1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <[email protected]> */
3 
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8 
9 #include "igb.h"
10 
11 #define INCVALUE_MASK		0x7fffffff
12 #define ISGN			0x80000000
13 
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15  * and this update value cannot be reprogrammed.
16  *
17  * Neither the 82576 nor the 82580 offer registers wide enough to hold
18  * nanoseconds time values for very long. For the 82580, SYSTIM always
19  * counts nanoseconds, but the upper 24 bits are not available. The
20  * frequency is adjusted by changing the 32 bit fractional nanoseconds
21  * register, TIMINCA.
22  *
23  * For the 82576, the SYSTIM register time unit is affect by the
24  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25  * field are needed to provide the nominal 16 nanosecond period,
26  * leaving 19 bits for fractional nanoseconds.
27  *
28  * We scale the NIC clock cycle by a large factor so that relatively
29  * small clock corrections can be added or subtracted at each clock
30  * tick. The drawbacks of a large factor are a) that the clock
31  * register overflows more quickly (not such a big deal) and b) that
32  * the increment per tick has to fit into 24 bits.  As a result we
33  * need to use a shift of 19 so we can fit a value of 16 into the
34  * TIMINCA register.
35  *
36  *
37  *             SYSTIMH            SYSTIML
38  *        +--------------+   +---+---+------+
39  *  82576 |      32      |   | 8 | 5 |  19  |
40  *        +--------------+   +---+---+------+
41  *         \________ 45 bits _______/  fract
42  *
43  *        +----------+---+   +--------------+
44  *  82580 |    24    | 8 |   |      32      |
45  *        +----------+---+   +--------------+
46  *          reserved  \______ 40 bits _____/
47  *
48  *
49  * The 45 bit 82576 SYSTIM overflows every
50  *   2^45 * 10^-9 / 3600 = 9.77 hours.
51  *
52  * The 40 bit 82580 SYSTIM overflows every
53  *   2^40 * 10^-9 /  60  = 18.3 minutes.
54  *
55  * SYSTIM is converted to real time using a timecounter. As
56  * timecounter_cyc2time() allows old timestamps, the timecounter needs
57  * to be updated at least once per half of the SYSTIM interval.
58  * Scheduling of delayed work is not very accurate, and also the NIC
59  * clock can be adjusted to run up to 6% faster and the system clock
60  * up to 10% slower, so we aim for 6 minutes to be sure the actual
61  * interval in the NIC time is shorter than 9.16 minutes.
62  */
63 
64 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT		(HZ * 15)
66 #define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580			40
70 #define IGB_82580_BASE_PERIOD		0x800000000
71 
72 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
73 static void igb_ptp_sdp_init(struct igb_adapter *adapter);
74 
75 /* SYSTIM read access for the 82576 */
igb_ptp_read_82576(const struct cyclecounter * cc)76 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
77 {
78 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
79 	struct e1000_hw *hw = &igb->hw;
80 	u64 val;
81 	u32 lo, hi;
82 
83 	lo = rd32(E1000_SYSTIML);
84 	hi = rd32(E1000_SYSTIMH);
85 
86 	val = ((u64) hi) << 32;
87 	val |= lo;
88 
89 	return val;
90 }
91 
92 /* SYSTIM read access for the 82580 */
igb_ptp_read_82580(const struct cyclecounter * cc)93 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
94 {
95 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
96 	struct e1000_hw *hw = &igb->hw;
97 	u32 lo, hi;
98 	u64 val;
99 
100 	/* The timestamp latches on lowest register read. For the 82580
101 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
102 	 * need to provide nanosecond resolution, so we just ignore it.
103 	 */
104 	rd32(E1000_SYSTIMR);
105 	lo = rd32(E1000_SYSTIML);
106 	hi = rd32(E1000_SYSTIMH);
107 
108 	val = ((u64) hi) << 32;
109 	val |= lo;
110 
111 	return val;
112 }
113 
114 /* SYSTIM read access for I210/I211 */
igb_ptp_read_i210(struct igb_adapter * adapter,struct timespec64 * ts)115 static void igb_ptp_read_i210(struct igb_adapter *adapter,
116 			      struct timespec64 *ts)
117 {
118 	struct e1000_hw *hw = &adapter->hw;
119 	u32 sec, nsec;
120 
121 	/* The timestamp latches on lowest register read. For I210/I211, the
122 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
123 	 * resolution, we can ignore it.
124 	 */
125 	rd32(E1000_SYSTIMR);
126 	nsec = rd32(E1000_SYSTIML);
127 	sec = rd32(E1000_SYSTIMH);
128 
129 	ts->tv_sec = sec;
130 	ts->tv_nsec = nsec;
131 }
132 
igb_ptp_write_i210(struct igb_adapter * adapter,const struct timespec64 * ts)133 static void igb_ptp_write_i210(struct igb_adapter *adapter,
134 			       const struct timespec64 *ts)
135 {
136 	struct e1000_hw *hw = &adapter->hw;
137 
138 	/* Writing the SYSTIMR register is not necessary as it only provides
139 	 * sub-nanosecond resolution.
140 	 */
141 	wr32(E1000_SYSTIML, ts->tv_nsec);
142 	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
143 }
144 
145 /**
146  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
147  * @adapter: board private structure
148  * @hwtstamps: timestamp structure to update
149  * @systim: unsigned 64bit system time value.
150  *
151  * We need to convert the system time value stored in the RX/TXSTMP registers
152  * into a hwtstamp which can be used by the upper level timestamping functions.
153  *
154  * The 'tmreg_lock' spinlock is used to protect the consistency of the
155  * system time value. This is needed because reading the 64 bit time
156  * value involves reading two (or three) 32 bit registers. The first
157  * read latches the value. Ditto for writing.
158  *
159  * In addition, here have extended the system time with an overflow
160  * counter in software.
161  **/
igb_ptp_systim_to_hwtstamp(struct igb_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)162 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
163 				       struct skb_shared_hwtstamps *hwtstamps,
164 				       u64 systim)
165 {
166 	unsigned long flags;
167 	u64 ns;
168 
169 	memset(hwtstamps, 0, sizeof(*hwtstamps));
170 
171 	switch (adapter->hw.mac.type) {
172 	case e1000_82576:
173 	case e1000_82580:
174 	case e1000_i354:
175 	case e1000_i350:
176 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
177 		ns = timecounter_cyc2time(&adapter->tc, systim);
178 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
179 
180 		hwtstamps->hwtstamp = ns_to_ktime(ns);
181 		break;
182 	case e1000_i210:
183 	case e1000_i211:
184 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
185 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
186 						systim & 0xFFFFFFFF);
187 		break;
188 	default:
189 		break;
190 	}
191 }
192 
193 /* PTP clock operations */
igb_ptp_adjfine_82576(struct ptp_clock_info * ptp,long scaled_ppm)194 static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm)
195 {
196 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
197 					       ptp_caps);
198 	struct e1000_hw *hw = &igb->hw;
199 	u64 incvalue;
200 
201 	incvalue = adjust_by_scaled_ppm(INCVALUE_82576, scaled_ppm);
202 
203 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
204 
205 	return 0;
206 }
207 
igb_ptp_adjfine_82580(struct ptp_clock_info * ptp,long scaled_ppm)208 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
209 {
210 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
211 					       ptp_caps);
212 	struct e1000_hw *hw = &igb->hw;
213 	bool neg_adj;
214 	u64 rate;
215 	u32 inca;
216 
217 	neg_adj = diff_by_scaled_ppm(IGB_82580_BASE_PERIOD, scaled_ppm, &rate);
218 
219 	inca = rate & INCVALUE_MASK;
220 	if (neg_adj)
221 		inca |= ISGN;
222 
223 	wr32(E1000_TIMINCA, inca);
224 
225 	return 0;
226 }
227 
igb_ptp_adjtime_82576(struct ptp_clock_info * ptp,s64 delta)228 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
229 {
230 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231 					       ptp_caps);
232 	unsigned long flags;
233 
234 	spin_lock_irqsave(&igb->tmreg_lock, flags);
235 	timecounter_adjtime(&igb->tc, delta);
236 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
237 
238 	return 0;
239 }
240 
igb_ptp_adjtime_i210(struct ptp_clock_info * ptp,s64 delta)241 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
242 {
243 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
244 					       ptp_caps);
245 	unsigned long flags;
246 	struct timespec64 now, then = ns_to_timespec64(delta);
247 
248 	spin_lock_irqsave(&igb->tmreg_lock, flags);
249 
250 	igb_ptp_read_i210(igb, &now);
251 	now = timespec64_add(now, then);
252 	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
253 
254 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
255 
256 	return 0;
257 }
258 
igb_ptp_gettimex_82576(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)259 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
260 				  struct timespec64 *ts,
261 				  struct ptp_system_timestamp *sts)
262 {
263 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
264 					       ptp_caps);
265 	struct e1000_hw *hw = &igb->hw;
266 	unsigned long flags;
267 	u32 lo, hi;
268 	u64 ns;
269 
270 	spin_lock_irqsave(&igb->tmreg_lock, flags);
271 
272 	ptp_read_system_prets(sts);
273 	lo = rd32(E1000_SYSTIML);
274 	ptp_read_system_postts(sts);
275 	hi = rd32(E1000_SYSTIMH);
276 
277 	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
278 
279 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
280 
281 	*ts = ns_to_timespec64(ns);
282 
283 	return 0;
284 }
285 
igb_ptp_gettimex_82580(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)286 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
287 				  struct timespec64 *ts,
288 				  struct ptp_system_timestamp *sts)
289 {
290 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
291 					       ptp_caps);
292 	struct e1000_hw *hw = &igb->hw;
293 	unsigned long flags;
294 	u32 lo, hi;
295 	u64 ns;
296 
297 	spin_lock_irqsave(&igb->tmreg_lock, flags);
298 
299 	ptp_read_system_prets(sts);
300 	rd32(E1000_SYSTIMR);
301 	ptp_read_system_postts(sts);
302 	lo = rd32(E1000_SYSTIML);
303 	hi = rd32(E1000_SYSTIMH);
304 
305 	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
306 
307 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
308 
309 	*ts = ns_to_timespec64(ns);
310 
311 	return 0;
312 }
313 
igb_ptp_gettimex_i210(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)314 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
315 				 struct timespec64 *ts,
316 				 struct ptp_system_timestamp *sts)
317 {
318 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
319 					       ptp_caps);
320 	struct e1000_hw *hw = &igb->hw;
321 	unsigned long flags;
322 
323 	spin_lock_irqsave(&igb->tmreg_lock, flags);
324 
325 	ptp_read_system_prets(sts);
326 	rd32(E1000_SYSTIMR);
327 	ptp_read_system_postts(sts);
328 	ts->tv_nsec = rd32(E1000_SYSTIML);
329 	ts->tv_sec = rd32(E1000_SYSTIMH);
330 
331 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
332 
333 	return 0;
334 }
335 
igb_ptp_settime_82576(struct ptp_clock_info * ptp,const struct timespec64 * ts)336 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
337 				 const struct timespec64 *ts)
338 {
339 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
340 					       ptp_caps);
341 	unsigned long flags;
342 	u64 ns;
343 
344 	ns = timespec64_to_ns(ts);
345 
346 	spin_lock_irqsave(&igb->tmreg_lock, flags);
347 
348 	timecounter_init(&igb->tc, &igb->cc, ns);
349 
350 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
351 
352 	return 0;
353 }
354 
igb_ptp_settime_i210(struct ptp_clock_info * ptp,const struct timespec64 * ts)355 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
356 				const struct timespec64 *ts)
357 {
358 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
359 					       ptp_caps);
360 	unsigned long flags;
361 
362 	spin_lock_irqsave(&igb->tmreg_lock, flags);
363 
364 	igb_ptp_write_i210(igb, ts);
365 
366 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
367 
368 	return 0;
369 }
370 
igb_pin_direction(int pin,int input,u32 * ctrl,u32 * ctrl_ext)371 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
372 {
373 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
374 	static const u32 mask[IGB_N_SDP] = {
375 		E1000_CTRL_SDP0_DIR,
376 		E1000_CTRL_SDP1_DIR,
377 		E1000_CTRL_EXT_SDP2_DIR,
378 		E1000_CTRL_EXT_SDP3_DIR,
379 	};
380 
381 	if (input)
382 		*ptr &= ~mask[pin];
383 	else
384 		*ptr |= mask[pin];
385 }
386 
igb_pin_extts(struct igb_adapter * igb,int chan,int pin)387 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
388 {
389 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
390 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
391 	};
392 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
393 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
394 	};
395 	static const u32 ts_sdp_en[IGB_N_SDP] = {
396 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
397 	};
398 	struct e1000_hw *hw = &igb->hw;
399 	u32 ctrl, ctrl_ext, tssdp = 0;
400 
401 	ctrl = rd32(E1000_CTRL);
402 	ctrl_ext = rd32(E1000_CTRL_EXT);
403 	tssdp = rd32(E1000_TSSDP);
404 
405 	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
406 
407 	/* Make sure this pin is not enabled as an output. */
408 	tssdp &= ~ts_sdp_en[pin];
409 
410 	if (chan == 1) {
411 		tssdp &= ~AUX1_SEL_SDP3;
412 		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
413 	} else {
414 		tssdp &= ~AUX0_SEL_SDP3;
415 		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
416 	}
417 
418 	wr32(E1000_TSSDP, tssdp);
419 	wr32(E1000_CTRL, ctrl);
420 	wr32(E1000_CTRL_EXT, ctrl_ext);
421 }
422 
igb_pin_perout(struct igb_adapter * igb,int chan,int pin,int freq)423 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
424 {
425 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
426 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
427 	};
428 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
429 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
430 	};
431 	static const u32 ts_sdp_en[IGB_N_SDP] = {
432 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
433 	};
434 	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
435 		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
436 		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
437 	};
438 	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
439 		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
440 		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
441 	};
442 	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
443 		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
444 		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
445 	};
446 	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
447 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
448 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
449 	};
450 	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
451 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
452 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
453 	};
454 	struct e1000_hw *hw = &igb->hw;
455 	u32 ctrl, ctrl_ext, tssdp = 0;
456 
457 	ctrl = rd32(E1000_CTRL);
458 	ctrl_ext = rd32(E1000_CTRL_EXT);
459 	tssdp = rd32(E1000_TSSDP);
460 
461 	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
462 
463 	/* Make sure this pin is not enabled as an input. */
464 	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
465 		tssdp &= ~AUX0_TS_SDP_EN;
466 
467 	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
468 		tssdp &= ~AUX1_TS_SDP_EN;
469 
470 	tssdp &= ~ts_sdp_sel_clr[pin];
471 	if (freq) {
472 		if (chan == 1)
473 			tssdp |= ts_sdp_sel_fc1[pin];
474 		else
475 			tssdp |= ts_sdp_sel_fc0[pin];
476 	} else {
477 		if (chan == 1)
478 			tssdp |= ts_sdp_sel_tt1[pin];
479 		else
480 			tssdp |= ts_sdp_sel_tt0[pin];
481 	}
482 	tssdp |= ts_sdp_en[pin];
483 
484 	wr32(E1000_TSSDP, tssdp);
485 	wr32(E1000_CTRL, ctrl);
486 	wr32(E1000_CTRL_EXT, ctrl_ext);
487 }
488 
igb_ptp_feature_enable_82580(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)489 static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
490 					struct ptp_clock_request *rq, int on)
491 {
492 	struct igb_adapter *igb =
493 		container_of(ptp, struct igb_adapter, ptp_caps);
494 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
495 		systimh, level_mask, level, rem;
496 	struct e1000_hw *hw = &igb->hw;
497 	struct timespec64 ts, start;
498 	unsigned long flags;
499 	u64 systim, now;
500 	int pin = -1;
501 	s64 ns;
502 
503 	switch (rq->type) {
504 	case PTP_CLK_REQ_EXTTS:
505 		/* Reject requests with unsupported flags */
506 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
507 					PTP_RISING_EDGE |
508 					PTP_FALLING_EDGE |
509 					PTP_STRICT_FLAGS))
510 			return -EOPNOTSUPP;
511 
512 		/* Both the rising and falling edge are timestamped */
513 		if (rq->extts.flags & PTP_STRICT_FLAGS &&
514 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
515 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
516 			return -EOPNOTSUPP;
517 
518 		if (on) {
519 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
520 					   rq->extts.index);
521 			if (pin < 0)
522 				return -EBUSY;
523 		}
524 		if (rq->extts.index == 1) {
525 			tsauxc_mask = TSAUXC_EN_TS1;
526 			tsim_mask = TSINTR_AUTT1;
527 		} else {
528 			tsauxc_mask = TSAUXC_EN_TS0;
529 			tsim_mask = TSINTR_AUTT0;
530 		}
531 		spin_lock_irqsave(&igb->tmreg_lock, flags);
532 		tsauxc = rd32(E1000_TSAUXC);
533 		tsim = rd32(E1000_TSIM);
534 		if (on) {
535 			igb_pin_extts(igb, rq->extts.index, pin);
536 			tsauxc |= tsauxc_mask;
537 			tsim |= tsim_mask;
538 		} else {
539 			tsauxc &= ~tsauxc_mask;
540 			tsim &= ~tsim_mask;
541 		}
542 		wr32(E1000_TSAUXC, tsauxc);
543 		wr32(E1000_TSIM, tsim);
544 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
545 		return 0;
546 
547 	case PTP_CLK_REQ_PEROUT:
548 		/* Reject requests with unsupported flags */
549 		if (rq->perout.flags)
550 			return -EOPNOTSUPP;
551 
552 		if (on) {
553 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
554 					   rq->perout.index);
555 			if (pin < 0)
556 				return -EBUSY;
557 		}
558 		ts.tv_sec = rq->perout.period.sec;
559 		ts.tv_nsec = rq->perout.period.nsec;
560 		ns = timespec64_to_ns(&ts);
561 		ns = ns >> 1;
562 		if (on && ns < 8LL)
563 			return -EINVAL;
564 		ts = ns_to_timespec64(ns);
565 		if (rq->perout.index == 1) {
566 			tsauxc_mask = TSAUXC_EN_TT1;
567 			tsim_mask = TSINTR_TT1;
568 			trgttiml = E1000_TRGTTIML1;
569 			trgttimh = E1000_TRGTTIMH1;
570 		} else {
571 			tsauxc_mask = TSAUXC_EN_TT0;
572 			tsim_mask = TSINTR_TT0;
573 			trgttiml = E1000_TRGTTIML0;
574 			trgttimh = E1000_TRGTTIMH0;
575 		}
576 		spin_lock_irqsave(&igb->tmreg_lock, flags);
577 		tsauxc = rd32(E1000_TSAUXC);
578 		tsim = rd32(E1000_TSIM);
579 		if (rq->perout.index == 1) {
580 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
581 			tsim &= ~TSINTR_TT1;
582 		} else {
583 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
584 			tsim &= ~TSINTR_TT0;
585 		}
586 		if (on) {
587 			int i = rq->perout.index;
588 
589 			/* read systim registers in sequence */
590 			rd32(E1000_SYSTIMR);
591 			systiml = rd32(E1000_SYSTIML);
592 			systimh = rd32(E1000_SYSTIMH);
593 			systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
594 			now = timecounter_cyc2time(&igb->tc, systim);
595 
596 			if (pin < 2) {
597 				level_mask = (i == 1) ? 0x80000 : 0x40000;
598 				level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
599 			} else {
600 				level_mask = (i == 1) ? 0x80 : 0x40;
601 				level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
602 			}
603 
604 			div_u64_rem(now, ns, &rem);
605 			systim = systim + (ns - rem);
606 
607 			/* synchronize pin level with rising/falling edges */
608 			div_u64_rem(now, ns << 1, &rem);
609 			if (rem < ns) {
610 				/* first half of period */
611 				if (level == 0) {
612 					/* output is already low, skip this period */
613 					systim += ns;
614 				}
615 			} else {
616 				/* second half of period */
617 				if (level == 1) {
618 					/* output is already high, skip this period */
619 					systim += ns;
620 				}
621 			}
622 
623 			start = ns_to_timespec64(systim + (ns - rem));
624 			igb_pin_perout(igb, i, pin, 0);
625 			igb->perout[i].start.tv_sec = start.tv_sec;
626 			igb->perout[i].start.tv_nsec = start.tv_nsec;
627 			igb->perout[i].period.tv_sec = ts.tv_sec;
628 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
629 
630 			wr32(trgttiml, (u32)systim);
631 			wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
632 			tsauxc |= tsauxc_mask;
633 			tsim |= tsim_mask;
634 		}
635 		wr32(E1000_TSAUXC, tsauxc);
636 		wr32(E1000_TSIM, tsim);
637 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
638 		return 0;
639 
640 	case PTP_CLK_REQ_PPS:
641 		return -EOPNOTSUPP;
642 	}
643 
644 	return -EOPNOTSUPP;
645 }
646 
igb_ptp_feature_enable_i210(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)647 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
648 				       struct ptp_clock_request *rq, int on)
649 {
650 	struct igb_adapter *igb =
651 		container_of(ptp, struct igb_adapter, ptp_caps);
652 	struct e1000_hw *hw = &igb->hw;
653 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
654 	unsigned long flags;
655 	struct timespec64 ts;
656 	int use_freq = 0, pin = -1;
657 	s64 ns;
658 
659 	switch (rq->type) {
660 	case PTP_CLK_REQ_EXTTS:
661 		/* Reject requests with unsupported flags */
662 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
663 					PTP_RISING_EDGE |
664 					PTP_FALLING_EDGE |
665 					PTP_STRICT_FLAGS))
666 			return -EOPNOTSUPP;
667 
668 		/* Reject requests failing to enable both edges. */
669 		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
670 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
671 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
672 			return -EOPNOTSUPP;
673 
674 		if (on) {
675 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
676 					   rq->extts.index);
677 			if (pin < 0)
678 				return -EBUSY;
679 		}
680 		if (rq->extts.index == 1) {
681 			tsauxc_mask = TSAUXC_EN_TS1;
682 			tsim_mask = TSINTR_AUTT1;
683 		} else {
684 			tsauxc_mask = TSAUXC_EN_TS0;
685 			tsim_mask = TSINTR_AUTT0;
686 		}
687 		spin_lock_irqsave(&igb->tmreg_lock, flags);
688 		tsauxc = rd32(E1000_TSAUXC);
689 		tsim = rd32(E1000_TSIM);
690 		if (on) {
691 			igb_pin_extts(igb, rq->extts.index, pin);
692 			tsauxc |= tsauxc_mask;
693 			tsim |= tsim_mask;
694 		} else {
695 			tsauxc &= ~tsauxc_mask;
696 			tsim &= ~tsim_mask;
697 		}
698 		wr32(E1000_TSAUXC, tsauxc);
699 		wr32(E1000_TSIM, tsim);
700 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
701 		return 0;
702 
703 	case PTP_CLK_REQ_PEROUT:
704 		/* Reject requests with unsupported flags */
705 		if (rq->perout.flags)
706 			return -EOPNOTSUPP;
707 
708 		if (on) {
709 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
710 					   rq->perout.index);
711 			if (pin < 0)
712 				return -EBUSY;
713 		}
714 		ts.tv_sec = rq->perout.period.sec;
715 		ts.tv_nsec = rq->perout.period.nsec;
716 		ns = timespec64_to_ns(&ts);
717 		ns = ns >> 1;
718 		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
719 			   (ns == 250000000LL) || (ns == 500000000LL))) {
720 			if (ns < 8LL)
721 				return -EINVAL;
722 			use_freq = 1;
723 		}
724 		ts = ns_to_timespec64(ns);
725 		if (rq->perout.index == 1) {
726 			if (use_freq) {
727 				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
728 				tsim_mask = 0;
729 			} else {
730 				tsauxc_mask = TSAUXC_EN_TT1;
731 				tsim_mask = TSINTR_TT1;
732 			}
733 			trgttiml = E1000_TRGTTIML1;
734 			trgttimh = E1000_TRGTTIMH1;
735 			freqout = E1000_FREQOUT1;
736 		} else {
737 			if (use_freq) {
738 				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
739 				tsim_mask = 0;
740 			} else {
741 				tsauxc_mask = TSAUXC_EN_TT0;
742 				tsim_mask = TSINTR_TT0;
743 			}
744 			trgttiml = E1000_TRGTTIML0;
745 			trgttimh = E1000_TRGTTIMH0;
746 			freqout = E1000_FREQOUT0;
747 		}
748 		spin_lock_irqsave(&igb->tmreg_lock, flags);
749 		tsauxc = rd32(E1000_TSAUXC);
750 		tsim = rd32(E1000_TSIM);
751 		if (rq->perout.index == 1) {
752 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
753 			tsim &= ~TSINTR_TT1;
754 		} else {
755 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
756 			tsim &= ~TSINTR_TT0;
757 		}
758 		if (on) {
759 			int i = rq->perout.index;
760 			igb_pin_perout(igb, i, pin, use_freq);
761 			igb->perout[i].start.tv_sec = rq->perout.start.sec;
762 			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
763 			igb->perout[i].period.tv_sec = ts.tv_sec;
764 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
765 			wr32(trgttimh, rq->perout.start.sec);
766 			wr32(trgttiml, rq->perout.start.nsec);
767 			if (use_freq)
768 				wr32(freqout, ns);
769 			tsauxc |= tsauxc_mask;
770 			tsim |= tsim_mask;
771 		}
772 		wr32(E1000_TSAUXC, tsauxc);
773 		wr32(E1000_TSIM, tsim);
774 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
775 		return 0;
776 
777 	case PTP_CLK_REQ_PPS:
778 		spin_lock_irqsave(&igb->tmreg_lock, flags);
779 		tsim = rd32(E1000_TSIM);
780 		if (on)
781 			tsim |= TSINTR_SYS_WRAP;
782 		else
783 			tsim &= ~TSINTR_SYS_WRAP;
784 		igb->pps_sys_wrap_on = !!on;
785 		wr32(E1000_TSIM, tsim);
786 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
787 		return 0;
788 	}
789 
790 	return -EOPNOTSUPP;
791 }
792 
igb_ptp_feature_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)793 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
794 				  struct ptp_clock_request *rq, int on)
795 {
796 	return -EOPNOTSUPP;
797 }
798 
igb_ptp_verify_pin(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)799 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
800 			      enum ptp_pin_function func, unsigned int chan)
801 {
802 	switch (func) {
803 	case PTP_PF_NONE:
804 	case PTP_PF_EXTTS:
805 	case PTP_PF_PEROUT:
806 		break;
807 	case PTP_PF_PHYSYNC:
808 		return -1;
809 	}
810 	return 0;
811 }
812 
813 /**
814  * igb_ptp_tx_work
815  * @work: pointer to work struct
816  *
817  * This work function polls the TSYNCTXCTL valid bit to determine when a
818  * timestamp has been taken for the current stored skb.
819  **/
igb_ptp_tx_work(struct work_struct * work)820 static void igb_ptp_tx_work(struct work_struct *work)
821 {
822 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
823 						   ptp_tx_work);
824 	struct e1000_hw *hw = &adapter->hw;
825 	u32 tsynctxctl;
826 
827 	if (!adapter->ptp_tx_skb)
828 		return;
829 
830 	if (time_is_before_jiffies(adapter->ptp_tx_start +
831 				   IGB_PTP_TX_TIMEOUT)) {
832 		dev_kfree_skb_any(adapter->ptp_tx_skb);
833 		adapter->ptp_tx_skb = NULL;
834 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
835 		adapter->tx_hwtstamp_timeouts++;
836 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
837 		 * interrupt
838 		 */
839 		rd32(E1000_TXSTMPH);
840 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
841 		return;
842 	}
843 
844 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
845 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
846 		igb_ptp_tx_hwtstamp(adapter);
847 	else
848 		/* reschedule to check later */
849 		schedule_work(&adapter->ptp_tx_work);
850 }
851 
igb_ptp_overflow_check(struct work_struct * work)852 static void igb_ptp_overflow_check(struct work_struct *work)
853 {
854 	struct igb_adapter *igb =
855 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
856 	struct timespec64 ts;
857 	u64 ns;
858 
859 	/* Update the timecounter */
860 	ns = timecounter_read(&igb->tc);
861 
862 	ts = ns_to_timespec64(ns);
863 	pr_debug("igb overflow check at %lld.%09lu\n",
864 		 (long long) ts.tv_sec, ts.tv_nsec);
865 
866 	schedule_delayed_work(&igb->ptp_overflow_work,
867 			      IGB_SYSTIM_OVERFLOW_PERIOD);
868 }
869 
870 /**
871  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
872  * @adapter: private network adapter structure
873  *
874  * This watchdog task is scheduled to detect error case where hardware has
875  * dropped an Rx packet that was timestamped when the ring is full. The
876  * particular error is rare but leaves the device in a state unable to timestamp
877  * any future packets.
878  **/
igb_ptp_rx_hang(struct igb_adapter * adapter)879 void igb_ptp_rx_hang(struct igb_adapter *adapter)
880 {
881 	struct e1000_hw *hw = &adapter->hw;
882 	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
883 	unsigned long rx_event;
884 
885 	/* Other hardware uses per-packet timestamps */
886 	if (hw->mac.type != e1000_82576)
887 		return;
888 
889 	/* If we don't have a valid timestamp in the registers, just update the
890 	 * timeout counter and exit
891 	 */
892 	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
893 		adapter->last_rx_ptp_check = jiffies;
894 		return;
895 	}
896 
897 	/* Determine the most recent watchdog or rx_timestamp event */
898 	rx_event = adapter->last_rx_ptp_check;
899 	if (time_after(adapter->last_rx_timestamp, rx_event))
900 		rx_event = adapter->last_rx_timestamp;
901 
902 	/* Only need to read the high RXSTMP register to clear the lock */
903 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
904 		rd32(E1000_RXSTMPH);
905 		adapter->last_rx_ptp_check = jiffies;
906 		adapter->rx_hwtstamp_cleared++;
907 		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
908 	}
909 }
910 
911 /**
912  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
913  * @adapter: private network adapter structure
914  */
igb_ptp_tx_hang(struct igb_adapter * adapter)915 void igb_ptp_tx_hang(struct igb_adapter *adapter)
916 {
917 	struct e1000_hw *hw = &adapter->hw;
918 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
919 					      IGB_PTP_TX_TIMEOUT);
920 
921 	if (!adapter->ptp_tx_skb)
922 		return;
923 
924 	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
925 		return;
926 
927 	/* If we haven't received a timestamp within the timeout, it is
928 	 * reasonable to assume that it will never occur, so we can unlock the
929 	 * timestamp bit when this occurs.
930 	 */
931 	if (timeout) {
932 		cancel_work_sync(&adapter->ptp_tx_work);
933 		dev_kfree_skb_any(adapter->ptp_tx_skb);
934 		adapter->ptp_tx_skb = NULL;
935 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
936 		adapter->tx_hwtstamp_timeouts++;
937 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
938 		 * interrupt
939 		 */
940 		rd32(E1000_TXSTMPH);
941 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
942 	}
943 }
944 
945 /**
946  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
947  * @adapter: Board private structure.
948  *
949  * If we were asked to do hardware stamping and such a time stamp is
950  * available, then it must have been for this skb here because we only
951  * allow only one such packet into the queue.
952  **/
igb_ptp_tx_hwtstamp(struct igb_adapter * adapter)953 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
954 {
955 	struct sk_buff *skb = adapter->ptp_tx_skb;
956 	struct e1000_hw *hw = &adapter->hw;
957 	struct skb_shared_hwtstamps shhwtstamps;
958 	u64 regval;
959 	int adjust = 0;
960 
961 	regval = rd32(E1000_TXSTMPL);
962 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
963 
964 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
965 	/* adjust timestamp for the TX latency based on link speed */
966 	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
967 		switch (adapter->link_speed) {
968 		case SPEED_10:
969 			adjust = IGB_I210_TX_LATENCY_10;
970 			break;
971 		case SPEED_100:
972 			adjust = IGB_I210_TX_LATENCY_100;
973 			break;
974 		case SPEED_1000:
975 			adjust = IGB_I210_TX_LATENCY_1000;
976 			break;
977 		}
978 	}
979 
980 	shhwtstamps.hwtstamp =
981 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
982 
983 	/* Clear the lock early before calling skb_tstamp_tx so that
984 	 * applications are not woken up before the lock bit is clear. We use
985 	 * a copy of the skb pointer to ensure other threads can't change it
986 	 * while we're notifying the stack.
987 	 */
988 	adapter->ptp_tx_skb = NULL;
989 	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
990 
991 	/* Notify the stack and free the skb after we've unlocked */
992 	skb_tstamp_tx(skb, &shhwtstamps);
993 	dev_kfree_skb_any(skb);
994 }
995 
996 /**
997  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
998  * @q_vector: Pointer to interrupt specific structure
999  * @va: Pointer to address containing Rx buffer
1000  * @timestamp: Pointer where timestamp will be stored
1001  *
1002  * This function is meant to retrieve a timestamp from the first buffer of an
1003  * incoming frame.  The value is stored in little endian format starting on
1004  * byte 8
1005  *
1006  * Returns: The timestamp header length or 0 if not available
1007  **/
igb_ptp_rx_pktstamp(struct igb_q_vector * q_vector,void * va,ktime_t * timestamp)1008 int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
1009 			ktime_t *timestamp)
1010 {
1011 	struct igb_adapter *adapter = q_vector->adapter;
1012 	struct e1000_hw *hw = &adapter->hw;
1013 	struct skb_shared_hwtstamps ts;
1014 	__le64 *regval = (__le64 *)va;
1015 	int adjust = 0;
1016 
1017 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1018 		return 0;
1019 
1020 	/* The timestamp is recorded in little endian format.
1021 	 * DWORD: 0        1        2        3
1022 	 * Field: Reserved Reserved SYSTIML  SYSTIMH
1023 	 */
1024 
1025 	/* check reserved dwords are zero, be/le doesn't matter for zero */
1026 	if (regval[0])
1027 		return 0;
1028 
1029 	igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1030 
1031 	/* adjust timestamp for the RX latency based on link speed */
1032 	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1033 		switch (adapter->link_speed) {
1034 		case SPEED_10:
1035 			adjust = IGB_I210_RX_LATENCY_10;
1036 			break;
1037 		case SPEED_100:
1038 			adjust = IGB_I210_RX_LATENCY_100;
1039 			break;
1040 		case SPEED_1000:
1041 			adjust = IGB_I210_RX_LATENCY_1000;
1042 			break;
1043 		}
1044 	}
1045 
1046 	*timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1047 
1048 	return IGB_TS_HDR_LEN;
1049 }
1050 
1051 /**
1052  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1053  * @q_vector: Pointer to interrupt specific structure
1054  * @skb: Buffer containing timestamp and packet
1055  *
1056  * This function is meant to retrieve a timestamp from the internal registers
1057  * of the adapter and store it in the skb.
1058  **/
igb_ptp_rx_rgtstamp(struct igb_q_vector * q_vector,struct sk_buff * skb)1059 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
1060 {
1061 	struct igb_adapter *adapter = q_vector->adapter;
1062 	struct e1000_hw *hw = &adapter->hw;
1063 	int adjust = 0;
1064 	u64 regval;
1065 
1066 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1067 		return;
1068 
1069 	/* If this bit is set, then the RX registers contain the time stamp. No
1070 	 * other packet will be time stamped until we read these registers, so
1071 	 * read the registers to make them available again. Because only one
1072 	 * packet can be time stamped at a time, we know that the register
1073 	 * values must belong to this one here and therefore we don't need to
1074 	 * compare any of the additional attributes stored for it.
1075 	 *
1076 	 * If nothing went wrong, then it should have a shared tx_flags that we
1077 	 * can turn into a skb_shared_hwtstamps.
1078 	 */
1079 	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1080 		return;
1081 
1082 	regval = rd32(E1000_RXSTMPL);
1083 	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1084 
1085 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1086 
1087 	/* adjust timestamp for the RX latency based on link speed */
1088 	if (adapter->hw.mac.type == e1000_i210) {
1089 		switch (adapter->link_speed) {
1090 		case SPEED_10:
1091 			adjust = IGB_I210_RX_LATENCY_10;
1092 			break;
1093 		case SPEED_100:
1094 			adjust = IGB_I210_RX_LATENCY_100;
1095 			break;
1096 		case SPEED_1000:
1097 			adjust = IGB_I210_RX_LATENCY_1000;
1098 			break;
1099 		}
1100 	}
1101 	skb_hwtstamps(skb)->hwtstamp =
1102 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1103 
1104 	/* Update the last_rx_timestamp timer in order to enable watchdog check
1105 	 * for error case of latched timestamp on a dropped packet.
1106 	 */
1107 	adapter->last_rx_timestamp = jiffies;
1108 }
1109 
1110 /**
1111  * igb_ptp_get_ts_config - get hardware time stamping config
1112  * @netdev: netdev struct
1113  * @ifr: interface struct
1114  *
1115  * Get the hwtstamp_config settings to return to the user. Rather than attempt
1116  * to deconstruct the settings from the registers, just return a shadow copy
1117  * of the last known settings.
1118  **/
igb_ptp_get_ts_config(struct net_device * netdev,struct ifreq * ifr)1119 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
1120 {
1121 	struct igb_adapter *adapter = netdev_priv(netdev);
1122 	struct hwtstamp_config *config = &adapter->tstamp_config;
1123 
1124 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1125 		-EFAULT : 0;
1126 }
1127 
1128 /**
1129  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1130  * @adapter: networking device structure
1131  * @config: hwtstamp configuration
1132  *
1133  * Outgoing time stamping can be enabled and disabled. Play nice and
1134  * disable it when requested, although it shouldn't case any overhead
1135  * when no packet needs it. At most one packet in the queue may be
1136  * marked for time stamping, otherwise it would be impossible to tell
1137  * for sure to which packet the hardware time stamp belongs.
1138  *
1139  * Incoming time stamping has to be configured via the hardware
1140  * filters. Not all combinations are supported, in particular event
1141  * type has to be specified. Matching the kind of event packet is
1142  * not supported, with the exception of "all V2 events regardless of
1143  * level 2 or 4".
1144  */
igb_ptp_set_timestamp_mode(struct igb_adapter * adapter,struct hwtstamp_config * config)1145 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1146 				      struct hwtstamp_config *config)
1147 {
1148 	struct e1000_hw *hw = &adapter->hw;
1149 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1150 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1151 	u32 tsync_rx_cfg = 0;
1152 	bool is_l4 = false;
1153 	bool is_l2 = false;
1154 	u32 regval;
1155 
1156 	switch (config->tx_type) {
1157 	case HWTSTAMP_TX_OFF:
1158 		tsync_tx_ctl = 0;
1159 		break;
1160 	case HWTSTAMP_TX_ON:
1161 		break;
1162 	default:
1163 		return -ERANGE;
1164 	}
1165 
1166 	switch (config->rx_filter) {
1167 	case HWTSTAMP_FILTER_NONE:
1168 		tsync_rx_ctl = 0;
1169 		break;
1170 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1171 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1172 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1173 		is_l4 = true;
1174 		break;
1175 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1176 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1177 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1178 		is_l4 = true;
1179 		break;
1180 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1181 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1182 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1183 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1184 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1185 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1186 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1187 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1188 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1189 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1190 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1191 		is_l2 = true;
1192 		is_l4 = true;
1193 		break;
1194 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1195 	case HWTSTAMP_FILTER_NTP_ALL:
1196 	case HWTSTAMP_FILTER_ALL:
1197 		/* 82576 cannot timestamp all packets, which it needs to do to
1198 		 * support both V1 Sync and Delay_Req messages
1199 		 */
1200 		if (hw->mac.type != e1000_82576) {
1201 			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1202 			config->rx_filter = HWTSTAMP_FILTER_ALL;
1203 			break;
1204 		}
1205 		fallthrough;
1206 	default:
1207 		config->rx_filter = HWTSTAMP_FILTER_NONE;
1208 		return -ERANGE;
1209 	}
1210 
1211 	if (hw->mac.type == e1000_82575) {
1212 		if (tsync_rx_ctl | tsync_tx_ctl)
1213 			return -EINVAL;
1214 		return 0;
1215 	}
1216 
1217 	/* Per-packet timestamping only works if all packets are
1218 	 * timestamped, so enable timestamping in all packets as
1219 	 * long as one Rx filter was configured.
1220 	 */
1221 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1222 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1223 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1224 		config->rx_filter = HWTSTAMP_FILTER_ALL;
1225 		is_l2 = true;
1226 		is_l4 = true;
1227 
1228 		if ((hw->mac.type == e1000_i210) ||
1229 		    (hw->mac.type == e1000_i211)) {
1230 			regval = rd32(E1000_RXPBS);
1231 			regval |= E1000_RXPBS_CFG_TS_EN;
1232 			wr32(E1000_RXPBS, regval);
1233 		}
1234 	}
1235 
1236 	/* enable/disable TX */
1237 	regval = rd32(E1000_TSYNCTXCTL);
1238 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1239 	regval |= tsync_tx_ctl;
1240 	wr32(E1000_TSYNCTXCTL, regval);
1241 
1242 	/* enable/disable RX */
1243 	regval = rd32(E1000_TSYNCRXCTL);
1244 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1245 	regval |= tsync_rx_ctl;
1246 	wr32(E1000_TSYNCRXCTL, regval);
1247 
1248 	/* define which PTP packets are time stamped */
1249 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1250 
1251 	/* define ethertype filter for timestamped packets */
1252 	if (is_l2)
1253 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1254 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1255 		      E1000_ETQF_1588 | /* enable timestamping */
1256 		      ETH_P_1588));     /* 1588 eth protocol type */
1257 	else
1258 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1259 
1260 	/* L4 Queue Filter[3]: filter by destination port and protocol */
1261 	if (is_l4) {
1262 		u32 ftqf = (IPPROTO_UDP /* UDP */
1263 			| E1000_FTQF_VF_BP /* VF not compared */
1264 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1265 			| E1000_FTQF_MASK); /* mask all inputs */
1266 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1267 
1268 		wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1269 		wr32(E1000_IMIREXT(3),
1270 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1271 		if (hw->mac.type == e1000_82576) {
1272 			/* enable source port check */
1273 			wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1274 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1275 		}
1276 		wr32(E1000_FTQF(3), ftqf);
1277 	} else {
1278 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1279 	}
1280 	wrfl();
1281 
1282 	/* clear TX/RX time stamp registers, just to be sure */
1283 	regval = rd32(E1000_TXSTMPL);
1284 	regval = rd32(E1000_TXSTMPH);
1285 	regval = rd32(E1000_RXSTMPL);
1286 	regval = rd32(E1000_RXSTMPH);
1287 
1288 	return 0;
1289 }
1290 
1291 /**
1292  * igb_ptp_set_ts_config - set hardware time stamping config
1293  * @netdev: netdev struct
1294  * @ifr: interface struct
1295  *
1296  **/
igb_ptp_set_ts_config(struct net_device * netdev,struct ifreq * ifr)1297 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1298 {
1299 	struct igb_adapter *adapter = netdev_priv(netdev);
1300 	struct hwtstamp_config config;
1301 	int err;
1302 
1303 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1304 		return -EFAULT;
1305 
1306 	err = igb_ptp_set_timestamp_mode(adapter, &config);
1307 	if (err)
1308 		return err;
1309 
1310 	/* save these settings for future reference */
1311 	memcpy(&adapter->tstamp_config, &config,
1312 	       sizeof(adapter->tstamp_config));
1313 
1314 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1315 		-EFAULT : 0;
1316 }
1317 
1318 /**
1319  * igb_ptp_init - Initialize PTP functionality
1320  * @adapter: Board private structure
1321  *
1322  * This function is called at device probe to initialize the PTP
1323  * functionality.
1324  */
igb_ptp_init(struct igb_adapter * adapter)1325 void igb_ptp_init(struct igb_adapter *adapter)
1326 {
1327 	struct e1000_hw *hw = &adapter->hw;
1328 	struct net_device *netdev = adapter->netdev;
1329 
1330 	switch (hw->mac.type) {
1331 	case e1000_82576:
1332 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1333 		adapter->ptp_caps.owner = THIS_MODULE;
1334 		adapter->ptp_caps.max_adj = 999999881;
1335 		adapter->ptp_caps.n_ext_ts = 0;
1336 		adapter->ptp_caps.pps = 0;
1337 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576;
1338 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1339 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1340 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1341 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1342 		adapter->cc.read = igb_ptp_read_82576;
1343 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1344 		adapter->cc.mult = 1;
1345 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1346 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1347 		break;
1348 	case e1000_82580:
1349 	case e1000_i354:
1350 	case e1000_i350:
1351 		igb_ptp_sdp_init(adapter);
1352 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1353 		adapter->ptp_caps.owner = THIS_MODULE;
1354 		adapter->ptp_caps.max_adj = 62499999;
1355 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1356 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1357 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1358 		adapter->ptp_caps.pps = 0;
1359 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1360 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1361 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1362 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1363 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1364 		adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1365 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1366 		adapter->cc.read = igb_ptp_read_82580;
1367 		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1368 		adapter->cc.mult = 1;
1369 		adapter->cc.shift = 0;
1370 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1371 		break;
1372 	case e1000_i210:
1373 	case e1000_i211:
1374 		igb_ptp_sdp_init(adapter);
1375 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1376 		adapter->ptp_caps.owner = THIS_MODULE;
1377 		adapter->ptp_caps.max_adj = 62499999;
1378 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1379 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1380 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1381 		adapter->ptp_caps.pps = 1;
1382 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1383 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1384 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1385 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1386 		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1387 		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1388 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1389 		break;
1390 	default:
1391 		adapter->ptp_clock = NULL;
1392 		return;
1393 	}
1394 
1395 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1396 						&adapter->pdev->dev);
1397 	if (IS_ERR(adapter->ptp_clock)) {
1398 		adapter->ptp_clock = NULL;
1399 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1400 	} else if (adapter->ptp_clock) {
1401 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1402 			 adapter->netdev->name);
1403 		adapter->ptp_flags |= IGB_PTP_ENABLED;
1404 
1405 		spin_lock_init(&adapter->tmreg_lock);
1406 		INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1407 
1408 		if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1409 			INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1410 					  igb_ptp_overflow_check);
1411 
1412 		adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1413 		adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1414 
1415 		igb_ptp_reset(adapter);
1416 	}
1417 }
1418 
1419 /**
1420  * igb_ptp_sdp_init - utility function which inits the SDP config structs
1421  * @adapter: Board private structure.
1422  **/
igb_ptp_sdp_init(struct igb_adapter * adapter)1423 void igb_ptp_sdp_init(struct igb_adapter *adapter)
1424 {
1425 	int i;
1426 
1427 	for (i = 0; i < IGB_N_SDP; i++) {
1428 		struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1429 
1430 		snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1431 		ppd->index = i;
1432 		ppd->func = PTP_PF_NONE;
1433 	}
1434 }
1435 
1436 /**
1437  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1438  * @adapter: Board private structure
1439  *
1440  * This function stops the overflow check work and PTP Tx timestamp work, and
1441  * will prepare the device for OS suspend.
1442  */
igb_ptp_suspend(struct igb_adapter * adapter)1443 void igb_ptp_suspend(struct igb_adapter *adapter)
1444 {
1445 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1446 		return;
1447 
1448 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1449 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1450 
1451 	cancel_work_sync(&adapter->ptp_tx_work);
1452 	if (adapter->ptp_tx_skb) {
1453 		dev_kfree_skb_any(adapter->ptp_tx_skb);
1454 		adapter->ptp_tx_skb = NULL;
1455 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1456 	}
1457 }
1458 
1459 /**
1460  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1461  * @adapter: Board private structure.
1462  *
1463  * This function stops the PTP support and cancels the delayed work.
1464  **/
igb_ptp_stop(struct igb_adapter * adapter)1465 void igb_ptp_stop(struct igb_adapter *adapter)
1466 {
1467 	igb_ptp_suspend(adapter);
1468 
1469 	if (adapter->ptp_clock) {
1470 		ptp_clock_unregister(adapter->ptp_clock);
1471 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1472 			 adapter->netdev->name);
1473 		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1474 	}
1475 }
1476 
1477 /**
1478  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1479  * @adapter: Board private structure.
1480  *
1481  * This function handles the reset work required to re-enable the PTP device.
1482  **/
igb_ptp_reset(struct igb_adapter * adapter)1483 void igb_ptp_reset(struct igb_adapter *adapter)
1484 {
1485 	struct e1000_hw *hw = &adapter->hw;
1486 	unsigned long flags;
1487 
1488 	/* reset the tstamp_config */
1489 	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1490 
1491 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1492 
1493 	switch (adapter->hw.mac.type) {
1494 	case e1000_82576:
1495 		/* Dial the nominal frequency. */
1496 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1497 		break;
1498 	case e1000_82580:
1499 	case e1000_i354:
1500 	case e1000_i350:
1501 	case e1000_i210:
1502 	case e1000_i211:
1503 		wr32(E1000_TSAUXC, 0x0);
1504 		wr32(E1000_TSSDP, 0x0);
1505 		wr32(E1000_TSIM,
1506 		     TSYNC_INTERRUPTS |
1507 		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1508 		wr32(E1000_IMS, E1000_IMS_TS);
1509 		break;
1510 	default:
1511 		/* No work to do. */
1512 		goto out;
1513 	}
1514 
1515 	/* Re-initialize the timer. */
1516 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1517 		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1518 
1519 		igb_ptp_write_i210(adapter, &ts);
1520 	} else {
1521 		timecounter_init(&adapter->tc, &adapter->cc,
1522 				 ktime_to_ns(ktime_get_real()));
1523 	}
1524 out:
1525 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1526 
1527 	wrfl();
1528 
1529 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1530 		schedule_delayed_work(&adapter->ptp_overflow_work,
1531 				      IGB_SYSTIM_OVERFLOW_PERIOD);
1532 }
1533