1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4  *
5  * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7 
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/kmod.h>
12 #include <linux/ktime.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 
20 #include <drm/drm_connector.h>
21 #include <drm/drm_device.h>
22 #include <drm/drm_edid.h>
23 #include <drm/drm_file.h>
24 
25 #include "cec-priv.h"
26 
27 static void cec_fill_msg_report_features(struct cec_adapter *adap,
28 					 struct cec_msg *msg,
29 					 unsigned int la_idx);
30 
cec_log_addr2idx(const struct cec_adapter * adap,u8 log_addr)31 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
32 {
33 	int i;
34 
35 	for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
36 		if (adap->log_addrs.log_addr[i] == log_addr)
37 			return i;
38 	return -1;
39 }
40 
cec_log_addr2dev(const struct cec_adapter * adap,u8 log_addr)41 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
42 {
43 	int i = cec_log_addr2idx(adap, log_addr);
44 
45 	return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
46 }
47 
cec_get_edid_phys_addr(const u8 * edid,unsigned int size,unsigned int * offset)48 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
49 			   unsigned int *offset)
50 {
51 	unsigned int loc = cec_get_edid_spa_location(edid, size);
52 
53 	if (offset)
54 		*offset = loc;
55 	if (loc == 0)
56 		return CEC_PHYS_ADDR_INVALID;
57 	return (edid[loc] << 8) | edid[loc + 1];
58 }
59 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
60 
cec_fill_conn_info_from_drm(struct cec_connector_info * conn_info,const struct drm_connector * connector)61 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
62 				 const struct drm_connector *connector)
63 {
64 	memset(conn_info, 0, sizeof(*conn_info));
65 	conn_info->type = CEC_CONNECTOR_TYPE_DRM;
66 	conn_info->drm.card_no = connector->dev->primary->index;
67 	conn_info->drm.connector_id = connector->base.id;
68 }
69 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm);
70 
71 /*
72  * Queue a new event for this filehandle. If ts == 0, then set it
73  * to the current time.
74  *
75  * We keep a queue of at most max_event events where max_event differs
76  * per event. If the queue becomes full, then drop the oldest event and
77  * keep track of how many events we've dropped.
78  */
cec_queue_event_fh(struct cec_fh * fh,const struct cec_event * new_ev,u64 ts)79 void cec_queue_event_fh(struct cec_fh *fh,
80 			const struct cec_event *new_ev, u64 ts)
81 {
82 	static const u16 max_events[CEC_NUM_EVENTS] = {
83 		1, 1, 800, 800, 8, 8, 8, 8
84 	};
85 	struct cec_event_entry *entry;
86 	unsigned int ev_idx = new_ev->event - 1;
87 
88 	if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
89 		return;
90 
91 	if (ts == 0)
92 		ts = ktime_get_ns();
93 
94 	mutex_lock(&fh->lock);
95 	if (ev_idx < CEC_NUM_CORE_EVENTS)
96 		entry = &fh->core_events[ev_idx];
97 	else
98 		entry = kmalloc(sizeof(*entry), GFP_KERNEL);
99 	if (entry) {
100 		if (new_ev->event == CEC_EVENT_LOST_MSGS &&
101 		    fh->queued_events[ev_idx]) {
102 			entry->ev.lost_msgs.lost_msgs +=
103 				new_ev->lost_msgs.lost_msgs;
104 			goto unlock;
105 		}
106 		entry->ev = *new_ev;
107 		entry->ev.ts = ts;
108 
109 		if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
110 			/* Add new msg at the end of the queue */
111 			list_add_tail(&entry->list, &fh->events[ev_idx]);
112 			fh->queued_events[ev_idx]++;
113 			fh->total_queued_events++;
114 			goto unlock;
115 		}
116 
117 		if (ev_idx >= CEC_NUM_CORE_EVENTS) {
118 			list_add_tail(&entry->list, &fh->events[ev_idx]);
119 			/* drop the oldest event */
120 			entry = list_first_entry(&fh->events[ev_idx],
121 						 struct cec_event_entry, list);
122 			list_del(&entry->list);
123 			kfree(entry);
124 		}
125 	}
126 	/* Mark that events were lost */
127 	entry = list_first_entry_or_null(&fh->events[ev_idx],
128 					 struct cec_event_entry, list);
129 	if (entry)
130 		entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
131 
132 unlock:
133 	mutex_unlock(&fh->lock);
134 	wake_up_interruptible(&fh->wait);
135 }
136 
137 /* Queue a new event for all open filehandles. */
cec_queue_event(struct cec_adapter * adap,const struct cec_event * ev)138 static void cec_queue_event(struct cec_adapter *adap,
139 			    const struct cec_event *ev)
140 {
141 	u64 ts = ktime_get_ns();
142 	struct cec_fh *fh;
143 
144 	mutex_lock(&adap->devnode.lock_fhs);
145 	list_for_each_entry(fh, &adap->devnode.fhs, list)
146 		cec_queue_event_fh(fh, ev, ts);
147 	mutex_unlock(&adap->devnode.lock_fhs);
148 }
149 
150 /* Notify userspace that the CEC pin changed state at the given time. */
cec_queue_pin_cec_event(struct cec_adapter * adap,bool is_high,bool dropped_events,ktime_t ts)151 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
152 			     bool dropped_events, ktime_t ts)
153 {
154 	struct cec_event ev = {
155 		.event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
156 				   CEC_EVENT_PIN_CEC_LOW,
157 		.flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
158 	};
159 	struct cec_fh *fh;
160 
161 	mutex_lock(&adap->devnode.lock_fhs);
162 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
163 		if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
164 			cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
165 	}
166 	mutex_unlock(&adap->devnode.lock_fhs);
167 }
168 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
169 
170 /* Notify userspace that the HPD pin changed state at the given time. */
cec_queue_pin_hpd_event(struct cec_adapter * adap,bool is_high,ktime_t ts)171 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
172 {
173 	struct cec_event ev = {
174 		.event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
175 				   CEC_EVENT_PIN_HPD_LOW,
176 	};
177 	struct cec_fh *fh;
178 
179 	mutex_lock(&adap->devnode.lock_fhs);
180 	list_for_each_entry(fh, &adap->devnode.fhs, list)
181 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
182 	mutex_unlock(&adap->devnode.lock_fhs);
183 }
184 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
185 
186 /* Notify userspace that the 5V pin changed state at the given time. */
cec_queue_pin_5v_event(struct cec_adapter * adap,bool is_high,ktime_t ts)187 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
188 {
189 	struct cec_event ev = {
190 		.event = is_high ? CEC_EVENT_PIN_5V_HIGH :
191 				   CEC_EVENT_PIN_5V_LOW,
192 	};
193 	struct cec_fh *fh;
194 
195 	mutex_lock(&adap->devnode.lock_fhs);
196 	list_for_each_entry(fh, &adap->devnode.fhs, list)
197 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
198 	mutex_unlock(&adap->devnode.lock_fhs);
199 }
200 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
201 
202 /*
203  * Queue a new message for this filehandle.
204  *
205  * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
206  * queue becomes full, then drop the oldest message and keep track
207  * of how many messages we've dropped.
208  */
cec_queue_msg_fh(struct cec_fh * fh,const struct cec_msg * msg)209 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
210 {
211 	static const struct cec_event ev_lost_msgs = {
212 		.event = CEC_EVENT_LOST_MSGS,
213 		.flags = 0,
214 		{
215 			.lost_msgs = { 1 },
216 		},
217 	};
218 	struct cec_msg_entry *entry;
219 
220 	mutex_lock(&fh->lock);
221 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
222 	if (entry) {
223 		entry->msg = *msg;
224 		/* Add new msg at the end of the queue */
225 		list_add_tail(&entry->list, &fh->msgs);
226 
227 		if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
228 			/* All is fine if there is enough room */
229 			fh->queued_msgs++;
230 			mutex_unlock(&fh->lock);
231 			wake_up_interruptible(&fh->wait);
232 			return;
233 		}
234 
235 		/*
236 		 * if the message queue is full, then drop the oldest one and
237 		 * send a lost message event.
238 		 */
239 		entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
240 		list_del(&entry->list);
241 		kfree(entry);
242 	}
243 	mutex_unlock(&fh->lock);
244 
245 	/*
246 	 * We lost a message, either because kmalloc failed or the queue
247 	 * was full.
248 	 */
249 	cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
250 }
251 
252 /*
253  * Queue the message for those filehandles that are in monitor mode.
254  * If valid_la is true (this message is for us or was sent by us),
255  * then pass it on to any monitoring filehandle. If this message
256  * isn't for us or from us, then only give it to filehandles that
257  * are in MONITOR_ALL mode.
258  *
259  * This can only happen if the CEC_CAP_MONITOR_ALL capability is
260  * set and the CEC adapter was placed in 'monitor all' mode.
261  */
cec_queue_msg_monitor(struct cec_adapter * adap,const struct cec_msg * msg,bool valid_la)262 static void cec_queue_msg_monitor(struct cec_adapter *adap,
263 				  const struct cec_msg *msg,
264 				  bool valid_la)
265 {
266 	struct cec_fh *fh;
267 	u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
268 				      CEC_MODE_MONITOR_ALL;
269 
270 	mutex_lock(&adap->devnode.lock_fhs);
271 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
272 		if (fh->mode_follower >= monitor_mode)
273 			cec_queue_msg_fh(fh, msg);
274 	}
275 	mutex_unlock(&adap->devnode.lock_fhs);
276 }
277 
278 /*
279  * Queue the message for follower filehandles.
280  */
cec_queue_msg_followers(struct cec_adapter * adap,const struct cec_msg * msg)281 static void cec_queue_msg_followers(struct cec_adapter *adap,
282 				    const struct cec_msg *msg)
283 {
284 	struct cec_fh *fh;
285 
286 	mutex_lock(&adap->devnode.lock_fhs);
287 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
288 		if (fh->mode_follower == CEC_MODE_FOLLOWER)
289 			cec_queue_msg_fh(fh, msg);
290 	}
291 	mutex_unlock(&adap->devnode.lock_fhs);
292 }
293 
294 /* Notify userspace of an adapter state change. */
cec_post_state_event(struct cec_adapter * adap)295 static void cec_post_state_event(struct cec_adapter *adap)
296 {
297 	struct cec_event ev = {
298 		.event = CEC_EVENT_STATE_CHANGE,
299 	};
300 
301 	ev.state_change.phys_addr = adap->phys_addr;
302 	ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
303 	ev.state_change.have_conn_info =
304 		adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR;
305 	cec_queue_event(adap, &ev);
306 }
307 
308 /*
309  * A CEC transmit (and a possible wait for reply) completed.
310  * If this was in blocking mode, then complete it, otherwise
311  * queue the message for userspace to dequeue later.
312  *
313  * This function is called with adap->lock held.
314  */
cec_data_completed(struct cec_data * data)315 static void cec_data_completed(struct cec_data *data)
316 {
317 	/*
318 	 * Delete this transmit from the filehandle's xfer_list since
319 	 * we're done with it.
320 	 *
321 	 * Note that if the filehandle is closed before this transmit
322 	 * finished, then the release() function will set data->fh to NULL.
323 	 * Without that we would be referring to a closed filehandle.
324 	 */
325 	if (data->fh)
326 		list_del_init(&data->xfer_list);
327 
328 	if (data->blocking) {
329 		/*
330 		 * Someone is blocking so mark the message as completed
331 		 * and call complete.
332 		 */
333 		data->completed = true;
334 		complete(&data->c);
335 	} else {
336 		/*
337 		 * No blocking, so just queue the message if needed and
338 		 * free the memory.
339 		 */
340 		if (data->fh)
341 			cec_queue_msg_fh(data->fh, &data->msg);
342 		kfree(data);
343 	}
344 }
345 
346 /*
347  * A pending CEC transmit needs to be cancelled, either because the CEC
348  * adapter is disabled or the transmit takes an impossibly long time to
349  * finish, or the reply timed out.
350  *
351  * This function is called with adap->lock held.
352  */
cec_data_cancel(struct cec_data * data,u8 tx_status,u8 rx_status)353 static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status)
354 {
355 	struct cec_adapter *adap = data->adap;
356 
357 	/*
358 	 * It's either the current transmit, or it is a pending
359 	 * transmit. Take the appropriate action to clear it.
360 	 */
361 	if (adap->transmitting == data) {
362 		adap->transmitting = NULL;
363 	} else {
364 		list_del_init(&data->list);
365 		if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
366 			if (!WARN_ON(!adap->transmit_queue_sz))
367 				adap->transmit_queue_sz--;
368 	}
369 
370 	if (data->msg.tx_status & CEC_TX_STATUS_OK) {
371 		data->msg.rx_ts = ktime_get_ns();
372 		data->msg.rx_status = rx_status;
373 		if (!data->blocking)
374 			data->msg.tx_status = 0;
375 	} else {
376 		data->msg.tx_ts = ktime_get_ns();
377 		data->msg.tx_status |= tx_status |
378 				       CEC_TX_STATUS_MAX_RETRIES;
379 		data->msg.tx_error_cnt++;
380 		data->attempts = 0;
381 		if (!data->blocking)
382 			data->msg.rx_status = 0;
383 	}
384 
385 	/* Queue transmitted message for monitoring purposes */
386 	cec_queue_msg_monitor(adap, &data->msg, 1);
387 
388 	if (!data->blocking && data->msg.sequence)
389 		/* Allow drivers to react to a canceled transmit */
390 		call_void_op(adap, adap_nb_transmit_canceled, &data->msg);
391 
392 	cec_data_completed(data);
393 }
394 
395 /*
396  * Flush all pending transmits and cancel any pending timeout work.
397  *
398  * This function is called with adap->lock held.
399  */
cec_flush(struct cec_adapter * adap)400 static void cec_flush(struct cec_adapter *adap)
401 {
402 	struct cec_data *data, *n;
403 
404 	/*
405 	 * If the adapter is disabled, or we're asked to stop,
406 	 * then cancel any pending transmits.
407 	 */
408 	while (!list_empty(&adap->transmit_queue)) {
409 		data = list_first_entry(&adap->transmit_queue,
410 					struct cec_data, list);
411 		cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
412 	}
413 	if (adap->transmitting)
414 		adap->transmit_in_progress_aborted = true;
415 
416 	/* Cancel the pending timeout work. */
417 	list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
418 		if (cancel_delayed_work(&data->work))
419 			cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
420 		/*
421 		 * If cancel_delayed_work returned false, then
422 		 * the cec_wait_timeout function is running,
423 		 * which will call cec_data_completed. So no
424 		 * need to do anything special in that case.
425 		 */
426 	}
427 	/*
428 	 * If something went wrong and this counter isn't what it should
429 	 * be, then this will reset it back to 0. Warn if it is not 0,
430 	 * since it indicates a bug, either in this framework or in a
431 	 * CEC driver.
432 	 */
433 	if (WARN_ON(adap->transmit_queue_sz))
434 		adap->transmit_queue_sz = 0;
435 }
436 
437 /*
438  * Main CEC state machine
439  *
440  * Wait until the thread should be stopped, or we are not transmitting and
441  * a new transmit message is queued up, in which case we start transmitting
442  * that message. When the adapter finished transmitting the message it will
443  * call cec_transmit_done().
444  *
445  * If the adapter is disabled, then remove all queued messages instead.
446  *
447  * If the current transmit times out, then cancel that transmit.
448  */
cec_thread_func(void * _adap)449 int cec_thread_func(void *_adap)
450 {
451 	struct cec_adapter *adap = _adap;
452 
453 	for (;;) {
454 		unsigned int signal_free_time;
455 		struct cec_data *data;
456 		bool timeout = false;
457 		u8 attempts;
458 
459 		if (adap->transmit_in_progress) {
460 			int err;
461 
462 			/*
463 			 * We are transmitting a message, so add a timeout
464 			 * to prevent the state machine to get stuck waiting
465 			 * for this message to finalize and add a check to
466 			 * see if the adapter is disabled in which case the
467 			 * transmit should be canceled.
468 			 */
469 			err = wait_event_interruptible_timeout(adap->kthread_waitq,
470 				(adap->needs_hpd &&
471 				 (!adap->is_configured && !adap->is_configuring)) ||
472 				kthread_should_stop() ||
473 				(!adap->transmit_in_progress &&
474 				 !list_empty(&adap->transmit_queue)),
475 				msecs_to_jiffies(adap->xfer_timeout_ms));
476 			timeout = err == 0;
477 		} else {
478 			/* Otherwise we just wait for something to happen. */
479 			wait_event_interruptible(adap->kthread_waitq,
480 				kthread_should_stop() ||
481 				(!adap->transmit_in_progress &&
482 				 !list_empty(&adap->transmit_queue)));
483 		}
484 
485 		mutex_lock(&adap->lock);
486 
487 		if ((adap->needs_hpd &&
488 		     (!adap->is_configured && !adap->is_configuring)) ||
489 		    kthread_should_stop()) {
490 			cec_flush(adap);
491 			goto unlock;
492 		}
493 
494 		if (adap->transmit_in_progress &&
495 		    adap->transmit_in_progress_aborted) {
496 			if (adap->transmitting)
497 				cec_data_cancel(adap->transmitting,
498 						CEC_TX_STATUS_ABORTED, 0);
499 			adap->transmit_in_progress = false;
500 			adap->transmit_in_progress_aborted = false;
501 			goto unlock;
502 		}
503 		if (adap->transmit_in_progress && timeout) {
504 			/*
505 			 * If we timeout, then log that. Normally this does
506 			 * not happen and it is an indication of a faulty CEC
507 			 * adapter driver, or the CEC bus is in some weird
508 			 * state. On rare occasions it can happen if there is
509 			 * so much traffic on the bus that the adapter was
510 			 * unable to transmit for xfer_timeout_ms (2.1s by
511 			 * default).
512 			 */
513 			if (adap->transmitting) {
514 				pr_warn("cec-%s: message %*ph timed out\n", adap->name,
515 					adap->transmitting->msg.len,
516 					adap->transmitting->msg.msg);
517 				/* Just give up on this. */
518 				cec_data_cancel(adap->transmitting,
519 						CEC_TX_STATUS_TIMEOUT, 0);
520 			} else {
521 				pr_warn("cec-%s: transmit timed out\n", adap->name);
522 			}
523 			adap->transmit_in_progress = false;
524 			adap->tx_timeout_cnt++;
525 			goto unlock;
526 		}
527 
528 		/*
529 		 * If we are still transmitting, or there is nothing new to
530 		 * transmit, then just continue waiting.
531 		 */
532 		if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
533 			goto unlock;
534 
535 		/* Get a new message to transmit */
536 		data = list_first_entry(&adap->transmit_queue,
537 					struct cec_data, list);
538 		list_del_init(&data->list);
539 		if (!WARN_ON(!data->adap->transmit_queue_sz))
540 			adap->transmit_queue_sz--;
541 
542 		/* Make this the current transmitting message */
543 		adap->transmitting = data;
544 
545 		/*
546 		 * Suggested number of attempts as per the CEC 2.0 spec:
547 		 * 4 attempts is the default, except for 'secondary poll
548 		 * messages', i.e. poll messages not sent during the adapter
549 		 * configuration phase when it allocates logical addresses.
550 		 */
551 		if (data->msg.len == 1 && adap->is_configured)
552 			attempts = 2;
553 		else
554 			attempts = 4;
555 
556 		/* Set the suggested signal free time */
557 		if (data->attempts) {
558 			/* should be >= 3 data bit periods for a retry */
559 			signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
560 		} else if (adap->last_initiator !=
561 			   cec_msg_initiator(&data->msg)) {
562 			/* should be >= 5 data bit periods for new initiator */
563 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
564 			adap->last_initiator = cec_msg_initiator(&data->msg);
565 		} else {
566 			/*
567 			 * should be >= 7 data bit periods for sending another
568 			 * frame immediately after another.
569 			 */
570 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
571 		}
572 		if (data->attempts == 0)
573 			data->attempts = attempts;
574 
575 		adap->transmit_in_progress_aborted = false;
576 		/* Tell the adapter to transmit, cancel on error */
577 		if (call_op(adap, adap_transmit, data->attempts,
578 			    signal_free_time, &data->msg))
579 			cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
580 		else
581 			adap->transmit_in_progress = true;
582 
583 unlock:
584 		mutex_unlock(&adap->lock);
585 
586 		if (kthread_should_stop())
587 			break;
588 	}
589 	return 0;
590 }
591 
592 /*
593  * Called by the CEC adapter if a transmit finished.
594  */
cec_transmit_done_ts(struct cec_adapter * adap,u8 status,u8 arb_lost_cnt,u8 nack_cnt,u8 low_drive_cnt,u8 error_cnt,ktime_t ts)595 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
596 			  u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
597 			  u8 error_cnt, ktime_t ts)
598 {
599 	struct cec_data *data;
600 	struct cec_msg *msg;
601 	unsigned int attempts_made = arb_lost_cnt + nack_cnt +
602 				     low_drive_cnt + error_cnt;
603 	bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK);
604 	bool aborted = adap->transmit_in_progress_aborted;
605 
606 	dprintk(2, "%s: status 0x%02x\n", __func__, status);
607 	if (attempts_made < 1)
608 		attempts_made = 1;
609 
610 	mutex_lock(&adap->lock);
611 	data = adap->transmitting;
612 	if (!data) {
613 		/*
614 		 * This might happen if a transmit was issued and the cable is
615 		 * unplugged while the transmit is ongoing. Ignore this
616 		 * transmit in that case.
617 		 */
618 		if (!adap->transmit_in_progress)
619 			dprintk(1, "%s was called without an ongoing transmit!\n",
620 				__func__);
621 		adap->transmit_in_progress = false;
622 		goto wake_thread;
623 	}
624 	adap->transmit_in_progress = false;
625 	adap->transmit_in_progress_aborted = false;
626 
627 	msg = &data->msg;
628 
629 	/* Drivers must fill in the status! */
630 	WARN_ON(status == 0);
631 	msg->tx_ts = ktime_to_ns(ts);
632 	msg->tx_status |= status;
633 	msg->tx_arb_lost_cnt += arb_lost_cnt;
634 	msg->tx_nack_cnt += nack_cnt;
635 	msg->tx_low_drive_cnt += low_drive_cnt;
636 	msg->tx_error_cnt += error_cnt;
637 
638 	adap->tx_arb_lost_cnt += arb_lost_cnt;
639 	adap->tx_low_drive_cnt += low_drive_cnt;
640 	adap->tx_error_cnt += error_cnt;
641 
642 	/*
643 	 * Low Drive transmission errors should really not happen for
644 	 * well-behaved CEC devices and proper HDMI cables.
645 	 *
646 	 * Ditto for the 'Error' status.
647 	 *
648 	 * For the first few times that this happens, log this.
649 	 * Stop logging after that, since that will not add any more
650 	 * useful information and instead it will just flood the kernel log.
651 	 */
652 	if (done && adap->tx_low_drive_log_cnt < 8 && msg->tx_low_drive_cnt) {
653 		adap->tx_low_drive_log_cnt++;
654 		dprintk(0, "low drive counter: %u (seq %u: %*ph)\n",
655 			msg->tx_low_drive_cnt, msg->sequence,
656 			msg->len, msg->msg);
657 	}
658 	if (done && adap->tx_error_log_cnt < 8 && msg->tx_error_cnt) {
659 		adap->tx_error_log_cnt++;
660 		dprintk(0, "error counter: %u (seq %u: %*ph)\n",
661 			msg->tx_error_cnt, msg->sequence,
662 			msg->len, msg->msg);
663 	}
664 
665 	/* Mark that we're done with this transmit */
666 	adap->transmitting = NULL;
667 
668 	/*
669 	 * If there are still retry attempts left and there was an error and
670 	 * the hardware didn't signal that it retried itself (by setting
671 	 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
672 	 */
673 	if (!aborted && data->attempts > attempts_made && !done) {
674 		/* Retry this message */
675 		data->attempts -= attempts_made;
676 		if (msg->timeout)
677 			dprintk(2, "retransmit: %*ph (attempts: %d, wait for %*ph)\n",
678 				msg->len, msg->msg, data->attempts,
679 				data->match_len, data->match_reply);
680 		else
681 			dprintk(2, "retransmit: %*ph (attempts: %d)\n",
682 				msg->len, msg->msg, data->attempts);
683 		/* Add the message in front of the transmit queue */
684 		list_add(&data->list, &adap->transmit_queue);
685 		adap->transmit_queue_sz++;
686 		goto wake_thread;
687 	}
688 
689 	if (aborted && !done)
690 		status |= CEC_TX_STATUS_ABORTED;
691 	data->attempts = 0;
692 
693 	/* Always set CEC_TX_STATUS_MAX_RETRIES on error */
694 	if (!(status & CEC_TX_STATUS_OK))
695 		msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
696 
697 	/* Queue transmitted message for monitoring purposes */
698 	cec_queue_msg_monitor(adap, msg, 1);
699 
700 	if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
701 	    msg->timeout) {
702 		/*
703 		 * Queue the message into the wait queue if we want to wait
704 		 * for a reply.
705 		 */
706 		list_add_tail(&data->list, &adap->wait_queue);
707 		schedule_delayed_work(&data->work,
708 				      msecs_to_jiffies(msg->timeout));
709 	} else {
710 		/* Otherwise we're done */
711 		cec_data_completed(data);
712 	}
713 
714 wake_thread:
715 	/*
716 	 * Wake up the main thread to see if another message is ready
717 	 * for transmitting or to retry the current message.
718 	 */
719 	wake_up_interruptible(&adap->kthread_waitq);
720 	mutex_unlock(&adap->lock);
721 }
722 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
723 
cec_transmit_attempt_done_ts(struct cec_adapter * adap,u8 status,ktime_t ts)724 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
725 				  u8 status, ktime_t ts)
726 {
727 	switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
728 	case CEC_TX_STATUS_OK:
729 		cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
730 		return;
731 	case CEC_TX_STATUS_ARB_LOST:
732 		cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
733 		return;
734 	case CEC_TX_STATUS_NACK:
735 		cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
736 		return;
737 	case CEC_TX_STATUS_LOW_DRIVE:
738 		cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
739 		return;
740 	case CEC_TX_STATUS_ERROR:
741 		cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
742 		return;
743 	default:
744 		/* Should never happen */
745 		WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
746 		return;
747 	}
748 }
749 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
750 
751 /*
752  * Called when waiting for a reply times out.
753  */
cec_wait_timeout(struct work_struct * work)754 static void cec_wait_timeout(struct work_struct *work)
755 {
756 	struct cec_data *data = container_of(work, struct cec_data, work.work);
757 	struct cec_adapter *adap = data->adap;
758 
759 	mutex_lock(&adap->lock);
760 	/*
761 	 * Sanity check in case the timeout and the arrival of the message
762 	 * happened at the same time.
763 	 */
764 	if (list_empty(&data->list))
765 		goto unlock;
766 
767 	/* Mark the message as timed out */
768 	list_del_init(&data->list);
769 	cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT);
770 unlock:
771 	mutex_unlock(&adap->lock);
772 }
773 
774 /*
775  * Transmit a message. The fh argument may be NULL if the transmit is not
776  * associated with a specific filehandle.
777  *
778  * This function is called with adap->lock held.
779  */
cec_transmit_msg_fh(struct cec_adapter * adap,struct cec_msg * msg,struct cec_fh * fh,bool block)780 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
781 			struct cec_fh *fh, bool block)
782 {
783 	struct cec_data *data;
784 	bool is_raw = msg_is_raw(msg);
785 	bool reply_vendor_id = (msg->flags & CEC_MSG_FL_REPLY_VENDOR_ID) &&
786 		msg->len > 1 && msg->msg[1] == CEC_MSG_VENDOR_COMMAND_WITH_ID;
787 	int err;
788 
789 	if (adap->devnode.unregistered)
790 		return -ENODEV;
791 
792 	msg->rx_ts = 0;
793 	msg->tx_ts = 0;
794 	msg->rx_status = 0;
795 	msg->tx_status = 0;
796 	msg->tx_arb_lost_cnt = 0;
797 	msg->tx_nack_cnt = 0;
798 	msg->tx_low_drive_cnt = 0;
799 	msg->tx_error_cnt = 0;
800 	msg->sequence = 0;
801 	msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW |
802 		      (reply_vendor_id ? CEC_MSG_FL_REPLY_VENDOR_ID : 0);
803 
804 	if ((reply_vendor_id || msg->reply) && msg->timeout == 0) {
805 		/* Make sure the timeout isn't 0. */
806 		msg->timeout = 1000;
807 	}
808 
809 	if (!msg->timeout)
810 		msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS;
811 
812 	/* Sanity checks */
813 	if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
814 		dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
815 		return -EINVAL;
816 	}
817 	if (reply_vendor_id && msg->len < 6) {
818 		dprintk(1, "%s: <Vendor Command With ID> message too short\n",
819 			__func__);
820 		return -EINVAL;
821 	}
822 
823 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
824 
825 	if (msg->timeout)
826 		dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
827 			__func__, msg->len, msg->msg, msg->reply,
828 			!block ? ", nb" : "");
829 	else
830 		dprintk(2, "%s: %*ph%s\n",
831 			__func__, msg->len, msg->msg, !block ? " (nb)" : "");
832 
833 	if (msg->timeout && msg->len == 1) {
834 		dprintk(1, "%s: can't reply to poll msg\n", __func__);
835 		return -EINVAL;
836 	}
837 
838 	if (is_raw) {
839 		if (!capable(CAP_SYS_RAWIO))
840 			return -EPERM;
841 	} else {
842 		/* A CDC-Only device can only send CDC messages */
843 		if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) &&
844 		    (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) {
845 			dprintk(1, "%s: not a CDC message\n", __func__);
846 			return -EINVAL;
847 		}
848 
849 		if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
850 			msg->msg[2] = adap->phys_addr >> 8;
851 			msg->msg[3] = adap->phys_addr & 0xff;
852 		}
853 
854 		if (msg->len == 1) {
855 			if (cec_msg_destination(msg) == 0xf) {
856 				dprintk(1, "%s: invalid poll message\n",
857 					__func__);
858 				return -EINVAL;
859 			}
860 			if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
861 				/*
862 				 * If the destination is a logical address our
863 				 * adapter has already claimed, then just NACK
864 				 * this. It depends on the hardware what it will
865 				 * do with a POLL to itself (some OK this), so
866 				 * it is just as easy to handle it here so the
867 				 * behavior will be consistent.
868 				 */
869 				msg->tx_ts = ktime_get_ns();
870 				msg->tx_status = CEC_TX_STATUS_NACK |
871 					CEC_TX_STATUS_MAX_RETRIES;
872 				msg->tx_nack_cnt = 1;
873 				msg->sequence = ++adap->sequence;
874 				if (!msg->sequence)
875 					msg->sequence = ++adap->sequence;
876 				return 0;
877 			}
878 		}
879 		if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
880 		    cec_has_log_addr(adap, cec_msg_destination(msg))) {
881 			dprintk(1, "%s: destination is the adapter itself\n",
882 				__func__);
883 			return -EINVAL;
884 		}
885 		if (msg->len > 1 && adap->is_configured &&
886 		    !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
887 			dprintk(1, "%s: initiator has unknown logical address %d\n",
888 				__func__, cec_msg_initiator(msg));
889 			return -EINVAL;
890 		}
891 		/*
892 		 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be
893 		 * transmitted to a TV, even if the adapter is unconfigured.
894 		 * This makes it possible to detect or wake up displays that
895 		 * pull down the HPD when in standby.
896 		 */
897 		if (!adap->is_configured && !adap->is_configuring &&
898 		    (msg->len > 2 ||
899 		     cec_msg_destination(msg) != CEC_LOG_ADDR_TV ||
900 		     (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON &&
901 		      msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) {
902 			dprintk(1, "%s: adapter is unconfigured\n", __func__);
903 			return -ENONET;
904 		}
905 	}
906 
907 	if (!adap->is_configured && !adap->is_configuring) {
908 		if (adap->needs_hpd) {
909 			dprintk(1, "%s: adapter is unconfigured and needs HPD\n",
910 				__func__);
911 			return -ENONET;
912 		}
913 		if (reply_vendor_id || msg->reply) {
914 			dprintk(1, "%s: adapter is unconfigured so reply is not supported\n",
915 				__func__);
916 			return -EINVAL;
917 		}
918 	}
919 
920 	if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
921 		dprintk(2, "%s: transmit queue full\n", __func__);
922 		return -EBUSY;
923 	}
924 
925 	data = kzalloc(sizeof(*data), GFP_KERNEL);
926 	if (!data)
927 		return -ENOMEM;
928 
929 	msg->sequence = ++adap->sequence;
930 	if (!msg->sequence)
931 		msg->sequence = ++adap->sequence;
932 
933 	data->msg = *msg;
934 	data->fh = fh;
935 	data->adap = adap;
936 	data->blocking = block;
937 	if (reply_vendor_id) {
938 		memcpy(data->match_reply, msg->msg + 1, 4);
939 		data->match_reply[4] = msg->reply;
940 		data->match_len = 5;
941 	} else if (msg->timeout) {
942 		data->match_reply[0] = msg->reply;
943 		data->match_len = 1;
944 	}
945 
946 	init_completion(&data->c);
947 	INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
948 
949 	if (fh)
950 		list_add_tail(&data->xfer_list, &fh->xfer_list);
951 	else
952 		INIT_LIST_HEAD(&data->xfer_list);
953 
954 	list_add_tail(&data->list, &adap->transmit_queue);
955 	adap->transmit_queue_sz++;
956 	if (!adap->transmitting)
957 		wake_up_interruptible(&adap->kthread_waitq);
958 
959 	/* All done if we don't need to block waiting for completion */
960 	if (!block)
961 		return 0;
962 
963 	/*
964 	 * Release the lock and wait, retake the lock afterwards.
965 	 */
966 	mutex_unlock(&adap->lock);
967 	err = wait_for_completion_killable(&data->c);
968 	cancel_delayed_work_sync(&data->work);
969 	mutex_lock(&adap->lock);
970 
971 	if (err)
972 		adap->transmit_in_progress_aborted = true;
973 
974 	/* Cancel the transmit if it was interrupted */
975 	if (!data->completed) {
976 		if (data->msg.tx_status & CEC_TX_STATUS_OK)
977 			cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
978 		else
979 			cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
980 	}
981 
982 	/* The transmit completed (possibly with an error) */
983 	*msg = data->msg;
984 	if (WARN_ON(!list_empty(&data->list)))
985 		list_del(&data->list);
986 	if (WARN_ON(!list_empty(&data->xfer_list)))
987 		list_del(&data->xfer_list);
988 	kfree(data);
989 	return 0;
990 }
991 
992 /* Helper function to be used by drivers and this framework. */
cec_transmit_msg(struct cec_adapter * adap,struct cec_msg * msg,bool block)993 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
994 		     bool block)
995 {
996 	int ret;
997 
998 	mutex_lock(&adap->lock);
999 	ret = cec_transmit_msg_fh(adap, msg, NULL, block);
1000 	mutex_unlock(&adap->lock);
1001 	return ret;
1002 }
1003 EXPORT_SYMBOL_GPL(cec_transmit_msg);
1004 
1005 /*
1006  * I don't like forward references but without this the low-level
1007  * cec_received_msg() function would come after a bunch of high-level
1008  * CEC protocol handling functions. That was very confusing.
1009  */
1010 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1011 			      bool is_reply);
1012 
1013 #define DIRECTED	0x80
1014 #define BCAST1_4	0x40
1015 #define BCAST2_0	0x20	/* broadcast only allowed for >= 2.0 */
1016 #define BCAST		(BCAST1_4 | BCAST2_0)
1017 #define BOTH		(BCAST | DIRECTED)
1018 
1019 /*
1020  * Specify minimum length and whether the message is directed, broadcast
1021  * or both. Messages that do not match the criteria are ignored as per
1022  * the CEC specification.
1023  */
1024 static const u8 cec_msg_size[256] = {
1025 	[CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
1026 	[CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
1027 	[CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
1028 	[CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
1029 	[CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
1030 	[CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
1031 	[CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
1032 	[CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
1033 	[CEC_MSG_STANDBY] = 2 | BOTH,
1034 	[CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
1035 	[CEC_MSG_RECORD_ON] = 3 | DIRECTED,
1036 	[CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
1037 	[CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
1038 	[CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
1039 	[CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
1040 	[CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
1041 	[CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
1042 	[CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
1043 	[CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
1044 	[CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
1045 	[CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
1046 	[CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
1047 	[CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
1048 	[CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
1049 	[CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
1050 	[CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
1051 	[CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
1052 	[CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
1053 	[CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
1054 	[CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
1055 	[CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
1056 	[CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
1057 	[CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
1058 	[CEC_MSG_PLAY] = 3 | DIRECTED,
1059 	[CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
1060 	[CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
1061 	[CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
1062 	[CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
1063 	[CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
1064 	[CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
1065 	[CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
1066 	[CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
1067 	[CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
1068 	[CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
1069 	[CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
1070 	[CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
1071 	[CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
1072 	[CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
1073 	[CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
1074 	[CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
1075 	[CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
1076 	[CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
1077 	[CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
1078 	[CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
1079 	[CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
1080 	[CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
1081 	[CEC_MSG_ABORT] = 2 | DIRECTED,
1082 	[CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
1083 	[CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
1084 	[CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
1085 	[CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1086 	[CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1087 	[CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
1088 	[CEC_MSG_SET_AUDIO_VOLUME_LEVEL] = 3 | DIRECTED,
1089 	[CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
1090 	[CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
1091 	[CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
1092 	[CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
1093 	[CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
1094 	[CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
1095 	[CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
1096 	[CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
1097 	[CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
1098 	[CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
1099 	[CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
1100 	[CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1101 };
1102 
1103 /* Called by the CEC adapter if a message is received */
cec_received_msg_ts(struct cec_adapter * adap,struct cec_msg * msg,ktime_t ts)1104 void cec_received_msg_ts(struct cec_adapter *adap,
1105 			 struct cec_msg *msg, ktime_t ts)
1106 {
1107 	struct cec_data *data;
1108 	u8 msg_init = cec_msg_initiator(msg);
1109 	u8 msg_dest = cec_msg_destination(msg);
1110 	u8 cmd = msg->msg[1];
1111 	bool is_reply = false;
1112 	bool valid_la = true;
1113 	bool monitor_valid_la = true;
1114 	u8 min_len = 0;
1115 
1116 	if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1117 		return;
1118 
1119 	if (adap->devnode.unregistered)
1120 		return;
1121 
1122 	/*
1123 	 * Some CEC adapters will receive the messages that they transmitted.
1124 	 * This test filters out those messages by checking if we are the
1125 	 * initiator, and just returning in that case.
1126 	 *
1127 	 * Note that this won't work if this is an Unregistered device.
1128 	 *
1129 	 * It is bad practice if the hardware receives the message that it
1130 	 * transmitted and luckily most CEC adapters behave correctly in this
1131 	 * respect.
1132 	 */
1133 	if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1134 	    cec_has_log_addr(adap, msg_init))
1135 		return;
1136 
1137 	msg->rx_ts = ktime_to_ns(ts);
1138 	msg->rx_status = CEC_RX_STATUS_OK;
1139 	msg->sequence = msg->reply = msg->timeout = 0;
1140 	msg->tx_status = 0;
1141 	msg->tx_ts = 0;
1142 	msg->tx_arb_lost_cnt = 0;
1143 	msg->tx_nack_cnt = 0;
1144 	msg->tx_low_drive_cnt = 0;
1145 	msg->tx_error_cnt = 0;
1146 	msg->flags = 0;
1147 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1148 
1149 	mutex_lock(&adap->lock);
1150 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1151 
1152 	if (!adap->transmit_in_progress)
1153 		adap->last_initiator = 0xff;
1154 
1155 	/* Check if this message was for us (directed or broadcast). */
1156 	if (!cec_msg_is_broadcast(msg)) {
1157 		valid_la = cec_has_log_addr(adap, msg_dest);
1158 		monitor_valid_la = valid_la;
1159 	}
1160 
1161 	/*
1162 	 * Check if the length is not too short or if the message is a
1163 	 * broadcast message where a directed message was expected or
1164 	 * vice versa. If so, then the message has to be ignored (according
1165 	 * to section CEC 7.3 and CEC 12.2).
1166 	 */
1167 	if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1168 		u8 dir_fl = cec_msg_size[cmd] & BOTH;
1169 
1170 		min_len = cec_msg_size[cmd] & 0x1f;
1171 		if (msg->len < min_len)
1172 			valid_la = false;
1173 		else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1174 			valid_la = false;
1175 		else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST))
1176 			valid_la = false;
1177 		else if (cec_msg_is_broadcast(msg) &&
1178 			 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 &&
1179 			 !(dir_fl & BCAST1_4))
1180 			valid_la = false;
1181 	}
1182 	if (valid_la && min_len) {
1183 		/* These messages have special length requirements */
1184 		switch (cmd) {
1185 		case CEC_MSG_RECORD_ON:
1186 			switch (msg->msg[2]) {
1187 			case CEC_OP_RECORD_SRC_OWN:
1188 				break;
1189 			case CEC_OP_RECORD_SRC_DIGITAL:
1190 				if (msg->len < 10)
1191 					valid_la = false;
1192 				break;
1193 			case CEC_OP_RECORD_SRC_ANALOG:
1194 				if (msg->len < 7)
1195 					valid_la = false;
1196 				break;
1197 			case CEC_OP_RECORD_SRC_EXT_PLUG:
1198 				if (msg->len < 4)
1199 					valid_la = false;
1200 				break;
1201 			case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1202 				if (msg->len < 5)
1203 					valid_la = false;
1204 				break;
1205 			}
1206 			break;
1207 		}
1208 	}
1209 
1210 	/* It's a valid message and not a poll or CDC message */
1211 	if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1212 		bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1213 
1214 		/* The aborted command is in msg[2] */
1215 		if (abort)
1216 			cmd = msg->msg[2];
1217 
1218 		/*
1219 		 * Walk over all transmitted messages that are waiting for a
1220 		 * reply.
1221 		 */
1222 		list_for_each_entry(data, &adap->wait_queue, list) {
1223 			struct cec_msg *dst = &data->msg;
1224 
1225 			/*
1226 			 * The *only* CEC message that has two possible replies
1227 			 * is CEC_MSG_INITIATE_ARC.
1228 			 * In this case allow either of the two replies.
1229 			 */
1230 			if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1231 			    (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1232 			     cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1233 			    (data->match_reply[0] == CEC_MSG_REPORT_ARC_INITIATED ||
1234 			     data->match_reply[0] == CEC_MSG_REPORT_ARC_TERMINATED)) {
1235 				dst->reply = cmd;
1236 				data->match_reply[0] = cmd;
1237 			}
1238 
1239 			/* Does the command match? */
1240 			if ((abort && cmd != dst->msg[1]) ||
1241 			    (!abort && memcmp(data->match_reply, msg->msg + 1, data->match_len)))
1242 				continue;
1243 
1244 			/* Does the addressing match? */
1245 			if (msg_init != cec_msg_destination(dst) &&
1246 			    !cec_msg_is_broadcast(dst))
1247 				continue;
1248 
1249 			/* We got a reply */
1250 			memcpy(dst->msg, msg->msg, msg->len);
1251 			dst->len = msg->len;
1252 			dst->rx_ts = msg->rx_ts;
1253 			dst->rx_status = msg->rx_status;
1254 			if (abort)
1255 				dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1256 			msg->flags = dst->flags;
1257 			msg->sequence = dst->sequence;
1258 			/* Remove it from the wait_queue */
1259 			list_del_init(&data->list);
1260 
1261 			/* Cancel the pending timeout work */
1262 			if (!cancel_delayed_work(&data->work)) {
1263 				mutex_unlock(&adap->lock);
1264 				cancel_delayed_work_sync(&data->work);
1265 				mutex_lock(&adap->lock);
1266 			}
1267 			/*
1268 			 * Mark this as a reply, provided someone is still
1269 			 * waiting for the answer.
1270 			 */
1271 			if (data->fh)
1272 				is_reply = true;
1273 			cec_data_completed(data);
1274 			break;
1275 		}
1276 	}
1277 	mutex_unlock(&adap->lock);
1278 
1279 	/* Pass the message on to any monitoring filehandles */
1280 	cec_queue_msg_monitor(adap, msg, monitor_valid_la);
1281 
1282 	/* We're done if it is not for us or a poll message */
1283 	if (!valid_la || msg->len <= 1)
1284 		return;
1285 
1286 	if (adap->log_addrs.log_addr_mask == 0)
1287 		return;
1288 
1289 	/*
1290 	 * Process the message on the protocol level. If is_reply is true,
1291 	 * then cec_receive_notify() won't pass on the reply to the listener(s)
1292 	 * since that was already done by cec_data_completed() above.
1293 	 */
1294 	cec_receive_notify(adap, msg, is_reply);
1295 }
1296 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1297 
1298 /* Logical Address Handling */
1299 
1300 /*
1301  * Attempt to claim a specific logical address.
1302  *
1303  * This function is called with adap->lock held.
1304  */
cec_config_log_addr(struct cec_adapter * adap,unsigned int idx,unsigned int log_addr)1305 static int cec_config_log_addr(struct cec_adapter *adap,
1306 			       unsigned int idx,
1307 			       unsigned int log_addr)
1308 {
1309 	struct cec_log_addrs *las = &adap->log_addrs;
1310 	struct cec_msg msg = { };
1311 	const unsigned int max_retries = 2;
1312 	unsigned int i;
1313 	int err;
1314 
1315 	if (cec_has_log_addr(adap, log_addr))
1316 		return 0;
1317 
1318 	/* Send poll message */
1319 	msg.len = 1;
1320 	msg.msg[0] = (log_addr << 4) | log_addr;
1321 
1322 	for (i = 0; i < max_retries; i++) {
1323 		err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1324 
1325 		/*
1326 		 * While trying to poll the physical address was reset
1327 		 * and the adapter was unconfigured, so bail out.
1328 		 */
1329 		if (adap->phys_addr == CEC_PHYS_ADDR_INVALID)
1330 			return -EINTR;
1331 
1332 		/* Also bail out if the PA changed while configuring. */
1333 		if (adap->must_reconfigure)
1334 			return -EINTR;
1335 
1336 		if (err)
1337 			return err;
1338 
1339 		/*
1340 		 * The message was aborted or timed out due to a disconnect or
1341 		 * unconfigure, just bail out.
1342 		 */
1343 		if (msg.tx_status &
1344 		    (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT))
1345 			return -EINTR;
1346 		if (msg.tx_status & CEC_TX_STATUS_OK)
1347 			return 0;
1348 		if (msg.tx_status & CEC_TX_STATUS_NACK)
1349 			break;
1350 		/*
1351 		 * Retry up to max_retries times if the message was neither
1352 		 * OKed or NACKed. This can happen due to e.g. a Lost
1353 		 * Arbitration condition.
1354 		 */
1355 	}
1356 
1357 	/*
1358 	 * If we are unable to get an OK or a NACK after max_retries attempts
1359 	 * (and note that each attempt already consists of four polls), then
1360 	 * we assume that something is really weird and that it is not a
1361 	 * good idea to try and claim this logical address.
1362 	 */
1363 	if (i == max_retries) {
1364 		dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n",
1365 			log_addr, msg.tx_status);
1366 		return 0;
1367 	}
1368 
1369 	/*
1370 	 * Message not acknowledged, so this logical
1371 	 * address is free to use.
1372 	 */
1373 	err = call_op(adap, adap_log_addr, log_addr);
1374 	if (err)
1375 		return err;
1376 
1377 	las->log_addr[idx] = log_addr;
1378 	las->log_addr_mask |= 1 << log_addr;
1379 	return 1;
1380 }
1381 
1382 /*
1383  * Unconfigure the adapter: clear all logical addresses and send
1384  * the state changed event.
1385  *
1386  * This function is called with adap->lock held.
1387  */
cec_adap_unconfigure(struct cec_adapter * adap)1388 static void cec_adap_unconfigure(struct cec_adapter *adap)
1389 {
1390 	if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1391 		WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID));
1392 	adap->log_addrs.log_addr_mask = 0;
1393 	adap->is_configured = false;
1394 	cec_flush(adap);
1395 	wake_up_interruptible(&adap->kthread_waitq);
1396 	cec_post_state_event(adap);
1397 	call_void_op(adap, adap_unconfigured);
1398 }
1399 
1400 /*
1401  * Attempt to claim the required logical addresses.
1402  */
cec_config_thread_func(void * arg)1403 static int cec_config_thread_func(void *arg)
1404 {
1405 	/* The various LAs for each type of device */
1406 	static const u8 tv_log_addrs[] = {
1407 		CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1408 		CEC_LOG_ADDR_INVALID
1409 	};
1410 	static const u8 record_log_addrs[] = {
1411 		CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1412 		CEC_LOG_ADDR_RECORD_3,
1413 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1414 		CEC_LOG_ADDR_INVALID
1415 	};
1416 	static const u8 tuner_log_addrs[] = {
1417 		CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1418 		CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1419 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1420 		CEC_LOG_ADDR_INVALID
1421 	};
1422 	static const u8 playback_log_addrs[] = {
1423 		CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1424 		CEC_LOG_ADDR_PLAYBACK_3,
1425 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1426 		CEC_LOG_ADDR_INVALID
1427 	};
1428 	static const u8 audiosystem_log_addrs[] = {
1429 		CEC_LOG_ADDR_AUDIOSYSTEM,
1430 		CEC_LOG_ADDR_INVALID
1431 	};
1432 	static const u8 specific_use_log_addrs[] = {
1433 		CEC_LOG_ADDR_SPECIFIC,
1434 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1435 		CEC_LOG_ADDR_INVALID
1436 	};
1437 	static const u8 *type2addrs[6] = {
1438 		[CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1439 		[CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1440 		[CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1441 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1442 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1443 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1444 	};
1445 	static const u16 type2mask[] = {
1446 		[CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1447 		[CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1448 		[CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1449 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1450 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1451 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1452 	};
1453 	struct cec_adapter *adap = arg;
1454 	struct cec_log_addrs *las = &adap->log_addrs;
1455 	int err;
1456 	int i, j;
1457 
1458 	mutex_lock(&adap->lock);
1459 	dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1460 		cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1461 	las->log_addr_mask = 0;
1462 
1463 	if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1464 		goto configured;
1465 
1466 reconfigure:
1467 	for (i = 0; i < las->num_log_addrs; i++) {
1468 		unsigned int type = las->log_addr_type[i];
1469 		const u8 *la_list;
1470 		u8 last_la;
1471 
1472 		/*
1473 		 * The TV functionality can only map to physical address 0.
1474 		 * For any other address, try the Specific functionality
1475 		 * instead as per the spec.
1476 		 */
1477 		if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1478 			type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1479 
1480 		la_list = type2addrs[type];
1481 		last_la = las->log_addr[i];
1482 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1483 		if (last_la == CEC_LOG_ADDR_INVALID ||
1484 		    last_la == CEC_LOG_ADDR_UNREGISTERED ||
1485 		    !((1 << last_la) & type2mask[type]))
1486 			last_la = la_list[0];
1487 
1488 		err = cec_config_log_addr(adap, i, last_la);
1489 
1490 		if (adap->must_reconfigure) {
1491 			adap->must_reconfigure = false;
1492 			las->log_addr_mask = 0;
1493 			goto reconfigure;
1494 		}
1495 
1496 		if (err > 0) /* Reused last LA */
1497 			continue;
1498 
1499 		if (err < 0)
1500 			goto unconfigure;
1501 
1502 		for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1503 			/* Tried this one already, skip it */
1504 			if (la_list[j] == last_la)
1505 				continue;
1506 			/* The backup addresses are CEC 2.0 specific */
1507 			if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1508 			     la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1509 			    las->cec_version < CEC_OP_CEC_VERSION_2_0)
1510 				continue;
1511 
1512 			err = cec_config_log_addr(adap, i, la_list[j]);
1513 			if (err == 0) /* LA is in use */
1514 				continue;
1515 			if (err < 0)
1516 				goto unconfigure;
1517 			/* Done, claimed an LA */
1518 			break;
1519 		}
1520 
1521 		if (la_list[j] == CEC_LOG_ADDR_INVALID)
1522 			dprintk(1, "could not claim LA %d\n", i);
1523 	}
1524 
1525 	if (adap->log_addrs.log_addr_mask == 0 &&
1526 	    !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1527 		goto unconfigure;
1528 
1529 configured:
1530 	if (adap->log_addrs.log_addr_mask == 0) {
1531 		/* Fall back to unregistered */
1532 		las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1533 		las->log_addr_mask = 1 << las->log_addr[0];
1534 		for (i = 1; i < las->num_log_addrs; i++)
1535 			las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1536 	}
1537 	for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1538 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1539 	adap->is_configured = true;
1540 	adap->is_configuring = false;
1541 	adap->must_reconfigure = false;
1542 	cec_post_state_event(adap);
1543 
1544 	/*
1545 	 * Now post the Report Features and Report Physical Address broadcast
1546 	 * messages. Note that these are non-blocking transmits, meaning that
1547 	 * they are just queued up and once adap->lock is unlocked the main
1548 	 * thread will kick in and start transmitting these.
1549 	 *
1550 	 * If after this function is done (but before one or more of these
1551 	 * messages are actually transmitted) the CEC adapter is unconfigured,
1552 	 * then any remaining messages will be dropped by the main thread.
1553 	 */
1554 	for (i = 0; i < las->num_log_addrs; i++) {
1555 		struct cec_msg msg = {};
1556 
1557 		if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1558 		    (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1559 			continue;
1560 
1561 		msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1562 
1563 		/* Report Features must come first according to CEC 2.0 */
1564 		if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1565 		    adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1566 			cec_fill_msg_report_features(adap, &msg, i);
1567 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1568 		}
1569 
1570 		/* Report Physical Address */
1571 		cec_msg_report_physical_addr(&msg, adap->phys_addr,
1572 					     las->primary_device_type[i]);
1573 		dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1574 			las->log_addr[i],
1575 			cec_phys_addr_exp(adap->phys_addr));
1576 		cec_transmit_msg_fh(adap, &msg, NULL, false);
1577 
1578 		/* Report Vendor ID */
1579 		if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1580 			cec_msg_device_vendor_id(&msg,
1581 						 adap->log_addrs.vendor_id);
1582 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1583 		}
1584 	}
1585 	adap->kthread_config = NULL;
1586 	complete(&adap->config_completion);
1587 	mutex_unlock(&adap->lock);
1588 	call_void_op(adap, configured);
1589 	return 0;
1590 
1591 unconfigure:
1592 	for (i = 0; i < las->num_log_addrs; i++)
1593 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1594 	cec_adap_unconfigure(adap);
1595 	adap->is_configuring = false;
1596 	adap->must_reconfigure = false;
1597 	adap->kthread_config = NULL;
1598 	complete(&adap->config_completion);
1599 	mutex_unlock(&adap->lock);
1600 	return 0;
1601 }
1602 
1603 /*
1604  * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1605  * logical addresses.
1606  *
1607  * This function is called with adap->lock held.
1608  */
cec_claim_log_addrs(struct cec_adapter * adap,bool block)1609 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1610 {
1611 	if (WARN_ON(adap->is_claiming_log_addrs ||
1612 		    adap->is_configuring || adap->is_configured))
1613 		return;
1614 
1615 	adap->is_claiming_log_addrs = true;
1616 
1617 	init_completion(&adap->config_completion);
1618 
1619 	/* Ready to kick off the thread */
1620 	adap->is_configuring = true;
1621 	adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1622 					   "ceccfg-%s", adap->name);
1623 	if (IS_ERR(adap->kthread_config)) {
1624 		adap->kthread_config = NULL;
1625 		adap->is_configuring = false;
1626 	} else if (block) {
1627 		mutex_unlock(&adap->lock);
1628 		wait_for_completion(&adap->config_completion);
1629 		mutex_lock(&adap->lock);
1630 	}
1631 	adap->is_claiming_log_addrs = false;
1632 }
1633 
1634 /*
1635  * Helper function to enable/disable the CEC adapter.
1636  *
1637  * This function is called with adap->lock held.
1638  */
cec_adap_enable(struct cec_adapter * adap)1639 int cec_adap_enable(struct cec_adapter *adap)
1640 {
1641 	bool enable;
1642 	int ret = 0;
1643 
1644 	enable = adap->monitor_all_cnt || adap->monitor_pin_cnt ||
1645 		 adap->log_addrs.num_log_addrs;
1646 	if (adap->needs_hpd)
1647 		enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID;
1648 
1649 	if (adap->devnode.unregistered)
1650 		enable = false;
1651 
1652 	if (enable == adap->is_enabled)
1653 		return 0;
1654 
1655 	/* serialize adap_enable */
1656 	mutex_lock(&adap->devnode.lock);
1657 	if (enable) {
1658 		adap->last_initiator = 0xff;
1659 		adap->transmit_in_progress = false;
1660 		adap->tx_low_drive_log_cnt = 0;
1661 		adap->tx_error_log_cnt = 0;
1662 		ret = adap->ops->adap_enable(adap, true);
1663 		if (!ret) {
1664 			/*
1665 			 * Enable monitor-all/pin modes if needed. We warn, but
1666 			 * continue if this fails as this is not a critical error.
1667 			 */
1668 			if (adap->monitor_all_cnt)
1669 				WARN_ON(call_op(adap, adap_monitor_all_enable, true));
1670 			if (adap->monitor_pin_cnt)
1671 				WARN_ON(call_op(adap, adap_monitor_pin_enable, true));
1672 		}
1673 	} else {
1674 		/* Disable monitor-all/pin modes if needed (needs_hpd == 1) */
1675 		if (adap->monitor_all_cnt)
1676 			WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1677 		if (adap->monitor_pin_cnt)
1678 			WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
1679 		WARN_ON(adap->ops->adap_enable(adap, false));
1680 		adap->last_initiator = 0xff;
1681 		adap->transmit_in_progress = false;
1682 		adap->transmit_in_progress_aborted = false;
1683 		if (adap->transmitting)
1684 			cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED, 0);
1685 	}
1686 	if (!ret)
1687 		adap->is_enabled = enable;
1688 	wake_up_interruptible(&adap->kthread_waitq);
1689 	mutex_unlock(&adap->devnode.lock);
1690 	return ret;
1691 }
1692 
1693 /* Set a new physical address and send an event notifying userspace of this.
1694  *
1695  * This function is called with adap->lock held.
1696  */
__cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1697 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1698 {
1699 	bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID;
1700 	bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID;
1701 
1702 	if (phys_addr == adap->phys_addr)
1703 		return;
1704 	if (!becomes_invalid && adap->devnode.unregistered)
1705 		return;
1706 
1707 	dprintk(1, "new physical address %x.%x.%x.%x\n",
1708 		cec_phys_addr_exp(phys_addr));
1709 	if (becomes_invalid || !is_invalid) {
1710 		adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1711 		cec_post_state_event(adap);
1712 		cec_adap_unconfigure(adap);
1713 		if (becomes_invalid) {
1714 			cec_adap_enable(adap);
1715 			return;
1716 		}
1717 	}
1718 
1719 	adap->phys_addr = phys_addr;
1720 	if (is_invalid)
1721 		cec_adap_enable(adap);
1722 
1723 	cec_post_state_event(adap);
1724 	if (!adap->log_addrs.num_log_addrs)
1725 		return;
1726 	if (adap->is_configuring)
1727 		adap->must_reconfigure = true;
1728 	else
1729 		cec_claim_log_addrs(adap, block);
1730 }
1731 
cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1732 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1733 {
1734 	if (IS_ERR_OR_NULL(adap))
1735 		return;
1736 
1737 	mutex_lock(&adap->lock);
1738 	__cec_s_phys_addr(adap, phys_addr, block);
1739 	mutex_unlock(&adap->lock);
1740 }
1741 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1742 
1743 /*
1744  * Note: In the drm subsystem, prefer calling (if possible):
1745  *
1746  * cec_s_phys_addr(adap, connector->display_info.source_physical_address, false);
1747  */
cec_s_phys_addr_from_edid(struct cec_adapter * adap,const struct edid * edid)1748 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1749 			       const struct edid *edid)
1750 {
1751 	u16 pa = CEC_PHYS_ADDR_INVALID;
1752 
1753 	if (edid && edid->extensions)
1754 		pa = cec_get_edid_phys_addr((const u8 *)edid,
1755 				EDID_LENGTH * (edid->extensions + 1), NULL);
1756 	cec_s_phys_addr(adap, pa, false);
1757 }
1758 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1759 
cec_s_conn_info(struct cec_adapter * adap,const struct cec_connector_info * conn_info)1760 void cec_s_conn_info(struct cec_adapter *adap,
1761 		     const struct cec_connector_info *conn_info)
1762 {
1763 	if (IS_ERR_OR_NULL(adap))
1764 		return;
1765 
1766 	if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO))
1767 		return;
1768 
1769 	mutex_lock(&adap->lock);
1770 	if (conn_info)
1771 		adap->conn_info = *conn_info;
1772 	else
1773 		memset(&adap->conn_info, 0, sizeof(adap->conn_info));
1774 	cec_post_state_event(adap);
1775 	mutex_unlock(&adap->lock);
1776 }
1777 EXPORT_SYMBOL_GPL(cec_s_conn_info);
1778 
1779 /*
1780  * Called from either the ioctl or a driver to set the logical addresses.
1781  *
1782  * This function is called with adap->lock held.
1783  */
__cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1784 int __cec_s_log_addrs(struct cec_adapter *adap,
1785 		      struct cec_log_addrs *log_addrs, bool block)
1786 {
1787 	u16 type_mask = 0;
1788 	int err;
1789 	int i;
1790 
1791 	if (adap->devnode.unregistered)
1792 		return -ENODEV;
1793 
1794 	if (!log_addrs || log_addrs->num_log_addrs == 0) {
1795 		if (!adap->log_addrs.num_log_addrs)
1796 			return 0;
1797 		if (adap->is_configuring || adap->is_configured)
1798 			cec_adap_unconfigure(adap);
1799 		adap->log_addrs.num_log_addrs = 0;
1800 		for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1801 			adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1802 		adap->log_addrs.osd_name[0] = '\0';
1803 		adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1804 		adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1805 		cec_adap_enable(adap);
1806 		return 0;
1807 	}
1808 
1809 	if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1810 		/*
1811 		 * Sanitize log_addrs fields if a CDC-Only device is
1812 		 * requested.
1813 		 */
1814 		log_addrs->num_log_addrs = 1;
1815 		log_addrs->osd_name[0] = '\0';
1816 		log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1817 		log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1818 		/*
1819 		 * This is just an internal convention since a CDC-Only device
1820 		 * doesn't have to be a switch. But switches already use
1821 		 * unregistered, so it makes some kind of sense to pick this
1822 		 * as the primary device. Since a CDC-Only device never sends
1823 		 * any 'normal' CEC messages this primary device type is never
1824 		 * sent over the CEC bus.
1825 		 */
1826 		log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1827 		log_addrs->all_device_types[0] = 0;
1828 		log_addrs->features[0][0] = 0;
1829 		log_addrs->features[0][1] = 0;
1830 	}
1831 
1832 	/* Ensure the osd name is 0-terminated */
1833 	log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1834 
1835 	/* Sanity checks */
1836 	if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1837 		dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1838 		return -EINVAL;
1839 	}
1840 
1841 	/*
1842 	 * Vendor ID is a 24 bit number, so check if the value is
1843 	 * within the correct range.
1844 	 */
1845 	if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1846 	    (log_addrs->vendor_id & 0xff000000) != 0) {
1847 		dprintk(1, "invalid vendor ID\n");
1848 		return -EINVAL;
1849 	}
1850 
1851 	if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1852 	    log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1853 		dprintk(1, "invalid CEC version\n");
1854 		return -EINVAL;
1855 	}
1856 
1857 	if (log_addrs->num_log_addrs > 1)
1858 		for (i = 0; i < log_addrs->num_log_addrs; i++)
1859 			if (log_addrs->log_addr_type[i] ==
1860 					CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1861 				dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1862 				return -EINVAL;
1863 			}
1864 
1865 	for (i = 0; i < log_addrs->num_log_addrs; i++) {
1866 		const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1867 		u8 *features = log_addrs->features[i];
1868 		bool op_is_dev_features = false;
1869 		unsigned int j;
1870 
1871 		log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1872 		if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1873 			dprintk(1, "unknown logical address type\n");
1874 			return -EINVAL;
1875 		}
1876 		if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1877 			dprintk(1, "duplicate logical address type\n");
1878 			return -EINVAL;
1879 		}
1880 		type_mask |= 1 << log_addrs->log_addr_type[i];
1881 		if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1882 		    (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1883 			/* Record already contains the playback functionality */
1884 			dprintk(1, "invalid record + playback combination\n");
1885 			return -EINVAL;
1886 		}
1887 		if (log_addrs->primary_device_type[i] >
1888 					CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1889 			dprintk(1, "unknown primary device type\n");
1890 			return -EINVAL;
1891 		}
1892 		if (log_addrs->primary_device_type[i] == 2) {
1893 			dprintk(1, "invalid primary device type\n");
1894 			return -EINVAL;
1895 		}
1896 		for (j = 0; j < feature_sz; j++) {
1897 			if ((features[j] & 0x80) == 0) {
1898 				if (op_is_dev_features)
1899 					break;
1900 				op_is_dev_features = true;
1901 			}
1902 		}
1903 		if (!op_is_dev_features || j == feature_sz) {
1904 			dprintk(1, "malformed features\n");
1905 			return -EINVAL;
1906 		}
1907 		/* Zero unused part of the feature array */
1908 		memset(features + j + 1, 0, feature_sz - j - 1);
1909 	}
1910 
1911 	if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1912 		if (log_addrs->num_log_addrs > 2) {
1913 			dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1914 			return -EINVAL;
1915 		}
1916 		if (log_addrs->num_log_addrs == 2) {
1917 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1918 					   (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1919 				dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1920 				return -EINVAL;
1921 			}
1922 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1923 					   (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1924 				dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1925 				return -EINVAL;
1926 			}
1927 		}
1928 	}
1929 
1930 	/* Zero unused LAs */
1931 	for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1932 		log_addrs->primary_device_type[i] = 0;
1933 		log_addrs->log_addr_type[i] = 0;
1934 		log_addrs->all_device_types[i] = 0;
1935 		memset(log_addrs->features[i], 0,
1936 		       sizeof(log_addrs->features[i]));
1937 	}
1938 
1939 	log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1940 	adap->log_addrs = *log_addrs;
1941 	err = cec_adap_enable(adap);
1942 	if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1943 		cec_claim_log_addrs(adap, block);
1944 	return err;
1945 }
1946 
cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1947 int cec_s_log_addrs(struct cec_adapter *adap,
1948 		    struct cec_log_addrs *log_addrs, bool block)
1949 {
1950 	int err;
1951 
1952 	mutex_lock(&adap->lock);
1953 	err = __cec_s_log_addrs(adap, log_addrs, block);
1954 	mutex_unlock(&adap->lock);
1955 	return err;
1956 }
1957 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1958 
1959 /* High-level core CEC message handling */
1960 
1961 /* Fill in the Report Features message */
cec_fill_msg_report_features(struct cec_adapter * adap,struct cec_msg * msg,unsigned int la_idx)1962 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1963 					 struct cec_msg *msg,
1964 					 unsigned int la_idx)
1965 {
1966 	const struct cec_log_addrs *las = &adap->log_addrs;
1967 	const u8 *features = las->features[la_idx];
1968 	bool op_is_dev_features = false;
1969 	unsigned int idx;
1970 
1971 	/* Report Features */
1972 	msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1973 	msg->len = 4;
1974 	msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1975 	msg->msg[2] = adap->log_addrs.cec_version;
1976 	msg->msg[3] = las->all_device_types[la_idx];
1977 
1978 	/* Write RC Profiles first, then Device Features */
1979 	for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1980 		msg->msg[msg->len++] = features[idx];
1981 		if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1982 			if (op_is_dev_features)
1983 				break;
1984 			op_is_dev_features = true;
1985 		}
1986 	}
1987 }
1988 
1989 /* Transmit the Feature Abort message */
cec_feature_abort_reason(struct cec_adapter * adap,struct cec_msg * msg,u8 reason)1990 static int cec_feature_abort_reason(struct cec_adapter *adap,
1991 				    struct cec_msg *msg, u8 reason)
1992 {
1993 	struct cec_msg tx_msg = { };
1994 
1995 	/*
1996 	 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1997 	 * message!
1998 	 */
1999 	if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
2000 		return 0;
2001 	/* Don't Feature Abort messages from 'Unregistered' */
2002 	if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
2003 		return 0;
2004 	cec_msg_set_reply_to(&tx_msg, msg);
2005 	cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
2006 	return cec_transmit_msg(adap, &tx_msg, false);
2007 }
2008 
cec_feature_abort(struct cec_adapter * adap,struct cec_msg * msg)2009 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
2010 {
2011 	return cec_feature_abort_reason(adap, msg,
2012 					CEC_OP_ABORT_UNRECOGNIZED_OP);
2013 }
2014 
cec_feature_refused(struct cec_adapter * adap,struct cec_msg * msg)2015 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
2016 {
2017 	return cec_feature_abort_reason(adap, msg,
2018 					CEC_OP_ABORT_REFUSED);
2019 }
2020 
2021 /*
2022  * Called when a CEC message is received. This function will do any
2023  * necessary core processing. The is_reply bool is true if this message
2024  * is a reply to an earlier transmit.
2025  *
2026  * The message is either a broadcast message or a valid directed message.
2027  */
cec_receive_notify(struct cec_adapter * adap,struct cec_msg * msg,bool is_reply)2028 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
2029 			      bool is_reply)
2030 {
2031 	bool is_broadcast = cec_msg_is_broadcast(msg);
2032 	u8 dest_laddr = cec_msg_destination(msg);
2033 	u8 init_laddr = cec_msg_initiator(msg);
2034 	u8 devtype = cec_log_addr2dev(adap, dest_laddr);
2035 	int la_idx = cec_log_addr2idx(adap, dest_laddr);
2036 	bool from_unregistered = init_laddr == 0xf;
2037 	struct cec_msg tx_cec_msg = { };
2038 
2039 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
2040 
2041 	/* If this is a CDC-Only device, then ignore any non-CDC messages */
2042 	if (cec_is_cdc_only(&adap->log_addrs) &&
2043 	    msg->msg[1] != CEC_MSG_CDC_MESSAGE)
2044 		return 0;
2045 
2046 	/* Allow drivers to process the message first */
2047 	if (adap->ops->received && !adap->devnode.unregistered &&
2048 	    adap->ops->received(adap, msg) != -ENOMSG)
2049 		return 0;
2050 
2051 	/*
2052 	 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
2053 	 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
2054 	 * handled by the CEC core, even if the passthrough mode is on.
2055 	 * The others are just ignored if passthrough mode is on.
2056 	 */
2057 	switch (msg->msg[1]) {
2058 	case CEC_MSG_GET_CEC_VERSION:
2059 	case CEC_MSG_ABORT:
2060 	case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
2061 	case CEC_MSG_GIVE_OSD_NAME:
2062 		/*
2063 		 * These messages reply with a directed message, so ignore if
2064 		 * the initiator is Unregistered.
2065 		 */
2066 		if (!adap->passthrough && from_unregistered)
2067 			return 0;
2068 		fallthrough;
2069 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2070 	case CEC_MSG_GIVE_FEATURES:
2071 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
2072 		/*
2073 		 * Skip processing these messages if the passthrough mode
2074 		 * is on.
2075 		 */
2076 		if (adap->passthrough)
2077 			goto skip_processing;
2078 		/* Ignore if addressing is wrong */
2079 		if (is_broadcast)
2080 			return 0;
2081 		break;
2082 
2083 	case CEC_MSG_USER_CONTROL_PRESSED:
2084 	case CEC_MSG_USER_CONTROL_RELEASED:
2085 		/* Wrong addressing mode: don't process */
2086 		if (is_broadcast || from_unregistered)
2087 			goto skip_processing;
2088 		break;
2089 
2090 	case CEC_MSG_REPORT_PHYSICAL_ADDR:
2091 		/*
2092 		 * This message is always processed, regardless of the
2093 		 * passthrough setting.
2094 		 *
2095 		 * Exception: don't process if wrong addressing mode.
2096 		 */
2097 		if (!is_broadcast)
2098 			goto skip_processing;
2099 		break;
2100 
2101 	default:
2102 		break;
2103 	}
2104 
2105 	cec_msg_set_reply_to(&tx_cec_msg, msg);
2106 
2107 	switch (msg->msg[1]) {
2108 	/* The following messages are processed but still passed through */
2109 	case CEC_MSG_REPORT_PHYSICAL_ADDR: {
2110 		u16 pa = (msg->msg[2] << 8) | msg->msg[3];
2111 
2112 		dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
2113 			cec_phys_addr_exp(pa), init_laddr);
2114 		break;
2115 	}
2116 
2117 	case CEC_MSG_USER_CONTROL_PRESSED:
2118 		if (!(adap->capabilities & CEC_CAP_RC) ||
2119 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2120 			break;
2121 
2122 #ifdef CONFIG_MEDIA_CEC_RC
2123 		switch (msg->msg[2]) {
2124 		/*
2125 		 * Play function, this message can have variable length
2126 		 * depending on the specific play function that is used.
2127 		 */
2128 		case CEC_OP_UI_CMD_PLAY_FUNCTION:
2129 			if (msg->len == 2)
2130 				rc_keydown(adap->rc, RC_PROTO_CEC,
2131 					   msg->msg[2], 0);
2132 			else
2133 				rc_keydown(adap->rc, RC_PROTO_CEC,
2134 					   msg->msg[2] << 8 | msg->msg[3], 0);
2135 			break;
2136 		/*
2137 		 * Other function messages that are not handled.
2138 		 * Currently the RC framework does not allow to supply an
2139 		 * additional parameter to a keypress. These "keys" contain
2140 		 * other information such as channel number, an input number
2141 		 * etc.
2142 		 * For the time being these messages are not processed by the
2143 		 * framework and are simply forwarded to the user space.
2144 		 */
2145 		case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE:
2146 		case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION:
2147 		case CEC_OP_UI_CMD_TUNE_FUNCTION:
2148 		case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION:
2149 		case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION:
2150 		case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION:
2151 			break;
2152 		default:
2153 			rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
2154 			break;
2155 		}
2156 #endif
2157 		break;
2158 
2159 	case CEC_MSG_USER_CONTROL_RELEASED:
2160 		if (!(adap->capabilities & CEC_CAP_RC) ||
2161 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2162 			break;
2163 #ifdef CONFIG_MEDIA_CEC_RC
2164 		rc_keyup(adap->rc);
2165 #endif
2166 		break;
2167 
2168 	/*
2169 	 * The remaining messages are only processed if the passthrough mode
2170 	 * is off.
2171 	 */
2172 	case CEC_MSG_GET_CEC_VERSION:
2173 		cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
2174 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2175 
2176 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
2177 		/* Do nothing for CEC switches using addr 15 */
2178 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
2179 			return 0;
2180 		cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
2181 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2182 
2183 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2184 		if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
2185 			return cec_feature_abort(adap, msg);
2186 		cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
2187 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2188 
2189 	case CEC_MSG_ABORT:
2190 		/* Do nothing for CEC switches */
2191 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
2192 			return 0;
2193 		return cec_feature_refused(adap, msg);
2194 
2195 	case CEC_MSG_GIVE_OSD_NAME: {
2196 		if (adap->log_addrs.osd_name[0] == 0)
2197 			return cec_feature_abort(adap, msg);
2198 		cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
2199 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2200 	}
2201 
2202 	case CEC_MSG_GIVE_FEATURES:
2203 		if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2204 			return cec_feature_abort(adap, msg);
2205 		cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2206 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2207 
2208 	default:
2209 		/*
2210 		 * Unprocessed messages are aborted if userspace isn't doing
2211 		 * any processing either.
2212 		 */
2213 		if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2214 		    !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2215 			return cec_feature_abort(adap, msg);
2216 		break;
2217 	}
2218 
2219 skip_processing:
2220 	/* If this was a reply, then we're done, unless otherwise specified */
2221 	if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2222 		return 0;
2223 
2224 	/*
2225 	 * Send to the exclusive follower if there is one, otherwise send
2226 	 * to all followers.
2227 	 */
2228 	if (adap->cec_follower)
2229 		cec_queue_msg_fh(adap->cec_follower, msg);
2230 	else
2231 		cec_queue_msg_followers(adap, msg);
2232 	return 0;
2233 }
2234 
2235 /*
2236  * Helper functions to keep track of the 'monitor all' use count.
2237  *
2238  * These functions are called with adap->lock held.
2239  */
cec_monitor_all_cnt_inc(struct cec_adapter * adap)2240 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2241 {
2242 	int ret;
2243 
2244 	if (adap->monitor_all_cnt++)
2245 		return 0;
2246 
2247 	ret = cec_adap_enable(adap);
2248 	if (ret)
2249 		adap->monitor_all_cnt--;
2250 	return ret;
2251 }
2252 
cec_monitor_all_cnt_dec(struct cec_adapter * adap)2253 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2254 {
2255 	if (WARN_ON(!adap->monitor_all_cnt))
2256 		return;
2257 	if (--adap->monitor_all_cnt)
2258 		return;
2259 	WARN_ON(call_op(adap, adap_monitor_all_enable, false));
2260 	cec_adap_enable(adap);
2261 }
2262 
2263 /*
2264  * Helper functions to keep track of the 'monitor pin' use count.
2265  *
2266  * These functions are called with adap->lock held.
2267  */
cec_monitor_pin_cnt_inc(struct cec_adapter * adap)2268 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2269 {
2270 	int ret;
2271 
2272 	if (adap->monitor_pin_cnt++)
2273 		return 0;
2274 
2275 	ret = cec_adap_enable(adap);
2276 	if (ret)
2277 		adap->monitor_pin_cnt--;
2278 	return ret;
2279 }
2280 
cec_monitor_pin_cnt_dec(struct cec_adapter * adap)2281 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2282 {
2283 	if (WARN_ON(!adap->monitor_pin_cnt))
2284 		return;
2285 	if (--adap->monitor_pin_cnt)
2286 		return;
2287 	WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
2288 	cec_adap_enable(adap);
2289 }
2290 
2291 #ifdef CONFIG_DEBUG_FS
2292 /*
2293  * Log the current state of the CEC adapter.
2294  * Very useful for debugging.
2295  */
cec_adap_status(struct seq_file * file,void * priv)2296 int cec_adap_status(struct seq_file *file, void *priv)
2297 {
2298 	struct cec_adapter *adap = dev_get_drvdata(file->private);
2299 	struct cec_data *data;
2300 
2301 	mutex_lock(&adap->lock);
2302 	seq_printf(file, "enabled: %d\n", adap->is_enabled);
2303 	seq_printf(file, "configured: %d\n", adap->is_configured);
2304 	seq_printf(file, "configuring: %d\n", adap->is_configuring);
2305 	seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2306 		   cec_phys_addr_exp(adap->phys_addr));
2307 	seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2308 	seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2309 	if (adap->cec_follower)
2310 		seq_printf(file, "has CEC follower%s\n",
2311 			   adap->passthrough ? " (in passthrough mode)" : "");
2312 	if (adap->cec_initiator)
2313 		seq_puts(file, "has CEC initiator\n");
2314 	if (adap->monitor_all_cnt)
2315 		seq_printf(file, "file handles in Monitor All mode: %u\n",
2316 			   adap->monitor_all_cnt);
2317 	if (adap->monitor_pin_cnt)
2318 		seq_printf(file, "file handles in Monitor Pin mode: %u\n",
2319 			   adap->monitor_pin_cnt);
2320 	if (adap->tx_timeout_cnt) {
2321 		seq_printf(file, "transmit timeout count: %u\n",
2322 			   adap->tx_timeout_cnt);
2323 		adap->tx_timeout_cnt = 0;
2324 	}
2325 	if (adap->tx_low_drive_cnt) {
2326 		seq_printf(file, "transmit low drive count: %u\n",
2327 			   adap->tx_low_drive_cnt);
2328 		adap->tx_low_drive_cnt = 0;
2329 	}
2330 	if (adap->tx_arb_lost_cnt) {
2331 		seq_printf(file, "transmit arbitration lost count: %u\n",
2332 			   adap->tx_arb_lost_cnt);
2333 		adap->tx_arb_lost_cnt = 0;
2334 	}
2335 	if (adap->tx_error_cnt) {
2336 		seq_printf(file, "transmit error count: %u\n",
2337 			   adap->tx_error_cnt);
2338 		adap->tx_error_cnt = 0;
2339 	}
2340 	data = adap->transmitting;
2341 	if (data)
2342 		seq_printf(file, "transmitting message: %*ph (reply: %*ph, timeout: %ums)\n",
2343 			   data->msg.len, data->msg.msg,
2344 			   data->match_len, data->match_reply,
2345 			   data->msg.timeout);
2346 	seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2347 	list_for_each_entry(data, &adap->transmit_queue, list) {
2348 		seq_printf(file, "queued tx message: %*ph (reply: %*ph, timeout: %ums)\n",
2349 			   data->msg.len, data->msg.msg,
2350 			   data->match_len, data->match_reply,
2351 			   data->msg.timeout);
2352 	}
2353 	list_for_each_entry(data, &adap->wait_queue, list) {
2354 		seq_printf(file, "message waiting for reply: %*ph (reply: %*ph, timeout: %ums)\n",
2355 			   data->msg.len, data->msg.msg,
2356 			   data->match_len, data->match_reply,
2357 			   data->msg.timeout);
2358 	}
2359 
2360 	call_void_op(adap, adap_status, file);
2361 	mutex_unlock(&adap->lock);
2362 	return 0;
2363 }
2364 #endif
2365