
95 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
96 struct e1000_hw *hw = &igb->hw;
97 u32 lo, hi;
98 u64 val;
99
100 /* The timestamp latches on lowest register read. For the 82580
101 * the lowest register is SYSTIMR instead of SYSTIML. However we only
102 * need to provide nanosecond resolution, so we just ignore it.
103 */
104 rd32(E1000_SYSTIMR);
105 lo = rd32(E1000_SYSTIML);
106 hi = rd32(E1000_SYSTIMH);
107
108 val = ((u64) hi) << 32;
109 val |= lo;
110
111 return val;
112 }
113
114 /* SYSTIM read access for I210/I211 */
igb_ptp_read_i210(struct igb_adapter * adapter,struct timespec64 * ts)115 static void igb_ptp_read_i210(struct igb_adapter *adapter,
116 struct timespec64 *ts)
117 {
118 struct e1000_hw *hw = &adapter->hw;
119 u32 sec, nsec;
120
121 /* The timestamp latches on lowest register read. For I210/I211, the
122 * lowest register is SYSTIMR. Since we only need to provide nanosecond
123 * resolution, we can ignore it.
124 */
125 rd32(E1000_SYSTIMR);
126 nsec = rd32(E1000_SYSTIML);
127 sec = rd32(E1000_SYSTIMH);
128
129 ts->tv_sec = sec;
130 ts->tv_nsec = nsec;
131 }
132
igb_ptp_write_i210(struct igb_adapter * adapter,const struct timespec64 * ts)133 static void igb_ptp_write_i210(struct igb_adapter *adapter,
134 const struct timespec64 *ts)
135 {
136 struct e1000_hw *hw = &adapter->hw;
137
138 /* Writing the SYSTIMR register is not necessary as it only provides
139 * sub-nanosecond resolution.
140 */
141 wr32(E1000_SYSTIML, ts->tv_nsec);
142 wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
143 }
144
145 /**
146 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
147 * @adapter: board private structure
148 * @hwtstamps: timestamp structure to update
149 * @systim: unsigned 64bit system time value.
150 *
151 * We need to convert the system time value stored in the RX/TXSTMP registers
152 * into a hwtstamp which can be used by the upper level timestamping functions.
153 *
154 * The 'tmreg_lock' spinlock is used to protect the consistency of the
155 * system time value. This is needed because reading the 64 bit time
156 * value involves reading two (or three) 32 bit registers. The first
157 * read latches the value. Ditto for writing.
158 *
159 * In addition, here have extended the system time with an overflow
160 * counter in software.
161 **/
igb_ptp_systim_to_hwtstamp(struct igb_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)162 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
163 struct skb_shared_hwtstamps *hwtstamps,
164 u64 systim)
165 {
166 unsigned long flags;
167 u64 ns;
168
169 memset(hwtstamps, 0, sizeof(*hwtstamps));
170
171 switch (adapter->hw.mac.type) {
172 case e1000_82576:
173 case e1000_82580:
174 case e1000_i354:
175 case e1000_i350:
176 spin_lock_irqsave(&adapter->tmreg_lock, flags);
177 ns = timecounter_cyc2time(&adapter->tc, systim);
178 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
179
180 hwtstamps->hwtstamp = ns_to_ktime(ns);
181 break;
182 case e1000_i210:
183 case e1000_i211:
184 /* Upper 32 bits contain s, lower 32 bits contain ns. */
185 hwtstamps->hwtstamp = ktime_set(systim >> 32,
186 systim & 0xFFFFFFFF);
187 break;
188 default:
189 break;
190 }
191 }
192
193 /* PTP clock operations */
igb_ptp_adjfine_82576(struct ptp_clock_info * ptp,long scaled_ppm)194 static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm)
195 {
196 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
197 ptp_caps);
198 struct e1000_hw *hw = &igb->hw;
199 u64 incvalue;
200
201 incvalue = adjust_by_scaled_ppm(INCVALUE_82576, scaled_ppm);
202
203 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
204
205 return 0;
206 }
207
igb_ptp_adjfine_82580(struct ptp_clock_info * ptp,long scaled_ppm)208 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
209 {
210 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
211 ptp_caps);
212 struct e1000_hw *hw = &igb->hw;
213 bool neg_adj;
214 u64 rate;
215 u32 inca;
216
217 neg_adj = diff_by_scaled_ppm(IGB_82580_BASE_PERIOD, scaled_ppm, &rate);
218
219 inca = rate & INCVALUE_MASK;
220 if (neg_adj)
221 inca |= ISGN;
222
223 wr32(E1000_TIMINCA, inca);
224
225 return 0;
226 }
227
igb_ptp_adjtime_82576(struct ptp_clock_info * ptp,s64 delta)228 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
229 {
230 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231 ptp_caps);
232 unsigned long flags;
233
234 spin_lock_irqsave(&igb->tmreg_lock, flags);
235 timecounter_adjtime(&igb->tc, delta);
236 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
237
238 return 0;
239 }
240
igb_ptp_adjtime_i210(struct ptp_clock_info * ptp,s64 delta)241 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
242 {
243 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
244 ptp_caps);
245 unsigned long flags;
246 struct timespec64 now, then = ns_to_timespec64(delta);
247
248 spin_lock_irqsave(&igb->tmreg_lock, flags);
249
250 igb_ptp_read_i210(igb, &now);
251 now = timespec64_add(now, then);
252 igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
253
254 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
255
256 return 0;
257 }
258
igb_ptp_gettimex_82576(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)259 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
260 struct timespec64 *ts,
261 struct ptp_system_timestamp *sts)
262 {
263 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
264 ptp_caps);
265 struct e1000_hw *hw = &igb->hw;
266 unsigned long flags;
267 u32 lo, hi;
268 u64 ns;
269
270 spin_lock_irqsave(&igb->tmreg_lock, flags);
271
272 ptp_read_system_prets(sts);
273 lo = rd32(E1000_SYSTIML);
274 ptp_read_system_postts(sts);
275 hi = rd32(E1000_SYSTIMH);
276
277 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
278
279 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
280
281 *ts = ns_to_timespec64(ns);
282
283 return 0;
284 }
285
igb_ptp_gettimex_82580(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)286 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
287 struct timespec64 *ts,
288 struct ptp_system_timestamp *sts)
289 {
290 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
291 ptp_caps);
292 struct e1000_hw *hw = &igb->hw;
293 unsigned long flags;
294 u32 lo, hi;
295 u64 ns;
296
297 spin_lock_irqsave(&igb->tmreg_lock, flags);
298
299 ptp_read_system_prets(sts);
300 rd32(E1000_SYSTIMR);
301 ptp_read_system_postts(sts);
302 lo = rd32(E1000_SYSTIML);
303 hi = rd32(E1000_SYSTIMH);
304
305 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
306
307 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
308
309 *ts = ns_to_timespec64(ns);
310
311 return 0;
312 }
313
igb_ptp_gettimex_i210(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)314 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
315 struct timespec64 *ts,
316 struct ptp_system_timestamp *sts)
317 {
318 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
319 ptp_caps);
320 struct e1000_hw *hw = &igb->hw;
321 unsigned long flags;
322
323 spin_lock_irqsave(&igb->tmreg_lock, flags);
324
325 ptp_read_system_prets(sts);
326 rd32(E1000_SYSTIMR);
327 ptp_read_system_postts(sts);
328 ts->tv_nsec = rd32(E1000_SYSTIML);
329 ts->tv_sec = rd32(E1000_SYSTIMH);
330
331 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
332
333 return 0;
334 }
335
igb_ptp_settime_82576(struct ptp_clock_info * ptp,const struct timespec64 * ts)336 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
337 const struct timespec64 *ts)
338 {
339 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
340 ptp_caps);
341 unsigned long flags;
342 u64 ns;
343
344 ns = timespec64_to_ns(ts);
345
346 spin_lock_irqsave(&igb->tmreg_lock, flags);
347
348 timecounter_init(&igb->tc, &igb->cc, ns);
349
350 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
351
352 return 0;
353 }
354
igb_ptp_settime_i210(struct ptp_clock_info * ptp,const struct timespec64 * ts)355 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
356 const struct timespec64 *ts)
357 {
358 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
359 ptp_caps);
360 unsigned long flags;
361
362 spin_lock_irqsave(&igb->tmreg_lock, flags);
363
364 igb_ptp_write_i210(igb, ts);
365
366 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
367
368 return 0;
369 }
370
igb_pin_direction(int pin,int input,u32 * ctrl,u32 * ctrl_ext)371 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
372 {
373 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
374 static const u32 mask[IGB_N_SDP] = {
375 E1000_CTRL_SDP0_DIR,
376 E1000_CTRL_SDP1_DIR,
377 E1000_CTRL_EXT_SDP2_DIR,
378 E1000_CTRL_EXT_SDP3_DIR,
379 };
380
381 if (input)
382 *ptr &= ~mask[pin];
383 else
384 *ptr |= mask[pin];
385 }
386
igb_pin_extts(struct igb_adapter * igb,int chan,int pin)387 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
388 {
389 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
390 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
391 };
392 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
393 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
394 };
395 static const u32 ts_sdp_en[IGB_N_SDP] = {
396 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
397 };
398 struct e1000_hw *hw = &igb->hw;
399 u32 ctrl, ctrl_ext, tssdp = 0;
400
401 ctrl = rd32(E1000_CTRL);
402 ctrl_ext = rd32(E1000_CTRL_EXT);
403 tssdp = rd32(E1000_TSSDP);
404
405 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
406
407 /* Make sure this pin is not enabled as an output. */
408 tssdp &= ~ts_sdp_en[pin];
409
410 if (chan == 1) {
411 tssdp &= ~AUX1_SEL_SDP3;
412 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
413 } else {
414 tssdp &= ~AUX0_SEL_SDP3;
415 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
416 }
417
418 wr32(E1000_TSSDP, tssdp);
419 wr32(E1000_CTRL, ctrl);
420 wr32(E1000_CTRL_EXT, ctrl_ext);
421 }
422
igb_pin_perout(struct igb_adapter * igb,int chan,int pin,int freq)423 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
424 {
425 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
426 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
427 };
428 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
429 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
430 };
431 static const u32 ts_sdp_en[IGB_N_SDP] = {
432 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
433 };
434 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
435 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
436 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
437 };
438 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
439 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
440 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
441 };
442 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
443 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
444 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
445 };
446 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
447 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
448 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
449 };
450 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
451 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
452 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
453 };
454 struct e1000_hw *hw = &igb->hw;
455 u32 ctrl, ctrl_ext, tssdp = 0;
456
457 ctrl = rd32(E1000_CTRL);
458 ctrl_ext = rd32(E1000_CTRL_EXT);
459 tssdp = rd32(E1000_TSSDP);
460
461 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
462
463 /* Make sure this pin is not enabled as an input. */
464 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
465 tssdp &= ~AUX0_TS_SDP_EN;
466
467 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
468 tssdp &= ~AUX1_TS_SDP_EN;
469
470 tssdp &= ~ts_sdp_sel_clr[pin];
471 if (freq) {
472 if (chan == 1)
473 tssdp |= ts_sdp_sel_fc1[pin];
474 else
475 tssdp |= ts_sdp_sel_fc0[pin];
476 } else {
477 if (chan == 1)
478 tssdp |= ts_sdp_sel_tt1[pin];
479 else
480 tssdp |= ts_sdp_sel_tt0[pin];
481 }
482 tssdp |= ts_sdp_en[pin];
483
484 wr32(E1000_TSSDP, tssdp);
485 wr32(E1000_CTRL, ctrl);
486 wr32(E1000_CTRL_EXT, ctrl_ext);
487 }
488
igb_ptp_feature_enable_82580(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)489 static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
490 struct ptp_clock_request *rq, int on)
491 {
492 struct igb_adapter *igb =
493 container_of(ptp, struct igb_adapter, ptp_caps);
494 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
495 systimh, level_mask, level, rem;
496 struct e1000_hw *hw = &igb->hw;
497 struct timespec64 ts, start;
498 unsigned long flags;
499 u64 systim, now;
500 int pin = -1;
501 s64 ns;
502
503 switch (rq->type) {
504 case PTP_CLK_REQ_EXTTS:
505 /* Reject requests with unsupported flags */
506 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
507 PTP_RISING_EDGE |
508 PTP_FALLING_EDGE |
509 PTP_STRICT_FLAGS))
510 return -EOPNOTSUPP;
511
512 /* Both the rising and falling edge are timestamped */
513 if (rq->extts.flags & PTP_STRICT_FLAGS &&
514 (rq->extts.flags & PTP_ENABLE_FEATURE) &&
515 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
516 return -EOPNOTSUPP;
517
518 if (on) {
519 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
520 rq->extts.index);
521 if (pin < 0)
522 return -EBUSY;
523 }
524 if (rq->extts.index == 1) {
525 tsauxc_mask = TSAUXC_EN_TS1;
526 tsim_mask = TSINTR_AUTT1;
527 } else {
528 tsauxc_mask = TSAUXC_EN_TS0;
529 tsim_mask = TSINTR_AUTT0;
530 }
531 spin_lock_irqsave(&igb->tmreg_lock, flags);
532 tsauxc = rd32(E1000_TSAUXC);
533 tsim = rd32(E1000_TSIM);
534 if (on) {
535 igb_pin_extts(igb, rq->extts.index, pin);
536 tsauxc |= tsauxc_mask;
537 tsim |= tsim_mask;
538 } else {
539 tsauxc &= ~tsauxc_mask;
540 tsim &= ~tsim_mask;
541 }
542 wr32(E1000_TSAUXC, tsauxc);
543 wr32(E1000_TSIM, tsim);
544 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
545 return 0;
546
547 case PTP_CLK_REQ_PEROUT:
548 /* Reject requests with unsupported flags */
549 if (rq->perout.flags)
550 return -EOPNOTSUPP;
551
552 if (on) {
553 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
554 rq->perout.index);
555 if (pin < 0)
556 return -EBUSY;
557 }
558 ts.tv_sec = rq->perout.period.sec;
559 ts.tv_nsec = rq->perout.period.nsec;
560 ns = timespec64_to_ns(&ts);
561 ns = ns >> 1;
562 if (on && ns < 8LL)
563 return -EINVAL;
564 ts = ns_to_timespec64(ns);
565 if (rq->perout.index == 1) {
566 tsauxc_mask = TSAUXC_EN_TT1;
567 tsim_mask = TSINTR_TT1;
568 trgttiml = E1000_TRGTTIML1;
569 trgttimh = E1000_TRGTTIMH1;
570 } else {
571 tsauxc_mask = TSAUXC_EN_TT0;
572 tsim_mask = TSINTR_TT0;
573 trgttiml = E1000_TRGTTIML0;
574 trgttimh = E1000_TRGTTIMH0;
575 }
576 spin_lock_irqsave(&igb->tmreg_lock, flags);
577 tsauxc = rd32(E1000_TSAUXC);
578 tsim = rd32(E1000_TSIM);
579 if (rq->perout.index == 1) {
580 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
581 tsim &= ~TSINTR_TT1;
582 } else {
583 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
584 tsim &= ~TSINTR_TT0;
585 }
586 if (on) {
587 int i = rq->perout.index;
588
589 /* read systim registers in sequence */
590 rd32(E1000_SYSTIMR);
591 systiml = rd32(E1000_SYSTIML);
592 systimh = rd32(E1000_SYSTIMH);
593 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
594 now = timecounter_cyc2time(&igb->tc, systim);
595
596 if (pin < 2) {
597 level_mask = (i == 1) ? 0x80000 : 0x40000;
598 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
599 } else {
600 level_mask = (i == 1) ? 0x80 : 0x40;
601 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
602 }
603
604 div_u64_rem(now, ns, &rem);
605 systim = systim + (ns - rem);
606
607 /* synchronize pin level with rising/falling edges */
608 div_u64_rem(now, ns << 1, &rem);
609 if (rem < ns) {
610 /* first half of period */
611 if (level == 0) {
612 /* output is already low, skip this period */
613 systim += ns;
614 }
615 } else {
616 /* second half of period */
617 if (level == 1) {
618 /* output is already high, skip this period */
619 systim += ns;
620 }
621 }
622
623 start = ns_to_timespec64(systim + (ns - rem));
624 igb_pin_perout(igb, i, pin, 0);
625 igb->perout[i].start.tv_sec = start.tv_sec;
626 igb->perout[i].start.tv_nsec = start.tv_nsec;
627 igb->perout[i].period.tv_sec = ts.tv_sec;
628 igb->perout[i].period.tv_nsec = ts.tv_nsec;
629
630 wr32(trgttiml, (u32)systim);
631 wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
632 tsauxc |= tsauxc_mask;
633 tsim |= tsim_mask;
634 }
635 wr32(E1000_TSAUXC, tsauxc);
636 wr32(E1000_TSIM, tsim);
637 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
638 return 0;
639
640 case PTP_CLK_REQ_PPS:
641 return -EOPNOTSUPP;
642 }
643
644 return -EOPNOTSUPP;
645 }
646
igb_ptp_feature_enable_i210(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)647 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
648 struct ptp_clock_request *rq, int on)
649 {
650 struct igb_adapter *igb =
651 container_of(ptp, struct igb_adapter, ptp_caps);
652 struct e1000_hw *hw = &igb->hw;
653 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
654 unsigned long flags;
655 struct timespec64 ts;
656 int use_freq = 0, pin = -1;
657 s64 ns;
658
659 switch (rq->type) {
660 case PTP_CLK_REQ_EXTTS:
661 /* Reject requests with unsupported flags */
662 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
663 PTP_RISING_EDGE |
664 PTP_FALLING_EDGE |
665 PTP_STRICT_FLAGS))
666 return -EOPNOTSUPP;
667
668 /* Reject requests failing to enable both edges. */
669 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
670 (rq->extts.flags & PTP_ENABLE_FEATURE) &&
671 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
672 return -EOPNOTSUPP;
673
674 if (on) {
675 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
676 rq->extts.index);
677 if (pin < 0)
678 return -EBUSY;
679 }
680 if (rq->extts.index == 1) {
681 tsauxc_mask = TSAUXC_EN_TS1;
682 tsim_mask = TSINTR_AUTT1;
683 } else {
684 tsauxc_mask = TSAUXC_EN_TS0;
685 tsim_mask = TSINTR_AUTT0;
686 }
687 spin_lock_irqsave(&igb->tmreg_lock, flags);
688 tsauxc = rd32(E1000_TSAUXC);
689 tsim = rd32(E1000_TSIM);
690 if (on) {
691 igb_pin_extts(igb, rq->extts.index, pin);
692 tsauxc |= tsauxc_mask;
693 tsim |= tsim_mask;
694 } else {
695 tsauxc &= ~tsauxc_mask;
696 tsim &= ~tsim_mask;
697 }
698 wr32(E1000_TSAUXC, tsauxc);
699 wr32(E1000_TSIM, tsim);
700 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
701 return 0;
702
703 case PTP_CLK_REQ_PEROUT:
704 /* Reject requests with unsupported flags */
705 if (rq->perout.flags)
706 return -EOPNOTSUPP;
707
708 if (on) {
709 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
710 rq->perout.index);
711 if (pin < 0)
712 return -EBUSY;
713 }
714 ts.tv_sec = rq->perout.period.sec;
715 ts.tv_nsec = rq->perout.period.nsec;
716 ns = timespec64_to_ns(&ts);
717 ns = ns >> 1;
718 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
719 (ns == 250000000LL) || (ns == 500000000LL))) {
720 if (ns < 8LL)
721 return -EINVAL;
722 use_freq = 1;
723 }
724 ts = ns_to_timespec64(ns);
725 if (rq->perout.index == 1) {
726 if (use_freq) {
727 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
728 tsim_mask = 0;
729 } else {
730 tsauxc_mask = TSAUXC_EN_TT1;
731 tsim_mask = TSINTR_TT1;
732 }
733 trgttiml = E1000_TRGTTIML1;
734 trgttimh = E1000_TRGTTIMH1;
735 freqout = E1000_FREQOUT1;
736 } else {
737 if (use_freq) {
738 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
739 tsim_mask = 0;
740 } else {
741 tsauxc_mask = TSAUXC_EN_TT0;
742 tsim_mask = TSINTR_TT0;
743 }
744 trgttiml = E1000_TRGTTIML0;
745 trgttimh = E1000_TRGTTIMH0;
746 freqout = E1000_FREQOUT0;
747 }
748 spin_lock_irqsave(&igb->tmreg_lock, flags);
749 tsauxc = rd32(E1000_TSAUXC);
750 tsim = rd32(E1000_TSIM);
751 if (rq->perout.index == 1) {
752 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
753 tsim &= ~TSINTR_TT1;
754 } else {
755 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
756 tsim &= ~TSINTR_TT0;
757 }
758 if (on) {
759 int i = rq->perout.index;
760 igb_pin_perout(igb, i, pin, use_freq);
761 igb->perout[i].start.tv_sec = rq->perout.start.sec;
762 igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
763 igb->perout[i].period.tv_sec = ts.tv_sec;
764 igb->perout[i].period.tv_nsec = ts.tv_nsec;
765 wr32(trgttimh, rq->perout.start.sec);
766 wr32(trgttiml, rq->perout.start.nsec);
767 if (use_freq)
768 wr32(freqout, ns);
769 tsauxc |= tsauxc_mask;
770 tsim |= tsim_mask;
771 }
772 wr32(E1000_TSAUXC, tsauxc);
773 wr32(E1000_TSIM, tsim);
774 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
775 return 0;
776
777 case PTP_CLK_REQ_PPS:
778 spin_lock_irqsave(&igb->tmreg_lock, flags);
779 tsim = rd32(E1000_TSIM);
780 if (on)
781 tsim |= TSINTR_SYS_WRAP;
782 else
783 tsim &= ~TSINTR_SYS_WRAP;
784 igb->pps_sys_wrap_on = !!on;
785 wr32(E1000_TSIM, tsim);
786 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
787 return 0;
788 }
789
790 return -EOPNOTSUPP;
791 }
792
igb_ptp_feature_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)793 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
794 struct ptp_clock_request *rq, int on)
795 {
796 return -EOPNOTSUPP;
797 }
798
igb_ptp_verify_pin(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)799 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
800 enum ptp_pin_function func, unsigned int chan)
801 {
802 switch (func) {
803 case PTP_PF_NONE:
804 case PTP_PF_EXTTS:
805 case PTP_PF_PEROUT:
806 break;
807 case PTP_PF_PHYSYNC:
808 return -1;
809 }
810 return 0;
811 }
812
813 /**
814 * igb_ptp_tx_work
815 * @work: pointer to work struct
816 *
817 * This work function polls the TSYNCTXCTL valid bit to determine when a
818 * timestamp has been taken for the current stored skb.
819 **/
igb_ptp_tx_work(struct work_struct * work)820 static void igb_ptp_tx_work(struct work_struct *work)
821 {
822 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
823 ptp_tx_work);
824 struct e1000_hw *hw = &adapter->hw;
825 u32 tsynctxctl;
826
827 if (!adapter->ptp_tx_skb)
828 return;
829
830 if (time_is_before_jiffies(adapter->ptp_tx_start +
831 IGB_PTP_TX_TIMEOUT)) {
832 dev_kfree_skb_any(adapter->ptp_tx_skb);
833 adapter->ptp_tx_skb = NULL;
834 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
835 adapter->tx_hwtstamp_timeouts++;
836 /* Clear the tx valid bit in TSYNCTXCTL register to enable
837 * interrupt
838 */
839 rd32(E1000_TXSTMPH);
840 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
841 return;
842 }
843
844 tsynctxctl = rd32(E1000_TSYNCTXCTL);
845 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
846 igb_ptp_tx_hwtstamp(adapter);
847 else
848 /* reschedule to check later */
849 schedule_work(&adapter->ptp_tx_work);
850 }
851
igb_ptp_overflow_check(struct work_struct * work)852 static void igb_ptp_overflow_check(struct work_struct *work)
853 {
854 struct igb_adapter *igb =
855 container_of(work, struct igb_adapter, ptp_overflow_work.work);
856 struct timespec64 ts;
857 u64 ns;
858
859 /* Update the timecounter */
860 ns = timecounter_read(&igb->tc);
861
862 ts = ns_to_timespec64(ns);
863 pr_debug("igb overflow check at %lld.%09lu\n",
864 (long long) ts.tv_sec, ts.tv_nsec);
865
866 schedule_delayed_work(&igb->ptp_overflow_work,
867 IGB_SYSTIM_OVERFLOW_PERIOD);
868 }
869
870 /**
871 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
872 * @adapter: private network adapter structure
873 *
874 * This watchdog task is scheduled to detect error case where hardware has
875 * dropped an Rx packet that was timestamped when the ring is full. The
876 * particular error is rare but leaves the device in a state unable to timestamp
877 * any future packets.
878 **/
igb_ptp_rx_hang(struct igb_adapter * adapter)879 void igb_ptp_rx_hang(struct igb_adapter *adapter)
880 {
881 struct e1000_hw *hw = &adapter->hw;
882 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
883 unsigned long rx_event;
884
885 /* Other hardware uses per-packet timestamps */
886 if (hw->mac.type != e1000_82576)
887 return;
888
889 /* If we don't have a valid timestamp in the registers, just update the
890 * timeout counter and exit
891 */
892 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
893 adapter->last_rx_ptp_check = jiffies;
894 return;
895 }
896
897 /* Determine the most recent watchdog or rx_timestamp event */
898 rx_event = adapter->last_rx_ptp_check;
899 if (time_after(adapter->last_rx_timestamp, rx_event))
900 rx_event = adapter->last_rx_timestamp;
901
902 /* Only need to read the high RXSTMP register to clear the lock */
903 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
904 rd32(E1000_RXSTMPH);
905 adapter->last_rx_ptp_check = jiffies;
906 adapter->rx_hwtstamp_cleared++;
907 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
908 }
909 }
910
911 /**
912 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
913 * @adapter: private network adapter structure
914 */
igb_ptp_tx_hang(struct igb_adapter * adapter)915 void igb_ptp_tx_hang(struct igb_adapter *adapter)
916 {
917 struct e1000_hw *hw = &adapter->hw;
918 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
919 IGB_PTP_TX_TIMEOUT);
920
921 if (!adapter->ptp_tx_skb)
922 return;
923
924 if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
925 return;
926
927 /* If we haven't received a timestamp within the timeout, it is
928 * reasonable to assume that it will never occur, so we can unlock the
929 * timestamp bit when this occurs.
930 */
931 if (timeout) {
932 cancel_work_sync(&adapter->ptp_tx_work);
933 dev_kfree_skb_any(adapter->ptp_tx_skb);
934 adapter->ptp_tx_skb = NULL;
935 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
936 adapter->tx_hwtstamp_timeouts++;
937 /* Clear the tx valid bit in TSYNCTXCTL register to enable
938 * interrupt
939 */
940 rd32(E1000_TXSTMPH);
941 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
942 }
943 }
944
945 /**
946 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
947 * @adapter: Board private structure.
948 *
949 * If we were asked to do hardware stamping and such a time stamp is
950 * available, then it must have been for this skb here because we only
951 * allow only one such packet into the queue.
952 **/
igb_ptp_tx_hwtstamp(struct igb_adapter * adapter)953 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
954 {
955 struct sk_buff *skb = adapter->ptp_tx_skb;
956 struct e1000_hw *hw = &adapter->hw;
957 struct skb_shared_hwtstamps shhwtstamps;
958 u64 regval;
959 int adjust = 0;
960
961 regval = rd32(E1000_TXSTMPL);
962 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
963
964 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
965 /* adjust timestamp for the TX latency based on link speed */
966 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
967 switch (adapter->link_speed) {
968 case SPEED_10:
969 adjust = IGB_I210_TX_LATENCY_10;
970 break;
971 case SPEED_100:
972 adjust = IGB_I210_TX_LATENCY_100;
973 break;
974 case SPEED_1000:
975 adjust = IGB_I210_TX_LATENCY_1000;
976 break;
977 }
978 }
979
980 shhwtstamps.hwtstamp =
981 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
982
983 /* Clear the lock early before calling skb_tstamp_tx so that
984 * applications are not woken up before the lock bit is clear. We use
985 * a copy of the skb pointer to ensure other threads can't change it
986 * while we're notifying the stack.
987 */
988 adapter->ptp_tx_skb = NULL;
989 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
990
991 /* Notify the stack and free the skb after we've unlocked */
992 skb_tstamp_tx(skb, &shhwtstamps);
993 dev_kfree_skb_any(skb);
994 }
995
996 /**
997 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
998 * @q_vector: Pointer to interrupt specific structure
999 * @va: Pointer to address containing Rx buffer
1000 * @timestamp: Pointer where timestamp will be stored
1001 *
1002 * This function is meant to retrieve a timestamp from the first buffer of an
1003 * incoming frame. The value is stored in little endian format starting on
1004 * byte 8
1005 *
1006 * Returns: The timestamp header length or 0 if not available
1007 **/
igb_ptp_rx_pktstamp(struct igb_q_vector * q_vector,void * va,ktime_t * timestamp)1008 int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
1009 ktime_t *timestamp)
1010 {
1011 struct igb_adapter *adapter = q_vector->adapter;
1012 struct e1000_hw *hw = &adapter->hw;
1013 struct skb_shared_hwtstamps ts;
1014 __le64 *regval = (__le64 *)va;
1015 int adjust = 0;
1016
1017 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1018 return 0;
1019
1020 /* The timestamp is recorded in little endian format.
1021 * DWORD: 0 1 2 3
1022 * Field: Reserved Reserved SYSTIML SYSTIMH
1023 */
1024
1025 /* check reserved dwords are zero, be/le doesn't matter for zero */
1026 if (regval[0])
1027 return 0;
1028
1029 igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1030
1031 /* adjust timestamp for the RX latency based on link speed */
1032 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1033 switch (adapter->link_speed) {
1034 case SPEED_10:
1035 adjust = IGB_I210_RX_LATENCY_10;
1036 break;
1037 case SPEED_100:
1038 adjust = IGB_I210_RX_LATENCY_100;
1039 break;
1040 case SPEED_1000:
1041 adjust = IGB_I210_RX_LATENCY_1000;
1042 break;
1043 }
1044 }
1045
1046 *timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1047
1048 return IGB_TS_HDR_LEN;
1049 }
1050
1051 /**
1052 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1053 * @q_vector: Pointer to interrupt specific structure
1054 * @skb: Buffer containing timestamp and packet
1055 *
1056 * This function is meant to retrieve a timestamp from the internal registers
1057 * of the adapter and store it in the skb.
1058 **/
igb_ptp_rx_rgtstamp(struct igb_q_vector * q_vector,struct sk_buff * skb)1059 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
1060 {
1061 struct igb_adapter *adapter = q_vector->adapter;
1062 struct e1000_hw *hw = &adapter->hw;
1063 int adjust = 0;
1064 u64 regval;
1065
1066 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1067 return;
1068
1069 /* If this bit is set, then the RX registers contain the time stamp. No
1070 * other packet will be time stamped until we read these registers, so
1071 * read the registers to make them available again. Because only one
1072 * packet can be time stamped at a time, we know that the register
1073 * values must belong to this one here and therefore we don't need to
1074 * compare any of the additional attributes stored for it.
1075 *
1076 * If nothing went wrong, then it should have a shared tx_flags that we
1077 * can turn into a skb_shared_hwtstamps.
1078 */
1079 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1080 return;
1081
1082 regval = rd32(E1000_RXSTMPL);
1083 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1084
1085 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1086
1087 /* adjust timestamp for the RX latency based on link speed */
1088 if (adapter->hw.mac.type == e1000_i210) {
1089 switch (adapter->link_speed) {
1090 case SPEED_10:
1091 adjust = IGB_I210_RX_LATENCY_10;
1092 break;
1093 case SPEED_100:
1094 adjust = IGB_I210_RX_LATENCY_100;
1095 break;
1096 case SPEED_1000:
1097 adjust = IGB_I210_RX_LATENCY_1000;
1098 break;
1099 }
1100 }
1101 skb_hwtstamps(skb)->hwtstamp =
1102 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1103
1104 /* Update the last_rx_timestamp timer in order to enable watchdog check
1105 * for error case of latched timestamp on a dropped packet.
1106 */
1107 adapter->last_rx_timestamp = jiffies;
1108 }
1109
1110 /**
1111 * igb_ptp_get_ts_config - get hardware time stamping config
1112 * @netdev: netdev struct
1113 * @ifr: interface struct
1114 *
1115 * Get the hwtstamp_config settings to return to the user. Rather than attempt
1116 * to deconstruct the settings from the registers, just return a shadow copy
1117 * of the last known settings.
1118 **/
igb_ptp_get_ts_config(struct net_device * netdev,struct ifreq * ifr)1119 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
1120 {
1121 struct igb_adapter *adapter = netdev_priv(netdev);
1122 struct hwtstamp_config *config = &adapter->tstamp_config;
1123
1124 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1125 -EFAULT : 0;
1126 }
1127
1128 /**
1129 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1130 * @adapter: networking device structure
1131 * @config: hwtstamp configuration
1132 *
1133 * Outgoing time stamping can be enabled and disabled. Play nice and
1134 * disable it when requested, although it shouldn't case any overhead
1135 * when no packet needs it. At most one packet in the queue may be
1136 * marked for time stamping, otherwise it would be impossible to tell
1137 * for sure to which packet the hardware time stamp belongs.
1138 *
1139 * Incoming time stamping has to be configured via the hardware
1140 * filters. Not all combinations are supported, in particular event
1141 * type has to be specified. Matching the kind of event packet is
1142 * not supported, with the exception of "all V2 events regardless of
1143 * level 2 or 4".
1144 */
igb_ptp_set_timestamp_mode(struct igb_adapter * adapter,struct hwtstamp_config * config)1145 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1146 struct hwtstamp_config *config)
1147 {
1148 struct e1000_hw *hw = &adapter->hw;
1149 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1150 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1151 u32 tsync_rx_cfg = 0;
1152 bool is_l4 = false;
1153 bool is_l2 = false;
1154 u32 regval;
1155
1156 switch (config->tx_type) {
1157 case HWTSTAMP_TX_OFF:
1158 tsync_tx_ctl = 0;
1159 break;
1160 case HWTSTAMP_TX_ON:
1161 break;
1162 default:
1163 return -ERANGE;
1164 }
1165
1166 switch (config->rx_filter) {
1167 case HWTSTAMP_FILTER_NONE:
1168 tsync_rx_ctl = 0;
1169 break;
1170 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1171 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1172 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1173 is_l4 = true;
1174 break;
1175 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1176 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1177 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1178 is_l4 = true;
1179 break;
1180 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1181 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1182 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1183 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1184 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1185 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1186 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1187 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1188 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1189 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1190 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1191 is_l2 = true;
1192 is_l4 = true;
1193 break;
1194 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1195 case HWTSTAMP_FILTER_NTP_ALL:
1196 case HWTSTAMP_FILTER_ALL:
1197 /* 82576 cannot timestamp all packets, which it needs to do to
1198 * support both V1 Sync and Delay_Req messages
1199 */
1200 if (hw->mac.type != e1000_82576) {
1201 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1202 config->rx_filter = HWTSTAMP_FILTER_ALL;
1203 break;
1204 }
1205 fallthrough;
1206 default:
1207 config->rx_filter = HWTSTAMP_FILTER_NONE;
1208 return -ERANGE;
1209 }
1210
1211 if (hw->mac.type == e1000_82575) {
1212 if (tsync_rx_ctl | tsync_tx_ctl)
1213 return -EINVAL;
1214 return 0;
1215 }
1216
1217 /* Per-packet timestamping only works if all packets are
1218 * timestamped, so enable timestamping in all packets as
1219 * long as one Rx filter was configured.
1220 */
1221 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1222 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1223 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1224 config->rx_filter = HWTSTAMP_FILTER_ALL;
1225 is_l2 = true;
1226 is_l4 = true;
1227
1228 if ((hw->mac.type == e1000_i210) ||
1229 (hw->mac.type == e1000_i211)) {
1230 regval = rd32(E1000_RXPBS);
1231 regval |= E1000_RXPBS_CFG_TS_EN;
1232 wr32(E1000_RXPBS, regval);
1233 }
1234 }
1235
1236 /* enable/disable TX */
1237 regval = rd32(E1000_TSYNCTXCTL);
1238 regval &= ~E1000_TSYNCTXCTL_ENABLED;
1239 regval |= tsync_tx_ctl;
1240 wr32(E1000_TSYNCTXCTL, regval);
1241
1242 /* enable/disable RX */
1243 regval = rd32(E1000_TSYNCRXCTL);
1244 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1245 regval |= tsync_rx_ctl;
1246 wr32(E1000_TSYNCRXCTL, regval);
1247
1248 /* define which PTP packets are time stamped */
1249 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1250
1251 /* define ethertype filter for timestamped packets */
1252 if (is_l2)
1253 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1254 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1255 E1000_ETQF_1588 | /* enable timestamping */
1256 ETH_P_1588)); /* 1588 eth protocol type */
1257 else
1258 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1259
1260 /* L4 Queue Filter[3]: filter by destination port and protocol */
1261 if (is_l4) {
1262 u32 ftqf = (IPPROTO_UDP /* UDP */
1263 | E1000_FTQF_VF_BP /* VF not compared */
1264 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1265 | E1000_FTQF_MASK); /* mask all inputs */
1266 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1267
1268 wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1269 wr32(E1000_IMIREXT(3),
1270 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1271 if (hw->mac.type == e1000_82576) {
1272 /* enable source port check */
1273 wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1274 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1275 }
1276 wr32(E1000_FTQF(3), ftqf);
1277 } else {
1278 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1279 }
1280 wrfl();
1281
1282 /* clear TX/RX time stamp registers, just to be sure */
1283 regval = rd32(E1000_TXSTMPL);
1284 regval = rd32(E1000_TXSTMPH);
1285 regval = rd32(E1000_RXSTMPL);
1286 regval = rd32(E1000_RXSTMPH);
1287
1288 return 0;
1289 }
1290
1291 /**
1292 * igb_ptp_set_ts_config - set hardware time stamping config
1293 * @netdev: netdev struct
1294 * @ifr: interface struct
1295 *
1296 **/
igb_ptp_set_ts_config(struct net_device * netdev,struct ifreq * ifr)1297 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1298 {
1299 struct igb_adapter *adapter = netdev_priv(netdev);
1300 struct hwtstamp_config config;
1301 int err;
1302
1303 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1304 return -EFAULT;
1305
1306 err = igb_ptp_set_timestamp_mode(adapter, &config);
1307 if (err)
1308 return err;
1309
1310 /* save these settings for future reference */
1311 memcpy(&adapter->tstamp_config, &config,
1312 sizeof(adapter->tstamp_config));
1313
1314 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1315 -EFAULT : 0;
1316 }
1317
1318 /**
1319 * igb_ptp_init - Initialize PTP functionality
1320 * @adapter: Board private structure
1321 *
1322 * This function is called at device probe to initialize the PTP
1323 * functionality.
1324 */
igb_ptp_init(struct igb_adapter * adapter)1325 void igb_ptp_init(struct igb_adapter *adapter)
1326 {
1327 struct e1000_hw *hw = &adapter->hw;
1328 struct net_device *netdev = adapter->netdev;
1329
1330 switch (hw->mac.type) {
1331 case e1000_82576:
1332 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1333 adapter->ptp_caps.owner = THIS_MODULE;
1334 adapter->ptp_caps.max_adj = 999999881;
1335 adapter->ptp_caps.n_ext_ts = 0;
1336 adapter->ptp_caps.pps = 0;
1337 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576;
1338 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1339 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1340 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1341 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1342 adapter->cc.read = igb_ptp_read_82576;
1343 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1344 adapter->cc.mult = 1;
1345 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1346 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1347 break;
1348 case e1000_82580:
1349 case e1000_i354:
1350 case e1000_i350:
1351 igb_ptp_sdp_init(adapter);
1352 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1353 adapter->ptp_caps.owner = THIS_MODULE;
1354 adapter->ptp_caps.max_adj = 62499999;
1355 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1356 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1357 adapter->ptp_caps.n_pins = IGB_N_SDP;
1358 adapter->ptp_caps.pps = 0;
1359 adapter->ptp_caps.pin_config = adapter->sdp_config;
1360 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1361 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1362 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1363 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1364 adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1365 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1366 adapter->cc.read = igb_ptp_read_82580;
1367 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1368 adapter->cc.mult = 1;
1369 adapter->cc.shift = 0;
1370 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1371 break;
1372 case e1000_i210:
1373 case e1000_i211:
1374 igb_ptp_sdp_init(adapter);
1375 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1376 adapter->ptp_caps.owner = THIS_MODULE;
1377 adapter->ptp_caps.max_adj = 62499999;
1378 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1379 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1380 adapter->ptp_caps.n_pins = IGB_N_SDP;
1381 adapter->ptp_caps.pps = 1;
1382 adapter->ptp_caps.pin_config = adapter->sdp_config;
1383 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1384 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1385 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1386 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1387 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1388 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1389 break;
1390 default:
1391 adapter->ptp_clock = NULL;
1392 return;
1393 }
1394
1395 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1396 &adapter->pdev->dev);
1397 if (IS_ERR(adapter->ptp_clock)) {
1398 adapter->ptp_clock = NULL;
1399 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1400 } else if (adapter->ptp_clock) {
1401 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1402 adapter->netdev->name);
1403 adapter->ptp_flags |= IGB_PTP_ENABLED;
1404
1405 spin_lock_init(&adapter->tmreg_lock);
1406 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1407
1408 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1409 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1410 igb_ptp_overflow_check);
1411
1412 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1413 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1414
1415 igb_ptp_reset(adapter);
1416 }
1417 }
1418
1419 /**
1420 * igb_ptp_sdp_init - utility function which inits the SDP config structs
1421 * @adapter: Board private structure.
1422 **/
igb_ptp_sdp_init(struct igb_adapter * adapter)1423 void igb_ptp_sdp_init(struct igb_adapter *adapter)
1424 {
1425 int i;
1426
1427 for (i = 0; i < IGB_N_SDP; i++) {
1428 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1429
1430 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1431 ppd->index = i;
1432 ppd->func = PTP_PF_NONE;
1433 }
1434 }
1435
1436 /**
1437 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1438 * @adapter: Board private structure
1439 *
1440 * This function stops the overflow check work and PTP Tx timestamp work, and
1441 * will prepare the device for OS suspend.
1442 */
igb_ptp_suspend(struct igb_adapter * adapter)1443 void igb_ptp_suspend(struct igb_adapter *adapter)
1444 {
1445 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1446 return;
1447
1448 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1449 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1450
1451 cancel_work_sync(&adapter->ptp_tx_work);
1452 if (adapter->ptp_tx_skb) {
1453 dev_kfree_skb_any(adapter->ptp_tx_skb);
1454 adapter->ptp_tx_skb = NULL;
1455 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1456 }
1457 }
1458
1459 /**
1460 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1461 * @adapter: Board private structure.
1462 *
1463 * This function stops the PTP support and cancels the delayed work.
1464 **/
igb_ptp_stop(struct igb_adapter * adapter)1465 void igb_ptp_stop(struct igb_adapter *adapter)
1466 {
1467 igb_ptp_suspend(adapter);
1468
1469 if (adapter->ptp_clock) {
1470 ptp_clock_unregister(adapter->ptp_clock);
1471 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1472 adapter->netdev->name);
1473 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1474 }
1475 }
1476
1477 /**
1478 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1479 * @adapter: Board private structure.
1480 *
1481 * This function handles the reset work required to re-enable the PTP device.
1482 **/
igb_ptp_reset(struct igb_adapter * adapter)1483 void igb_ptp_reset(struct igb_adapter *adapter)
1484 {
1485 struct e1000_hw *hw = &adapter->hw;
1486 unsigned long flags;
1487
1488 /* reset the tstamp_config */
1489 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1490
1491 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1492
1493 switch (adapter->hw.mac.type) {
1494 case e1000_82576:
1495 /* Dial the nominal frequency. */
1496 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1497 break;
1498 case e1000_82580:
1499 case e1000_i354:
1500 case e1000_i350:
1501 case e1000_i210:
1502 case e1000_i211:
1503 wr32(E1000_TSAUXC, 0x0);
1504 wr32(E1000_TSSDP, 0x0);
1505 wr32(E1000_TSIM,
1506 TSYNC_INTERRUPTS |
1507 (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1508 wr32(E1000_IMS, E1000_IMS_TS);
1509 break;
1510 default:
1511 /* No work to do. */
1512 goto out;
1513 }
1514
1515 /* Re-initialize the timer. */
1516 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1517 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1518
1519 igb_ptp_write_i210(adapter, &ts);
1520 } else {
1521 timecounter_init(&adapter->tc, &adapter->cc,
1522 ktime_to_ns(ktime_get_real()));
1523 }
1524 out:
1525 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1526
1527 wrfl();
1528
1529 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1530 schedule_delayed_work(&adapter->ptp_overflow_work,
1531 IGB_SYSTIM_OVERFLOW_PERIOD);
1532 }
1533