1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18
19 struct ice_vc_hdr_match_type {
20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE},
26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH},
27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN},
28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN},
29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 |
30 ICE_FLOW_SEG_HDR_IPV_OTHER},
31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 |
32 ICE_FLOW_SEG_HDR_IPV_OTHER},
33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP},
34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP},
35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP},
36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE},
37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP},
38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH},
39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 ICE_FLOW_SEG_HDR_GTPU_DWN},
41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 ICE_FLOW_SEG_HDR_GTPU_UP},
43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3},
44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP},
45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH},
46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48
49 struct ice_vc_hash_field_match_type {
50 u32 vc_hdr; /* virtchnl headers
51 * (VIRTCHNL_PROTO_HDR_XXX)
52 */
53 u32 vc_hash_field; /* virtchnl hash fields selector
54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 */
56 u64 ice_hash_field; /* ice hash fields
57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 */
59 };
60
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 ICE_FLOW_HASH_ETH},
70 {VIRTCHNL_PROTO_HDR_ETH,
71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 {VIRTCHNL_PROTO_HDR_S_VLAN,
74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 {VIRTCHNL_PROTO_HDR_C_VLAN,
77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 ICE_FLOW_HASH_IPV4},
86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 ICE_FLOW_HASH_IPV6},
107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 {VIRTCHNL_PROTO_HDR_TCP,
122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 {VIRTCHNL_PROTO_HDR_TCP,
125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 {VIRTCHNL_PROTO_HDR_TCP,
128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 ICE_FLOW_HASH_TCP_PORT},
131 {VIRTCHNL_PROTO_HDR_UDP,
132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 {VIRTCHNL_PROTO_HDR_UDP,
135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 {VIRTCHNL_PROTO_HDR_UDP,
138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 ICE_FLOW_HASH_UDP_PORT},
141 {VIRTCHNL_PROTO_HDR_SCTP,
142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 {VIRTCHNL_PROTO_HDR_SCTP,
145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 {VIRTCHNL_PROTO_HDR_SCTP,
148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 ICE_FLOW_HASH_SCTP_PORT},
151 {VIRTCHNL_PROTO_HDR_PPPOE,
152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 {VIRTCHNL_PROTO_HDR_GTPU_IP,
155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 {VIRTCHNL_PROTO_HDR_L2TPV3,
158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167
168 /**
169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170 * @pf: pointer to the PF structure
171 * @v_opcode: operation code
172 * @v_retval: return value
173 * @msg: pointer to the msg buffer
174 * @msglen: msg length
175 */
176 static void
ice_vc_vf_broadcast(struct ice_pf * pf,enum virtchnl_ops v_opcode,enum virtchnl_status_code v_retval,u8 * msg,u16 msglen)177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 struct ice_hw *hw = &pf->hw;
181 struct ice_vf *vf;
182 unsigned int bkt;
183
184 mutex_lock(&pf->vfs.table_lock);
185 ice_for_each_vf(pf, bkt, vf) {
186 /* Not all vfs are enabled so skip the ones that are not */
187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 continue;
190
191 /* Ignore return value on purpose - a given VF may fail, but
192 * we need to keep going and send to all of them
193 */
194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 msglen, NULL);
196 }
197 mutex_unlock(&pf->vfs.table_lock);
198 }
199
200 /**
201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202 * @vf: pointer to the VF structure
203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205 * @link_up: whether or not to set the link up/down
206 */
207 static void
ice_set_pfe_link(struct ice_vf * vf,struct virtchnl_pf_event * pfe,int ice_link_speed,bool link_up)208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 int ice_link_speed, bool link_up)
210 {
211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 pfe->event_data.link_event_adv.link_status = link_up;
213 /* Speed in Mbps */
214 pfe->event_data.link_event_adv.link_speed =
215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 } else {
217 pfe->event_data.link_event.link_status = link_up;
218 /* Legacy method for virtchnl link speeds */
219 pfe->event_data.link_event.link_speed =
220 (enum virtchnl_link_speed)
221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 }
223 }
224
225 /**
226 * ice_vc_notify_vf_link_state - Inform a VF of link status
227 * @vf: pointer to the VF structure
228 *
229 * send a link status message to a single VF
230 */
ice_vc_notify_vf_link_state(struct ice_vf * vf)231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 struct virtchnl_pf_event pfe = { 0 };
234 struct ice_hw *hw = &vf->pf->hw;
235
236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 pfe.severity = PF_EVENT_SEVERITY_INFO;
238
239 if (ice_is_vf_link_up(vf))
240 ice_set_pfe_link(vf, &pfe,
241 hw->port_info->phy.link_info.link_speed, true);
242 else
243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244
245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 sizeof(pfe), NULL);
248 }
249
250 /**
251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252 * @pf: pointer to the PF structure
253 */
ice_vc_notify_link_state(struct ice_pf * pf)254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 struct ice_vf *vf;
257 unsigned int bkt;
258
259 mutex_lock(&pf->vfs.table_lock);
260 ice_for_each_vf(pf, bkt, vf)
261 ice_vc_notify_vf_link_state(vf);
262 mutex_unlock(&pf->vfs.table_lock);
263 }
264
265 /**
266 * ice_vc_notify_reset - Send pending reset message to all VFs
267 * @pf: pointer to the PF structure
268 *
269 * indicate a pending reset to all VFs on a given PF
270 */
ice_vc_notify_reset(struct ice_pf * pf)271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 struct virtchnl_pf_event pfe;
274
275 if (!ice_has_vfs(pf))
276 return;
277
278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283
284 /**
285 * ice_vc_send_msg_to_vf - Send message to VF
286 * @vf: pointer to the VF info
287 * @v_opcode: virtual channel opcode
288 * @v_retval: virtual channel return value
289 * @msg: pointer to the msg buffer
290 * @msglen: msg length
291 *
292 * send msg to VF
293 */
294 int
ice_vc_send_msg_to_vf(struct ice_vf * vf,u32 v_opcode,enum virtchnl_status_code v_retval,u8 * msg,u16 msglen)295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 struct device *dev;
299 struct ice_pf *pf;
300 int aq_ret;
301
302 pf = vf->pf;
303 dev = ice_pf_to_dev(pf);
304
305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 msg, msglen, NULL);
307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 vf->vf_id, aq_ret,
310 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 return -EIO;
312 }
313
314 return 0;
315 }
316
317 /**
318 * ice_vc_get_ver_msg
319 * @vf: pointer to the VF info
320 * @msg: pointer to the msg buffer
321 *
322 * called from the VF to request the API version used by the PF
323 */
ice_vc_get_ver_msg(struct ice_vf * vf,u8 * msg)324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 struct virtchnl_version_info info = {
327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 };
329
330 vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 if (VF_IS_V10(&vf->vf_ver))
333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334
335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 sizeof(struct virtchnl_version_info));
338 }
339
340 /**
341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
342 * @vf: VF used to determine max frame size
343 *
344 * Max frame size is determined based on the current port's max frame size and
345 * whether a port VLAN is configured on this VF. The VF is not aware whether
346 * it's in a port VLAN so the PF needs to account for this in max frame size
347 * checks and sending the max frame size to the VF.
348 */
ice_vc_get_max_frame_size(struct ice_vf * vf)349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 u16 max_frame_size;
353
354 max_frame_size = pi->phy.link_info.max_frame_size;
355
356 if (ice_vf_is_port_vlan_ena(vf))
357 max_frame_size -= VLAN_HLEN;
358
359 return max_frame_size;
360 }
361
362 /**
363 * ice_vc_get_vlan_caps
364 * @hw: pointer to the hw
365 * @vf: pointer to the VF info
366 * @vsi: pointer to the VSI
367 * @driver_caps: current driver caps
368 *
369 * Return 0 if there is no VLAN caps supported, or VLAN caps value
370 */
371 static u32
ice_vc_get_vlan_caps(struct ice_hw * hw,struct ice_vf * vf,struct ice_vsi * vsi,u32 driver_caps)372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 u32 driver_caps)
374 {
375 if (ice_is_eswitch_mode_switchdev(vf->pf))
376 /* In switchdev setting VLAN from VF isn't supported */
377 return 0;
378
379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 /* VLAN offloads based on current device configuration */
381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 * these two conditions, which amounts to guest VLAN filtering
385 * and offloads being based on the inner VLAN or the
386 * inner/single VLAN respectively and don't allow VF to
387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 */
389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 return VIRTCHNL_VF_OFFLOAD_VLAN;
391 } else if (!ice_is_dvm_ena(hw) &&
392 !ice_vf_is_port_vlan_ena(vf)) {
393 /* configure backward compatible support for VFs that
394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 * configured in SVM, and no port VLAN is configured
396 */
397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 return VIRTCHNL_VF_OFFLOAD_VLAN;
399 } else if (ice_is_dvm_ena(hw)) {
400 /* configure software offloaded VLAN support when DVM
401 * is enabled, but no port VLAN is enabled
402 */
403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 }
405 }
406
407 return 0;
408 }
409
410 /**
411 * ice_vc_get_vf_res_msg
412 * @vf: pointer to the VF info
413 * @msg: pointer to the msg buffer
414 *
415 * called from the VF to request its resources
416 */
ice_vc_get_vf_res_msg(struct ice_vf * vf,u8 * msg)417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 struct virtchnl_vf_resource *vfres = NULL;
421 struct ice_hw *hw = &vf->pf->hw;
422 struct ice_vsi *vsi;
423 int len = 0;
424 int ret;
425
426 if (ice_check_vf_init(vf)) {
427 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 goto err;
429 }
430
431 len = virtchnl_struct_size(vfres, vsi_res, 0);
432
433 vfres = kzalloc(len, GFP_KERNEL);
434 if (!vfres) {
435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 len = 0;
437 goto err;
438 }
439 if (VF_IS_V11(&vf->vf_ver))
440 vf->driver_caps = *(u32 *)msg;
441 else
442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 VIRTCHNL_VF_OFFLOAD_VLAN;
444
445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
446 vsi = ice_get_vf_vsi(vf);
447 if (!vsi) {
448 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
449 goto err;
450 }
451
452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
453 vf->driver_caps);
454
455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
457
458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
460
461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
463
464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_TC_U32 &&
465 vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_TC_U32;
467
468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
470
471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
473
474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
476
477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
479
480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
482
483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
485
486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
488
489 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
490 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
491
492 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
493 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
494
495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
497
498 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_QOS)
499 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_QOS;
500
501 vfres->num_vsis = 1;
502 /* Tx and Rx queue are equal for VF */
503 vfres->num_queue_pairs = vsi->num_txq;
504 vfres->max_vectors = vf->num_msix;
505 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
506 vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
507 vfres->max_mtu = ice_vc_get_max_frame_size(vf);
508
509 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID;
510 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
511 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
512 ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
513 vf->hw_lan_addr);
514
515 /* match guest capabilities */
516 vf->driver_caps = vfres->vf_cap_flags;
517
518 ice_vc_set_caps_allowlist(vf);
519 ice_vc_set_working_allowlist(vf);
520
521 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
522
523 err:
524 /* send the response back to the VF */
525 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
526 (u8 *)vfres, len);
527
528 kfree(vfres);
529 return ret;
530 }
531
532 /**
533 * ice_vc_reset_vf_msg
534 * @vf: pointer to the VF info
535 *
536 * called from the VF to reset itself,
537 * unlike other virtchnl messages, PF driver
538 * doesn't send the response back to the VF
539 */
ice_vc_reset_vf_msg(struct ice_vf * vf)540 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
541 {
542 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
543 ice_reset_vf(vf, 0);
544 }
545
546 /**
547 * ice_vc_isvalid_vsi_id
548 * @vf: pointer to the VF info
549 * @vsi_id: VF relative VSI ID
550 *
551 * check for the valid VSI ID
552 */
ice_vc_isvalid_vsi_id(struct ice_vf * vf,u16 vsi_id)553 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
554 {
555 return vsi_id == ICE_VF_VSI_ID;
556 }
557
558 /**
559 * ice_vc_isvalid_q_id
560 * @vsi: VSI to check queue ID against
561 * @qid: VSI relative queue ID
562 *
563 * check for the valid queue ID
564 */
ice_vc_isvalid_q_id(struct ice_vsi * vsi,u16 qid)565 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u16 qid)
566 {
567 /* allocated Tx and Rx queues should be always equal for VF VSI */
568 return qid < vsi->alloc_txq;
569 }
570
571 /**
572 * ice_vc_isvalid_ring_len
573 * @ring_len: length of ring
574 *
575 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
576 * or zero
577 */
ice_vc_isvalid_ring_len(u16 ring_len)578 static bool ice_vc_isvalid_ring_len(u16 ring_len)
579 {
580 return ring_len == 0 ||
581 (ring_len >= ICE_MIN_NUM_DESC &&
582 ring_len <= ICE_MAX_NUM_DESC &&
583 !(ring_len % ICE_REQ_DESC_MULTIPLE));
584 }
585
586 /**
587 * ice_vc_validate_pattern
588 * @vf: pointer to the VF info
589 * @proto: virtchnl protocol headers
590 *
591 * validate the pattern is supported or not.
592 *
593 * Return: true on success, false on error.
594 */
595 bool
ice_vc_validate_pattern(struct ice_vf * vf,struct virtchnl_proto_hdrs * proto)596 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
597 {
598 bool is_ipv4 = false;
599 bool is_ipv6 = false;
600 bool is_udp = false;
601 u16 ptype = -1;
602 int i = 0;
603
604 while (i < proto->count &&
605 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
606 switch (proto->proto_hdr[i].type) {
607 case VIRTCHNL_PROTO_HDR_ETH:
608 ptype = ICE_PTYPE_MAC_PAY;
609 break;
610 case VIRTCHNL_PROTO_HDR_IPV4:
611 ptype = ICE_PTYPE_IPV4_PAY;
612 is_ipv4 = true;
613 break;
614 case VIRTCHNL_PROTO_HDR_IPV6:
615 ptype = ICE_PTYPE_IPV6_PAY;
616 is_ipv6 = true;
617 break;
618 case VIRTCHNL_PROTO_HDR_UDP:
619 if (is_ipv4)
620 ptype = ICE_PTYPE_IPV4_UDP_PAY;
621 else if (is_ipv6)
622 ptype = ICE_PTYPE_IPV6_UDP_PAY;
623 is_udp = true;
624 break;
625 case VIRTCHNL_PROTO_HDR_TCP:
626 if (is_ipv4)
627 ptype = ICE_PTYPE_IPV4_TCP_PAY;
628 else if (is_ipv6)
629 ptype = ICE_PTYPE_IPV6_TCP_PAY;
630 break;
631 case VIRTCHNL_PROTO_HDR_SCTP:
632 if (is_ipv4)
633 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
634 else if (is_ipv6)
635 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
636 break;
637 case VIRTCHNL_PROTO_HDR_GTPU_IP:
638 case VIRTCHNL_PROTO_HDR_GTPU_EH:
639 if (is_ipv4)
640 ptype = ICE_MAC_IPV4_GTPU;
641 else if (is_ipv6)
642 ptype = ICE_MAC_IPV6_GTPU;
643 goto out;
644 case VIRTCHNL_PROTO_HDR_L2TPV3:
645 if (is_ipv4)
646 ptype = ICE_MAC_IPV4_L2TPV3;
647 else if (is_ipv6)
648 ptype = ICE_MAC_IPV6_L2TPV3;
649 goto out;
650 case VIRTCHNL_PROTO_HDR_ESP:
651 if (is_ipv4)
652 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
653 ICE_MAC_IPV4_ESP;
654 else if (is_ipv6)
655 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
656 ICE_MAC_IPV6_ESP;
657 goto out;
658 case VIRTCHNL_PROTO_HDR_AH:
659 if (is_ipv4)
660 ptype = ICE_MAC_IPV4_AH;
661 else if (is_ipv6)
662 ptype = ICE_MAC_IPV6_AH;
663 goto out;
664 case VIRTCHNL_PROTO_HDR_PFCP:
665 if (is_ipv4)
666 ptype = ICE_MAC_IPV4_PFCP_SESSION;
667 else if (is_ipv6)
668 ptype = ICE_MAC_IPV6_PFCP_SESSION;
669 goto out;
670 default:
671 break;
672 }
673 i++;
674 }
675
676 out:
677 return ice_hw_ptype_ena(&vf->pf->hw, ptype);
678 }
679
680 /**
681 * ice_vc_parse_rss_cfg - parses hash fields and headers from
682 * a specific virtchnl RSS cfg
683 * @hw: pointer to the hardware
684 * @rss_cfg: pointer to the virtchnl RSS cfg
685 * @hash_cfg: pointer to the HW hash configuration
686 *
687 * Return true if all the protocol header and hash fields in the RSS cfg could
688 * be parsed, else return false
689 *
690 * This function parses the virtchnl RSS cfg to be the intended
691 * hash fields and the intended header for RSS configuration
692 */
ice_vc_parse_rss_cfg(struct ice_hw * hw,struct virtchnl_rss_cfg * rss_cfg,struct ice_rss_hash_cfg * hash_cfg)693 static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
694 struct virtchnl_rss_cfg *rss_cfg,
695 struct ice_rss_hash_cfg *hash_cfg)
696 {
697 const struct ice_vc_hash_field_match_type *hf_list;
698 const struct ice_vc_hdr_match_type *hdr_list;
699 int i, hf_list_len, hdr_list_len;
700 u32 *addl_hdrs = &hash_cfg->addl_hdrs;
701 u64 *hash_flds = &hash_cfg->hash_flds;
702
703 /* set outer layer RSS as default */
704 hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
705
706 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
707 hash_cfg->symm = true;
708 else
709 hash_cfg->symm = false;
710
711 hf_list = ice_vc_hash_field_list;
712 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
713 hdr_list = ice_vc_hdr_list;
714 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
715
716 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
717 struct virtchnl_proto_hdr *proto_hdr =
718 &rss_cfg->proto_hdrs.proto_hdr[i];
719 bool hdr_found = false;
720 int j;
721
722 /* Find matched ice headers according to virtchnl headers. */
723 for (j = 0; j < hdr_list_len; j++) {
724 struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
725
726 if (proto_hdr->type == hdr_map.vc_hdr) {
727 *addl_hdrs |= hdr_map.ice_hdr;
728 hdr_found = true;
729 }
730 }
731
732 if (!hdr_found)
733 return false;
734
735 /* Find matched ice hash fields according to
736 * virtchnl hash fields.
737 */
738 for (j = 0; j < hf_list_len; j++) {
739 struct ice_vc_hash_field_match_type hf_map = hf_list[j];
740
741 if (proto_hdr->type == hf_map.vc_hdr &&
742 proto_hdr->field_selector == hf_map.vc_hash_field) {
743 *hash_flds |= hf_map.ice_hash_field;
744 break;
745 }
746 }
747 }
748
749 return true;
750 }
751
752 /**
753 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
754 * RSS offloads
755 * @caps: VF driver negotiated capabilities
756 *
757 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
758 * else return false
759 */
ice_vf_adv_rss_offload_ena(u32 caps)760 static bool ice_vf_adv_rss_offload_ena(u32 caps)
761 {
762 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
763 }
764
765 /**
766 * ice_vc_handle_rss_cfg
767 * @vf: pointer to the VF info
768 * @msg: pointer to the message buffer
769 * @add: add a RSS config if true, otherwise delete a RSS config
770 *
771 * This function adds/deletes a RSS config
772 */
ice_vc_handle_rss_cfg(struct ice_vf * vf,u8 * msg,bool add)773 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
774 {
775 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
776 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
777 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
778 struct device *dev = ice_pf_to_dev(vf->pf);
779 struct ice_hw *hw = &vf->pf->hw;
780 struct ice_vsi *vsi;
781
782 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
783 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
784 vf->vf_id);
785 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
786 goto error_param;
787 }
788
789 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
790 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
791 vf->vf_id);
792 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
793 goto error_param;
794 }
795
796 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
797 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
798 goto error_param;
799 }
800
801 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
802 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
803 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
804 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
805 vf->vf_id);
806 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
807 goto error_param;
808 }
809
810 vsi = ice_get_vf_vsi(vf);
811 if (!vsi) {
812 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
813 goto error_param;
814 }
815
816 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
817 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
818 goto error_param;
819 }
820
821 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
822 struct ice_vsi_ctx *ctx;
823 u8 lut_type, hash_type;
824 int status;
825
826 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
827 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
828 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
829
830 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
831 if (!ctx) {
832 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
833 goto error_param;
834 }
835
836 ctx->info.q_opt_rss =
837 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
838 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
839
840 /* Preserve existing queueing option setting */
841 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
842 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
843 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
844 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
845
846 ctx->info.valid_sections =
847 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
848
849 status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
850 if (status) {
851 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
852 status, ice_aq_str(hw->adminq.sq_last_status));
853 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
854 } else {
855 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
856 }
857
858 kfree(ctx);
859 } else {
860 struct ice_rss_hash_cfg cfg;
861
862 /* Only check for none raw pattern case */
863 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
864 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
865 goto error_param;
866 }
867 cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
868 cfg.hash_flds = ICE_HASH_INVALID;
869 cfg.hdr_type = ICE_RSS_ANY_HEADERS;
870
871 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
872 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
873 goto error_param;
874 }
875
876 if (add) {
877 if (ice_add_rss_cfg(hw, vsi, &cfg)) {
878 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
879 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
880 vsi->vsi_num, v_ret);
881 }
882 } else {
883 int status;
884
885 status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
886 /* We just ignore -ENOENT, because if two configurations
887 * share the same profile remove one of them actually
888 * removes both, since the profile is deleted.
889 */
890 if (status && status != -ENOENT) {
891 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
892 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
893 vf->vf_id, status);
894 }
895 }
896 }
897
898 error_param:
899 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
900 }
901
902 /**
903 * ice_vc_config_rss_key
904 * @vf: pointer to the VF info
905 * @msg: pointer to the msg buffer
906 *
907 * Configure the VF's RSS key
908 */
ice_vc_config_rss_key(struct ice_vf * vf,u8 * msg)909 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
910 {
911 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
912 struct virtchnl_rss_key *vrk =
913 (struct virtchnl_rss_key *)msg;
914 struct ice_vsi *vsi;
915
916 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
917 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
918 goto error_param;
919 }
920
921 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
922 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
923 goto error_param;
924 }
925
926 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
927 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
928 goto error_param;
929 }
930
931 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
932 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
933 goto error_param;
934 }
935
936 vsi = ice_get_vf_vsi(vf);
937 if (!vsi) {
938 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
939 goto error_param;
940 }
941
942 if (ice_set_rss_key(vsi, vrk->key))
943 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
944 error_param:
945 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
946 NULL, 0);
947 }
948
949 /**
950 * ice_vc_config_rss_lut
951 * @vf: pointer to the VF info
952 * @msg: pointer to the msg buffer
953 *
954 * Configure the VF's RSS LUT
955 */
ice_vc_config_rss_lut(struct ice_vf * vf,u8 * msg)956 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
957 {
958 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
959 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
960 struct ice_vsi *vsi;
961
962 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
963 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
964 goto error_param;
965 }
966
967 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
968 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
969 goto error_param;
970 }
971
972 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
973 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
974 goto error_param;
975 }
976
977 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
978 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
979 goto error_param;
980 }
981
982 vsi = ice_get_vf_vsi(vf);
983 if (!vsi) {
984 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
985 goto error_param;
986 }
987
988 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
989 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
990 error_param:
991 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
992 NULL, 0);
993 }
994
995 /**
996 * ice_vc_config_rss_hfunc
997 * @vf: pointer to the VF info
998 * @msg: pointer to the msg buffer
999 *
1000 * Configure the VF's RSS Hash function
1001 */
ice_vc_config_rss_hfunc(struct ice_vf * vf,u8 * msg)1002 static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
1003 {
1004 struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
1005 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1006 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1007 struct ice_vsi *vsi;
1008
1009 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1010 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1011 goto error_param;
1012 }
1013
1014 if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1015 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1016 goto error_param;
1017 }
1018
1019 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1020 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1021 goto error_param;
1022 }
1023
1024 vsi = ice_get_vf_vsi(vf);
1025 if (!vsi) {
1026 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1027 goto error_param;
1028 }
1029
1030 if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1031 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1032
1033 if (ice_set_rss_hfunc(vsi, hfunc))
1034 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1035 error_param:
1036 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1037 NULL, 0);
1038 }
1039
1040 /**
1041 * ice_vc_get_qos_caps - Get current QoS caps from PF
1042 * @vf: pointer to the VF info
1043 *
1044 * Get VF's QoS capabilities, such as TC number, arbiter and
1045 * bandwidth from PF.
1046 *
1047 * Return: 0 on success or negative error value.
1048 */
ice_vc_get_qos_caps(struct ice_vf * vf)1049 static int ice_vc_get_qos_caps(struct ice_vf *vf)
1050 {
1051 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1052 struct virtchnl_qos_cap_list *cap_list = NULL;
1053 u8 tc_prio[ICE_MAX_TRAFFIC_CLASS] = { 0 };
1054 struct virtchnl_qos_cap_elem *cfg = NULL;
1055 struct ice_vsi_ctx *vsi_ctx;
1056 struct ice_pf *pf = vf->pf;
1057 struct ice_port_info *pi;
1058 struct ice_vsi *vsi;
1059 u8 numtc, tc;
1060 u16 len = 0;
1061 int ret, i;
1062
1063 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1064 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1065 goto err;
1066 }
1067
1068 vsi = ice_get_vf_vsi(vf);
1069 if (!vsi) {
1070 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1071 goto err;
1072 }
1073
1074 pi = pf->hw.port_info;
1075 numtc = vsi->tc_cfg.numtc;
1076
1077 vsi_ctx = ice_get_vsi_ctx(pi->hw, vf->lan_vsi_idx);
1078 if (!vsi_ctx) {
1079 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1080 goto err;
1081 }
1082
1083 len = struct_size(cap_list, cap, numtc);
1084 cap_list = kzalloc(len, GFP_KERNEL);
1085 if (!cap_list) {
1086 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
1087 len = 0;
1088 goto err;
1089 }
1090
1091 cap_list->vsi_id = vsi->vsi_num;
1092 cap_list->num_elem = numtc;
1093
1094 /* Store the UP2TC configuration from DCB to a user priority bitmap
1095 * of each TC. Each element of prio_of_tc represents one TC. Each
1096 * bitmap indicates the user priorities belong to this TC.
1097 */
1098 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
1099 tc = pi->qos_cfg.local_dcbx_cfg.etscfg.prio_table[i];
1100 tc_prio[tc] |= BIT(i);
1101 }
1102
1103 for (i = 0; i < numtc; i++) {
1104 cfg = &cap_list->cap[i];
1105 cfg->tc_num = i;
1106 cfg->tc_prio = tc_prio[i];
1107 cfg->arbiter = pi->qos_cfg.local_dcbx_cfg.etscfg.tsatable[i];
1108 cfg->weight = VIRTCHNL_STRICT_WEIGHT;
1109 cfg->type = VIRTCHNL_BW_SHAPER;
1110 cfg->shaper.committed = vsi_ctx->sched.bw_t_info[i].cir_bw.bw;
1111 cfg->shaper.peak = vsi_ctx->sched.bw_t_info[i].eir_bw.bw;
1112 }
1113
1114 err:
1115 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_QOS_CAPS, v_ret,
1116 (u8 *)cap_list, len);
1117 kfree(cap_list);
1118 return ret;
1119 }
1120
1121 /**
1122 * ice_vf_cfg_qs_bw - Configure per queue bandwidth
1123 * @vf: pointer to the VF info
1124 * @num_queues: number of queues to be configured
1125 *
1126 * Configure per queue bandwidth.
1127 *
1128 * Return: 0 on success or negative error value.
1129 */
ice_vf_cfg_qs_bw(struct ice_vf * vf,u16 num_queues)1130 static int ice_vf_cfg_qs_bw(struct ice_vf *vf, u16 num_queues)
1131 {
1132 struct ice_hw *hw = &vf->pf->hw;
1133 struct ice_vsi *vsi;
1134 int ret;
1135 u16 i;
1136
1137 vsi = ice_get_vf_vsi(vf);
1138 if (!vsi)
1139 return -EINVAL;
1140
1141 for (i = 0; i < num_queues; i++) {
1142 u32 p_rate, min_rate;
1143 u8 tc;
1144
1145 p_rate = vf->qs_bw[i].peak;
1146 min_rate = vf->qs_bw[i].committed;
1147 tc = vf->qs_bw[i].tc;
1148 if (p_rate)
1149 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc,
1150 vf->qs_bw[i].queue_id,
1151 ICE_MAX_BW, p_rate);
1152 else
1153 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc,
1154 vf->qs_bw[i].queue_id,
1155 ICE_MAX_BW);
1156 if (ret)
1157 return ret;
1158
1159 if (min_rate)
1160 ret = ice_cfg_q_bw_lmt(hw->port_info, vsi->idx, tc,
1161 vf->qs_bw[i].queue_id,
1162 ICE_MIN_BW, min_rate);
1163 else
1164 ret = ice_cfg_q_bw_dflt_lmt(hw->port_info, vsi->idx, tc,
1165 vf->qs_bw[i].queue_id,
1166 ICE_MIN_BW);
1167
1168 if (ret)
1169 return ret;
1170 }
1171
1172 return 0;
1173 }
1174
1175 /**
1176 * ice_vf_cfg_q_quanta_profile - Configure quanta profile
1177 * @vf: pointer to the VF info
1178 * @quanta_prof_idx: pointer to the quanta profile index
1179 * @quanta_size: quanta size to be set
1180 *
1181 * This function chooses available quanta profile and configures the register.
1182 * The quanta profile is evenly divided by the number of device ports, and then
1183 * available to the specific PF and VFs. The first profile for each PF is a
1184 * reserved default profile. Only quanta size of the rest unused profile can be
1185 * modified.
1186 *
1187 * Return: 0 on success or negative error value.
1188 */
ice_vf_cfg_q_quanta_profile(struct ice_vf * vf,u16 quanta_size,u16 * quanta_prof_idx)1189 static int ice_vf_cfg_q_quanta_profile(struct ice_vf *vf, u16 quanta_size,
1190 u16 *quanta_prof_idx)
1191 {
1192 const u16 n_desc = calc_quanta_desc(quanta_size);
1193 struct ice_hw *hw = &vf->pf->hw;
1194 const u16 n_cmd = 2 * n_desc;
1195 struct ice_pf *pf = vf->pf;
1196 u16 per_pf, begin_id;
1197 u8 n_used;
1198 u32 reg;
1199
1200 begin_id = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) / hw->dev_caps.num_funcs *
1201 hw->logical_pf_id;
1202
1203 if (quanta_size == ICE_DFLT_QUANTA) {
1204 *quanta_prof_idx = begin_id;
1205 } else {
1206 per_pf = (GLCOMM_QUANTA_PROF_MAX_INDEX + 1) /
1207 hw->dev_caps.num_funcs;
1208 n_used = pf->num_quanta_prof_used;
1209 if (n_used < per_pf) {
1210 *quanta_prof_idx = begin_id + 1 + n_used;
1211 pf->num_quanta_prof_used++;
1212 } else {
1213 return -EINVAL;
1214 }
1215 }
1216
1217 reg = FIELD_PREP(GLCOMM_QUANTA_PROF_QUANTA_SIZE_M, quanta_size) |
1218 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_CMD_M, n_cmd) |
1219 FIELD_PREP(GLCOMM_QUANTA_PROF_MAX_DESC_M, n_desc);
1220 wr32(hw, GLCOMM_QUANTA_PROF(*quanta_prof_idx), reg);
1221
1222 return 0;
1223 }
1224
1225 /**
1226 * ice_vc_cfg_promiscuous_mode_msg
1227 * @vf: pointer to the VF info
1228 * @msg: pointer to the msg buffer
1229 *
1230 * called from the VF to configure VF VSIs promiscuous mode
1231 */
ice_vc_cfg_promiscuous_mode_msg(struct ice_vf * vf,u8 * msg)1232 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1233 {
1234 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1235 bool rm_promisc, alluni = false, allmulti = false;
1236 struct virtchnl_promisc_info *info =
1237 (struct virtchnl_promisc_info *)msg;
1238 struct ice_vsi_vlan_ops *vlan_ops;
1239 int mcast_err = 0, ucast_err = 0;
1240 struct ice_pf *pf = vf->pf;
1241 struct ice_vsi *vsi;
1242 u8 mcast_m, ucast_m;
1243 struct device *dev;
1244 int ret = 0;
1245
1246 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1247 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1248 goto error_param;
1249 }
1250
1251 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1252 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1253 goto error_param;
1254 }
1255
1256 vsi = ice_get_vf_vsi(vf);
1257 if (!vsi) {
1258 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1259 goto error_param;
1260 }
1261
1262 dev = ice_pf_to_dev(pf);
1263 if (!ice_is_vf_trusted(vf)) {
1264 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1265 vf->vf_id);
1266 /* Leave v_ret alone, lie to the VF on purpose. */
1267 goto error_param;
1268 }
1269
1270 if (info->flags & FLAG_VF_UNICAST_PROMISC)
1271 alluni = true;
1272
1273 if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1274 allmulti = true;
1275
1276 rm_promisc = !allmulti && !alluni;
1277
1278 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1279 if (rm_promisc)
1280 ret = vlan_ops->ena_rx_filtering(vsi);
1281 else
1282 ret = vlan_ops->dis_rx_filtering(vsi);
1283 if (ret) {
1284 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1285 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1286 goto error_param;
1287 }
1288
1289 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1290
1291 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1292 if (alluni) {
1293 /* in this case we're turning on promiscuous mode */
1294 ret = ice_set_dflt_vsi(vsi);
1295 } else {
1296 /* in this case we're turning off promiscuous mode */
1297 if (ice_is_dflt_vsi_in_use(vsi->port_info))
1298 ret = ice_clear_dflt_vsi(vsi);
1299 }
1300
1301 /* in this case we're turning on/off only
1302 * allmulticast
1303 */
1304 if (allmulti)
1305 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1306 else
1307 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1308
1309 if (ret) {
1310 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1311 vf->vf_id, ret);
1312 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1313 goto error_param;
1314 }
1315 } else {
1316 if (alluni)
1317 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1318 else
1319 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1320
1321 if (allmulti)
1322 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1323 else
1324 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1325
1326 if (ucast_err || mcast_err)
1327 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1328 }
1329
1330 if (!mcast_err) {
1331 if (allmulti &&
1332 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1333 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1334 vf->vf_id);
1335 else if (!allmulti &&
1336 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1337 vf->vf_states))
1338 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1339 vf->vf_id);
1340 } else {
1341 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1342 vf->vf_id, mcast_err);
1343 }
1344
1345 if (!ucast_err) {
1346 if (alluni &&
1347 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1348 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1349 vf->vf_id);
1350 else if (!alluni &&
1351 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1352 vf->vf_states))
1353 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1354 vf->vf_id);
1355 } else {
1356 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1357 vf->vf_id, ucast_err);
1358 }
1359
1360 error_param:
1361 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1362 v_ret, NULL, 0);
1363 }
1364
1365 /**
1366 * ice_vc_get_stats_msg
1367 * @vf: pointer to the VF info
1368 * @msg: pointer to the msg buffer
1369 *
1370 * called from the VF to get VSI stats
1371 */
ice_vc_get_stats_msg(struct ice_vf * vf,u8 * msg)1372 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1373 {
1374 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1375 struct virtchnl_queue_select *vqs =
1376 (struct virtchnl_queue_select *)msg;
1377 struct ice_eth_stats stats = { 0 };
1378 struct ice_vsi *vsi;
1379
1380 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1381 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1382 goto error_param;
1383 }
1384
1385 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1386 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1387 goto error_param;
1388 }
1389
1390 vsi = ice_get_vf_vsi(vf);
1391 if (!vsi) {
1392 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1393 goto error_param;
1394 }
1395
1396 ice_update_eth_stats(vsi);
1397
1398 stats = vsi->eth_stats;
1399
1400 error_param:
1401 /* send the response to the VF */
1402 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1403 (u8 *)&stats, sizeof(stats));
1404 }
1405
1406 /**
1407 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1408 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1409 *
1410 * Return true on successful validation, else false
1411 */
ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select * vqs)1412 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1413 {
1414 if ((!vqs->rx_queues && !vqs->tx_queues) ||
1415 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1416 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1417 return false;
1418
1419 return true;
1420 }
1421
1422 /**
1423 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1424 * @vsi: VSI of the VF to configure
1425 * @q_idx: VF queue index used to determine the queue in the PF's space
1426 */
ice_vf_ena_txq_interrupt(struct ice_vsi * vsi,u32 q_idx)1427 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1428 {
1429 struct ice_hw *hw = &vsi->back->hw;
1430 u32 pfq = vsi->txq_map[q_idx];
1431 u32 reg;
1432
1433 reg = rd32(hw, QINT_TQCTL(pfq));
1434
1435 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1436 * this is most likely a poll mode VF driver, so don't enable an
1437 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1438 */
1439 if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1440 return;
1441
1442 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1443 }
1444
1445 /**
1446 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1447 * @vsi: VSI of the VF to configure
1448 * @q_idx: VF queue index used to determine the queue in the PF's space
1449 */
ice_vf_ena_rxq_interrupt(struct ice_vsi * vsi,u32 q_idx)1450 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1451 {
1452 struct ice_hw *hw = &vsi->back->hw;
1453 u32 pfq = vsi->rxq_map[q_idx];
1454 u32 reg;
1455
1456 reg = rd32(hw, QINT_RQCTL(pfq));
1457
1458 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1459 * this is most likely a poll mode VF driver, so don't enable an
1460 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1461 */
1462 if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1463 return;
1464
1465 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1466 }
1467
1468 /**
1469 * ice_vc_ena_qs_msg
1470 * @vf: pointer to the VF info
1471 * @msg: pointer to the msg buffer
1472 *
1473 * called from the VF to enable all or specific queue(s)
1474 */
ice_vc_ena_qs_msg(struct ice_vf * vf,u8 * msg)1475 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1476 {
1477 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1478 struct virtchnl_queue_select *vqs =
1479 (struct virtchnl_queue_select *)msg;
1480 struct ice_vsi *vsi;
1481 unsigned long q_map;
1482 u16 vf_q_id;
1483
1484 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1485 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1486 goto error_param;
1487 }
1488
1489 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1490 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1491 goto error_param;
1492 }
1493
1494 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1495 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1496 goto error_param;
1497 }
1498
1499 vsi = ice_get_vf_vsi(vf);
1500 if (!vsi) {
1501 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1502 goto error_param;
1503 }
1504
1505 /* Enable only Rx rings, Tx rings were enabled by the FW when the
1506 * Tx queue group list was configured and the context bits were
1507 * programmed using ice_vsi_cfg_txqs
1508 */
1509 q_map = vqs->rx_queues;
1510 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1511 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1512 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1513 goto error_param;
1514 }
1515
1516 /* Skip queue if enabled */
1517 if (test_bit(vf_q_id, vf->rxq_ena))
1518 continue;
1519
1520 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1521 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1522 vf_q_id, vsi->vsi_num);
1523 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1524 goto error_param;
1525 }
1526
1527 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1528 set_bit(vf_q_id, vf->rxq_ena);
1529 }
1530
1531 q_map = vqs->tx_queues;
1532 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1533 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1534 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1535 goto error_param;
1536 }
1537
1538 /* Skip queue if enabled */
1539 if (test_bit(vf_q_id, vf->txq_ena))
1540 continue;
1541
1542 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1543 set_bit(vf_q_id, vf->txq_ena);
1544 }
1545
1546 /* Set flag to indicate that queues are enabled */
1547 if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1548 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1549
1550 error_param:
1551 /* send the response to the VF */
1552 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1553 NULL, 0);
1554 }
1555
1556 /**
1557 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1558 * @vf: VF to disable queue for
1559 * @vsi: VSI for the VF
1560 * @q_id: VF relative (0-based) queue ID
1561 *
1562 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1563 * disabled then clear q_id bit in the enabled queues bitmap and return
1564 * success. Otherwise return error.
1565 */
1566 static int
ice_vf_vsi_dis_single_txq(struct ice_vf * vf,struct ice_vsi * vsi,u16 q_id)1567 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1568 {
1569 struct ice_txq_meta txq_meta = { 0 };
1570 struct ice_tx_ring *ring;
1571 int err;
1572
1573 if (!test_bit(q_id, vf->txq_ena))
1574 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1575 q_id, vsi->vsi_num);
1576
1577 ring = vsi->tx_rings[q_id];
1578 if (!ring)
1579 return -EINVAL;
1580
1581 ice_fill_txq_meta(vsi, ring, &txq_meta);
1582
1583 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1584 if (err) {
1585 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1586 q_id, vsi->vsi_num);
1587 return err;
1588 }
1589
1590 /* Clear enabled queues flag */
1591 clear_bit(q_id, vf->txq_ena);
1592
1593 return 0;
1594 }
1595
1596 /**
1597 * ice_vc_dis_qs_msg
1598 * @vf: pointer to the VF info
1599 * @msg: pointer to the msg buffer
1600 *
1601 * called from the VF to disable all or specific queue(s)
1602 */
ice_vc_dis_qs_msg(struct ice_vf * vf,u8 * msg)1603 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1604 {
1605 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1606 struct virtchnl_queue_select *vqs =
1607 (struct virtchnl_queue_select *)msg;
1608 struct ice_vsi *vsi;
1609 unsigned long q_map;
1610 u16 vf_q_id;
1611
1612 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1613 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1614 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1615 goto error_param;
1616 }
1617
1618 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1619 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1620 goto error_param;
1621 }
1622
1623 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1624 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1625 goto error_param;
1626 }
1627
1628 vsi = ice_get_vf_vsi(vf);
1629 if (!vsi) {
1630 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1631 goto error_param;
1632 }
1633
1634 if (vqs->tx_queues) {
1635 q_map = vqs->tx_queues;
1636
1637 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1638 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1639 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1640 goto error_param;
1641 }
1642
1643 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1644 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1645 goto error_param;
1646 }
1647 }
1648 }
1649
1650 q_map = vqs->rx_queues;
1651 /* speed up Rx queue disable by batching them if possible */
1652 if (q_map &&
1653 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1654 if (ice_vsi_stop_all_rx_rings(vsi)) {
1655 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1656 vsi->vsi_num);
1657 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1658 goto error_param;
1659 }
1660
1661 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1662 } else if (q_map) {
1663 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1664 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1665 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1666 goto error_param;
1667 }
1668
1669 /* Skip queue if not enabled */
1670 if (!test_bit(vf_q_id, vf->rxq_ena))
1671 continue;
1672
1673 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1674 true)) {
1675 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1676 vf_q_id, vsi->vsi_num);
1677 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1678 goto error_param;
1679 }
1680
1681 /* Clear enabled queues flag */
1682 clear_bit(vf_q_id, vf->rxq_ena);
1683 }
1684 }
1685
1686 /* Clear enabled queues flag */
1687 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1688 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1689
1690 error_param:
1691 /* send the response to the VF */
1692 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1693 NULL, 0);
1694 }
1695
1696 /**
1697 * ice_cfg_interrupt
1698 * @vf: pointer to the VF info
1699 * @vsi: the VSI being configured
1700 * @map: vector map for mapping vectors to queues
1701 * @q_vector: structure for interrupt vector
1702 * configure the IRQ to queue map
1703 */
1704 static enum virtchnl_status_code
ice_cfg_interrupt(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_vector_map * map,struct ice_q_vector * q_vector)1705 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi,
1706 struct virtchnl_vector_map *map,
1707 struct ice_q_vector *q_vector)
1708 {
1709 u16 vsi_q_id, vsi_q_id_idx;
1710 unsigned long qmap;
1711
1712 q_vector->num_ring_rx = 0;
1713 q_vector->num_ring_tx = 0;
1714
1715 qmap = map->rxq_map;
1716 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1717 vsi_q_id = vsi_q_id_idx;
1718
1719 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1720 return VIRTCHNL_STATUS_ERR_PARAM;
1721
1722 q_vector->num_ring_rx++;
1723 q_vector->rx.itr_idx = map->rxitr_idx;
1724 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1725 ice_cfg_rxq_interrupt(vsi, vsi_q_id,
1726 q_vector->vf_reg_idx,
1727 q_vector->rx.itr_idx);
1728 }
1729
1730 qmap = map->txq_map;
1731 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1732 vsi_q_id = vsi_q_id_idx;
1733
1734 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1735 return VIRTCHNL_STATUS_ERR_PARAM;
1736
1737 q_vector->num_ring_tx++;
1738 q_vector->tx.itr_idx = map->txitr_idx;
1739 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1740 ice_cfg_txq_interrupt(vsi, vsi_q_id,
1741 q_vector->vf_reg_idx,
1742 q_vector->tx.itr_idx);
1743 }
1744
1745 return VIRTCHNL_STATUS_SUCCESS;
1746 }
1747
1748 /**
1749 * ice_vc_cfg_irq_map_msg
1750 * @vf: pointer to the VF info
1751 * @msg: pointer to the msg buffer
1752 *
1753 * called from the VF to configure the IRQ to queue map
1754 */
ice_vc_cfg_irq_map_msg(struct ice_vf * vf,u8 * msg)1755 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1756 {
1757 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1758 u16 num_q_vectors_mapped, vsi_id, vector_id;
1759 struct virtchnl_irq_map_info *irqmap_info;
1760 struct virtchnl_vector_map *map;
1761 struct ice_vsi *vsi;
1762 int i;
1763
1764 irqmap_info = (struct virtchnl_irq_map_info *)msg;
1765 num_q_vectors_mapped = irqmap_info->num_vectors;
1766
1767 /* Check to make sure number of VF vectors mapped is not greater than
1768 * number of VF vectors originally allocated, and check that
1769 * there is actually at least a single VF queue vector mapped
1770 */
1771 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1772 vf->num_msix < num_q_vectors_mapped ||
1773 !num_q_vectors_mapped) {
1774 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1775 goto error_param;
1776 }
1777
1778 vsi = ice_get_vf_vsi(vf);
1779 if (!vsi) {
1780 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1781 goto error_param;
1782 }
1783
1784 for (i = 0; i < num_q_vectors_mapped; i++) {
1785 struct ice_q_vector *q_vector;
1786
1787 map = &irqmap_info->vecmap[i];
1788
1789 vector_id = map->vector_id;
1790 vsi_id = map->vsi_id;
1791 /* vector_id is always 0-based for each VF, and can never be
1792 * larger than or equal to the max allowed interrupts per VF
1793 */
1794 if (!(vector_id < vf->num_msix) ||
1795 !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1796 (!vector_id && (map->rxq_map || map->txq_map))) {
1797 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1798 goto error_param;
1799 }
1800
1801 /* No need to map VF miscellaneous or rogue vector */
1802 if (!vector_id)
1803 continue;
1804
1805 /* Subtract non queue vector from vector_id passed by VF
1806 * to get actual number of VSI queue vector array index
1807 */
1808 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1809 if (!q_vector) {
1810 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1811 goto error_param;
1812 }
1813
1814 /* lookout for the invalid queue index */
1815 v_ret = ice_cfg_interrupt(vf, vsi, map, q_vector);
1816 if (v_ret)
1817 goto error_param;
1818 }
1819
1820 error_param:
1821 /* send the response to the VF */
1822 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1823 NULL, 0);
1824 }
1825
1826 /**
1827 * ice_vc_cfg_q_bw - Configure per queue bandwidth
1828 * @vf: pointer to the VF info
1829 * @msg: pointer to the msg buffer which holds the command descriptor
1830 *
1831 * Configure VF queues bandwidth.
1832 *
1833 * Return: 0 on success or negative error value.
1834 */
ice_vc_cfg_q_bw(struct ice_vf * vf,u8 * msg)1835 static int ice_vc_cfg_q_bw(struct ice_vf *vf, u8 *msg)
1836 {
1837 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1838 struct virtchnl_queues_bw_cfg *qbw =
1839 (struct virtchnl_queues_bw_cfg *)msg;
1840 struct ice_vsi *vsi;
1841 u16 i;
1842
1843 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1844 !ice_vc_isvalid_vsi_id(vf, qbw->vsi_id)) {
1845 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1846 goto err;
1847 }
1848
1849 vsi = ice_get_vf_vsi(vf);
1850 if (!vsi) {
1851 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1852 goto err;
1853 }
1854
1855 if (qbw->num_queues > ICE_MAX_RSS_QS_PER_VF ||
1856 qbw->num_queues > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1857 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n",
1858 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1859 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1860 goto err;
1861 }
1862
1863 for (i = 0; i < qbw->num_queues; i++) {
1864 if (qbw->cfg[i].shaper.peak != 0 && vf->max_tx_rate != 0 &&
1865 qbw->cfg[i].shaper.peak > vf->max_tx_rate) {
1866 dev_warn(ice_pf_to_dev(vf->pf), "The maximum queue %d rate limit configuration may not take effect because the maximum TX rate for VF-%d is %d\n",
1867 qbw->cfg[i].queue_id, vf->vf_id,
1868 vf->max_tx_rate);
1869 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1870 goto err;
1871 }
1872 if (qbw->cfg[i].shaper.committed != 0 && vf->min_tx_rate != 0 &&
1873 qbw->cfg[i].shaper.committed < vf->min_tx_rate) {
1874 dev_warn(ice_pf_to_dev(vf->pf), "The minimum queue %d rate limit configuration may not take effect because the minimum TX rate for VF-%d is %d\n",
1875 qbw->cfg[i].queue_id, vf->vf_id,
1876 vf->min_tx_rate);
1877 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1878 goto err;
1879 }
1880 if (qbw->cfg[i].queue_id > vf->num_vf_qs) {
1881 dev_warn(ice_pf_to_dev(vf->pf), "VF-%d trying to configure invalid queue_id\n",
1882 vf->vf_id);
1883 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1884 goto err;
1885 }
1886 if (qbw->cfg[i].tc >= ICE_MAX_TRAFFIC_CLASS) {
1887 dev_warn(ice_pf_to_dev(vf->pf), "VF-%d trying to configure a traffic class higher than allowed\n",
1888 vf->vf_id);
1889 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1890 goto err;
1891 }
1892 }
1893
1894 for (i = 0; i < qbw->num_queues; i++) {
1895 vf->qs_bw[i].queue_id = qbw->cfg[i].queue_id;
1896 vf->qs_bw[i].peak = qbw->cfg[i].shaper.peak;
1897 vf->qs_bw[i].committed = qbw->cfg[i].shaper.committed;
1898 vf->qs_bw[i].tc = qbw->cfg[i].tc;
1899 }
1900
1901 if (ice_vf_cfg_qs_bw(vf, qbw->num_queues))
1902 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1903
1904 err:
1905 /* send the response to the VF */
1906 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUEUE_BW,
1907 v_ret, NULL, 0);
1908 }
1909
1910 /**
1911 * ice_vc_cfg_q_quanta - Configure per queue quanta
1912 * @vf: pointer to the VF info
1913 * @msg: pointer to the msg buffer which holds the command descriptor
1914 *
1915 * Configure VF queues quanta.
1916 *
1917 * Return: 0 on success or negative error value.
1918 */
ice_vc_cfg_q_quanta(struct ice_vf * vf,u8 * msg)1919 static int ice_vc_cfg_q_quanta(struct ice_vf *vf, u8 *msg)
1920 {
1921 u16 quanta_prof_id, quanta_size, start_qid, num_queues, end_qid, i;
1922 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1923 struct virtchnl_quanta_cfg *qquanta =
1924 (struct virtchnl_quanta_cfg *)msg;
1925 struct ice_vsi *vsi;
1926 int ret;
1927
1928 start_qid = qquanta->queue_select.start_queue_id;
1929 num_queues = qquanta->queue_select.num_queues;
1930
1931 if (check_add_overflow(start_qid, num_queues, &end_qid)) {
1932 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1933 goto err;
1934 }
1935
1936 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1937 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1938 goto err;
1939 }
1940
1941 vsi = ice_get_vf_vsi(vf);
1942 if (!vsi) {
1943 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1944 goto err;
1945 }
1946
1947 if (end_qid > ICE_MAX_RSS_QS_PER_VF ||
1948 end_qid > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1949 dev_err(ice_pf_to_dev(vf->pf), "VF-%d trying to configure more than allocated number of queues: %d\n",
1950 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1951 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1952 goto err;
1953 }
1954
1955 quanta_size = qquanta->quanta_size;
1956 if (quanta_size > ICE_MAX_QUANTA_SIZE ||
1957 quanta_size < ICE_MIN_QUANTA_SIZE) {
1958 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1959 goto err;
1960 }
1961
1962 if (quanta_size % 64) {
1963 dev_err(ice_pf_to_dev(vf->pf), "quanta size should be the product of 64\n");
1964 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1965 goto err;
1966 }
1967
1968 ret = ice_vf_cfg_q_quanta_profile(vf, quanta_size,
1969 &quanta_prof_id);
1970 if (ret) {
1971 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
1972 goto err;
1973 }
1974
1975 for (i = start_qid; i < end_qid; i++)
1976 vsi->tx_rings[i]->quanta_prof_id = quanta_prof_id;
1977
1978 err:
1979 /* send the response to the VF */
1980 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_QUANTA,
1981 v_ret, NULL, 0);
1982 }
1983
1984 /**
1985 * ice_vc_cfg_qs_msg
1986 * @vf: pointer to the VF info
1987 * @msg: pointer to the msg buffer
1988 *
1989 * called from the VF to configure the Rx/Tx queues
1990 */
ice_vc_cfg_qs_msg(struct ice_vf * vf,u8 * msg)1991 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1992 {
1993 struct virtchnl_vsi_queue_config_info *qci =
1994 (struct virtchnl_vsi_queue_config_info *)msg;
1995 struct virtchnl_queue_pair_info *qpi;
1996 struct ice_pf *pf = vf->pf;
1997 struct ice_lag *lag;
1998 struct ice_vsi *vsi;
1999 u8 act_prt, pri_prt;
2000 int i = -1, q_idx;
2001
2002 lag = pf->lag;
2003 mutex_lock(&pf->lag_mutex);
2004 act_prt = ICE_LAG_INVALID_PORT;
2005 pri_prt = pf->hw.port_info->lport;
2006 if (lag && lag->bonded && lag->primary) {
2007 act_prt = lag->active_port;
2008 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
2009 lag->upper_netdev)
2010 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
2011 else
2012 act_prt = ICE_LAG_INVALID_PORT;
2013 }
2014
2015 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
2016 goto error_param;
2017
2018 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
2019 goto error_param;
2020
2021 vsi = ice_get_vf_vsi(vf);
2022 if (!vsi)
2023 goto error_param;
2024
2025 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
2026 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
2027 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
2028 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
2029 goto error_param;
2030 }
2031
2032 for (i = 0; i < qci->num_queue_pairs; i++) {
2033 if (!qci->qpair[i].rxq.crc_disable)
2034 continue;
2035
2036 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
2037 vf->vlan_strip_ena)
2038 goto error_param;
2039 }
2040
2041 for (i = 0; i < qci->num_queue_pairs; i++) {
2042 qpi = &qci->qpair[i];
2043 if (qpi->txq.vsi_id != qci->vsi_id ||
2044 qpi->rxq.vsi_id != qci->vsi_id ||
2045 qpi->rxq.queue_id != qpi->txq.queue_id ||
2046 qpi->txq.headwb_enabled ||
2047 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
2048 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
2049 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) {
2050 goto error_param;
2051 }
2052
2053 q_idx = qpi->rxq.queue_id;
2054
2055 /* make sure selected "q_idx" is in valid range of queues
2056 * for selected "vsi"
2057 */
2058 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
2059 goto error_param;
2060 }
2061
2062 /* copy Tx queue info from VF into VSI */
2063 if (qpi->txq.ring_len > 0) {
2064 vsi->tx_rings[q_idx]->dma = qpi->txq.dma_ring_addr;
2065 vsi->tx_rings[q_idx]->count = qpi->txq.ring_len;
2066
2067 /* Disable any existing queue first */
2068 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
2069 goto error_param;
2070
2071 /* Configure a queue with the requested settings */
2072 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
2073 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
2074 vf->vf_id, q_idx);
2075 goto error_param;
2076 }
2077 }
2078
2079 /* copy Rx queue info from VF into VSI */
2080 if (qpi->rxq.ring_len > 0) {
2081 u16 max_frame_size = ice_vc_get_max_frame_size(vf);
2082 struct ice_rx_ring *ring = vsi->rx_rings[q_idx];
2083 u32 rxdid;
2084
2085 ring->dma = qpi->rxq.dma_ring_addr;
2086 ring->count = qpi->rxq.ring_len;
2087
2088 if (qpi->rxq.crc_disable)
2089 ring->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
2090 else
2091 ring->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
2092
2093 if (qpi->rxq.databuffer_size != 0 &&
2094 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
2095 qpi->rxq.databuffer_size < 1024))
2096 goto error_param;
2097 ring->rx_buf_len = qpi->rxq.databuffer_size;
2098 if (qpi->rxq.max_pkt_size > max_frame_size ||
2099 qpi->rxq.max_pkt_size < 64)
2100 goto error_param;
2101
2102 ring->max_frame = qpi->rxq.max_pkt_size;
2103 /* add space for the port VLAN since the VF driver is
2104 * not expected to account for it in the MTU
2105 * calculation
2106 */
2107 if (ice_vf_is_port_vlan_ena(vf))
2108 ring->max_frame += VLAN_HLEN;
2109
2110 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
2111 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
2112 vf->vf_id, q_idx);
2113 goto error_param;
2114 }
2115
2116 /* If Rx flex desc is supported, select RXDID for Rx
2117 * queues. Otherwise, use legacy 32byte descriptor
2118 * format. Legacy 16byte descriptor is not supported.
2119 * If this RXDID is selected, return error.
2120 */
2121 if (vf->driver_caps &
2122 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2123 rxdid = qpi->rxq.rxdid;
2124 if (!(BIT(rxdid) & pf->supported_rxdids))
2125 goto error_param;
2126 } else {
2127 rxdid = ICE_RXDID_LEGACY_1;
2128 }
2129
2130 ice_write_qrxflxp_cntxt(&vsi->back->hw,
2131 vsi->rxq_map[q_idx],
2132 rxdid, 0x03, false);
2133 }
2134 }
2135
2136 if (lag && lag->bonded && lag->primary &&
2137 act_prt != ICE_LAG_INVALID_PORT)
2138 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
2139 mutex_unlock(&pf->lag_mutex);
2140
2141 /* send the response to the VF */
2142 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
2143 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
2144 error_param:
2145 /* disable whatever we can */
2146 for (; i >= 0; i--) {
2147 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
2148 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
2149 vf->vf_id, i);
2150 if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
2151 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
2152 vf->vf_id, i);
2153 }
2154
2155 if (lag && lag->bonded && lag->primary &&
2156 act_prt != ICE_LAG_INVALID_PORT)
2157 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
2158 mutex_unlock(&pf->lag_mutex);
2159
2160 ice_lag_move_new_vf_nodes(vf);
2161
2162 /* send the response to the VF */
2163 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
2164 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
2165 }
2166
2167 /**
2168 * ice_can_vf_change_mac
2169 * @vf: pointer to the VF info
2170 *
2171 * Return true if the VF is allowed to change its MAC filters, false otherwise
2172 */
ice_can_vf_change_mac(struct ice_vf * vf)2173 static bool ice_can_vf_change_mac(struct ice_vf *vf)
2174 {
2175 /* If the VF MAC address has been set administratively (via the
2176 * ndo_set_vf_mac command), then deny permission to the VF to
2177 * add/delete unicast MAC addresses, unless the VF is trusted
2178 */
2179 if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
2180 return false;
2181
2182 return true;
2183 }
2184
2185 /**
2186 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
2187 * @vc_ether_addr: used to extract the type
2188 */
2189 static u8
ice_vc_ether_addr_type(struct virtchnl_ether_addr * vc_ether_addr)2190 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
2191 {
2192 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
2193 }
2194
2195 /**
2196 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
2197 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
2198 */
2199 static bool
ice_is_vc_addr_legacy(struct virtchnl_ether_addr * vc_ether_addr)2200 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
2201 {
2202 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
2203
2204 return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
2205 }
2206
2207 /**
2208 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
2209 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
2210 *
2211 * This function should only be called when the MAC address in
2212 * virtchnl_ether_addr is a valid unicast MAC
2213 */
2214 static bool
ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused * vc_ether_addr)2215 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
2216 {
2217 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
2218
2219 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
2220 }
2221
2222 /**
2223 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
2224 * @vf: VF to update
2225 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
2226 */
2227 static void
ice_vfhw_mac_add(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)2228 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
2229 {
2230 u8 *mac_addr = vc_ether_addr->addr;
2231
2232 if (!is_valid_ether_addr(mac_addr))
2233 return;
2234
2235 /* only allow legacy VF drivers to set the device and hardware MAC if it
2236 * is zero and allow new VF drivers to set the hardware MAC if the type
2237 * was correctly specified over VIRTCHNL
2238 */
2239 if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
2240 is_zero_ether_addr(vf->hw_lan_addr)) ||
2241 ice_is_vc_addr_primary(vc_ether_addr)) {
2242 ether_addr_copy(vf->dev_lan_addr, mac_addr);
2243 ether_addr_copy(vf->hw_lan_addr, mac_addr);
2244 }
2245
2246 /* hardware and device MACs are already set, but its possible that the
2247 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
2248 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
2249 * away for the legacy VF driver case as it will be updated in the
2250 * delete flow for this case
2251 */
2252 if (ice_is_vc_addr_legacy(vc_ether_addr)) {
2253 ether_addr_copy(vf->legacy_last_added_umac.addr,
2254 mac_addr);
2255 vf->legacy_last_added_umac.time_modified = jiffies;
2256 }
2257 }
2258
2259 /**
2260 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
2261 * @vf: pointer to the VF info
2262 * @vsi: pointer to the VF's VSI
2263 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
2264 */
2265 static int
ice_vc_add_mac_addr(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_ether_addr * vc_ether_addr)2266 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2267 struct virtchnl_ether_addr *vc_ether_addr)
2268 {
2269 struct device *dev = ice_pf_to_dev(vf->pf);
2270 u8 *mac_addr = vc_ether_addr->addr;
2271 int ret;
2272
2273 /* device MAC already added */
2274 if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
2275 return 0;
2276
2277 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
2278 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
2279 return -EPERM;
2280 }
2281
2282 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2283 if (ret == -EEXIST) {
2284 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
2285 vf->vf_id);
2286 /* don't return since we might need to update
2287 * the primary MAC in ice_vfhw_mac_add() below
2288 */
2289 } else if (ret) {
2290 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
2291 mac_addr, vf->vf_id, ret);
2292 return ret;
2293 } else {
2294 vf->num_mac++;
2295 }
2296
2297 ice_vfhw_mac_add(vf, vc_ether_addr);
2298
2299 return ret;
2300 }
2301
2302 /**
2303 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
2304 * @last_added_umac: structure used to check expiration
2305 */
ice_is_legacy_umac_expired(struct ice_time_mac * last_added_umac)2306 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
2307 {
2308 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000)
2309 return time_is_before_jiffies(last_added_umac->time_modified +
2310 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
2311 }
2312
2313 /**
2314 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
2315 * @vf: VF to update
2316 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
2317 *
2318 * only update cached hardware MAC for legacy VF drivers on delete
2319 * because we cannot guarantee order/type of MAC from the VF driver
2320 */
2321 static void
ice_update_legacy_cached_mac(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)2322 ice_update_legacy_cached_mac(struct ice_vf *vf,
2323 struct virtchnl_ether_addr *vc_ether_addr)
2324 {
2325 if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
2326 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
2327 return;
2328
2329 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
2330 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
2331 }
2332
2333 /**
2334 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
2335 * @vf: VF to update
2336 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
2337 */
2338 static void
ice_vfhw_mac_del(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)2339 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
2340 {
2341 u8 *mac_addr = vc_ether_addr->addr;
2342
2343 if (!is_valid_ether_addr(mac_addr) ||
2344 !ether_addr_equal(vf->dev_lan_addr, mac_addr))
2345 return;
2346
2347 /* allow the device MAC to be repopulated in the add flow and don't
2348 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2349 * to be persistent on VM reboot and across driver unload/load, which
2350 * won't work if we clear the hardware MAC here
2351 */
2352 eth_zero_addr(vf->dev_lan_addr);
2353
2354 ice_update_legacy_cached_mac(vf, vc_ether_addr);
2355 }
2356
2357 /**
2358 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2359 * @vf: pointer to the VF info
2360 * @vsi: pointer to the VF's VSI
2361 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2362 */
2363 static int
ice_vc_del_mac_addr(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_ether_addr * vc_ether_addr)2364 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2365 struct virtchnl_ether_addr *vc_ether_addr)
2366 {
2367 struct device *dev = ice_pf_to_dev(vf->pf);
2368 u8 *mac_addr = vc_ether_addr->addr;
2369 int status;
2370
2371 if (!ice_can_vf_change_mac(vf) &&
2372 ether_addr_equal(vf->dev_lan_addr, mac_addr))
2373 return 0;
2374
2375 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2376 if (status == -ENOENT) {
2377 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2378 vf->vf_id);
2379 return -ENOENT;
2380 } else if (status) {
2381 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2382 mac_addr, vf->vf_id, status);
2383 return -EIO;
2384 }
2385
2386 ice_vfhw_mac_del(vf, vc_ether_addr);
2387
2388 vf->num_mac--;
2389
2390 return 0;
2391 }
2392
2393 /**
2394 * ice_vc_handle_mac_addr_msg
2395 * @vf: pointer to the VF info
2396 * @msg: pointer to the msg buffer
2397 * @set: true if MAC filters are being set, false otherwise
2398 *
2399 * add guest MAC address filter
2400 */
2401 static int
ice_vc_handle_mac_addr_msg(struct ice_vf * vf,u8 * msg,bool set)2402 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2403 {
2404 int (*ice_vc_cfg_mac)
2405 (struct ice_vf *vf, struct ice_vsi *vsi,
2406 struct virtchnl_ether_addr *virtchnl_ether_addr);
2407 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2408 struct virtchnl_ether_addr_list *al =
2409 (struct virtchnl_ether_addr_list *)msg;
2410 struct ice_pf *pf = vf->pf;
2411 enum virtchnl_ops vc_op;
2412 struct ice_vsi *vsi;
2413 int i;
2414
2415 if (set) {
2416 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2417 ice_vc_cfg_mac = ice_vc_add_mac_addr;
2418 } else {
2419 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2420 ice_vc_cfg_mac = ice_vc_del_mac_addr;
2421 }
2422
2423 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2424 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2425 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2426 goto handle_mac_exit;
2427 }
2428
2429 /* If this VF is not privileged, then we can't add more than a
2430 * limited number of addresses. Check to make sure that the
2431 * additions do not push us over the limit.
2432 */
2433 if (set && !ice_is_vf_trusted(vf) &&
2434 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2435 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2436 vf->vf_id);
2437 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2438 goto handle_mac_exit;
2439 }
2440
2441 vsi = ice_get_vf_vsi(vf);
2442 if (!vsi) {
2443 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2444 goto handle_mac_exit;
2445 }
2446
2447 for (i = 0; i < al->num_elements; i++) {
2448 u8 *mac_addr = al->list[i].addr;
2449 int result;
2450
2451 if (is_broadcast_ether_addr(mac_addr) ||
2452 is_zero_ether_addr(mac_addr))
2453 continue;
2454
2455 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2456 if (result == -EEXIST || result == -ENOENT) {
2457 continue;
2458 } else if (result) {
2459 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2460 goto handle_mac_exit;
2461 }
2462 }
2463
2464 handle_mac_exit:
2465 /* send the response to the VF */
2466 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2467 }
2468
2469 /**
2470 * ice_vc_add_mac_addr_msg
2471 * @vf: pointer to the VF info
2472 * @msg: pointer to the msg buffer
2473 *
2474 * add guest MAC address filter
2475 */
ice_vc_add_mac_addr_msg(struct ice_vf * vf,u8 * msg)2476 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2477 {
2478 return ice_vc_handle_mac_addr_msg(vf, msg, true);
2479 }
2480
2481 /**
2482 * ice_vc_del_mac_addr_msg
2483 * @vf: pointer to the VF info
2484 * @msg: pointer to the msg buffer
2485 *
2486 * remove guest MAC address filter
2487 */
ice_vc_del_mac_addr_msg(struct ice_vf * vf,u8 * msg)2488 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2489 {
2490 return ice_vc_handle_mac_addr_msg(vf, msg, false);
2491 }
2492
2493 /**
2494 * ice_vc_request_qs_msg
2495 * @vf: pointer to the VF info
2496 * @msg: pointer to the msg buffer
2497 *
2498 * VFs get a default number of queues but can use this message to request a
2499 * different number. If the request is successful, PF will reset the VF and
2500 * return 0. If unsuccessful, PF will send message informing VF of number of
2501 * available queue pairs via virtchnl message response to VF.
2502 */
ice_vc_request_qs_msg(struct ice_vf * vf,u8 * msg)2503 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2504 {
2505 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2506 struct virtchnl_vf_res_request *vfres =
2507 (struct virtchnl_vf_res_request *)msg;
2508 u16 req_queues = vfres->num_queue_pairs;
2509 struct ice_pf *pf = vf->pf;
2510 u16 max_allowed_vf_queues;
2511 u16 tx_rx_queue_left;
2512 struct device *dev;
2513 u16 cur_queues;
2514
2515 dev = ice_pf_to_dev(pf);
2516 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2517 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2518 goto error_param;
2519 }
2520
2521 cur_queues = vf->num_vf_qs;
2522 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2523 ice_get_avail_rxq_count(pf));
2524 max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2525 if (!req_queues) {
2526 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2527 vf->vf_id);
2528 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2529 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2530 vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2531 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2532 } else if (req_queues > cur_queues &&
2533 req_queues - cur_queues > tx_rx_queue_left) {
2534 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2535 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2536 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2537 ICE_MAX_RSS_QS_PER_VF);
2538 } else {
2539 /* request is successful, then reset VF */
2540 vf->num_req_qs = req_queues;
2541 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2542 dev_info(dev, "VF %d granted request of %u queues.\n",
2543 vf->vf_id, req_queues);
2544 return 0;
2545 }
2546
2547 error_param:
2548 /* send the response to the VF */
2549 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2550 v_ret, (u8 *)vfres, sizeof(*vfres));
2551 }
2552
2553 /**
2554 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2555 * @caps: VF driver negotiated capabilities
2556 *
2557 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2558 */
ice_vf_vlan_offload_ena(u32 caps)2559 static bool ice_vf_vlan_offload_ena(u32 caps)
2560 {
2561 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2562 }
2563
2564 /**
2565 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2566 * @vf: VF used to determine if VLAN promiscuous config is allowed
2567 */
ice_is_vlan_promisc_allowed(struct ice_vf * vf)2568 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2569 {
2570 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2571 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2572 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2573 return true;
2574
2575 return false;
2576 }
2577
2578 /**
2579 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2580 * @vf: VF to enable VLAN promisc on
2581 * @vsi: VF's VSI used to enable VLAN promiscuous mode
2582 * @vlan: VLAN used to enable VLAN promiscuous
2583 *
2584 * This function should only be called if VLAN promiscuous mode is allowed,
2585 * which can be determined via ice_is_vlan_promisc_allowed().
2586 */
ice_vf_ena_vlan_promisc(struct ice_vf * vf,struct ice_vsi * vsi,struct ice_vlan * vlan)2587 static int ice_vf_ena_vlan_promisc(struct ice_vf *vf, struct ice_vsi *vsi,
2588 struct ice_vlan *vlan)
2589 {
2590 u8 promisc_m = 0;
2591 int status;
2592
2593 if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
2594 promisc_m |= ICE_UCAST_VLAN_PROMISC_BITS;
2595 if (test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
2596 promisc_m |= ICE_MCAST_VLAN_PROMISC_BITS;
2597
2598 if (!promisc_m)
2599 return 0;
2600
2601 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2602 vlan->vid);
2603 if (status && status != -EEXIST)
2604 return status;
2605
2606 return 0;
2607 }
2608
2609 /**
2610 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2611 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2612 * @vlan: VLAN used to disable VLAN promiscuous
2613 *
2614 * This function should only be called if VLAN promiscuous mode is allowed,
2615 * which can be determined via ice_is_vlan_promisc_allowed().
2616 */
ice_vf_dis_vlan_promisc(struct ice_vsi * vsi,struct ice_vlan * vlan)2617 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2618 {
2619 u8 promisc_m = ICE_UCAST_VLAN_PROMISC_BITS | ICE_MCAST_VLAN_PROMISC_BITS;
2620 int status;
2621
2622 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2623 vlan->vid);
2624 if (status && status != -ENOENT)
2625 return status;
2626
2627 return 0;
2628 }
2629
2630 /**
2631 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2632 * @vf: VF to check against
2633 * @vsi: VF's VSI
2634 *
2635 * If the VF is trusted then the VF is allowed to add as many VLANs as it
2636 * wants to, so return false.
2637 *
2638 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2639 * allowed VLANs for an untrusted VF. Return the result of this comparison.
2640 */
ice_vf_has_max_vlans(struct ice_vf * vf,struct ice_vsi * vsi)2641 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2642 {
2643 if (ice_is_vf_trusted(vf))
2644 return false;
2645
2646 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1
2647 return ((ice_vsi_num_non_zero_vlans(vsi) +
2648 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2649 }
2650
2651 /**
2652 * ice_vc_process_vlan_msg
2653 * @vf: pointer to the VF info
2654 * @msg: pointer to the msg buffer
2655 * @add_v: Add VLAN if true, otherwise delete VLAN
2656 *
2657 * Process virtchnl op to add or remove programmed guest VLAN ID
2658 */
ice_vc_process_vlan_msg(struct ice_vf * vf,u8 * msg,bool add_v)2659 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2660 {
2661 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2662 struct virtchnl_vlan_filter_list *vfl =
2663 (struct virtchnl_vlan_filter_list *)msg;
2664 struct ice_pf *pf = vf->pf;
2665 bool vlan_promisc = false;
2666 struct ice_vsi *vsi;
2667 struct device *dev;
2668 int status = 0;
2669 int i;
2670
2671 dev = ice_pf_to_dev(pf);
2672 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2673 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2674 goto error_param;
2675 }
2676
2677 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2678 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2679 goto error_param;
2680 }
2681
2682 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2683 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2684 goto error_param;
2685 }
2686
2687 for (i = 0; i < vfl->num_elements; i++) {
2688 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2689 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2690 dev_err(dev, "invalid VF VLAN id %d\n",
2691 vfl->vlan_id[i]);
2692 goto error_param;
2693 }
2694 }
2695
2696 vsi = ice_get_vf_vsi(vf);
2697 if (!vsi) {
2698 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2699 goto error_param;
2700 }
2701
2702 if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2703 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2704 vf->vf_id);
2705 /* There is no need to let VF know about being not trusted,
2706 * so we can just return success message here
2707 */
2708 goto error_param;
2709 }
2710
2711 /* in DVM a VF can add/delete inner VLAN filters when
2712 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2713 */
2714 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2715 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2716 goto error_param;
2717 }
2718
2719 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2720 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2721 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2722 */
2723 vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2724 !ice_is_dvm_ena(&pf->hw) &&
2725 !ice_vf_is_port_vlan_ena(vf);
2726
2727 if (add_v) {
2728 for (i = 0; i < vfl->num_elements; i++) {
2729 u16 vid = vfl->vlan_id[i];
2730 struct ice_vlan vlan;
2731
2732 if (ice_vf_has_max_vlans(vf, vsi)) {
2733 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2734 vf->vf_id);
2735 /* There is no need to let VF know about being
2736 * not trusted, so we can just return success
2737 * message here as well.
2738 */
2739 goto error_param;
2740 }
2741
2742 /* we add VLAN 0 by default for each VF so we can enable
2743 * Tx VLAN anti-spoof without triggering MDD events so
2744 * we don't need to add it again here
2745 */
2746 if (!vid)
2747 continue;
2748
2749 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2750 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2751 if (status) {
2752 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2753 goto error_param;
2754 }
2755
2756 /* Enable VLAN filtering on first non-zero VLAN */
2757 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2758 if (vf->spoofchk) {
2759 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2760 if (status) {
2761 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2762 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2763 vid, status);
2764 goto error_param;
2765 }
2766 }
2767 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2768 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2769 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2770 vid, status);
2771 goto error_param;
2772 }
2773 } else if (vlan_promisc) {
2774 status = ice_vf_ena_vlan_promisc(vf, vsi, &vlan);
2775 if (status) {
2776 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2777 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2778 vid, status);
2779 }
2780 }
2781 }
2782 } else {
2783 /* In case of non_trusted VF, number of VLAN elements passed
2784 * to PF for removal might be greater than number of VLANs
2785 * filter programmed for that VF - So, use actual number of
2786 * VLANS added earlier with add VLAN opcode. In order to avoid
2787 * removing VLAN that doesn't exist, which result to sending
2788 * erroneous failed message back to the VF
2789 */
2790 int num_vf_vlan;
2791
2792 num_vf_vlan = vsi->num_vlan;
2793 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2794 u16 vid = vfl->vlan_id[i];
2795 struct ice_vlan vlan;
2796
2797 /* we add VLAN 0 by default for each VF so we can enable
2798 * Tx VLAN anti-spoof without triggering MDD events so
2799 * we don't want a VIRTCHNL request to remove it
2800 */
2801 if (!vid)
2802 continue;
2803
2804 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2805 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2806 if (status) {
2807 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2808 goto error_param;
2809 }
2810
2811 /* Disable VLAN filtering when only VLAN 0 is left */
2812 if (!ice_vsi_has_non_zero_vlans(vsi)) {
2813 vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2814 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2815 }
2816
2817 if (vlan_promisc)
2818 ice_vf_dis_vlan_promisc(vsi, &vlan);
2819 }
2820 }
2821
2822 error_param:
2823 /* send the response to the VF */
2824 if (add_v)
2825 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2826 NULL, 0);
2827 else
2828 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2829 NULL, 0);
2830 }
2831
2832 /**
2833 * ice_vc_add_vlan_msg
2834 * @vf: pointer to the VF info
2835 * @msg: pointer to the msg buffer
2836 *
2837 * Add and program guest VLAN ID
2838 */
ice_vc_add_vlan_msg(struct ice_vf * vf,u8 * msg)2839 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2840 {
2841 return ice_vc_process_vlan_msg(vf, msg, true);
2842 }
2843
2844 /**
2845 * ice_vc_remove_vlan_msg
2846 * @vf: pointer to the VF info
2847 * @msg: pointer to the msg buffer
2848 *
2849 * remove programmed guest VLAN ID
2850 */
ice_vc_remove_vlan_msg(struct ice_vf * vf,u8 * msg)2851 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2852 {
2853 return ice_vc_process_vlan_msg(vf, msg, false);
2854 }
2855
2856 /**
2857 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2858 * @vsi: pointer to the VF VSI info
2859 */
ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi * vsi)2860 static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2861 {
2862 unsigned int i;
2863
2864 ice_for_each_alloc_rxq(vsi, i)
2865 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2866 return true;
2867
2868 return false;
2869 }
2870
2871 /**
2872 * ice_vc_ena_vlan_stripping
2873 * @vf: pointer to the VF info
2874 *
2875 * Enable VLAN header stripping for a given VF
2876 */
ice_vc_ena_vlan_stripping(struct ice_vf * vf)2877 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2878 {
2879 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2880 struct ice_vsi *vsi;
2881
2882 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2883 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2884 goto error_param;
2885 }
2886
2887 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2888 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2889 goto error_param;
2890 }
2891
2892 vsi = ice_get_vf_vsi(vf);
2893 if (!vsi) {
2894 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2895 goto error_param;
2896 }
2897
2898 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2899 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2900 else
2901 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2902
2903 error_param:
2904 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2905 v_ret, NULL, 0);
2906 }
2907
2908 /**
2909 * ice_vc_dis_vlan_stripping
2910 * @vf: pointer to the VF info
2911 *
2912 * Disable VLAN header stripping for a given VF
2913 */
ice_vc_dis_vlan_stripping(struct ice_vf * vf)2914 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2915 {
2916 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2917 struct ice_vsi *vsi;
2918
2919 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2920 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2921 goto error_param;
2922 }
2923
2924 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2925 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2926 goto error_param;
2927 }
2928
2929 vsi = ice_get_vf_vsi(vf);
2930 if (!vsi) {
2931 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2932 goto error_param;
2933 }
2934
2935 if (vsi->inner_vlan_ops.dis_stripping(vsi))
2936 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2937 else
2938 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2939
2940 error_param:
2941 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2942 v_ret, NULL, 0);
2943 }
2944
2945 /**
2946 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2947 * @vf: pointer to the VF info
2948 */
ice_vc_get_rss_hena(struct ice_vf * vf)2949 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2950 {
2951 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2952 struct virtchnl_rss_hena *vrh = NULL;
2953 int len = 0, ret;
2954
2955 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2956 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2957 goto err;
2958 }
2959
2960 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2961 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2962 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2963 goto err;
2964 }
2965
2966 len = sizeof(struct virtchnl_rss_hena);
2967 vrh = kzalloc(len, GFP_KERNEL);
2968 if (!vrh) {
2969 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2970 len = 0;
2971 goto err;
2972 }
2973
2974 vrh->hena = ICE_DEFAULT_RSS_HENA;
2975 err:
2976 /* send the response back to the VF */
2977 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2978 (u8 *)vrh, len);
2979 kfree(vrh);
2980 return ret;
2981 }
2982
2983 /**
2984 * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2985 * @vf: pointer to the VF info
2986 * @msg: pointer to the msg buffer
2987 */
ice_vc_set_rss_hena(struct ice_vf * vf,u8 * msg)2988 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2989 {
2990 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2991 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2992 struct ice_pf *pf = vf->pf;
2993 struct ice_vsi *vsi;
2994 struct device *dev;
2995 int status;
2996
2997 dev = ice_pf_to_dev(pf);
2998
2999 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3000 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3001 goto err;
3002 }
3003
3004 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3005 dev_err(dev, "RSS not supported by PF\n");
3006 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3007 goto err;
3008 }
3009
3010 vsi = ice_get_vf_vsi(vf);
3011 if (!vsi) {
3012 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3013 goto err;
3014 }
3015
3016 /* clear all previously programmed RSS configuration to allow VF drivers
3017 * the ability to customize the RSS configuration and/or completely
3018 * disable RSS
3019 */
3020 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
3021 if (status && !vrh->hena) {
3022 /* only report failure to clear the current RSS configuration if
3023 * that was clearly the VF's intention (i.e. vrh->hena = 0)
3024 */
3025 v_ret = ice_err_to_virt_err(status);
3026 goto err;
3027 } else if (status) {
3028 /* allow the VF to update the RSS configuration even on failure
3029 * to clear the current RSS confguration in an attempt to keep
3030 * RSS in a working state
3031 */
3032 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
3033 vf->vf_id);
3034 }
3035
3036 if (vrh->hena) {
3037 status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
3038 v_ret = ice_err_to_virt_err(status);
3039 }
3040
3041 /* send the response to the VF */
3042 err:
3043 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
3044 NULL, 0);
3045 }
3046
3047 /**
3048 * ice_vc_query_rxdid - query RXDID supported by DDP package
3049 * @vf: pointer to VF info
3050 *
3051 * Called from VF to query a bitmap of supported flexible
3052 * descriptor RXDIDs of a DDP package.
3053 */
ice_vc_query_rxdid(struct ice_vf * vf)3054 static int ice_vc_query_rxdid(struct ice_vf *vf)
3055 {
3056 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3057 struct virtchnl_supported_rxdids rxdid = {};
3058 struct ice_pf *pf = vf->pf;
3059
3060 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3061 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3062 goto err;
3063 }
3064
3065 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
3066 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3067 goto err;
3068 }
3069
3070 rxdid.supported_rxdids = pf->supported_rxdids;
3071
3072 err:
3073 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
3074 v_ret, (u8 *)&rxdid, sizeof(rxdid));
3075 }
3076
3077 /**
3078 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
3079 * @vf: VF to enable/disable VLAN stripping for on initialization
3080 *
3081 * Set the default for VLAN stripping based on whether a port VLAN is configured
3082 * and the current VLAN mode of the device.
3083 */
ice_vf_init_vlan_stripping(struct ice_vf * vf)3084 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
3085 {
3086 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
3087
3088 vf->vlan_strip_ena = 0;
3089
3090 if (!vsi)
3091 return -EINVAL;
3092
3093 /* don't modify stripping if port VLAN is configured in SVM since the
3094 * port VLAN is based on the inner/single VLAN in SVM
3095 */
3096 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
3097 return 0;
3098
3099 if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
3100 int err;
3101
3102 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
3103 if (!err)
3104 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3105 return err;
3106 }
3107
3108 return vsi->inner_vlan_ops.dis_stripping(vsi);
3109 }
3110
ice_vc_get_max_vlan_fltrs(struct ice_vf * vf)3111 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
3112 {
3113 if (vf->trusted)
3114 return VLAN_N_VID;
3115 else
3116 return ICE_MAX_VLAN_PER_VF;
3117 }
3118
3119 /**
3120 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
3121 * @vf: VF that being checked for
3122 *
3123 * When the device is in double VLAN mode, check whether or not the outer VLAN
3124 * is allowed.
3125 */
ice_vf_outer_vlan_not_allowed(struct ice_vf * vf)3126 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
3127 {
3128 if (ice_vf_is_port_vlan_ena(vf))
3129 return true;
3130
3131 return false;
3132 }
3133
3134 /**
3135 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
3136 * @vf: VF that capabilities are being set for
3137 * @caps: VLAN capabilities to populate
3138 *
3139 * Determine VLAN capabilities support based on whether a port VLAN is
3140 * configured. If a port VLAN is configured then the VF should use the inner
3141 * filtering/offload capabilities since the port VLAN is using the outer VLAN
3142 * capabilies.
3143 */
3144 static void
ice_vc_set_dvm_caps(struct ice_vf * vf,struct virtchnl_vlan_caps * caps)3145 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
3146 {
3147 struct virtchnl_vlan_supported_caps *supported_caps;
3148
3149 if (ice_vf_outer_vlan_not_allowed(vf)) {
3150 /* until support for inner VLAN filtering is added when a port
3151 * VLAN is configured, only support software offloaded inner
3152 * VLANs when a port VLAN is confgured in DVM
3153 */
3154 supported_caps = &caps->filtering.filtering_support;
3155 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3156
3157 supported_caps = &caps->offloads.stripping_support;
3158 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3159 VIRTCHNL_VLAN_TOGGLE |
3160 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3161 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3162
3163 supported_caps = &caps->offloads.insertion_support;
3164 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3165 VIRTCHNL_VLAN_TOGGLE |
3166 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3167 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3168
3169 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3170 caps->offloads.ethertype_match =
3171 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3172 } else {
3173 supported_caps = &caps->filtering.filtering_support;
3174 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3175 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3176 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3177 VIRTCHNL_VLAN_ETHERTYPE_9100 |
3178 VIRTCHNL_VLAN_ETHERTYPE_AND;
3179 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3180 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3181 VIRTCHNL_VLAN_ETHERTYPE_9100;
3182
3183 supported_caps = &caps->offloads.stripping_support;
3184 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
3185 VIRTCHNL_VLAN_ETHERTYPE_8100 |
3186 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3187 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
3188 VIRTCHNL_VLAN_ETHERTYPE_8100 |
3189 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3190 VIRTCHNL_VLAN_ETHERTYPE_9100 |
3191 VIRTCHNL_VLAN_ETHERTYPE_XOR |
3192 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
3193
3194 supported_caps = &caps->offloads.insertion_support;
3195 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
3196 VIRTCHNL_VLAN_ETHERTYPE_8100 |
3197 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3198 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
3199 VIRTCHNL_VLAN_ETHERTYPE_8100 |
3200 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
3201 VIRTCHNL_VLAN_ETHERTYPE_9100 |
3202 VIRTCHNL_VLAN_ETHERTYPE_XOR |
3203 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
3204
3205 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3206
3207 caps->offloads.ethertype_match =
3208 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3209 }
3210
3211 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
3212 }
3213
3214 /**
3215 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
3216 * @vf: VF that capabilities are being set for
3217 * @caps: VLAN capabilities to populate
3218 *
3219 * Determine VLAN capabilities support based on whether a port VLAN is
3220 * configured. If a port VLAN is configured then the VF does not have any VLAN
3221 * filtering or offload capabilities since the port VLAN is using the inner VLAN
3222 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
3223 * VLAN fitlering and offload capabilities.
3224 */
3225 static void
ice_vc_set_svm_caps(struct ice_vf * vf,struct virtchnl_vlan_caps * caps)3226 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
3227 {
3228 struct virtchnl_vlan_supported_caps *supported_caps;
3229
3230 if (ice_vf_is_port_vlan_ena(vf)) {
3231 supported_caps = &caps->filtering.filtering_support;
3232 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3233 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3234
3235 supported_caps = &caps->offloads.stripping_support;
3236 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3237 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3238
3239 supported_caps = &caps->offloads.insertion_support;
3240 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
3241 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3242
3243 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
3244 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
3245 caps->filtering.max_filters = 0;
3246 } else {
3247 supported_caps = &caps->filtering.filtering_support;
3248 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
3249 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3250 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3251
3252 supported_caps = &caps->offloads.stripping_support;
3253 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3254 VIRTCHNL_VLAN_TOGGLE |
3255 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3256 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3257
3258 supported_caps = &caps->offloads.insertion_support;
3259 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
3260 VIRTCHNL_VLAN_TOGGLE |
3261 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
3262 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
3263
3264 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
3265 caps->offloads.ethertype_match =
3266 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
3267 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
3268 }
3269 }
3270
3271 /**
3272 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
3273 * @vf: VF to determine VLAN capabilities for
3274 *
3275 * This will only be called if the VF and PF successfully negotiated
3276 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
3277 *
3278 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
3279 * is configured or not.
3280 */
ice_vc_get_offload_vlan_v2_caps(struct ice_vf * vf)3281 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
3282 {
3283 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3284 struct virtchnl_vlan_caps *caps = NULL;
3285 int err, len = 0;
3286
3287 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3288 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3289 goto out;
3290 }
3291
3292 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
3293 if (!caps) {
3294 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
3295 goto out;
3296 }
3297 len = sizeof(*caps);
3298
3299 if (ice_is_dvm_ena(&vf->pf->hw))
3300 ice_vc_set_dvm_caps(vf, caps);
3301 else
3302 ice_vc_set_svm_caps(vf, caps);
3303
3304 /* store negotiated caps to prevent invalid VF messages */
3305 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
3306
3307 out:
3308 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
3309 v_ret, (u8 *)caps, len);
3310 kfree(caps);
3311 return err;
3312 }
3313
3314 /**
3315 * ice_vc_validate_vlan_tpid - validate VLAN TPID
3316 * @filtering_caps: negotiated/supported VLAN filtering capabilities
3317 * @tpid: VLAN TPID used for validation
3318 *
3319 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
3320 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
3321 */
ice_vc_validate_vlan_tpid(u16 filtering_caps,u16 tpid)3322 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
3323 {
3324 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
3325
3326 switch (tpid) {
3327 case ETH_P_8021Q:
3328 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
3329 break;
3330 case ETH_P_8021AD:
3331 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3332 break;
3333 case ETH_P_QINQ1:
3334 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3335 break;
3336 }
3337
3338 if (!(filtering_caps & vlan_ethertype))
3339 return false;
3340
3341 return true;
3342 }
3343
3344 /**
3345 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3346 * @vc_vlan: virtchnl_vlan to validate
3347 *
3348 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3349 * false. Otherwise return true.
3350 */
ice_vc_is_valid_vlan(struct virtchnl_vlan * vc_vlan)3351 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3352 {
3353 if (!vc_vlan->tci || !vc_vlan->tpid)
3354 return false;
3355
3356 return true;
3357 }
3358
3359 /**
3360 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3361 * @vfc: negotiated/supported VLAN filtering capabilities
3362 * @vfl: VLAN filter list from VF to validate
3363 *
3364 * Validate all of the filters in the VLAN filter list from the VF. If any of
3365 * the checks fail then return false. Otherwise return true.
3366 */
3367 static bool
ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps * vfc,struct virtchnl_vlan_filter_list_v2 * vfl)3368 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3369 struct virtchnl_vlan_filter_list_v2 *vfl)
3370 {
3371 u16 i;
3372
3373 if (!vfl->num_elements)
3374 return false;
3375
3376 for (i = 0; i < vfl->num_elements; i++) {
3377 struct virtchnl_vlan_supported_caps *filtering_support =
3378 &vfc->filtering_support;
3379 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3380 struct virtchnl_vlan *outer = &vlan_fltr->outer;
3381 struct virtchnl_vlan *inner = &vlan_fltr->inner;
3382
3383 if ((ice_vc_is_valid_vlan(outer) &&
3384 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3385 (ice_vc_is_valid_vlan(inner) &&
3386 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3387 return false;
3388
3389 if ((outer->tci_mask &&
3390 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3391 (inner->tci_mask &&
3392 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3393 return false;
3394
3395 if (((outer->tci & VLAN_PRIO_MASK) &&
3396 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3397 ((inner->tci & VLAN_PRIO_MASK) &&
3398 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3399 return false;
3400
3401 if ((ice_vc_is_valid_vlan(outer) &&
3402 !ice_vc_validate_vlan_tpid(filtering_support->outer,
3403 outer->tpid)) ||
3404 (ice_vc_is_valid_vlan(inner) &&
3405 !ice_vc_validate_vlan_tpid(filtering_support->inner,
3406 inner->tpid)))
3407 return false;
3408 }
3409
3410 return true;
3411 }
3412
3413 /**
3414 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3415 * @vc_vlan: struct virtchnl_vlan to transform
3416 */
ice_vc_to_vlan(struct virtchnl_vlan * vc_vlan)3417 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3418 {
3419 struct ice_vlan vlan = { 0 };
3420
3421 vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3422 vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3423 vlan.tpid = vc_vlan->tpid;
3424
3425 return vlan;
3426 }
3427
3428 /**
3429 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3430 * @vsi: VF's VSI used to perform the action
3431 * @vlan_action: function to perform the action with (i.e. add/del)
3432 * @vlan: VLAN filter to perform the action with
3433 */
3434 static int
ice_vc_vlan_action(struct ice_vsi * vsi,int (* vlan_action)(struct ice_vsi *,struct ice_vlan *),struct ice_vlan * vlan)3435 ice_vc_vlan_action(struct ice_vsi *vsi,
3436 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3437 struct ice_vlan *vlan)
3438 {
3439 int err;
3440
3441 err = vlan_action(vsi, vlan);
3442 if (err)
3443 return err;
3444
3445 return 0;
3446 }
3447
3448 /**
3449 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3450 * @vf: VF used to delete the VLAN(s)
3451 * @vsi: VF's VSI used to delete the VLAN(s)
3452 * @vfl: virthchnl filter list used to delete the filters
3453 */
3454 static int
ice_vc_del_vlans(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_vlan_filter_list_v2 * vfl)3455 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3456 struct virtchnl_vlan_filter_list_v2 *vfl)
3457 {
3458 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3459 int err;
3460 u16 i;
3461
3462 for (i = 0; i < vfl->num_elements; i++) {
3463 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3464 struct virtchnl_vlan *vc_vlan;
3465
3466 vc_vlan = &vlan_fltr->outer;
3467 if (ice_vc_is_valid_vlan(vc_vlan)) {
3468 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3469
3470 err = ice_vc_vlan_action(vsi,
3471 vsi->outer_vlan_ops.del_vlan,
3472 &vlan);
3473 if (err)
3474 return err;
3475
3476 if (vlan_promisc)
3477 ice_vf_dis_vlan_promisc(vsi, &vlan);
3478
3479 /* Disable VLAN filtering when only VLAN 0 is left */
3480 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3481 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3482 if (err)
3483 return err;
3484 }
3485 }
3486
3487 vc_vlan = &vlan_fltr->inner;
3488 if (ice_vc_is_valid_vlan(vc_vlan)) {
3489 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3490
3491 err = ice_vc_vlan_action(vsi,
3492 vsi->inner_vlan_ops.del_vlan,
3493 &vlan);
3494 if (err)
3495 return err;
3496
3497 /* no support for VLAN promiscuous on inner VLAN unless
3498 * we are in Single VLAN Mode (SVM)
3499 */
3500 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3501 if (vlan_promisc)
3502 ice_vf_dis_vlan_promisc(vsi, &vlan);
3503
3504 /* Disable VLAN filtering when only VLAN 0 is left */
3505 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3506 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3507 if (err)
3508 return err;
3509 }
3510 }
3511 }
3512 }
3513
3514 return 0;
3515 }
3516
3517 /**
3518 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3519 * @vf: VF the message was received from
3520 * @msg: message received from the VF
3521 */
ice_vc_remove_vlan_v2_msg(struct ice_vf * vf,u8 * msg)3522 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3523 {
3524 struct virtchnl_vlan_filter_list_v2 *vfl =
3525 (struct virtchnl_vlan_filter_list_v2 *)msg;
3526 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3527 struct ice_vsi *vsi;
3528
3529 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3530 vfl)) {
3531 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3532 goto out;
3533 }
3534
3535 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3536 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3537 goto out;
3538 }
3539
3540 vsi = ice_get_vf_vsi(vf);
3541 if (!vsi) {
3542 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3543 goto out;
3544 }
3545
3546 if (ice_vc_del_vlans(vf, vsi, vfl))
3547 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3548
3549 out:
3550 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3551 0);
3552 }
3553
3554 /**
3555 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3556 * @vf: VF used to add the VLAN(s)
3557 * @vsi: VF's VSI used to add the VLAN(s)
3558 * @vfl: virthchnl filter list used to add the filters
3559 */
3560 static int
ice_vc_add_vlans(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_vlan_filter_list_v2 * vfl)3561 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3562 struct virtchnl_vlan_filter_list_v2 *vfl)
3563 {
3564 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3565 int err;
3566 u16 i;
3567
3568 for (i = 0; i < vfl->num_elements; i++) {
3569 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3570 struct virtchnl_vlan *vc_vlan;
3571
3572 vc_vlan = &vlan_fltr->outer;
3573 if (ice_vc_is_valid_vlan(vc_vlan)) {
3574 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3575
3576 err = ice_vc_vlan_action(vsi,
3577 vsi->outer_vlan_ops.add_vlan,
3578 &vlan);
3579 if (err)
3580 return err;
3581
3582 if (vlan_promisc) {
3583 err = ice_vf_ena_vlan_promisc(vf, vsi, &vlan);
3584 if (err)
3585 return err;
3586 }
3587
3588 /* Enable VLAN filtering on first non-zero VLAN */
3589 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3590 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3591 if (err)
3592 return err;
3593 }
3594 }
3595
3596 vc_vlan = &vlan_fltr->inner;
3597 if (ice_vc_is_valid_vlan(vc_vlan)) {
3598 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3599
3600 err = ice_vc_vlan_action(vsi,
3601 vsi->inner_vlan_ops.add_vlan,
3602 &vlan);
3603 if (err)
3604 return err;
3605
3606 /* no support for VLAN promiscuous on inner VLAN unless
3607 * we are in Single VLAN Mode (SVM)
3608 */
3609 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3610 if (vlan_promisc) {
3611 err = ice_vf_ena_vlan_promisc(vf, vsi,
3612 &vlan);
3613 if (err)
3614 return err;
3615 }
3616
3617 /* Enable VLAN filtering on first non-zero VLAN */
3618 if (vf->spoofchk && vlan.vid) {
3619 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3620 if (err)
3621 return err;
3622 }
3623 }
3624 }
3625 }
3626
3627 return 0;
3628 }
3629
3630 /**
3631 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3632 * @vsi: VF VSI used to get number of existing VLAN filters
3633 * @vfc: negotiated/supported VLAN filtering capabilities
3634 * @vfl: VLAN filter list from VF to validate
3635 *
3636 * Validate all of the filters in the VLAN filter list from the VF during the
3637 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3638 * Otherwise return true.
3639 */
3640 static bool
ice_vc_validate_add_vlan_filter_list(struct ice_vsi * vsi,struct virtchnl_vlan_filtering_caps * vfc,struct virtchnl_vlan_filter_list_v2 * vfl)3641 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3642 struct virtchnl_vlan_filtering_caps *vfc,
3643 struct virtchnl_vlan_filter_list_v2 *vfl)
3644 {
3645 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3646 vfl->num_elements;
3647
3648 if (num_requested_filters > vfc->max_filters)
3649 return false;
3650
3651 return ice_vc_validate_vlan_filter_list(vfc, vfl);
3652 }
3653
3654 /**
3655 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3656 * @vf: VF the message was received from
3657 * @msg: message received from the VF
3658 */
ice_vc_add_vlan_v2_msg(struct ice_vf * vf,u8 * msg)3659 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3660 {
3661 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3662 struct virtchnl_vlan_filter_list_v2 *vfl =
3663 (struct virtchnl_vlan_filter_list_v2 *)msg;
3664 struct ice_vsi *vsi;
3665
3666 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3667 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3668 goto out;
3669 }
3670
3671 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3672 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3673 goto out;
3674 }
3675
3676 vsi = ice_get_vf_vsi(vf);
3677 if (!vsi) {
3678 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3679 goto out;
3680 }
3681
3682 if (!ice_vc_validate_add_vlan_filter_list(vsi,
3683 &vf->vlan_v2_caps.filtering,
3684 vfl)) {
3685 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3686 goto out;
3687 }
3688
3689 if (ice_vc_add_vlans(vf, vsi, vfl))
3690 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3691
3692 out:
3693 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3694 0);
3695 }
3696
3697 /**
3698 * ice_vc_valid_vlan_setting - validate VLAN setting
3699 * @negotiated_settings: negotiated VLAN settings during VF init
3700 * @ethertype_setting: ethertype(s) requested for the VLAN setting
3701 */
3702 static bool
ice_vc_valid_vlan_setting(u32 negotiated_settings,u32 ethertype_setting)3703 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3704 {
3705 if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3706 return false;
3707
3708 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3709 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3710 */
3711 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3712 hweight32(ethertype_setting) > 1)
3713 return false;
3714
3715 /* ability to modify the VLAN setting was not negotiated */
3716 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3717 return false;
3718
3719 return true;
3720 }
3721
3722 /**
3723 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3724 * @caps: negotiated VLAN settings during VF init
3725 * @msg: message to validate
3726 *
3727 * Used to validate any VLAN virtchnl message sent as a
3728 * virtchnl_vlan_setting structure. Validates the message against the
3729 * negotiated/supported caps during VF driver init.
3730 */
3731 static bool
ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps * caps,struct virtchnl_vlan_setting * msg)3732 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3733 struct virtchnl_vlan_setting *msg)
3734 {
3735 if ((!msg->outer_ethertype_setting &&
3736 !msg->inner_ethertype_setting) ||
3737 (!caps->outer && !caps->inner))
3738 return false;
3739
3740 if (msg->outer_ethertype_setting &&
3741 !ice_vc_valid_vlan_setting(caps->outer,
3742 msg->outer_ethertype_setting))
3743 return false;
3744
3745 if (msg->inner_ethertype_setting &&
3746 !ice_vc_valid_vlan_setting(caps->inner,
3747 msg->inner_ethertype_setting))
3748 return false;
3749
3750 return true;
3751 }
3752
3753 /**
3754 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3755 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3756 * @tpid: VLAN TPID to populate
3757 */
ice_vc_get_tpid(u32 ethertype_setting,u16 * tpid)3758 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3759 {
3760 switch (ethertype_setting) {
3761 case VIRTCHNL_VLAN_ETHERTYPE_8100:
3762 *tpid = ETH_P_8021Q;
3763 break;
3764 case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3765 *tpid = ETH_P_8021AD;
3766 break;
3767 case VIRTCHNL_VLAN_ETHERTYPE_9100:
3768 *tpid = ETH_P_QINQ1;
3769 break;
3770 default:
3771 *tpid = 0;
3772 return -EINVAL;
3773 }
3774
3775 return 0;
3776 }
3777
3778 /**
3779 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3780 * @vsi: VF's VSI used to enable the VLAN offload
3781 * @ena_offload: function used to enable the VLAN offload
3782 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3783 */
3784 static int
ice_vc_ena_vlan_offload(struct ice_vsi * vsi,int (* ena_offload)(struct ice_vsi * vsi,u16 tpid),u32 ethertype_setting)3785 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3786 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3787 u32 ethertype_setting)
3788 {
3789 u16 tpid;
3790 int err;
3791
3792 err = ice_vc_get_tpid(ethertype_setting, &tpid);
3793 if (err)
3794 return err;
3795
3796 err = ena_offload(vsi, tpid);
3797 if (err)
3798 return err;
3799
3800 return 0;
3801 }
3802
3803 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3
3804 #define ICE_L2TSEL_BIT_OFFSET 23
3805 enum ice_l2tsel {
3806 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3807 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3808 };
3809
3810 /**
3811 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3812 * @vsi: VSI used to update l2tsel on
3813 * @l2tsel: l2tsel setting requested
3814 *
3815 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3816 * This will modify which descriptor field the first offloaded VLAN will be
3817 * stripped into.
3818 */
ice_vsi_update_l2tsel(struct ice_vsi * vsi,enum ice_l2tsel l2tsel)3819 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3820 {
3821 struct ice_hw *hw = &vsi->back->hw;
3822 u32 l2tsel_bit;
3823 int i;
3824
3825 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3826 l2tsel_bit = 0;
3827 else
3828 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3829
3830 for (i = 0; i < vsi->alloc_rxq; i++) {
3831 u16 pfq = vsi->rxq_map[i];
3832 u32 qrx_context_offset;
3833 u32 regval;
3834
3835 qrx_context_offset =
3836 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3837
3838 regval = rd32(hw, qrx_context_offset);
3839 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3840 regval |= l2tsel_bit;
3841 wr32(hw, qrx_context_offset, regval);
3842 }
3843 }
3844
3845 /**
3846 * ice_vc_ena_vlan_stripping_v2_msg
3847 * @vf: VF the message was received from
3848 * @msg: message received from the VF
3849 *
3850 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3851 */
ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf * vf,u8 * msg)3852 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3853 {
3854 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3855 struct virtchnl_vlan_supported_caps *stripping_support;
3856 struct virtchnl_vlan_setting *strip_msg =
3857 (struct virtchnl_vlan_setting *)msg;
3858 u32 ethertype_setting;
3859 struct ice_vsi *vsi;
3860
3861 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3862 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3863 goto out;
3864 }
3865
3866 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3867 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3868 goto out;
3869 }
3870
3871 vsi = ice_get_vf_vsi(vf);
3872 if (!vsi) {
3873 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3874 goto out;
3875 }
3876
3877 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3878 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3879 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3880 goto out;
3881 }
3882
3883 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3884 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3885 goto out;
3886 }
3887
3888 ethertype_setting = strip_msg->outer_ethertype_setting;
3889 if (ethertype_setting) {
3890 if (ice_vc_ena_vlan_offload(vsi,
3891 vsi->outer_vlan_ops.ena_stripping,
3892 ethertype_setting)) {
3893 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3894 goto out;
3895 } else {
3896 enum ice_l2tsel l2tsel =
3897 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3898
3899 /* PF tells the VF that the outer VLAN tag is always
3900 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3901 * inner is always extracted to
3902 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3903 * support outer stripping so the first tag always ends
3904 * up in L2TAG2_2ND and the second/inner tag, if
3905 * enabled, is extracted in L2TAG1.
3906 */
3907 ice_vsi_update_l2tsel(vsi, l2tsel);
3908
3909 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3910 }
3911 }
3912
3913 ethertype_setting = strip_msg->inner_ethertype_setting;
3914 if (ethertype_setting &&
3915 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3916 ethertype_setting)) {
3917 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3918 goto out;
3919 }
3920
3921 if (ethertype_setting)
3922 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3923
3924 out:
3925 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3926 v_ret, NULL, 0);
3927 }
3928
3929 /**
3930 * ice_vc_dis_vlan_stripping_v2_msg
3931 * @vf: VF the message was received from
3932 * @msg: message received from the VF
3933 *
3934 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3935 */
ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf * vf,u8 * msg)3936 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3937 {
3938 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3939 struct virtchnl_vlan_supported_caps *stripping_support;
3940 struct virtchnl_vlan_setting *strip_msg =
3941 (struct virtchnl_vlan_setting *)msg;
3942 u32 ethertype_setting;
3943 struct ice_vsi *vsi;
3944
3945 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3946 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3947 goto out;
3948 }
3949
3950 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3951 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3952 goto out;
3953 }
3954
3955 vsi = ice_get_vf_vsi(vf);
3956 if (!vsi) {
3957 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3958 goto out;
3959 }
3960
3961 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3962 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3963 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3964 goto out;
3965 }
3966
3967 ethertype_setting = strip_msg->outer_ethertype_setting;
3968 if (ethertype_setting) {
3969 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3970 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3971 goto out;
3972 } else {
3973 enum ice_l2tsel l2tsel =
3974 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3975
3976 /* PF tells the VF that the outer VLAN tag is always
3977 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3978 * inner is always extracted to
3979 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3980 * support inner stripping while outer stripping is
3981 * disabled so that the first and only tag is extracted
3982 * in L2TAG1.
3983 */
3984 ice_vsi_update_l2tsel(vsi, l2tsel);
3985
3986 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3987 }
3988 }
3989
3990 ethertype_setting = strip_msg->inner_ethertype_setting;
3991 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3992 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3993 goto out;
3994 }
3995
3996 if (ethertype_setting)
3997 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3998
3999 out:
4000 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
4001 v_ret, NULL, 0);
4002 }
4003
4004 /**
4005 * ice_vc_ena_vlan_insertion_v2_msg
4006 * @vf: VF the message was received from
4007 * @msg: message received from the VF
4008 *
4009 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
4010 */
ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf * vf,u8 * msg)4011 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
4012 {
4013 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4014 struct virtchnl_vlan_supported_caps *insertion_support;
4015 struct virtchnl_vlan_setting *insertion_msg =
4016 (struct virtchnl_vlan_setting *)msg;
4017 u32 ethertype_setting;
4018 struct ice_vsi *vsi;
4019
4020 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
4021 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4022 goto out;
4023 }
4024
4025 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
4026 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4027 goto out;
4028 }
4029
4030 vsi = ice_get_vf_vsi(vf);
4031 if (!vsi) {
4032 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4033 goto out;
4034 }
4035
4036 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
4037 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
4038 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4039 goto out;
4040 }
4041
4042 ethertype_setting = insertion_msg->outer_ethertype_setting;
4043 if (ethertype_setting &&
4044 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
4045 ethertype_setting)) {
4046 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4047 goto out;
4048 }
4049
4050 ethertype_setting = insertion_msg->inner_ethertype_setting;
4051 if (ethertype_setting &&
4052 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
4053 ethertype_setting)) {
4054 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4055 goto out;
4056 }
4057
4058 out:
4059 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
4060 v_ret, NULL, 0);
4061 }
4062
4063 /**
4064 * ice_vc_dis_vlan_insertion_v2_msg
4065 * @vf: VF the message was received from
4066 * @msg: message received from the VF
4067 *
4068 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
4069 */
ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf * vf,u8 * msg)4070 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
4071 {
4072 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4073 struct virtchnl_vlan_supported_caps *insertion_support;
4074 struct virtchnl_vlan_setting *insertion_msg =
4075 (struct virtchnl_vlan_setting *)msg;
4076 u32 ethertype_setting;
4077 struct ice_vsi *vsi;
4078
4079 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
4080 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4081 goto out;
4082 }
4083
4084 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
4085 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4086 goto out;
4087 }
4088
4089 vsi = ice_get_vf_vsi(vf);
4090 if (!vsi) {
4091 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4092 goto out;
4093 }
4094
4095 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
4096 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
4097 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4098 goto out;
4099 }
4100
4101 ethertype_setting = insertion_msg->outer_ethertype_setting;
4102 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
4103 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4104 goto out;
4105 }
4106
4107 ethertype_setting = insertion_msg->inner_ethertype_setting;
4108 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
4109 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4110 goto out;
4111 }
4112
4113 out:
4114 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
4115 v_ret, NULL, 0);
4116 }
4117
4118 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
4119 .get_ver_msg = ice_vc_get_ver_msg,
4120 .get_vf_res_msg = ice_vc_get_vf_res_msg,
4121 .reset_vf = ice_vc_reset_vf_msg,
4122 .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
4123 .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
4124 .cfg_qs_msg = ice_vc_cfg_qs_msg,
4125 .ena_qs_msg = ice_vc_ena_qs_msg,
4126 .dis_qs_msg = ice_vc_dis_qs_msg,
4127 .request_qs_msg = ice_vc_request_qs_msg,
4128 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
4129 .config_rss_key = ice_vc_config_rss_key,
4130 .config_rss_lut = ice_vc_config_rss_lut,
4131 .config_rss_hfunc = ice_vc_config_rss_hfunc,
4132 .get_stats_msg = ice_vc_get_stats_msg,
4133 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
4134 .add_vlan_msg = ice_vc_add_vlan_msg,
4135 .remove_vlan_msg = ice_vc_remove_vlan_msg,
4136 .query_rxdid = ice_vc_query_rxdid,
4137 .get_rss_hena = ice_vc_get_rss_hena,
4138 .set_rss_hena_msg = ice_vc_set_rss_hena,
4139 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
4140 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
4141 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
4142 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
4143 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
4144 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
4145 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
4146 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
4147 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
4148 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
4149 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
4150 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
4151 .get_qos_caps = ice_vc_get_qos_caps,
4152 .cfg_q_bw = ice_vc_cfg_q_bw,
4153 .cfg_q_quanta = ice_vc_cfg_q_quanta,
4154 /* If you add a new op here please make sure to add it to
4155 * ice_virtchnl_repr_ops as well.
4156 */
4157 };
4158
4159 /**
4160 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
4161 * @vf: the VF to switch ops
4162 */
ice_virtchnl_set_dflt_ops(struct ice_vf * vf)4163 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
4164 {
4165 vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
4166 }
4167
4168 /**
4169 * ice_vc_repr_add_mac
4170 * @vf: pointer to VF
4171 * @msg: virtchannel message
4172 *
4173 * When port representors are created, we do not add MAC rule
4174 * to firmware, we store it so that PF could report same
4175 * MAC as VF.
4176 */
ice_vc_repr_add_mac(struct ice_vf * vf,u8 * msg)4177 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
4178 {
4179 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
4180 struct virtchnl_ether_addr_list *al =
4181 (struct virtchnl_ether_addr_list *)msg;
4182 struct ice_vsi *vsi;
4183 struct ice_pf *pf;
4184 int i;
4185
4186 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
4187 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
4188 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4189 goto handle_mac_exit;
4190 }
4191
4192 pf = vf->pf;
4193
4194 vsi = ice_get_vf_vsi(vf);
4195 if (!vsi) {
4196 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
4197 goto handle_mac_exit;
4198 }
4199
4200 for (i = 0; i < al->num_elements; i++) {
4201 u8 *mac_addr = al->list[i].addr;
4202
4203 if (!is_unicast_ether_addr(mac_addr) ||
4204 ether_addr_equal(mac_addr, vf->hw_lan_addr))
4205 continue;
4206
4207 if (vf->pf_set_mac) {
4208 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
4209 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
4210 goto handle_mac_exit;
4211 }
4212
4213 ice_vfhw_mac_add(vf, &al->list[i]);
4214 vf->num_mac++;
4215 break;
4216 }
4217
4218 handle_mac_exit:
4219 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
4220 v_ret, NULL, 0);
4221 }
4222
4223 /**
4224 * ice_vc_repr_del_mac - response with success for deleting MAC
4225 * @vf: pointer to VF
4226 * @msg: virtchannel message
4227 *
4228 * Respond with success to not break normal VF flow.
4229 * For legacy VF driver try to update cached MAC address.
4230 */
4231 static int
ice_vc_repr_del_mac(struct ice_vf __always_unused * vf,u8 __always_unused * msg)4232 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
4233 {
4234 struct virtchnl_ether_addr_list *al =
4235 (struct virtchnl_ether_addr_list *)msg;
4236
4237 ice_update_legacy_cached_mac(vf, &al->list[0]);
4238
4239 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
4240 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
4241 }
4242
4243 static int
ice_vc_repr_cfg_promiscuous_mode(struct ice_vf * vf,u8 __always_unused * msg)4244 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
4245 {
4246 dev_dbg(ice_pf_to_dev(vf->pf),
4247 "Can't config promiscuous mode in switchdev mode for VF %d\n",
4248 vf->vf_id);
4249 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
4250 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4251 NULL, 0);
4252 }
4253
4254 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
4255 .get_ver_msg = ice_vc_get_ver_msg,
4256 .get_vf_res_msg = ice_vc_get_vf_res_msg,
4257 .reset_vf = ice_vc_reset_vf_msg,
4258 .add_mac_addr_msg = ice_vc_repr_add_mac,
4259 .del_mac_addr_msg = ice_vc_repr_del_mac,
4260 .cfg_qs_msg = ice_vc_cfg_qs_msg,
4261 .ena_qs_msg = ice_vc_ena_qs_msg,
4262 .dis_qs_msg = ice_vc_dis_qs_msg,
4263 .request_qs_msg = ice_vc_request_qs_msg,
4264 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
4265 .config_rss_key = ice_vc_config_rss_key,
4266 .config_rss_lut = ice_vc_config_rss_lut,
4267 .config_rss_hfunc = ice_vc_config_rss_hfunc,
4268 .get_stats_msg = ice_vc_get_stats_msg,
4269 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
4270 .add_vlan_msg = ice_vc_add_vlan_msg,
4271 .remove_vlan_msg = ice_vc_remove_vlan_msg,
4272 .query_rxdid = ice_vc_query_rxdid,
4273 .get_rss_hena = ice_vc_get_rss_hena,
4274 .set_rss_hena_msg = ice_vc_set_rss_hena,
4275 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
4276 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
4277 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
4278 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
4279 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
4280 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
4281 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
4282 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
4283 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
4284 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
4285 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
4286 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
4287 .get_qos_caps = ice_vc_get_qos_caps,
4288 .cfg_q_bw = ice_vc_cfg_q_bw,
4289 .cfg_q_quanta = ice_vc_cfg_q_quanta,
4290 };
4291
4292 /**
4293 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
4294 * @vf: the VF to switch ops
4295 */
ice_virtchnl_set_repr_ops(struct ice_vf * vf)4296 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
4297 {
4298 vf->virtchnl_ops = &ice_virtchnl_repr_ops;
4299 }
4300
4301 /**
4302 * ice_is_malicious_vf - check if this vf might be overflowing mailbox
4303 * @vf: the VF to check
4304 * @mbxdata: data about the state of the mailbox
4305 *
4306 * Detect if a given VF might be malicious and attempting to overflow the PF
4307 * mailbox. If so, log a warning message and ignore this event.
4308 */
4309 static bool
ice_is_malicious_vf(struct ice_vf * vf,struct ice_mbx_data * mbxdata)4310 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
4311 {
4312 bool report_malvf = false;
4313 struct device *dev;
4314 struct ice_pf *pf;
4315 int status;
4316
4317 pf = vf->pf;
4318 dev = ice_pf_to_dev(pf);
4319
4320 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
4321 return vf->mbx_info.malicious;
4322
4323 /* check to see if we have a newly malicious VF */
4324 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
4325 &report_malvf);
4326 if (status)
4327 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
4328 vf->vf_id, vf->dev_lan_addr, status);
4329
4330 if (report_malvf) {
4331 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
4332 u8 zero_addr[ETH_ALEN] = {};
4333
4334 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
4335 vf->dev_lan_addr,
4336 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
4337 }
4338
4339 return vf->mbx_info.malicious;
4340 }
4341
4342 /**
4343 * ice_vc_process_vf_msg - Process request from VF
4344 * @pf: pointer to the PF structure
4345 * @event: pointer to the AQ event
4346 * @mbxdata: information used to detect VF attempting mailbox overflow
4347 *
4348 * Called from the common asq/arq handler to process request from VF. When this
4349 * flow is used for devices with hardware VF to PF message queue overflow
4350 * support (ICE_F_MBX_LIMIT) mbxdata is set to NULL and ice_is_malicious_vf
4351 * check is skipped.
4352 */
ice_vc_process_vf_msg(struct ice_pf * pf,struct ice_rq_event_info * event,struct ice_mbx_data * mbxdata)4353 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4354 struct ice_mbx_data *mbxdata)
4355 {
4356 u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4357 s16 vf_id = le16_to_cpu(event->desc.retval);
4358 const struct ice_virtchnl_ops *ops;
4359 u16 msglen = event->msg_len;
4360 u8 *msg = event->msg_buf;
4361 struct ice_vf *vf = NULL;
4362 struct device *dev;
4363 int err = 0;
4364
4365 dev = ice_pf_to_dev(pf);
4366
4367 vf = ice_get_vf_by_id(pf, vf_id);
4368 if (!vf) {
4369 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4370 vf_id, v_opcode, msglen);
4371 return;
4372 }
4373
4374 mutex_lock(&vf->cfg_lock);
4375
4376 /* Check if the VF is trying to overflow the mailbox */
4377 if (mbxdata && ice_is_malicious_vf(vf, mbxdata))
4378 goto finish;
4379
4380 /* Check if VF is disabled. */
4381 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4382 err = -EPERM;
4383 goto error_handler;
4384 }
4385
4386 ops = vf->virtchnl_ops;
4387
4388 /* Perform basic checks on the msg */
4389 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4390 if (err) {
4391 if (err == VIRTCHNL_STATUS_ERR_PARAM)
4392 err = -EPERM;
4393 else
4394 err = -EINVAL;
4395 }
4396
4397 error_handler:
4398 if (err) {
4399 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4400 NULL, 0);
4401 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4402 vf_id, v_opcode, msglen, err);
4403 goto finish;
4404 }
4405
4406 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4407 ice_vc_send_msg_to_vf(vf, v_opcode,
4408 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4409 0);
4410 goto finish;
4411 }
4412
4413 switch (v_opcode) {
4414 case VIRTCHNL_OP_VERSION:
4415 err = ops->get_ver_msg(vf, msg);
4416 break;
4417 case VIRTCHNL_OP_GET_VF_RESOURCES:
4418 err = ops->get_vf_res_msg(vf, msg);
4419 if (ice_vf_init_vlan_stripping(vf))
4420 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4421 vf->vf_id);
4422 ice_vc_notify_vf_link_state(vf);
4423 break;
4424 case VIRTCHNL_OP_RESET_VF:
4425 ops->reset_vf(vf);
4426 break;
4427 case VIRTCHNL_OP_ADD_ETH_ADDR:
4428 err = ops->add_mac_addr_msg(vf, msg);
4429 break;
4430 case VIRTCHNL_OP_DEL_ETH_ADDR:
4431 err = ops->del_mac_addr_msg(vf, msg);
4432 break;
4433 case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4434 err = ops->cfg_qs_msg(vf, msg);
4435 break;
4436 case VIRTCHNL_OP_ENABLE_QUEUES:
4437 err = ops->ena_qs_msg(vf, msg);
4438 ice_vc_notify_vf_link_state(vf);
4439 break;
4440 case VIRTCHNL_OP_DISABLE_QUEUES:
4441 err = ops->dis_qs_msg(vf, msg);
4442 break;
4443 case VIRTCHNL_OP_REQUEST_QUEUES:
4444 err = ops->request_qs_msg(vf, msg);
4445 break;
4446 case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4447 err = ops->cfg_irq_map_msg(vf, msg);
4448 break;
4449 case VIRTCHNL_OP_CONFIG_RSS_KEY:
4450 err = ops->config_rss_key(vf, msg);
4451 break;
4452 case VIRTCHNL_OP_CONFIG_RSS_LUT:
4453 err = ops->config_rss_lut(vf, msg);
4454 break;
4455 case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4456 err = ops->config_rss_hfunc(vf, msg);
4457 break;
4458 case VIRTCHNL_OP_GET_STATS:
4459 err = ops->get_stats_msg(vf, msg);
4460 break;
4461 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4462 err = ops->cfg_promiscuous_mode_msg(vf, msg);
4463 break;
4464 case VIRTCHNL_OP_ADD_VLAN:
4465 err = ops->add_vlan_msg(vf, msg);
4466 break;
4467 case VIRTCHNL_OP_DEL_VLAN:
4468 err = ops->remove_vlan_msg(vf, msg);
4469 break;
4470 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4471 err = ops->query_rxdid(vf);
4472 break;
4473 case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4474 err = ops->get_rss_hena(vf);
4475 break;
4476 case VIRTCHNL_OP_SET_RSS_HENA:
4477 err = ops->set_rss_hena_msg(vf, msg);
4478 break;
4479 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4480 err = ops->ena_vlan_stripping(vf);
4481 break;
4482 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4483 err = ops->dis_vlan_stripping(vf);
4484 break;
4485 case VIRTCHNL_OP_ADD_FDIR_FILTER:
4486 err = ops->add_fdir_fltr_msg(vf, msg);
4487 break;
4488 case VIRTCHNL_OP_DEL_FDIR_FILTER:
4489 err = ops->del_fdir_fltr_msg(vf, msg);
4490 break;
4491 case VIRTCHNL_OP_ADD_RSS_CFG:
4492 err = ops->handle_rss_cfg_msg(vf, msg, true);
4493 break;
4494 case VIRTCHNL_OP_DEL_RSS_CFG:
4495 err = ops->handle_rss_cfg_msg(vf, msg, false);
4496 break;
4497 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4498 err = ops->get_offload_vlan_v2_caps(vf);
4499 break;
4500 case VIRTCHNL_OP_ADD_VLAN_V2:
4501 err = ops->add_vlan_v2_msg(vf, msg);
4502 break;
4503 case VIRTCHNL_OP_DEL_VLAN_V2:
4504 err = ops->remove_vlan_v2_msg(vf, msg);
4505 break;
4506 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4507 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4508 break;
4509 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4510 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4511 break;
4512 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4513 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4514 break;
4515 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4516 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4517 break;
4518 case VIRTCHNL_OP_GET_QOS_CAPS:
4519 err = ops->get_qos_caps(vf);
4520 break;
4521 case VIRTCHNL_OP_CONFIG_QUEUE_BW:
4522 err = ops->cfg_q_bw(vf, msg);
4523 break;
4524 case VIRTCHNL_OP_CONFIG_QUANTA:
4525 err = ops->cfg_q_quanta(vf, msg);
4526 break;
4527 case VIRTCHNL_OP_UNKNOWN:
4528 default:
4529 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4530 vf_id);
4531 err = ice_vc_send_msg_to_vf(vf, v_opcode,
4532 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4533 NULL, 0);
4534 break;
4535 }
4536 if (err) {
4537 /* Helper function cares less about error return values here
4538 * as it is busy with pending work.
4539 */
4540 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4541 vf_id, v_opcode, err);
4542 }
4543
4544 finish:
4545 mutex_unlock(&vf->cfg_lock);
4546 ice_put_vf(vf);
4547 }
4548