1 /*
2  * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
3  * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/slab.h>
35 #include <rdma/ib_user_verbs.h>
36 
37 #include "mlx4_ib.h"
38 
convert_access(int acc)39 static u32 convert_access(int acc)
40 {
41 	return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC       : 0) |
42 	       (acc & IB_ACCESS_REMOTE_WRITE  ? MLX4_PERM_REMOTE_WRITE : 0) |
43 	       (acc & IB_ACCESS_REMOTE_READ   ? MLX4_PERM_REMOTE_READ  : 0) |
44 	       (acc & IB_ACCESS_LOCAL_WRITE   ? MLX4_PERM_LOCAL_WRITE  : 0) |
45 	       (acc & IB_ACCESS_MW_BIND	      ? MLX4_PERM_BIND_MW      : 0) |
46 	       MLX4_PERM_LOCAL_READ;
47 }
48 
to_mlx4_type(enum ib_mw_type type)49 static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type)
50 {
51 	switch (type) {
52 	case IB_MW_TYPE_1:	return MLX4_MW_TYPE_1;
53 	case IB_MW_TYPE_2:	return MLX4_MW_TYPE_2;
54 	default:		return -1;
55 	}
56 }
57 
mlx4_ib_get_dma_mr(struct ib_pd * pd,int acc)58 struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc)
59 {
60 	struct mlx4_ib_mr *mr;
61 	int err;
62 
63 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
64 	if (!mr)
65 		return ERR_PTR(-ENOMEM);
66 
67 	err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0,
68 			    ~0ull, convert_access(acc), 0, 0, &mr->mmr);
69 	if (err)
70 		goto err_free;
71 
72 	err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr);
73 	if (err)
74 		goto err_mr;
75 
76 	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
77 	mr->umem = NULL;
78 
79 	return &mr->ibmr;
80 
81 err_mr:
82 	(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
83 
84 err_free:
85 	kfree(mr);
86 
87 	return ERR_PTR(err);
88 }
89 
mlx4_ib_umem_write_mtt(struct mlx4_ib_dev * dev,struct mlx4_mtt * mtt,struct ib_umem * umem)90 int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt,
91 			   struct ib_umem *umem)
92 {
93 	struct ib_block_iter biter;
94 	int err, i = 0;
95 	u64 addr;
96 
97 	rdma_umem_for_each_dma_block(umem, &biter, BIT(mtt->page_shift)) {
98 		addr = rdma_block_iter_dma_address(&biter);
99 		err = mlx4_write_mtt(dev->dev, mtt, i++, 1, &addr);
100 		if (err)
101 			return err;
102 	}
103 	return 0;
104 }
105 
mlx4_get_umem_mr(struct ib_device * device,u64 start,u64 length,int access_flags)106 static struct ib_umem *mlx4_get_umem_mr(struct ib_device *device, u64 start,
107 					u64 length, int access_flags)
108 {
109 	/*
110 	 * Force registering the memory as writable if the underlying pages
111 	 * are writable.  This is so rereg can change the access permissions
112 	 * from readable to writable without having to run through ib_umem_get
113 	 * again
114 	 */
115 	if (!ib_access_writable(access_flags)) {
116 		unsigned long untagged_start = untagged_addr(start);
117 		struct vm_area_struct *vma;
118 
119 		mmap_read_lock(current->mm);
120 		/*
121 		 * FIXME: Ideally this would iterate over all the vmas that
122 		 * cover the memory, but for now it requires a single vma to
123 		 * entirely cover the MR to support RO mappings.
124 		 */
125 		vma = find_vma(current->mm, untagged_start);
126 		if (vma && vma->vm_end >= untagged_start + length &&
127 		    vma->vm_start <= untagged_start) {
128 			if (vma->vm_flags & VM_WRITE)
129 				access_flags |= IB_ACCESS_LOCAL_WRITE;
130 		} else {
131 			access_flags |= IB_ACCESS_LOCAL_WRITE;
132 		}
133 
134 		mmap_read_unlock(current->mm);
135 	}
136 
137 	return ib_umem_get(device, start, length, access_flags);
138 }
139 
mlx4_ib_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags,struct ib_udata * udata)140 struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
141 				  u64 virt_addr, int access_flags,
142 				  struct ib_udata *udata)
143 {
144 	struct mlx4_ib_dev *dev = to_mdev(pd->device);
145 	struct mlx4_ib_mr *mr;
146 	int shift;
147 	int err;
148 	int n;
149 
150 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
151 	if (!mr)
152 		return ERR_PTR(-ENOMEM);
153 
154 	mr->umem = mlx4_get_umem_mr(pd->device, start, length, access_flags);
155 	if (IS_ERR(mr->umem)) {
156 		err = PTR_ERR(mr->umem);
157 		goto err_free;
158 	}
159 
160 	shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n);
161 	if (shift < 0) {
162 		err = shift;
163 		goto err_umem;
164 	}
165 
166 	err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length,
167 			    convert_access(access_flags), n, shift, &mr->mmr);
168 	if (err)
169 		goto err_umem;
170 
171 	err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem);
172 	if (err)
173 		goto err_mr;
174 
175 	err = mlx4_mr_enable(dev->dev, &mr->mmr);
176 	if (err)
177 		goto err_mr;
178 
179 	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
180 	mr->ibmr.page_size = 1U << shift;
181 
182 	return &mr->ibmr;
183 
184 err_mr:
185 	(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
186 
187 err_umem:
188 	ib_umem_release(mr->umem);
189 
190 err_free:
191 	kfree(mr);
192 
193 	return ERR_PTR(err);
194 }
195 
mlx4_ib_rereg_user_mr(struct ib_mr * mr,int flags,u64 start,u64 length,u64 virt_addr,int mr_access_flags,struct ib_pd * pd,struct ib_udata * udata)196 struct ib_mr *mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags, u64 start,
197 				    u64 length, u64 virt_addr,
198 				    int mr_access_flags, struct ib_pd *pd,
199 				    struct ib_udata *udata)
200 {
201 	struct mlx4_ib_dev *dev = to_mdev(mr->device);
202 	struct mlx4_ib_mr *mmr = to_mmr(mr);
203 	struct mlx4_mpt_entry *mpt_entry;
204 	struct mlx4_mpt_entry **pmpt_entry = &mpt_entry;
205 	int err;
206 
207 	/* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs,
208 	 * we assume that the calls can't run concurrently. Otherwise, a
209 	 * race exists.
210 	 */
211 	err =  mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry);
212 	if (err)
213 		return ERR_PTR(err);
214 
215 	if (flags & IB_MR_REREG_PD) {
216 		err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry,
217 					   to_mpd(pd)->pdn);
218 
219 		if (err)
220 			goto release_mpt_entry;
221 	}
222 
223 	if (flags & IB_MR_REREG_ACCESS) {
224 		if (ib_access_writable(mr_access_flags) &&
225 		    !mmr->umem->writable) {
226 			err = -EPERM;
227 			goto release_mpt_entry;
228 		}
229 
230 		err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry,
231 					       convert_access(mr_access_flags));
232 
233 		if (err)
234 			goto release_mpt_entry;
235 	}
236 
237 	if (flags & IB_MR_REREG_TRANS) {
238 		int shift;
239 		int n;
240 
241 		mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
242 		ib_umem_release(mmr->umem);
243 		mmr->umem = mlx4_get_umem_mr(mr->device, start, length,
244 					     mr_access_flags);
245 		if (IS_ERR(mmr->umem)) {
246 			err = PTR_ERR(mmr->umem);
247 			/* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */
248 			mmr->umem = NULL;
249 			goto release_mpt_entry;
250 		}
251 		n = ib_umem_num_dma_blocks(mmr->umem, PAGE_SIZE);
252 		shift = PAGE_SHIFT;
253 
254 		err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr,
255 					      virt_addr, length, n, shift,
256 					      *pmpt_entry);
257 		if (err) {
258 			ib_umem_release(mmr->umem);
259 			goto release_mpt_entry;
260 		}
261 		mmr->mmr.iova       = virt_addr;
262 		mmr->mmr.size       = length;
263 
264 		err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem);
265 		if (err) {
266 			mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
267 			ib_umem_release(mmr->umem);
268 			goto release_mpt_entry;
269 		}
270 	}
271 
272 	/* If we couldn't transfer the MR to the HCA, just remember to
273 	 * return a failure. But dereg_mr will free the resources.
274 	 */
275 	err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry);
276 	if (!err && flags & IB_MR_REREG_ACCESS)
277 		mmr->mmr.access = mr_access_flags;
278 
279 release_mpt_entry:
280 	mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry);
281 	if (err)
282 		return ERR_PTR(err);
283 	return NULL;
284 }
285 
286 static int
mlx4_alloc_priv_pages(struct ib_device * device,struct mlx4_ib_mr * mr,int max_pages)287 mlx4_alloc_priv_pages(struct ib_device *device,
288 		      struct mlx4_ib_mr *mr,
289 		      int max_pages)
290 {
291 	int ret;
292 
293 	/* Ensure that size is aligned to DMA cacheline
294 	 * requirements.
295 	 * max_pages is limited to MLX4_MAX_FAST_REG_PAGES
296 	 * so page_map_size will never cross PAGE_SIZE.
297 	 */
298 	mr->page_map_size = roundup(max_pages * sizeof(u64),
299 				    MLX4_MR_PAGES_ALIGN);
300 
301 	/* Prevent cross page boundary allocation. */
302 	mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL);
303 	if (!mr->pages)
304 		return -ENOMEM;
305 
306 	mr->page_map = dma_map_single(device->dev.parent, mr->pages,
307 				      mr->page_map_size, DMA_TO_DEVICE);
308 
309 	if (dma_mapping_error(device->dev.parent, mr->page_map)) {
310 		ret = -ENOMEM;
311 		goto err;
312 	}
313 
314 	return 0;
315 
316 err:
317 	free_page((unsigned long)mr->pages);
318 	return ret;
319 }
320 
321 static void
mlx4_free_priv_pages(struct mlx4_ib_mr * mr)322 mlx4_free_priv_pages(struct mlx4_ib_mr *mr)
323 {
324 	if (mr->pages) {
325 		struct ib_device *device = mr->ibmr.device;
326 
327 		dma_unmap_single(device->dev.parent, mr->page_map,
328 				 mr->page_map_size, DMA_TO_DEVICE);
329 		free_page((unsigned long)mr->pages);
330 		mr->pages = NULL;
331 	}
332 }
333 
mlx4_ib_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)334 int mlx4_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
335 {
336 	struct mlx4_ib_mr *mr = to_mmr(ibmr);
337 	int ret;
338 
339 	mlx4_free_priv_pages(mr);
340 
341 	ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr);
342 	if (ret)
343 		return ret;
344 	if (mr->umem)
345 		ib_umem_release(mr->umem);
346 	kfree(mr);
347 
348 	return 0;
349 }
350 
mlx4_ib_alloc_mw(struct ib_mw * ibmw,struct ib_udata * udata)351 int mlx4_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
352 {
353 	struct mlx4_ib_dev *dev = to_mdev(ibmw->device);
354 	struct mlx4_ib_mw *mw = to_mmw(ibmw);
355 	int err;
356 
357 	err = mlx4_mw_alloc(dev->dev, to_mpd(ibmw->pd)->pdn,
358 			    to_mlx4_type(ibmw->type), &mw->mmw);
359 	if (err)
360 		return err;
361 
362 	err = mlx4_mw_enable(dev->dev, &mw->mmw);
363 	if (err)
364 		goto err_mw;
365 
366 	ibmw->rkey = mw->mmw.key;
367 	return 0;
368 
369 err_mw:
370 	mlx4_mw_free(dev->dev, &mw->mmw);
371 	return err;
372 }
373 
mlx4_ib_dealloc_mw(struct ib_mw * ibmw)374 int mlx4_ib_dealloc_mw(struct ib_mw *ibmw)
375 {
376 	struct mlx4_ib_mw *mw = to_mmw(ibmw);
377 
378 	mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw);
379 	return 0;
380 }
381 
mlx4_ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)382 struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
383 			       u32 max_num_sg)
384 {
385 	struct mlx4_ib_dev *dev = to_mdev(pd->device);
386 	struct mlx4_ib_mr *mr;
387 	int err;
388 
389 	if (mr_type != IB_MR_TYPE_MEM_REG ||
390 	    max_num_sg > MLX4_MAX_FAST_REG_PAGES)
391 		return ERR_PTR(-EINVAL);
392 
393 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
394 	if (!mr)
395 		return ERR_PTR(-ENOMEM);
396 
397 	err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0,
398 			    max_num_sg, 0, &mr->mmr);
399 	if (err)
400 		goto err_free;
401 
402 	err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg);
403 	if (err)
404 		goto err_free_mr;
405 
406 	mr->max_pages = max_num_sg;
407 	err = mlx4_mr_enable(dev->dev, &mr->mmr);
408 	if (err)
409 		goto err_free_pl;
410 
411 	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
412 	mr->umem = NULL;
413 
414 	return &mr->ibmr;
415 
416 err_free_pl:
417 	mr->ibmr.device = pd->device;
418 	mlx4_free_priv_pages(mr);
419 err_free_mr:
420 	(void) mlx4_mr_free(dev->dev, &mr->mmr);
421 err_free:
422 	kfree(mr);
423 	return ERR_PTR(err);
424 }
425 
mlx4_set_page(struct ib_mr * ibmr,u64 addr)426 static int mlx4_set_page(struct ib_mr *ibmr, u64 addr)
427 {
428 	struct mlx4_ib_mr *mr = to_mmr(ibmr);
429 
430 	if (unlikely(mr->npages == mr->max_pages))
431 		return -ENOMEM;
432 
433 	mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT);
434 
435 	return 0;
436 }
437 
mlx4_ib_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)438 int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
439 		      unsigned int *sg_offset)
440 {
441 	struct mlx4_ib_mr *mr = to_mmr(ibmr);
442 	int rc;
443 
444 	mr->npages = 0;
445 
446 	ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map,
447 				   mr->page_map_size, DMA_TO_DEVICE);
448 
449 	rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page);
450 
451 	ib_dma_sync_single_for_device(ibmr->device, mr->page_map,
452 				      mr->page_map_size, DMA_TO_DEVICE);
453 
454 	return rc;
455 }
456