1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * linux/drivers/mmc/core/mmc_ops.h
4 *
5 * Copyright 2006-2007 Pierre Ossman
6 */
7
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/types.h>
11 #include <linux/scatterlist.h>
12
13 #include <linux/mmc/host.h>
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/mmc.h>
16
17 #include "core.h"
18 #include "card.h"
19 #include "host.h"
20 #include "mmc_ops.h"
21
22 #define MMC_BKOPS_TIMEOUT_MS (120 * 1000) /* 120s */
23 #define MMC_SANITIZE_TIMEOUT_MS (240 * 1000) /* 240s */
24 #define MMC_OP_COND_PERIOD_US (4 * 1000) /* 4ms */
25 #define MMC_OP_COND_TIMEOUT_MS 1000 /* 1s */
26
27 static const u8 tuning_blk_pattern_4bit[] = {
28 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
29 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
30 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
31 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
32 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
33 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
34 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
35 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
36 };
37
38 static const u8 tuning_blk_pattern_8bit[] = {
39 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
40 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
41 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
42 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
43 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
44 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
45 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
46 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
47 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
48 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
49 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
50 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
51 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
52 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
53 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
54 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
55 };
56
57 struct mmc_busy_data {
58 struct mmc_card *card;
59 bool retry_crc_err;
60 enum mmc_busy_cmd busy_cmd;
61 };
62
63 struct mmc_op_cond_busy_data {
64 struct mmc_host *host;
65 u32 ocr;
66 struct mmc_command *cmd;
67 };
68
__mmc_send_status(struct mmc_card * card,u32 * status,unsigned int retries)69 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
70 {
71 int err;
72 struct mmc_command cmd = {};
73
74 cmd.opcode = MMC_SEND_STATUS;
75 if (!mmc_host_is_spi(card->host))
76 cmd.arg = card->rca << 16;
77 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
78
79 err = mmc_wait_for_cmd(card->host, &cmd, retries);
80 if (err)
81 return err;
82
83 /* NOTE: callers are required to understand the difference
84 * between "native" and SPI format status words!
85 */
86 if (status)
87 *status = cmd.resp[0];
88
89 return 0;
90 }
91 EXPORT_SYMBOL_GPL(__mmc_send_status);
92
mmc_send_status(struct mmc_card * card,u32 * status)93 int mmc_send_status(struct mmc_card *card, u32 *status)
94 {
95 return __mmc_send_status(card, status, MMC_CMD_RETRIES);
96 }
97 EXPORT_SYMBOL_GPL(mmc_send_status);
98
_mmc_select_card(struct mmc_host * host,struct mmc_card * card)99 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
100 {
101 struct mmc_command cmd = {};
102
103 cmd.opcode = MMC_SELECT_CARD;
104
105 if (card) {
106 cmd.arg = card->rca << 16;
107 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
108 } else {
109 cmd.arg = 0;
110 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
111 }
112
113 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
114 }
115
mmc_select_card(struct mmc_card * card)116 int mmc_select_card(struct mmc_card *card)
117 {
118
119 return _mmc_select_card(card->host, card);
120 }
121
mmc_deselect_cards(struct mmc_host * host)122 int mmc_deselect_cards(struct mmc_host *host)
123 {
124 return _mmc_select_card(host, NULL);
125 }
126
127 /*
128 * Write the value specified in the device tree or board code into the optional
129 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
130 * drive strength of the DAT and CMD outputs. The actual meaning of a given
131 * value is hardware dependant.
132 * The presence of the DSR register can be determined from the CSD register,
133 * bit 76.
134 */
mmc_set_dsr(struct mmc_host * host)135 int mmc_set_dsr(struct mmc_host *host)
136 {
137 struct mmc_command cmd = {};
138
139 cmd.opcode = MMC_SET_DSR;
140
141 cmd.arg = (host->dsr << 16) | 0xffff;
142 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
143
144 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
145 }
146
__mmc_go_idle(struct mmc_host * host)147 int __mmc_go_idle(struct mmc_host *host)
148 {
149 struct mmc_command cmd = {};
150 int err;
151
152 cmd.opcode = MMC_GO_IDLE_STATE;
153 cmd.arg = 0;
154 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
155
156 err = mmc_wait_for_cmd(host, &cmd, 0);
157 mmc_delay(1);
158
159 return err;
160 }
161
mmc_go_idle(struct mmc_host * host)162 int mmc_go_idle(struct mmc_host *host)
163 {
164 int err;
165
166 /*
167 * Non-SPI hosts need to prevent chipselect going active during
168 * GO_IDLE; that would put chips into SPI mode. Remind them of
169 * that in case of hardware that won't pull up DAT3/nCS otherwise.
170 *
171 * SPI hosts ignore ios.chip_select; it's managed according to
172 * rules that must accommodate non-MMC slaves which this layer
173 * won't even know about.
174 */
175 if (!mmc_host_is_spi(host)) {
176 mmc_set_chip_select(host, MMC_CS_HIGH);
177 mmc_delay(1);
178 }
179
180 err = __mmc_go_idle(host);
181
182 if (!mmc_host_is_spi(host)) {
183 mmc_set_chip_select(host, MMC_CS_DONTCARE);
184 mmc_delay(1);
185 }
186
187 host->use_spi_crc = 0;
188
189 return err;
190 }
191
__mmc_send_op_cond_cb(void * cb_data,bool * busy)192 static int __mmc_send_op_cond_cb(void *cb_data, bool *busy)
193 {
194 struct mmc_op_cond_busy_data *data = cb_data;
195 struct mmc_host *host = data->host;
196 struct mmc_command *cmd = data->cmd;
197 u32 ocr = data->ocr;
198 int err = 0;
199
200 err = mmc_wait_for_cmd(host, cmd, 0);
201 if (err)
202 return err;
203
204 if (mmc_host_is_spi(host)) {
205 if (!(cmd->resp[0] & R1_SPI_IDLE)) {
206 *busy = false;
207 return 0;
208 }
209 } else {
210 if (cmd->resp[0] & MMC_CARD_BUSY) {
211 *busy = false;
212 return 0;
213 }
214 }
215
216 *busy = true;
217
218 /*
219 * According to eMMC specification v5.1 section 6.4.3, we
220 * should issue CMD1 repeatedly in the idle state until
221 * the eMMC is ready. Otherwise some eMMC devices seem to enter
222 * the inactive mode after mmc_init_card() issued CMD0 when
223 * the eMMC device is busy.
224 */
225 if (!ocr && !mmc_host_is_spi(host))
226 cmd->arg = cmd->resp[0] | BIT(30);
227
228 return 0;
229 }
230
mmc_send_op_cond(struct mmc_host * host,u32 ocr,u32 * rocr)231 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
232 {
233 struct mmc_command cmd = {};
234 int err = 0;
235 struct mmc_op_cond_busy_data cb_data = {
236 .host = host,
237 .ocr = ocr,
238 .cmd = &cmd
239 };
240
241 cmd.opcode = MMC_SEND_OP_COND;
242 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
243 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
244
245 err = __mmc_poll_for_busy(host, MMC_OP_COND_PERIOD_US,
246 MMC_OP_COND_TIMEOUT_MS,
247 &__mmc_send_op_cond_cb, &cb_data);
248 if (err)
249 return err;
250
251 if (rocr && !mmc_host_is_spi(host))
252 *rocr = cmd.resp[0];
253
254 return err;
255 }
256
mmc_set_relative_addr(struct mmc_card * card)257 int mmc_set_relative_addr(struct mmc_card *card)
258 {
259 struct mmc_command cmd = {};
260
261 cmd.opcode = MMC_SET_RELATIVE_ADDR;
262 cmd.arg = card->rca << 16;
263 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
264
265 return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
266 }
267
268 static int
mmc_send_cxd_native(struct mmc_host * host,u32 arg,u32 * cxd,int opcode)269 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
270 {
271 int err;
272 struct mmc_command cmd = {};
273
274 cmd.opcode = opcode;
275 cmd.arg = arg;
276 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
277
278 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
279 if (err)
280 return err;
281
282 memcpy(cxd, cmd.resp, sizeof(u32) * 4);
283
284 return 0;
285 }
286
287 /*
288 * NOTE: void *buf, caller for the buf is required to use DMA-capable
289 * buffer or on-stack buffer (with some overhead in callee).
290 */
mmc_send_adtc_data(struct mmc_card * card,struct mmc_host * host,u32 opcode,u32 args,void * buf,unsigned len)291 int mmc_send_adtc_data(struct mmc_card *card, struct mmc_host *host, u32 opcode,
292 u32 args, void *buf, unsigned len)
293 {
294 struct mmc_request mrq = {};
295 struct mmc_command cmd = {};
296 struct mmc_data data = {};
297 struct scatterlist sg;
298
299 mrq.cmd = &cmd;
300 mrq.data = &data;
301
302 cmd.opcode = opcode;
303 cmd.arg = args;
304
305 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
306 * rely on callers to never use this with "native" calls for reading
307 * CSD or CID. Native versions of those commands use the R2 type,
308 * not R1 plus a data block.
309 */
310 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
311
312 data.blksz = len;
313 data.blocks = 1;
314 data.flags = MMC_DATA_READ;
315 data.sg = &sg;
316 data.sg_len = 1;
317
318 sg_init_one(&sg, buf, len);
319
320 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
321 /*
322 * The spec states that CSR and CID accesses have a timeout
323 * of 64 clock cycles.
324 */
325 data.timeout_ns = 0;
326 data.timeout_clks = 64;
327 } else
328 mmc_set_data_timeout(&data, card);
329
330 mmc_wait_for_req(host, &mrq);
331
332 if (cmd.error)
333 return cmd.error;
334 if (data.error)
335 return data.error;
336
337 return 0;
338 }
339
mmc_spi_send_cxd(struct mmc_host * host,u32 * cxd,u32 opcode)340 static int mmc_spi_send_cxd(struct mmc_host *host, u32 *cxd, u32 opcode)
341 {
342 int ret, i;
343 __be32 *cxd_tmp;
344
345 cxd_tmp = kzalloc(16, GFP_KERNEL);
346 if (!cxd_tmp)
347 return -ENOMEM;
348
349 ret = mmc_send_adtc_data(NULL, host, opcode, 0, cxd_tmp, 16);
350 if (ret)
351 goto err;
352
353 for (i = 0; i < 4; i++)
354 cxd[i] = be32_to_cpu(cxd_tmp[i]);
355
356 err:
357 kfree(cxd_tmp);
358 return ret;
359 }
360
mmc_send_csd(struct mmc_card * card,u32 * csd)361 int mmc_send_csd(struct mmc_card *card, u32 *csd)
362 {
363 if (mmc_host_is_spi(card->host))
364 return mmc_spi_send_cxd(card->host, csd, MMC_SEND_CSD);
365
366 return mmc_send_cxd_native(card->host, card->rca << 16, csd,
367 MMC_SEND_CSD);
368 }
369
mmc_send_cid(struct mmc_host * host,u32 * cid)370 int mmc_send_cid(struct mmc_host *host, u32 *cid)
371 {
372 if (mmc_host_is_spi(host))
373 return mmc_spi_send_cxd(host, cid, MMC_SEND_CID);
374
375 return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
376 }
377
mmc_get_ext_csd(struct mmc_card * card,u8 ** new_ext_csd)378 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
379 {
380 int err;
381 u8 *ext_csd;
382
383 if (!card || !new_ext_csd)
384 return -EINVAL;
385
386 if (!mmc_can_ext_csd(card))
387 return -EOPNOTSUPP;
388
389 /*
390 * As the ext_csd is so large and mostly unused, we don't store the
391 * raw block in mmc_card.
392 */
393 ext_csd = kzalloc(512, GFP_KERNEL);
394 if (!ext_csd)
395 return -ENOMEM;
396
397 err = mmc_send_adtc_data(card, card->host, MMC_SEND_EXT_CSD, 0, ext_csd,
398 512);
399 if (err)
400 kfree(ext_csd);
401 else
402 *new_ext_csd = ext_csd;
403
404 return err;
405 }
406 EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
407
mmc_spi_read_ocr(struct mmc_host * host,int highcap,u32 * ocrp)408 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
409 {
410 struct mmc_command cmd = {};
411 int err;
412
413 cmd.opcode = MMC_SPI_READ_OCR;
414 cmd.arg = highcap ? (1 << 30) : 0;
415 cmd.flags = MMC_RSP_SPI_R3;
416
417 err = mmc_wait_for_cmd(host, &cmd, 0);
418
419 *ocrp = cmd.resp[1];
420 return err;
421 }
422
mmc_spi_set_crc(struct mmc_host * host,int use_crc)423 int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
424 {
425 struct mmc_command cmd = {};
426 int err;
427
428 cmd.opcode = MMC_SPI_CRC_ON_OFF;
429 cmd.flags = MMC_RSP_SPI_R1;
430 cmd.arg = use_crc;
431
432 err = mmc_wait_for_cmd(host, &cmd, 0);
433 if (!err)
434 host->use_spi_crc = use_crc;
435 return err;
436 }
437
mmc_switch_status_error(struct mmc_host * host,u32 status)438 static int mmc_switch_status_error(struct mmc_host *host, u32 status)
439 {
440 if (mmc_host_is_spi(host)) {
441 if (status & R1_SPI_ILLEGAL_COMMAND)
442 return -EBADMSG;
443 } else {
444 if (R1_STATUS(status))
445 pr_warn("%s: unexpected status %#x after switch\n",
446 mmc_hostname(host), status);
447 if (status & R1_SWITCH_ERROR)
448 return -EBADMSG;
449 }
450 return 0;
451 }
452
453 /* Caller must hold re-tuning */
mmc_switch_status(struct mmc_card * card,bool crc_err_fatal)454 int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
455 {
456 u32 status;
457 int err;
458
459 err = mmc_send_status(card, &status);
460 if (!crc_err_fatal && err == -EILSEQ)
461 return 0;
462 if (err)
463 return err;
464
465 return mmc_switch_status_error(card->host, status);
466 }
467
mmc_busy_cb(void * cb_data,bool * busy)468 static int mmc_busy_cb(void *cb_data, bool *busy)
469 {
470 struct mmc_busy_data *data = cb_data;
471 struct mmc_host *host = data->card->host;
472 u32 status = 0;
473 int err;
474
475 if (data->busy_cmd != MMC_BUSY_IO && host->ops->card_busy) {
476 *busy = host->ops->card_busy(host);
477 return 0;
478 }
479
480 err = mmc_send_status(data->card, &status);
481 if (data->retry_crc_err && err == -EILSEQ) {
482 *busy = true;
483 return 0;
484 }
485 if (err)
486 return err;
487
488 switch (data->busy_cmd) {
489 case MMC_BUSY_CMD6:
490 err = mmc_switch_status_error(host, status);
491 break;
492 case MMC_BUSY_ERASE:
493 err = R1_STATUS(status) ? -EIO : 0;
494 break;
495 case MMC_BUSY_HPI:
496 case MMC_BUSY_EXTR_SINGLE:
497 case MMC_BUSY_IO:
498 break;
499 default:
500 err = -EINVAL;
501 }
502
503 if (err)
504 return err;
505
506 *busy = !mmc_ready_for_data(status);
507 return 0;
508 }
509
__mmc_poll_for_busy(struct mmc_host * host,unsigned int period_us,unsigned int timeout_ms,int (* busy_cb)(void * cb_data,bool * busy),void * cb_data)510 int __mmc_poll_for_busy(struct mmc_host *host, unsigned int period_us,
511 unsigned int timeout_ms,
512 int (*busy_cb)(void *cb_data, bool *busy),
513 void *cb_data)
514 {
515 int err;
516 unsigned long timeout;
517 unsigned int udelay = period_us ? period_us : 32, udelay_max = 32768;
518 bool expired = false;
519 bool busy = false;
520
521 timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
522 do {
523 /*
524 * Due to the possibility of being preempted while polling,
525 * check the expiration time first.
526 */
527 expired = time_after(jiffies, timeout);
528
529 err = (*busy_cb)(cb_data, &busy);
530 if (err)
531 return err;
532
533 /* Timeout if the device still remains busy. */
534 if (expired && busy) {
535 pr_err("%s: Card stuck being busy! %s\n",
536 mmc_hostname(host), __func__);
537 return -ETIMEDOUT;
538 }
539
540 /* Throttle the polling rate to avoid hogging the CPU. */
541 if (busy) {
542 usleep_range(udelay, udelay * 2);
543 if (udelay < udelay_max)
544 udelay *= 2;
545 }
546 } while (busy);
547
548 return 0;
549 }
550 EXPORT_SYMBOL_GPL(__mmc_poll_for_busy);
551
mmc_poll_for_busy(struct mmc_card * card,unsigned int timeout_ms,bool retry_crc_err,enum mmc_busy_cmd busy_cmd)552 int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
553 bool retry_crc_err, enum mmc_busy_cmd busy_cmd)
554 {
555 struct mmc_host *host = card->host;
556 struct mmc_busy_data cb_data;
557
558 cb_data.card = card;
559 cb_data.retry_crc_err = retry_crc_err;
560 cb_data.busy_cmd = busy_cmd;
561
562 return __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_busy_cb, &cb_data);
563 }
564 EXPORT_SYMBOL_GPL(mmc_poll_for_busy);
565
mmc_prepare_busy_cmd(struct mmc_host * host,struct mmc_command * cmd,unsigned int timeout_ms)566 bool mmc_prepare_busy_cmd(struct mmc_host *host, struct mmc_command *cmd,
567 unsigned int timeout_ms)
568 {
569 /*
570 * If the max_busy_timeout of the host is specified, make sure it's
571 * enough to fit the used timeout_ms. In case it's not, let's instruct
572 * the host to avoid HW busy detection, by converting to a R1 response
573 * instead of a R1B. Note, some hosts requires R1B, which also means
574 * they are on their own when it comes to deal with the busy timeout.
575 */
576 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
577 (timeout_ms > host->max_busy_timeout)) {
578 cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1 | MMC_RSP_R1;
579 return false;
580 }
581
582 cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1B | MMC_RSP_R1B;
583 cmd->busy_timeout = timeout_ms;
584 return true;
585 }
586 EXPORT_SYMBOL_GPL(mmc_prepare_busy_cmd);
587
588 /**
589 * __mmc_switch - modify EXT_CSD register
590 * @card: the MMC card associated with the data transfer
591 * @set: cmd set values
592 * @index: EXT_CSD register index
593 * @value: value to program into EXT_CSD register
594 * @timeout_ms: timeout (ms) for operation performed by register write,
595 * timeout of zero implies maximum possible timeout
596 * @timing: new timing to change to
597 * @send_status: send status cmd to poll for busy
598 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy
599 * @retries: number of retries
600 *
601 * Modifies the EXT_CSD register for selected card.
602 */
__mmc_switch(struct mmc_card * card,u8 set,u8 index,u8 value,unsigned int timeout_ms,unsigned char timing,bool send_status,bool retry_crc_err,unsigned int retries)603 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
604 unsigned int timeout_ms, unsigned char timing,
605 bool send_status, bool retry_crc_err, unsigned int retries)
606 {
607 struct mmc_host *host = card->host;
608 int err;
609 struct mmc_command cmd = {};
610 bool use_r1b_resp;
611 unsigned char old_timing = host->ios.timing;
612
613 mmc_retune_hold(host);
614
615 if (!timeout_ms) {
616 pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
617 mmc_hostname(host));
618 timeout_ms = card->ext_csd.generic_cmd6_time;
619 }
620
621 cmd.opcode = MMC_SWITCH;
622 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
623 (index << 16) |
624 (value << 8) |
625 set;
626 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
627
628 err = mmc_wait_for_cmd(host, &cmd, retries);
629 if (err)
630 goto out;
631
632 /*If SPI or used HW busy detection above, then we don't need to poll. */
633 if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
634 mmc_host_is_spi(host))
635 goto out_tim;
636
637 /*
638 * If the host doesn't support HW polling via the ->card_busy() ops and
639 * when it's not allowed to poll by using CMD13, then we need to rely on
640 * waiting the stated timeout to be sufficient.
641 */
642 if (!send_status && !host->ops->card_busy) {
643 mmc_delay(timeout_ms);
644 goto out_tim;
645 }
646
647 /* Let's try to poll to find out when the command is completed. */
648 err = mmc_poll_for_busy(card, timeout_ms, retry_crc_err, MMC_BUSY_CMD6);
649 if (err)
650 goto out;
651
652 out_tim:
653 /* Switch to new timing before check switch status. */
654 if (timing)
655 mmc_set_timing(host, timing);
656
657 if (send_status) {
658 err = mmc_switch_status(card, true);
659 if (err && timing)
660 mmc_set_timing(host, old_timing);
661 }
662 out:
663 mmc_retune_release(host);
664
665 return err;
666 }
667
mmc_switch(struct mmc_card * card,u8 set,u8 index,u8 value,unsigned int timeout_ms)668 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
669 unsigned int timeout_ms)
670 {
671 return __mmc_switch(card, set, index, value, timeout_ms, 0,
672 true, false, MMC_CMD_RETRIES);
673 }
674 EXPORT_SYMBOL_GPL(mmc_switch);
675
mmc_send_tuning(struct mmc_host * host,u32 opcode,int * cmd_error)676 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
677 {
678 struct mmc_request mrq = {};
679 struct mmc_command cmd = {};
680 struct mmc_data data = {};
681 struct scatterlist sg;
682 struct mmc_ios *ios = &host->ios;
683 const u8 *tuning_block_pattern;
684 int size, err = 0;
685 u8 *data_buf;
686
687 if (ios->bus_width == MMC_BUS_WIDTH_8) {
688 tuning_block_pattern = tuning_blk_pattern_8bit;
689 size = sizeof(tuning_blk_pattern_8bit);
690 } else if (ios->bus_width == MMC_BUS_WIDTH_4) {
691 tuning_block_pattern = tuning_blk_pattern_4bit;
692 size = sizeof(tuning_blk_pattern_4bit);
693 } else
694 return -EINVAL;
695
696 data_buf = kzalloc(size, GFP_KERNEL);
697 if (!data_buf)
698 return -ENOMEM;
699
700 mrq.cmd = &cmd;
701 mrq.data = &data;
702
703 cmd.opcode = opcode;
704 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
705
706 data.blksz = size;
707 data.blocks = 1;
708 data.flags = MMC_DATA_READ;
709
710 /*
711 * According to the tuning specs, Tuning process
712 * is normally shorter 40 executions of CMD19,
713 * and timeout value should be shorter than 150 ms
714 */
715 data.timeout_ns = 150 * NSEC_PER_MSEC;
716
717 data.sg = &sg;
718 data.sg_len = 1;
719 sg_init_one(&sg, data_buf, size);
720
721 mmc_wait_for_req(host, &mrq);
722
723 if (cmd_error)
724 *cmd_error = cmd.error;
725
726 if (cmd.error) {
727 err = cmd.error;
728 goto out;
729 }
730
731 if (data.error) {
732 err = data.error;
733 goto out;
734 }
735
736 if (memcmp(data_buf, tuning_block_pattern, size))
737 err = -EIO;
738
739 out:
740 kfree(data_buf);
741 return err;
742 }
743 EXPORT_SYMBOL_GPL(mmc_send_tuning);
744
mmc_send_abort_tuning(struct mmc_host * host,u32 opcode)745 int mmc_send_abort_tuning(struct mmc_host *host, u32 opcode)
746 {
747 struct mmc_command cmd = {};
748
749 /*
750 * eMMC specification specifies that CMD12 can be used to stop a tuning
751 * command, but SD specification does not, so do nothing unless it is
752 * eMMC.
753 */
754 if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
755 return 0;
756
757 cmd.opcode = MMC_STOP_TRANSMISSION;
758 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
759
760 /*
761 * For drivers that override R1 to R1b, set an arbitrary timeout based
762 * on the tuning timeout i.e. 150ms.
763 */
764 cmd.busy_timeout = 150;
765
766 return mmc_wait_for_cmd(host, &cmd, 0);
767 }
768 EXPORT_SYMBOL_GPL(mmc_send_abort_tuning);
769
770 static int
mmc_send_bus_test(struct mmc_card * card,struct mmc_host * host,u8 opcode,u8 len)771 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
772 u8 len)
773 {
774 struct mmc_request mrq = {};
775 struct mmc_command cmd = {};
776 struct mmc_data data = {};
777 struct scatterlist sg;
778 u8 *data_buf;
779 u8 *test_buf;
780 int i, err;
781 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
782 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
783
784 /* dma onto stack is unsafe/nonportable, but callers to this
785 * routine normally provide temporary on-stack buffers ...
786 */
787 data_buf = kmalloc(len, GFP_KERNEL);
788 if (!data_buf)
789 return -ENOMEM;
790
791 if (len == 8)
792 test_buf = testdata_8bit;
793 else if (len == 4)
794 test_buf = testdata_4bit;
795 else {
796 pr_err("%s: Invalid bus_width %d\n",
797 mmc_hostname(host), len);
798 kfree(data_buf);
799 return -EINVAL;
800 }
801
802 if (opcode == MMC_BUS_TEST_W)
803 memcpy(data_buf, test_buf, len);
804
805 mrq.cmd = &cmd;
806 mrq.data = &data;
807 cmd.opcode = opcode;
808 cmd.arg = 0;
809
810 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
811 * rely on callers to never use this with "native" calls for reading
812 * CSD or CID. Native versions of those commands use the R2 type,
813 * not R1 plus a data block.
814 */
815 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
816
817 data.blksz = len;
818 data.blocks = 1;
819 if (opcode == MMC_BUS_TEST_R)
820 data.flags = MMC_DATA_READ;
821 else
822 data.flags = MMC_DATA_WRITE;
823
824 data.sg = &sg;
825 data.sg_len = 1;
826 mmc_set_data_timeout(&data, card);
827 sg_init_one(&sg, data_buf, len);
828 mmc_wait_for_req(host, &mrq);
829 err = 0;
830 if (opcode == MMC_BUS_TEST_R) {
831 for (i = 0; i < len / 4; i++)
832 if ((test_buf[i] ^ data_buf[i]) != 0xff) {
833 err = -EIO;
834 break;
835 }
836 }
837 kfree(data_buf);
838
839 if (cmd.error)
840 return cmd.error;
841 if (data.error)
842 return data.error;
843
844 return err;
845 }
846
mmc_bus_test(struct mmc_card * card,u8 bus_width)847 int mmc_bus_test(struct mmc_card *card, u8 bus_width)
848 {
849 int width;
850
851 if (bus_width == MMC_BUS_WIDTH_8)
852 width = 8;
853 else if (bus_width == MMC_BUS_WIDTH_4)
854 width = 4;
855 else if (bus_width == MMC_BUS_WIDTH_1)
856 return 0; /* no need for test */
857 else
858 return -EINVAL;
859
860 /*
861 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
862 * is a problem. This improves chances that the test will work.
863 */
864 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
865 return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
866 }
867
mmc_send_hpi_cmd(struct mmc_card * card)868 static int mmc_send_hpi_cmd(struct mmc_card *card)
869 {
870 unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
871 struct mmc_host *host = card->host;
872 bool use_r1b_resp = false;
873 struct mmc_command cmd = {};
874 int err;
875
876 cmd.opcode = card->ext_csd.hpi_cmd;
877 cmd.arg = card->rca << 16 | 1;
878 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
879
880 if (cmd.opcode == MMC_STOP_TRANSMISSION)
881 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd,
882 busy_timeout_ms);
883
884 err = mmc_wait_for_cmd(host, &cmd, 0);
885 if (err) {
886 pr_warn("%s: HPI error %d. Command response %#x\n",
887 mmc_hostname(host), err, cmd.resp[0]);
888 return err;
889 }
890
891 /* No need to poll when using HW busy detection. */
892 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
893 return 0;
894
895 /* Let's poll to find out when the HPI request completes. */
896 return mmc_poll_for_busy(card, busy_timeout_ms, false, MMC_BUSY_HPI);
897 }
898
899 /**
900 * mmc_interrupt_hpi - Issue for High priority Interrupt
901 * @card: the MMC card associated with the HPI transfer
902 *
903 * Issued High Priority Interrupt, and check for card status
904 * until out-of prg-state.
905 */
mmc_interrupt_hpi(struct mmc_card * card)906 static int mmc_interrupt_hpi(struct mmc_card *card)
907 {
908 int err;
909 u32 status;
910
911 if (!card->ext_csd.hpi_en) {
912 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
913 return 1;
914 }
915
916 err = mmc_send_status(card, &status);
917 if (err) {
918 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
919 goto out;
920 }
921
922 switch (R1_CURRENT_STATE(status)) {
923 case R1_STATE_IDLE:
924 case R1_STATE_READY:
925 case R1_STATE_STBY:
926 case R1_STATE_TRAN:
927 /*
928 * In idle and transfer states, HPI is not needed and the caller
929 * can issue the next intended command immediately
930 */
931 goto out;
932 case R1_STATE_PRG:
933 break;
934 default:
935 /* In all other states, it's illegal to issue HPI */
936 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
937 mmc_hostname(card->host), R1_CURRENT_STATE(status));
938 err = -EINVAL;
939 goto out;
940 }
941
942 err = mmc_send_hpi_cmd(card);
943 out:
944 return err;
945 }
946
mmc_can_ext_csd(struct mmc_card * card)947 int mmc_can_ext_csd(struct mmc_card *card)
948 {
949 return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
950 }
951
mmc_read_bkops_status(struct mmc_card * card)952 static int mmc_read_bkops_status(struct mmc_card *card)
953 {
954 int err;
955 u8 *ext_csd;
956
957 err = mmc_get_ext_csd(card, &ext_csd);
958 if (err)
959 return err;
960
961 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
962 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
963 kfree(ext_csd);
964 return 0;
965 }
966
967 /**
968 * mmc_run_bkops - Run BKOPS for supported cards
969 * @card: MMC card to run BKOPS for
970 *
971 * Run background operations synchronously for cards having manual BKOPS
972 * enabled and in case it reports urgent BKOPS level.
973 */
mmc_run_bkops(struct mmc_card * card)974 void mmc_run_bkops(struct mmc_card *card)
975 {
976 int err;
977
978 if (!card->ext_csd.man_bkops_en)
979 return;
980
981 err = mmc_read_bkops_status(card);
982 if (err) {
983 pr_err("%s: Failed to read bkops status: %d\n",
984 mmc_hostname(card->host), err);
985 return;
986 }
987
988 if (!card->ext_csd.raw_bkops_status ||
989 card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
990 return;
991
992 mmc_retune_hold(card->host);
993
994 /*
995 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
996 * synchronously. Future wise, we may consider to start BKOPS, for less
997 * urgent levels by using an asynchronous background task, when idle.
998 */
999 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1000 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
1001 /*
1002 * If the BKOPS timed out, the card is probably still busy in the
1003 * R1_STATE_PRG. Rather than continue to wait, let's try to abort
1004 * it with a HPI command to get back into R1_STATE_TRAN.
1005 */
1006 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1007 pr_warn("%s: BKOPS aborted\n", mmc_hostname(card->host));
1008 else if (err)
1009 pr_warn("%s: Error %d running bkops\n",
1010 mmc_hostname(card->host), err);
1011
1012 mmc_retune_release(card->host);
1013 }
1014 EXPORT_SYMBOL(mmc_run_bkops);
1015
mmc_cmdq_switch(struct mmc_card * card,bool enable)1016 static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
1017 {
1018 u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
1019 int err;
1020
1021 if (!card->ext_csd.cmdq_support)
1022 return -EOPNOTSUPP;
1023
1024 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
1025 val, card->ext_csd.generic_cmd6_time);
1026 if (!err)
1027 card->ext_csd.cmdq_en = enable;
1028
1029 return err;
1030 }
1031
mmc_cmdq_enable(struct mmc_card * card)1032 int mmc_cmdq_enable(struct mmc_card *card)
1033 {
1034 return mmc_cmdq_switch(card, true);
1035 }
1036 EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1037
mmc_cmdq_disable(struct mmc_card * card)1038 int mmc_cmdq_disable(struct mmc_card *card)
1039 {
1040 return mmc_cmdq_switch(card, false);
1041 }
1042 EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1043
mmc_sanitize(struct mmc_card * card,unsigned int timeout_ms)1044 int mmc_sanitize(struct mmc_card *card, unsigned int timeout_ms)
1045 {
1046 struct mmc_host *host = card->host;
1047 int err;
1048
1049 if (!mmc_can_sanitize(card)) {
1050 pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1051 return -EOPNOTSUPP;
1052 }
1053
1054 if (!timeout_ms)
1055 timeout_ms = MMC_SANITIZE_TIMEOUT_MS;
1056
1057 pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1058
1059 mmc_retune_hold(host);
1060
1061 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1062 1, timeout_ms, 0, true, false, 0);
1063 if (err)
1064 pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1065
1066 /*
1067 * If the sanitize operation timed out, the card is probably still busy
1068 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1069 * it with a HPI command to get back into R1_STATE_TRAN.
1070 */
1071 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1072 pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1073
1074 mmc_retune_release(host);
1075
1076 pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1077 return err;
1078 }
1079 EXPORT_SYMBOL_GPL(mmc_sanitize);
1080