1 /*
2 * Copyright (c) 2004 Topspin Communications. All rights reserved.
3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49
50 #include "core_priv.h"
51 #include "restrack.h"
52
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 static struct workqueue_struct *ib_unreg_wq;
62
63 /*
64 * Each of the three rwsem locks (devices, clients, client_data) protects the
65 * xarray of the same name. Specifically it allows the caller to assert that
66 * the MARK will/will not be changing under the lock, and for devices and
67 * clients, that the value in the xarray is still a valid pointer. Change of
68 * the MARK is linked to the object state, so holding the lock and testing the
69 * MARK also asserts that the contained object is in a certain state.
70 *
71 * This is used to build a two stage register/unregister flow where objects
72 * can continue to be in the xarray even though they are still in progress to
73 * register/unregister.
74 *
75 * The xarray itself provides additional locking, and restartable iteration,
76 * which is also relied on.
77 *
78 * Locks should not be nested, with the exception of client_data, which is
79 * allowed to nest under the read side of the other two locks.
80 *
81 * The devices_rwsem also protects the device name list, any change or
82 * assignment of device name must also hold the write side to guarantee unique
83 * names.
84 */
85
86 /*
87 * devices contains devices that have had their names assigned. The
88 * devices may not be registered. Users that care about the registration
89 * status need to call ib_device_try_get() on the device to ensure it is
90 * registered, and keep it registered, for the required duration.
91 *
92 */
93 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94 static DECLARE_RWSEM(devices_rwsem);
95 #define DEVICE_REGISTERED XA_MARK_1
96
97 static u32 highest_client_id;
98 #define CLIENT_REGISTERED XA_MARK_1
99 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100 static DECLARE_RWSEM(clients_rwsem);
101
ib_client_put(struct ib_client * client)102 static void ib_client_put(struct ib_client *client)
103 {
104 if (refcount_dec_and_test(&client->uses))
105 complete(&client->uses_zero);
106 }
107
108 /*
109 * If client_data is registered then the corresponding client must also still
110 * be registered.
111 */
112 #define CLIENT_DATA_REGISTERED XA_MARK_1
113
114 unsigned int rdma_dev_net_id;
115
116 /*
117 * A list of net namespaces is maintained in an xarray. This is necessary
118 * because we can't get the locking right using the existing net ns list. We
119 * would require a init_net callback after the list is updated.
120 */
121 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
122 /*
123 * rwsem to protect accessing the rdma_nets xarray entries.
124 */
125 static DECLARE_RWSEM(rdma_nets_rwsem);
126
127 bool ib_devices_shared_netns = true;
128 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
129 MODULE_PARM_DESC(netns_mode,
130 "Share device among net namespaces; default=1 (shared)");
131 /**
132 * rdma_dev_access_netns() - Return whether an rdma device can be accessed
133 * from a specified net namespace or not.
134 * @dev: Pointer to rdma device which needs to be checked
135 * @net: Pointer to net namesapce for which access to be checked
136 *
137 * When the rdma device is in shared mode, it ignores the net namespace.
138 * When the rdma device is exclusive to a net namespace, rdma device net
139 * namespace is checked against the specified one.
140 */
rdma_dev_access_netns(const struct ib_device * dev,const struct net * net)141 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
142 {
143 return (ib_devices_shared_netns ||
144 net_eq(read_pnet(&dev->coredev.rdma_net), net));
145 }
146 EXPORT_SYMBOL(rdma_dev_access_netns);
147
148 /*
149 * xarray has this behavior where it won't iterate over NULL values stored in
150 * allocated arrays. So we need our own iterator to see all values stored in
151 * the array. This does the same thing as xa_for_each except that it also
152 * returns NULL valued entries if the array is allocating. Simplified to only
153 * work on simple xarrays.
154 */
xan_find_marked(struct xarray * xa,unsigned long * indexp,xa_mark_t filter)155 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
156 xa_mark_t filter)
157 {
158 XA_STATE(xas, xa, *indexp);
159 void *entry;
160
161 rcu_read_lock();
162 do {
163 entry = xas_find_marked(&xas, ULONG_MAX, filter);
164 if (xa_is_zero(entry))
165 break;
166 } while (xas_retry(&xas, entry));
167 rcu_read_unlock();
168
169 if (entry) {
170 *indexp = xas.xa_index;
171 if (xa_is_zero(entry))
172 return NULL;
173 return entry;
174 }
175 return XA_ERROR(-ENOENT);
176 }
177 #define xan_for_each_marked(xa, index, entry, filter) \
178 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \
179 !xa_is_err(entry); \
180 (index)++, entry = xan_find_marked(xa, &(index), filter))
181
182 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
183 static DEFINE_SPINLOCK(ndev_hash_lock);
184 static DECLARE_HASHTABLE(ndev_hash, 5);
185
186 static void free_netdevs(struct ib_device *ib_dev);
187 static void ib_unregister_work(struct work_struct *work);
188 static void __ib_unregister_device(struct ib_device *device);
189 static int ib_security_change(struct notifier_block *nb, unsigned long event,
190 void *lsm_data);
191 static void ib_policy_change_task(struct work_struct *work);
192 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
193
__ibdev_printk(const char * level,const struct ib_device * ibdev,struct va_format * vaf)194 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
195 struct va_format *vaf)
196 {
197 if (ibdev && ibdev->dev.parent)
198 dev_printk_emit(level[1] - '0',
199 ibdev->dev.parent,
200 "%s %s %s: %pV",
201 dev_driver_string(ibdev->dev.parent),
202 dev_name(ibdev->dev.parent),
203 dev_name(&ibdev->dev),
204 vaf);
205 else if (ibdev)
206 printk("%s%s: %pV",
207 level, dev_name(&ibdev->dev), vaf);
208 else
209 printk("%s(NULL ib_device): %pV", level, vaf);
210 }
211
212 #define define_ibdev_printk_level(func, level) \
213 void func(const struct ib_device *ibdev, const char *fmt, ...) \
214 { \
215 struct va_format vaf; \
216 va_list args; \
217 \
218 va_start(args, fmt); \
219 \
220 vaf.fmt = fmt; \
221 vaf.va = &args; \
222 \
223 __ibdev_printk(level, ibdev, &vaf); \
224 \
225 va_end(args); \
226 } \
227 EXPORT_SYMBOL(func);
228
229 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
230 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
231 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
232 define_ibdev_printk_level(ibdev_err, KERN_ERR);
233 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
234 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
235 define_ibdev_printk_level(ibdev_info, KERN_INFO);
236
237 static struct notifier_block ibdev_lsm_nb = {
238 .notifier_call = ib_security_change,
239 };
240
241 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
242 struct net *net);
243
244 /* Pointer to the RCU head at the start of the ib_port_data array */
245 struct ib_port_data_rcu {
246 struct rcu_head rcu_head;
247 struct ib_port_data pdata[];
248 };
249
ib_device_check_mandatory(struct ib_device * device)250 static void ib_device_check_mandatory(struct ib_device *device)
251 {
252 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
253 static const struct {
254 size_t offset;
255 char *name;
256 } mandatory_table[] = {
257 IB_MANDATORY_FUNC(query_device),
258 IB_MANDATORY_FUNC(query_port),
259 IB_MANDATORY_FUNC(alloc_pd),
260 IB_MANDATORY_FUNC(dealloc_pd),
261 IB_MANDATORY_FUNC(create_qp),
262 IB_MANDATORY_FUNC(modify_qp),
263 IB_MANDATORY_FUNC(destroy_qp),
264 IB_MANDATORY_FUNC(post_send),
265 IB_MANDATORY_FUNC(post_recv),
266 IB_MANDATORY_FUNC(create_cq),
267 IB_MANDATORY_FUNC(destroy_cq),
268 IB_MANDATORY_FUNC(poll_cq),
269 IB_MANDATORY_FUNC(req_notify_cq),
270 IB_MANDATORY_FUNC(get_dma_mr),
271 IB_MANDATORY_FUNC(reg_user_mr),
272 IB_MANDATORY_FUNC(dereg_mr),
273 IB_MANDATORY_FUNC(get_port_immutable)
274 };
275 int i;
276
277 device->kverbs_provider = true;
278 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
279 if (!*(void **) ((void *) &device->ops +
280 mandatory_table[i].offset)) {
281 device->kverbs_provider = false;
282 break;
283 }
284 }
285 }
286
287 /*
288 * Caller must perform ib_device_put() to return the device reference count
289 * when ib_device_get_by_index() returns valid device pointer.
290 */
ib_device_get_by_index(const struct net * net,u32 index)291 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
292 {
293 struct ib_device *device;
294
295 down_read(&devices_rwsem);
296 device = xa_load(&devices, index);
297 if (device) {
298 if (!rdma_dev_access_netns(device, net)) {
299 device = NULL;
300 goto out;
301 }
302
303 if (!ib_device_try_get(device))
304 device = NULL;
305 }
306 out:
307 up_read(&devices_rwsem);
308 return device;
309 }
310
311 /**
312 * ib_device_put - Release IB device reference
313 * @device: device whose reference to be released
314 *
315 * ib_device_put() releases reference to the IB device to allow it to be
316 * unregistered and eventually free.
317 */
ib_device_put(struct ib_device * device)318 void ib_device_put(struct ib_device *device)
319 {
320 if (refcount_dec_and_test(&device->refcount))
321 complete(&device->unreg_completion);
322 }
323 EXPORT_SYMBOL(ib_device_put);
324
__ib_device_get_by_name(const char * name)325 static struct ib_device *__ib_device_get_by_name(const char *name)
326 {
327 struct ib_device *device;
328 unsigned long index;
329
330 xa_for_each (&devices, index, device)
331 if (!strcmp(name, dev_name(&device->dev)))
332 return device;
333
334 return NULL;
335 }
336
337 /**
338 * ib_device_get_by_name - Find an IB device by name
339 * @name: The name to look for
340 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
341 *
342 * Find and hold an ib_device by its name. The caller must call
343 * ib_device_put() on the returned pointer.
344 */
ib_device_get_by_name(const char * name,enum rdma_driver_id driver_id)345 struct ib_device *ib_device_get_by_name(const char *name,
346 enum rdma_driver_id driver_id)
347 {
348 struct ib_device *device;
349
350 down_read(&devices_rwsem);
351 device = __ib_device_get_by_name(name);
352 if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
353 device->ops.driver_id != driver_id)
354 device = NULL;
355
356 if (device) {
357 if (!ib_device_try_get(device))
358 device = NULL;
359 }
360 up_read(&devices_rwsem);
361 return device;
362 }
363 EXPORT_SYMBOL(ib_device_get_by_name);
364
rename_compat_devs(struct ib_device * device)365 static int rename_compat_devs(struct ib_device *device)
366 {
367 struct ib_core_device *cdev;
368 unsigned long index;
369 int ret = 0;
370
371 mutex_lock(&device->compat_devs_mutex);
372 xa_for_each (&device->compat_devs, index, cdev) {
373 ret = device_rename(&cdev->dev, dev_name(&device->dev));
374 if (ret) {
375 dev_warn(&cdev->dev,
376 "Fail to rename compatdev to new name %s\n",
377 dev_name(&device->dev));
378 break;
379 }
380 }
381 mutex_unlock(&device->compat_devs_mutex);
382 return ret;
383 }
384
ib_device_rename(struct ib_device * ibdev,const char * name)385 int ib_device_rename(struct ib_device *ibdev, const char *name)
386 {
387 unsigned long index;
388 void *client_data;
389 int ret;
390
391 down_write(&devices_rwsem);
392 if (!strcmp(name, dev_name(&ibdev->dev))) {
393 up_write(&devices_rwsem);
394 return 0;
395 }
396
397 if (__ib_device_get_by_name(name)) {
398 up_write(&devices_rwsem);
399 return -EEXIST;
400 }
401
402 ret = device_rename(&ibdev->dev, name);
403 if (ret) {
404 up_write(&devices_rwsem);
405 return ret;
406 }
407
408 strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
409 ret = rename_compat_devs(ibdev);
410
411 downgrade_write(&devices_rwsem);
412 down_read(&ibdev->client_data_rwsem);
413 xan_for_each_marked(&ibdev->client_data, index, client_data,
414 CLIENT_DATA_REGISTERED) {
415 struct ib_client *client = xa_load(&clients, index);
416
417 if (!client || !client->rename)
418 continue;
419
420 client->rename(ibdev, client_data);
421 }
422 up_read(&ibdev->client_data_rwsem);
423 rdma_nl_notify_event(ibdev, 0, RDMA_RENAME_EVENT);
424 up_read(&devices_rwsem);
425 return 0;
426 }
427
ib_device_set_dim(struct ib_device * ibdev,u8 use_dim)428 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
429 {
430 if (use_dim > 1)
431 return -EINVAL;
432 ibdev->use_cq_dim = use_dim;
433
434 return 0;
435 }
436
alloc_name(struct ib_device * ibdev,const char * name)437 static int alloc_name(struct ib_device *ibdev, const char *name)
438 {
439 struct ib_device *device;
440 unsigned long index;
441 struct ida inuse;
442 int rc;
443 int i;
444
445 lockdep_assert_held_write(&devices_rwsem);
446 ida_init(&inuse);
447 xa_for_each (&devices, index, device) {
448 char buf[IB_DEVICE_NAME_MAX];
449
450 if (sscanf(dev_name(&device->dev), name, &i) != 1)
451 continue;
452 if (i < 0 || i >= INT_MAX)
453 continue;
454 snprintf(buf, sizeof buf, name, i);
455 if (strcmp(buf, dev_name(&device->dev)) != 0)
456 continue;
457
458 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
459 if (rc < 0)
460 goto out;
461 }
462
463 rc = ida_alloc(&inuse, GFP_KERNEL);
464 if (rc < 0)
465 goto out;
466
467 rc = dev_set_name(&ibdev->dev, name, rc);
468 out:
469 ida_destroy(&inuse);
470 return rc;
471 }
472
ib_device_release(struct device * device)473 static void ib_device_release(struct device *device)
474 {
475 struct ib_device *dev = container_of(device, struct ib_device, dev);
476
477 free_netdevs(dev);
478 WARN_ON(refcount_read(&dev->refcount));
479 if (dev->hw_stats_data)
480 ib_device_release_hw_stats(dev->hw_stats_data);
481 if (dev->port_data) {
482 ib_cache_release_one(dev);
483 ib_security_release_port_pkey_list(dev);
484 rdma_counter_release(dev);
485 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
486 pdata[0]),
487 rcu_head);
488 }
489
490 mutex_destroy(&dev->subdev_lock);
491 mutex_destroy(&dev->unregistration_lock);
492 mutex_destroy(&dev->compat_devs_mutex);
493
494 xa_destroy(&dev->compat_devs);
495 xa_destroy(&dev->client_data);
496 kfree_rcu(dev, rcu_head);
497 }
498
ib_device_uevent(const struct device * device,struct kobj_uevent_env * env)499 static int ib_device_uevent(const struct device *device,
500 struct kobj_uevent_env *env)
501 {
502 if (add_uevent_var(env, "NAME=%s", dev_name(device)))
503 return -ENOMEM;
504
505 /*
506 * It would be nice to pass the node GUID with the event...
507 */
508
509 return 0;
510 }
511
net_namespace(const struct device * d)512 static const void *net_namespace(const struct device *d)
513 {
514 const struct ib_core_device *coredev =
515 container_of(d, struct ib_core_device, dev);
516
517 return read_pnet(&coredev->rdma_net);
518 }
519
520 static struct class ib_class = {
521 .name = "infiniband",
522 .dev_release = ib_device_release,
523 .dev_uevent = ib_device_uevent,
524 .ns_type = &net_ns_type_operations,
525 .namespace = net_namespace,
526 };
527
rdma_init_coredev(struct ib_core_device * coredev,struct ib_device * dev,struct net * net)528 static void rdma_init_coredev(struct ib_core_device *coredev,
529 struct ib_device *dev, struct net *net)
530 {
531 bool is_full_dev = &dev->coredev == coredev;
532
533 /* This BUILD_BUG_ON is intended to catch layout change
534 * of union of ib_core_device and device.
535 * dev must be the first element as ib_core and providers
536 * driver uses it. Adding anything in ib_core_device before
537 * device will break this assumption.
538 */
539 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
540 offsetof(struct ib_device, dev));
541
542 coredev->dev.class = &ib_class;
543 coredev->dev.groups = dev->groups;
544
545 /*
546 * Don't expose hw counters outside of the init namespace.
547 */
548 if (!is_full_dev && dev->hw_stats_attr_index)
549 coredev->dev.groups[dev->hw_stats_attr_index] = NULL;
550
551 device_initialize(&coredev->dev);
552 coredev->owner = dev;
553 INIT_LIST_HEAD(&coredev->port_list);
554 write_pnet(&coredev->rdma_net, net);
555 }
556
557 /**
558 * _ib_alloc_device - allocate an IB device struct
559 * @size:size of structure to allocate
560 *
561 * Low-level drivers should use ib_alloc_device() to allocate &struct
562 * ib_device. @size is the size of the structure to be allocated,
563 * including any private data used by the low-level driver.
564 * ib_dealloc_device() must be used to free structures allocated with
565 * ib_alloc_device().
566 */
_ib_alloc_device(size_t size)567 struct ib_device *_ib_alloc_device(size_t size)
568 {
569 struct ib_device *device;
570 unsigned int i;
571
572 if (WARN_ON(size < sizeof(struct ib_device)))
573 return NULL;
574
575 device = kzalloc(size, GFP_KERNEL);
576 if (!device)
577 return NULL;
578
579 if (rdma_restrack_init(device)) {
580 kfree(device);
581 return NULL;
582 }
583
584 rdma_init_coredev(&device->coredev, device, &init_net);
585
586 INIT_LIST_HEAD(&device->event_handler_list);
587 spin_lock_init(&device->qp_open_list_lock);
588 init_rwsem(&device->event_handler_rwsem);
589 mutex_init(&device->unregistration_lock);
590 /*
591 * client_data needs to be alloc because we don't want our mark to be
592 * destroyed if the user stores NULL in the client data.
593 */
594 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
595 init_rwsem(&device->client_data_rwsem);
596 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
597 mutex_init(&device->compat_devs_mutex);
598 init_completion(&device->unreg_completion);
599 INIT_WORK(&device->unregistration_work, ib_unregister_work);
600
601 spin_lock_init(&device->cq_pools_lock);
602 for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
603 INIT_LIST_HEAD(&device->cq_pools[i]);
604
605 rwlock_init(&device->cache_lock);
606
607 device->uverbs_cmd_mask =
608 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
609 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
610 BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
611 BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
612 BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
613 BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
614 BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
615 BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
616 BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
617 BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
618 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
619 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
620 BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
621 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
622 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
623 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
624 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
625 BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
626 BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
627 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
628 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
629 BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
630 BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
631 BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
632 BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
633 BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
634 BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
635 BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
636 BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
637 BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
638
639 mutex_init(&device->subdev_lock);
640 INIT_LIST_HEAD(&device->subdev_list_head);
641 INIT_LIST_HEAD(&device->subdev_list);
642
643 return device;
644 }
645 EXPORT_SYMBOL(_ib_alloc_device);
646
647 /**
648 * ib_dealloc_device - free an IB device struct
649 * @device:structure to free
650 *
651 * Free a structure allocated with ib_alloc_device().
652 */
ib_dealloc_device(struct ib_device * device)653 void ib_dealloc_device(struct ib_device *device)
654 {
655 if (device->ops.dealloc_driver)
656 device->ops.dealloc_driver(device);
657
658 /*
659 * ib_unregister_driver() requires all devices to remain in the xarray
660 * while their ops are callable. The last op we call is dealloc_driver
661 * above. This is needed to create a fence on op callbacks prior to
662 * allowing the driver module to unload.
663 */
664 down_write(&devices_rwsem);
665 if (xa_load(&devices, device->index) == device)
666 xa_erase(&devices, device->index);
667 up_write(&devices_rwsem);
668
669 /* Expedite releasing netdev references */
670 free_netdevs(device);
671
672 WARN_ON(!xa_empty(&device->compat_devs));
673 WARN_ON(!xa_empty(&device->client_data));
674 WARN_ON(refcount_read(&device->refcount));
675 rdma_restrack_clean(device);
676 /* Balances with device_initialize */
677 put_device(&device->dev);
678 }
679 EXPORT_SYMBOL(ib_dealloc_device);
680
681 /*
682 * add_client_context() and remove_client_context() must be safe against
683 * parallel calls on the same device - registration/unregistration of both the
684 * device and client can be occurring in parallel.
685 *
686 * The routines need to be a fence, any caller must not return until the add
687 * or remove is fully completed.
688 */
add_client_context(struct ib_device * device,struct ib_client * client)689 static int add_client_context(struct ib_device *device,
690 struct ib_client *client)
691 {
692 int ret = 0;
693
694 if (!device->kverbs_provider && !client->no_kverbs_req)
695 return 0;
696
697 down_write(&device->client_data_rwsem);
698 /*
699 * So long as the client is registered hold both the client and device
700 * unregistration locks.
701 */
702 if (!refcount_inc_not_zero(&client->uses))
703 goto out_unlock;
704 refcount_inc(&device->refcount);
705
706 /*
707 * Another caller to add_client_context got here first and has already
708 * completely initialized context.
709 */
710 if (xa_get_mark(&device->client_data, client->client_id,
711 CLIENT_DATA_REGISTERED))
712 goto out;
713
714 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
715 GFP_KERNEL));
716 if (ret)
717 goto out;
718 downgrade_write(&device->client_data_rwsem);
719 if (client->add) {
720 if (client->add(device)) {
721 /*
722 * If a client fails to add then the error code is
723 * ignored, but we won't call any more ops on this
724 * client.
725 */
726 xa_erase(&device->client_data, client->client_id);
727 up_read(&device->client_data_rwsem);
728 ib_device_put(device);
729 ib_client_put(client);
730 return 0;
731 }
732 }
733
734 /* Readers shall not see a client until add has been completed */
735 xa_set_mark(&device->client_data, client->client_id,
736 CLIENT_DATA_REGISTERED);
737 up_read(&device->client_data_rwsem);
738 return 0;
739
740 out:
741 ib_device_put(device);
742 ib_client_put(client);
743 out_unlock:
744 up_write(&device->client_data_rwsem);
745 return ret;
746 }
747
remove_client_context(struct ib_device * device,unsigned int client_id)748 static void remove_client_context(struct ib_device *device,
749 unsigned int client_id)
750 {
751 struct ib_client *client;
752 void *client_data;
753
754 down_write(&device->client_data_rwsem);
755 if (!xa_get_mark(&device->client_data, client_id,
756 CLIENT_DATA_REGISTERED)) {
757 up_write(&device->client_data_rwsem);
758 return;
759 }
760 client_data = xa_load(&device->client_data, client_id);
761 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
762 client = xa_load(&clients, client_id);
763 up_write(&device->client_data_rwsem);
764
765 /*
766 * Notice we cannot be holding any exclusive locks when calling the
767 * remove callback as the remove callback can recurse back into any
768 * public functions in this module and thus try for any locks those
769 * functions take.
770 *
771 * For this reason clients and drivers should not call the
772 * unregistration functions will holdling any locks.
773 */
774 if (client->remove)
775 client->remove(device, client_data);
776
777 xa_erase(&device->client_data, client_id);
778 ib_device_put(device);
779 ib_client_put(client);
780 }
781
alloc_port_data(struct ib_device * device)782 static int alloc_port_data(struct ib_device *device)
783 {
784 struct ib_port_data_rcu *pdata_rcu;
785 u32 port;
786
787 if (device->port_data)
788 return 0;
789
790 /* This can only be called once the physical port range is defined */
791 if (WARN_ON(!device->phys_port_cnt))
792 return -EINVAL;
793
794 /* Reserve U32_MAX so the logic to go over all the ports is sane */
795 if (WARN_ON(device->phys_port_cnt == U32_MAX))
796 return -EINVAL;
797
798 /*
799 * device->port_data is indexed directly by the port number to make
800 * access to this data as efficient as possible.
801 *
802 * Therefore port_data is declared as a 1 based array with potential
803 * empty slots at the beginning.
804 */
805 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
806 size_add(rdma_end_port(device), 1)),
807 GFP_KERNEL);
808 if (!pdata_rcu)
809 return -ENOMEM;
810 /*
811 * The rcu_head is put in front of the port data array and the stored
812 * pointer is adjusted since we never need to see that member until
813 * kfree_rcu.
814 */
815 device->port_data = pdata_rcu->pdata;
816
817 rdma_for_each_port (device, port) {
818 struct ib_port_data *pdata = &device->port_data[port];
819
820 pdata->ib_dev = device;
821 spin_lock_init(&pdata->pkey_list_lock);
822 INIT_LIST_HEAD(&pdata->pkey_list);
823 spin_lock_init(&pdata->netdev_lock);
824 INIT_HLIST_NODE(&pdata->ndev_hash_link);
825 }
826 return 0;
827 }
828
verify_immutable(const struct ib_device * dev,u32 port)829 static int verify_immutable(const struct ib_device *dev, u32 port)
830 {
831 return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
832 rdma_max_mad_size(dev, port) != 0);
833 }
834
setup_port_data(struct ib_device * device)835 static int setup_port_data(struct ib_device *device)
836 {
837 u32 port;
838 int ret;
839
840 ret = alloc_port_data(device);
841 if (ret)
842 return ret;
843
844 rdma_for_each_port (device, port) {
845 struct ib_port_data *pdata = &device->port_data[port];
846
847 ret = device->ops.get_port_immutable(device, port,
848 &pdata->immutable);
849 if (ret)
850 return ret;
851
852 if (verify_immutable(device, port))
853 return -EINVAL;
854 }
855 return 0;
856 }
857
858 /**
859 * ib_port_immutable_read() - Read rdma port's immutable data
860 * @dev: IB device
861 * @port: port number whose immutable data to read. It starts with index 1 and
862 * valid upto including rdma_end_port().
863 */
864 const struct ib_port_immutable*
ib_port_immutable_read(struct ib_device * dev,unsigned int port)865 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
866 {
867 WARN_ON(!rdma_is_port_valid(dev, port));
868 return &dev->port_data[port].immutable;
869 }
870 EXPORT_SYMBOL(ib_port_immutable_read);
871
ib_get_device_fw_str(struct ib_device * dev,char * str)872 void ib_get_device_fw_str(struct ib_device *dev, char *str)
873 {
874 if (dev->ops.get_dev_fw_str)
875 dev->ops.get_dev_fw_str(dev, str);
876 else
877 str[0] = '\0';
878 }
879 EXPORT_SYMBOL(ib_get_device_fw_str);
880
ib_policy_change_task(struct work_struct * work)881 static void ib_policy_change_task(struct work_struct *work)
882 {
883 struct ib_device *dev;
884 unsigned long index;
885
886 down_read(&devices_rwsem);
887 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
888 unsigned int i;
889
890 rdma_for_each_port (dev, i) {
891 u64 sp;
892 ib_get_cached_subnet_prefix(dev, i, &sp);
893 ib_security_cache_change(dev, i, sp);
894 }
895 }
896 up_read(&devices_rwsem);
897 }
898
ib_security_change(struct notifier_block * nb,unsigned long event,void * lsm_data)899 static int ib_security_change(struct notifier_block *nb, unsigned long event,
900 void *lsm_data)
901 {
902 if (event != LSM_POLICY_CHANGE)
903 return NOTIFY_DONE;
904
905 schedule_work(&ib_policy_change_work);
906 ib_mad_agent_security_change();
907
908 return NOTIFY_OK;
909 }
910
compatdev_release(struct device * dev)911 static void compatdev_release(struct device *dev)
912 {
913 struct ib_core_device *cdev =
914 container_of(dev, struct ib_core_device, dev);
915
916 kfree(cdev);
917 }
918
add_one_compat_dev(struct ib_device * device,struct rdma_dev_net * rnet)919 static int add_one_compat_dev(struct ib_device *device,
920 struct rdma_dev_net *rnet)
921 {
922 struct ib_core_device *cdev;
923 int ret;
924
925 lockdep_assert_held(&rdma_nets_rwsem);
926 if (!ib_devices_shared_netns)
927 return 0;
928
929 /*
930 * Create and add compat device in all namespaces other than where it
931 * is currently bound to.
932 */
933 if (net_eq(read_pnet(&rnet->net),
934 read_pnet(&device->coredev.rdma_net)))
935 return 0;
936
937 /*
938 * The first of init_net() or ib_register_device() to take the
939 * compat_devs_mutex wins and gets to add the device. Others will wait
940 * for completion here.
941 */
942 mutex_lock(&device->compat_devs_mutex);
943 cdev = xa_load(&device->compat_devs, rnet->id);
944 if (cdev) {
945 ret = 0;
946 goto done;
947 }
948 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
949 if (ret)
950 goto done;
951
952 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
953 if (!cdev) {
954 ret = -ENOMEM;
955 goto cdev_err;
956 }
957
958 cdev->dev.parent = device->dev.parent;
959 rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
960 cdev->dev.release = compatdev_release;
961 ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
962 if (ret)
963 goto add_err;
964
965 ret = device_add(&cdev->dev);
966 if (ret)
967 goto add_err;
968 ret = ib_setup_port_attrs(cdev);
969 if (ret)
970 goto port_err;
971
972 ret = xa_err(xa_store(&device->compat_devs, rnet->id,
973 cdev, GFP_KERNEL));
974 if (ret)
975 goto insert_err;
976
977 mutex_unlock(&device->compat_devs_mutex);
978 return 0;
979
980 insert_err:
981 ib_free_port_attrs(cdev);
982 port_err:
983 device_del(&cdev->dev);
984 add_err:
985 put_device(&cdev->dev);
986 cdev_err:
987 xa_release(&device->compat_devs, rnet->id);
988 done:
989 mutex_unlock(&device->compat_devs_mutex);
990 return ret;
991 }
992
remove_one_compat_dev(struct ib_device * device,u32 id)993 static void remove_one_compat_dev(struct ib_device *device, u32 id)
994 {
995 struct ib_core_device *cdev;
996
997 mutex_lock(&device->compat_devs_mutex);
998 cdev = xa_erase(&device->compat_devs, id);
999 mutex_unlock(&device->compat_devs_mutex);
1000 if (cdev) {
1001 ib_free_port_attrs(cdev);
1002 device_del(&cdev->dev);
1003 put_device(&cdev->dev);
1004 }
1005 }
1006
remove_compat_devs(struct ib_device * device)1007 static void remove_compat_devs(struct ib_device *device)
1008 {
1009 struct ib_core_device *cdev;
1010 unsigned long index;
1011
1012 xa_for_each (&device->compat_devs, index, cdev)
1013 remove_one_compat_dev(device, index);
1014 }
1015
add_compat_devs(struct ib_device * device)1016 static int add_compat_devs(struct ib_device *device)
1017 {
1018 struct rdma_dev_net *rnet;
1019 unsigned long index;
1020 int ret = 0;
1021
1022 lockdep_assert_held(&devices_rwsem);
1023
1024 down_read(&rdma_nets_rwsem);
1025 xa_for_each (&rdma_nets, index, rnet) {
1026 ret = add_one_compat_dev(device, rnet);
1027 if (ret)
1028 break;
1029 }
1030 up_read(&rdma_nets_rwsem);
1031 return ret;
1032 }
1033
remove_all_compat_devs(void)1034 static void remove_all_compat_devs(void)
1035 {
1036 struct ib_compat_device *cdev;
1037 struct ib_device *dev;
1038 unsigned long index;
1039
1040 down_read(&devices_rwsem);
1041 xa_for_each (&devices, index, dev) {
1042 unsigned long c_index = 0;
1043
1044 /* Hold nets_rwsem so that any other thread modifying this
1045 * system param can sync with this thread.
1046 */
1047 down_read(&rdma_nets_rwsem);
1048 xa_for_each (&dev->compat_devs, c_index, cdev)
1049 remove_one_compat_dev(dev, c_index);
1050 up_read(&rdma_nets_rwsem);
1051 }
1052 up_read(&devices_rwsem);
1053 }
1054
add_all_compat_devs(void)1055 static int add_all_compat_devs(void)
1056 {
1057 struct rdma_dev_net *rnet;
1058 struct ib_device *dev;
1059 unsigned long index;
1060 int ret = 0;
1061
1062 down_read(&devices_rwsem);
1063 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1064 unsigned long net_index = 0;
1065
1066 /* Hold nets_rwsem so that any other thread modifying this
1067 * system param can sync with this thread.
1068 */
1069 down_read(&rdma_nets_rwsem);
1070 xa_for_each (&rdma_nets, net_index, rnet) {
1071 ret = add_one_compat_dev(dev, rnet);
1072 if (ret)
1073 break;
1074 }
1075 up_read(&rdma_nets_rwsem);
1076 }
1077 up_read(&devices_rwsem);
1078 if (ret)
1079 remove_all_compat_devs();
1080 return ret;
1081 }
1082
rdma_compatdev_set(u8 enable)1083 int rdma_compatdev_set(u8 enable)
1084 {
1085 struct rdma_dev_net *rnet;
1086 unsigned long index;
1087 int ret = 0;
1088
1089 down_write(&rdma_nets_rwsem);
1090 if (ib_devices_shared_netns == enable) {
1091 up_write(&rdma_nets_rwsem);
1092 return 0;
1093 }
1094
1095 /* enable/disable of compat devices is not supported
1096 * when more than default init_net exists.
1097 */
1098 xa_for_each (&rdma_nets, index, rnet) {
1099 ret++;
1100 break;
1101 }
1102 if (!ret)
1103 ib_devices_shared_netns = enable;
1104 up_write(&rdma_nets_rwsem);
1105 if (ret)
1106 return -EBUSY;
1107
1108 if (enable)
1109 ret = add_all_compat_devs();
1110 else
1111 remove_all_compat_devs();
1112 return ret;
1113 }
1114
rdma_dev_exit_net(struct net * net)1115 static void rdma_dev_exit_net(struct net *net)
1116 {
1117 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1118 struct ib_device *dev;
1119 unsigned long index;
1120 int ret;
1121
1122 down_write(&rdma_nets_rwsem);
1123 /*
1124 * Prevent the ID from being re-used and hide the id from xa_for_each.
1125 */
1126 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1127 WARN_ON(ret);
1128 up_write(&rdma_nets_rwsem);
1129
1130 down_read(&devices_rwsem);
1131 xa_for_each (&devices, index, dev) {
1132 get_device(&dev->dev);
1133 /*
1134 * Release the devices_rwsem so that pontentially blocking
1135 * device_del, doesn't hold the devices_rwsem for too long.
1136 */
1137 up_read(&devices_rwsem);
1138
1139 remove_one_compat_dev(dev, rnet->id);
1140
1141 /*
1142 * If the real device is in the NS then move it back to init.
1143 */
1144 rdma_dev_change_netns(dev, net, &init_net);
1145
1146 put_device(&dev->dev);
1147 down_read(&devices_rwsem);
1148 }
1149 up_read(&devices_rwsem);
1150
1151 rdma_nl_net_exit(rnet);
1152 xa_erase(&rdma_nets, rnet->id);
1153 }
1154
rdma_dev_init_net(struct net * net)1155 static __net_init int rdma_dev_init_net(struct net *net)
1156 {
1157 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1158 unsigned long index;
1159 struct ib_device *dev;
1160 int ret;
1161
1162 write_pnet(&rnet->net, net);
1163
1164 ret = rdma_nl_net_init(rnet);
1165 if (ret)
1166 return ret;
1167
1168 /* No need to create any compat devices in default init_net. */
1169 if (net_eq(net, &init_net))
1170 return 0;
1171
1172 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1173 if (ret) {
1174 rdma_nl_net_exit(rnet);
1175 return ret;
1176 }
1177
1178 down_read(&devices_rwsem);
1179 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1180 /* Hold nets_rwsem so that netlink command cannot change
1181 * system configuration for device sharing mode.
1182 */
1183 down_read(&rdma_nets_rwsem);
1184 ret = add_one_compat_dev(dev, rnet);
1185 up_read(&rdma_nets_rwsem);
1186 if (ret)
1187 break;
1188 }
1189 up_read(&devices_rwsem);
1190
1191 if (ret)
1192 rdma_dev_exit_net(net);
1193
1194 return ret;
1195 }
1196
1197 /*
1198 * Assign the unique string device name and the unique device index. This is
1199 * undone by ib_dealloc_device.
1200 */
assign_name(struct ib_device * device,const char * name)1201 static int assign_name(struct ib_device *device, const char *name)
1202 {
1203 static u32 last_id;
1204 int ret;
1205
1206 down_write(&devices_rwsem);
1207 /* Assign a unique name to the device */
1208 if (strchr(name, '%'))
1209 ret = alloc_name(device, name);
1210 else
1211 ret = dev_set_name(&device->dev, name);
1212 if (ret)
1213 goto out;
1214
1215 if (__ib_device_get_by_name(dev_name(&device->dev))) {
1216 ret = -ENFILE;
1217 goto out;
1218 }
1219 strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1220
1221 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1222 &last_id, GFP_KERNEL);
1223 if (ret > 0)
1224 ret = 0;
1225
1226 out:
1227 up_write(&devices_rwsem);
1228 return ret;
1229 }
1230
1231 /*
1232 * setup_device() allocates memory and sets up data that requires calling the
1233 * device ops, this is the only reason these actions are not done during
1234 * ib_alloc_device. It is undone by ib_dealloc_device().
1235 */
setup_device(struct ib_device * device)1236 static int setup_device(struct ib_device *device)
1237 {
1238 struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1239 int ret;
1240
1241 ib_device_check_mandatory(device);
1242
1243 ret = setup_port_data(device);
1244 if (ret) {
1245 dev_warn(&device->dev, "Couldn't create per-port data\n");
1246 return ret;
1247 }
1248
1249 memset(&device->attrs, 0, sizeof(device->attrs));
1250 ret = device->ops.query_device(device, &device->attrs, &uhw);
1251 if (ret) {
1252 dev_warn(&device->dev,
1253 "Couldn't query the device attributes\n");
1254 return ret;
1255 }
1256
1257 return 0;
1258 }
1259
disable_device(struct ib_device * device)1260 static void disable_device(struct ib_device *device)
1261 {
1262 u32 cid;
1263
1264 WARN_ON(!refcount_read(&device->refcount));
1265
1266 down_write(&devices_rwsem);
1267 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1268 up_write(&devices_rwsem);
1269
1270 /*
1271 * Remove clients in LIFO order, see assign_client_id. This could be
1272 * more efficient if xarray learns to reverse iterate. Since no new
1273 * clients can be added to this ib_device past this point we only need
1274 * the maximum possible client_id value here.
1275 */
1276 down_read(&clients_rwsem);
1277 cid = highest_client_id;
1278 up_read(&clients_rwsem);
1279 while (cid) {
1280 cid--;
1281 remove_client_context(device, cid);
1282 }
1283
1284 ib_cq_pool_cleanup(device);
1285
1286 /* Pairs with refcount_set in enable_device */
1287 ib_device_put(device);
1288 wait_for_completion(&device->unreg_completion);
1289
1290 /*
1291 * compat devices must be removed after device refcount drops to zero.
1292 * Otherwise init_net() may add more compatdevs after removing compat
1293 * devices and before device is disabled.
1294 */
1295 remove_compat_devs(device);
1296 }
1297
1298 /*
1299 * An enabled device is visible to all clients and to all the public facing
1300 * APIs that return a device pointer. This always returns with a new get, even
1301 * if it fails.
1302 */
enable_device_and_get(struct ib_device * device)1303 static int enable_device_and_get(struct ib_device *device)
1304 {
1305 struct ib_client *client;
1306 unsigned long index;
1307 int ret = 0;
1308
1309 /*
1310 * One ref belongs to the xa and the other belongs to this
1311 * thread. This is needed to guard against parallel unregistration.
1312 */
1313 refcount_set(&device->refcount, 2);
1314 down_write(&devices_rwsem);
1315 xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1316
1317 /*
1318 * By using downgrade_write() we ensure that no other thread can clear
1319 * DEVICE_REGISTERED while we are completing the client setup.
1320 */
1321 downgrade_write(&devices_rwsem);
1322
1323 if (device->ops.enable_driver) {
1324 ret = device->ops.enable_driver(device);
1325 if (ret)
1326 goto out;
1327 }
1328
1329 down_read(&clients_rwsem);
1330 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1331 ret = add_client_context(device, client);
1332 if (ret)
1333 break;
1334 }
1335 up_read(&clients_rwsem);
1336 if (!ret)
1337 ret = add_compat_devs(device);
1338 out:
1339 up_read(&devices_rwsem);
1340 return ret;
1341 }
1342
prevent_dealloc_device(struct ib_device * ib_dev)1343 static void prevent_dealloc_device(struct ib_device *ib_dev)
1344 {
1345 }
1346
ib_device_notify_register(struct ib_device * device)1347 static void ib_device_notify_register(struct ib_device *device)
1348 {
1349 struct net_device *netdev;
1350 u32 port;
1351 int ret;
1352
1353 down_read(&devices_rwsem);
1354
1355 ret = rdma_nl_notify_event(device, 0, RDMA_REGISTER_EVENT);
1356 if (ret)
1357 goto out;
1358
1359 rdma_for_each_port(device, port) {
1360 netdev = ib_device_get_netdev(device, port);
1361 if (!netdev)
1362 continue;
1363
1364 ret = rdma_nl_notify_event(device, port,
1365 RDMA_NETDEV_ATTACH_EVENT);
1366 dev_put(netdev);
1367 if (ret)
1368 goto out;
1369 }
1370
1371 out:
1372 up_read(&devices_rwsem);
1373 }
1374
1375 /**
1376 * ib_register_device - Register an IB device with IB core
1377 * @device: Device to register
1378 * @name: unique string device name. This may include a '%' which will
1379 * cause a unique index to be added to the passed device name.
1380 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1381 * device will be used. In this case the caller should fully
1382 * setup the ibdev for DMA. This usually means using dma_virt_ops.
1383 *
1384 * Low-level drivers use ib_register_device() to register their
1385 * devices with the IB core. All registered clients will receive a
1386 * callback for each device that is added. @device must be allocated
1387 * with ib_alloc_device().
1388 *
1389 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1390 * asynchronously then the device pointer may become freed as soon as this
1391 * function returns.
1392 */
ib_register_device(struct ib_device * device,const char * name,struct device * dma_device)1393 int ib_register_device(struct ib_device *device, const char *name,
1394 struct device *dma_device)
1395 {
1396 int ret;
1397
1398 ret = assign_name(device, name);
1399 if (ret)
1400 return ret;
1401
1402 /*
1403 * If the caller does not provide a DMA capable device then the IB core
1404 * will set up ib_sge and scatterlist structures that stash the kernel
1405 * virtual address into the address field.
1406 */
1407 WARN_ON(dma_device && !dma_device->dma_parms);
1408 device->dma_device = dma_device;
1409
1410 ret = setup_device(device);
1411 if (ret)
1412 return ret;
1413
1414 ret = ib_cache_setup_one(device);
1415 if (ret) {
1416 dev_warn(&device->dev,
1417 "Couldn't set up InfiniBand P_Key/GID cache\n");
1418 return ret;
1419 }
1420
1421 device->groups[0] = &ib_dev_attr_group;
1422 device->groups[1] = device->ops.device_group;
1423 ret = ib_setup_device_attrs(device);
1424 if (ret)
1425 goto cache_cleanup;
1426
1427 ib_device_register_rdmacg(device);
1428
1429 rdma_counter_init(device);
1430
1431 /*
1432 * Ensure that ADD uevent is not fired because it
1433 * is too early amd device is not initialized yet.
1434 */
1435 dev_set_uevent_suppress(&device->dev, true);
1436 ret = device_add(&device->dev);
1437 if (ret)
1438 goto cg_cleanup;
1439
1440 ret = ib_setup_port_attrs(&device->coredev);
1441 if (ret) {
1442 dev_warn(&device->dev,
1443 "Couldn't register device with driver model\n");
1444 goto dev_cleanup;
1445 }
1446
1447 ret = enable_device_and_get(device);
1448 if (ret) {
1449 void (*dealloc_fn)(struct ib_device *);
1450
1451 /*
1452 * If we hit this error flow then we don't want to
1453 * automatically dealloc the device since the caller is
1454 * expected to call ib_dealloc_device() after
1455 * ib_register_device() fails. This is tricky due to the
1456 * possibility for a parallel unregistration along with this
1457 * error flow. Since we have a refcount here we know any
1458 * parallel flow is stopped in disable_device and will see the
1459 * special dealloc_driver pointer, causing the responsibility to
1460 * ib_dealloc_device() to revert back to this thread.
1461 */
1462 dealloc_fn = device->ops.dealloc_driver;
1463 device->ops.dealloc_driver = prevent_dealloc_device;
1464 ib_device_put(device);
1465 __ib_unregister_device(device);
1466 device->ops.dealloc_driver = dealloc_fn;
1467 dev_set_uevent_suppress(&device->dev, false);
1468 return ret;
1469 }
1470 dev_set_uevent_suppress(&device->dev, false);
1471 /* Mark for userspace that device is ready */
1472 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1473
1474 ib_device_notify_register(device);
1475 ib_device_put(device);
1476
1477 return 0;
1478
1479 dev_cleanup:
1480 device_del(&device->dev);
1481 cg_cleanup:
1482 dev_set_uevent_suppress(&device->dev, false);
1483 ib_device_unregister_rdmacg(device);
1484 cache_cleanup:
1485 ib_cache_cleanup_one(device);
1486 return ret;
1487 }
1488 EXPORT_SYMBOL(ib_register_device);
1489
1490 /* Callers must hold a get on the device. */
__ib_unregister_device(struct ib_device * ib_dev)1491 static void __ib_unregister_device(struct ib_device *ib_dev)
1492 {
1493 struct ib_device *sub, *tmp;
1494
1495 mutex_lock(&ib_dev->subdev_lock);
1496 list_for_each_entry_safe_reverse(sub, tmp,
1497 &ib_dev->subdev_list_head,
1498 subdev_list) {
1499 list_del(&sub->subdev_list);
1500 ib_dev->ops.del_sub_dev(sub);
1501 ib_device_put(ib_dev);
1502 }
1503 mutex_unlock(&ib_dev->subdev_lock);
1504
1505 /*
1506 * We have a registration lock so that all the calls to unregister are
1507 * fully fenced, once any unregister returns the device is truely
1508 * unregistered even if multiple callers are unregistering it at the
1509 * same time. This also interacts with the registration flow and
1510 * provides sane semantics if register and unregister are racing.
1511 */
1512 mutex_lock(&ib_dev->unregistration_lock);
1513 if (!refcount_read(&ib_dev->refcount))
1514 goto out;
1515
1516 disable_device(ib_dev);
1517 rdma_nl_notify_event(ib_dev, 0, RDMA_UNREGISTER_EVENT);
1518
1519 /* Expedite removing unregistered pointers from the hash table */
1520 free_netdevs(ib_dev);
1521
1522 ib_free_port_attrs(&ib_dev->coredev);
1523 device_del(&ib_dev->dev);
1524 ib_device_unregister_rdmacg(ib_dev);
1525 ib_cache_cleanup_one(ib_dev);
1526
1527 /*
1528 * Drivers using the new flow may not call ib_dealloc_device except
1529 * in error unwind prior to registration success.
1530 */
1531 if (ib_dev->ops.dealloc_driver &&
1532 ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1533 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1534 ib_dealloc_device(ib_dev);
1535 }
1536 out:
1537 mutex_unlock(&ib_dev->unregistration_lock);
1538 }
1539
1540 /**
1541 * ib_unregister_device - Unregister an IB device
1542 * @ib_dev: The device to unregister
1543 *
1544 * Unregister an IB device. All clients will receive a remove callback.
1545 *
1546 * Callers should call this routine only once, and protect against races with
1547 * registration. Typically it should only be called as part of a remove
1548 * callback in an implementation of driver core's struct device_driver and
1549 * related.
1550 *
1551 * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1552 * this function.
1553 */
ib_unregister_device(struct ib_device * ib_dev)1554 void ib_unregister_device(struct ib_device *ib_dev)
1555 {
1556 get_device(&ib_dev->dev);
1557 __ib_unregister_device(ib_dev);
1558 put_device(&ib_dev->dev);
1559 }
1560 EXPORT_SYMBOL(ib_unregister_device);
1561
1562 /**
1563 * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1564 * @ib_dev: The device to unregister
1565 *
1566 * This is the same as ib_unregister_device(), except it includes an internal
1567 * ib_device_put() that should match a 'get' obtained by the caller.
1568 *
1569 * It is safe to call this routine concurrently from multiple threads while
1570 * holding the 'get'. When the function returns the device is fully
1571 * unregistered.
1572 *
1573 * Drivers using this flow MUST use the driver_unregister callback to clean up
1574 * their resources associated with the device and dealloc it.
1575 */
ib_unregister_device_and_put(struct ib_device * ib_dev)1576 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1577 {
1578 WARN_ON(!ib_dev->ops.dealloc_driver);
1579 get_device(&ib_dev->dev);
1580 ib_device_put(ib_dev);
1581 __ib_unregister_device(ib_dev);
1582 put_device(&ib_dev->dev);
1583 }
1584 EXPORT_SYMBOL(ib_unregister_device_and_put);
1585
1586 /**
1587 * ib_unregister_driver - Unregister all IB devices for a driver
1588 * @driver_id: The driver to unregister
1589 *
1590 * This implements a fence for device unregistration. It only returns once all
1591 * devices associated with the driver_id have fully completed their
1592 * unregistration and returned from ib_unregister_device*().
1593 *
1594 * If device's are not yet unregistered it goes ahead and starts unregistering
1595 * them.
1596 *
1597 * This does not block creation of new devices with the given driver_id, that
1598 * is the responsibility of the caller.
1599 */
ib_unregister_driver(enum rdma_driver_id driver_id)1600 void ib_unregister_driver(enum rdma_driver_id driver_id)
1601 {
1602 struct ib_device *ib_dev;
1603 unsigned long index;
1604
1605 down_read(&devices_rwsem);
1606 xa_for_each (&devices, index, ib_dev) {
1607 if (ib_dev->ops.driver_id != driver_id)
1608 continue;
1609
1610 get_device(&ib_dev->dev);
1611 up_read(&devices_rwsem);
1612
1613 WARN_ON(!ib_dev->ops.dealloc_driver);
1614 __ib_unregister_device(ib_dev);
1615
1616 put_device(&ib_dev->dev);
1617 down_read(&devices_rwsem);
1618 }
1619 up_read(&devices_rwsem);
1620 }
1621 EXPORT_SYMBOL(ib_unregister_driver);
1622
ib_unregister_work(struct work_struct * work)1623 static void ib_unregister_work(struct work_struct *work)
1624 {
1625 struct ib_device *ib_dev =
1626 container_of(work, struct ib_device, unregistration_work);
1627
1628 __ib_unregister_device(ib_dev);
1629 put_device(&ib_dev->dev);
1630 }
1631
1632 /**
1633 * ib_unregister_device_queued - Unregister a device using a work queue
1634 * @ib_dev: The device to unregister
1635 *
1636 * This schedules an asynchronous unregistration using a WQ for the device. A
1637 * driver should use this to avoid holding locks while doing unregistration,
1638 * such as holding the RTNL lock.
1639 *
1640 * Drivers using this API must use ib_unregister_driver before module unload
1641 * to ensure that all scheduled unregistrations have completed.
1642 */
ib_unregister_device_queued(struct ib_device * ib_dev)1643 void ib_unregister_device_queued(struct ib_device *ib_dev)
1644 {
1645 WARN_ON(!refcount_read(&ib_dev->refcount));
1646 WARN_ON(!ib_dev->ops.dealloc_driver);
1647 get_device(&ib_dev->dev);
1648 if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1649 put_device(&ib_dev->dev);
1650 }
1651 EXPORT_SYMBOL(ib_unregister_device_queued);
1652
1653 /*
1654 * The caller must pass in a device that has the kref held and the refcount
1655 * released. If the device is in cur_net and still registered then it is moved
1656 * into net.
1657 */
rdma_dev_change_netns(struct ib_device * device,struct net * cur_net,struct net * net)1658 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1659 struct net *net)
1660 {
1661 int ret2 = -EINVAL;
1662 int ret;
1663
1664 mutex_lock(&device->unregistration_lock);
1665
1666 /*
1667 * If a device not under ib_device_get() or if the unregistration_lock
1668 * is not held, the namespace can be changed, or it can be unregistered.
1669 * Check again under the lock.
1670 */
1671 if (refcount_read(&device->refcount) == 0 ||
1672 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1673 ret = -ENODEV;
1674 goto out;
1675 }
1676
1677 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1678 disable_device(device);
1679
1680 /*
1681 * At this point no one can be using the device, so it is safe to
1682 * change the namespace.
1683 */
1684 write_pnet(&device->coredev.rdma_net, net);
1685
1686 down_read(&devices_rwsem);
1687 /*
1688 * Currently rdma devices are system wide unique. So the device name
1689 * is guaranteed free in the new namespace. Publish the new namespace
1690 * at the sysfs level.
1691 */
1692 ret = device_rename(&device->dev, dev_name(&device->dev));
1693 up_read(&devices_rwsem);
1694 if (ret) {
1695 dev_warn(&device->dev,
1696 "%s: Couldn't rename device after namespace change\n",
1697 __func__);
1698 /* Try and put things back and re-enable the device */
1699 write_pnet(&device->coredev.rdma_net, cur_net);
1700 }
1701
1702 ret2 = enable_device_and_get(device);
1703 if (ret2) {
1704 /*
1705 * This shouldn't really happen, but if it does, let the user
1706 * retry at later point. So don't disable the device.
1707 */
1708 dev_warn(&device->dev,
1709 "%s: Couldn't re-enable device after namespace change\n",
1710 __func__);
1711 }
1712 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1713
1714 ib_device_put(device);
1715 out:
1716 mutex_unlock(&device->unregistration_lock);
1717 if (ret)
1718 return ret;
1719 return ret2;
1720 }
1721
ib_device_set_netns_put(struct sk_buff * skb,struct ib_device * dev,u32 ns_fd)1722 int ib_device_set_netns_put(struct sk_buff *skb,
1723 struct ib_device *dev, u32 ns_fd)
1724 {
1725 struct net *net;
1726 int ret;
1727
1728 net = get_net_ns_by_fd(ns_fd);
1729 if (IS_ERR(net)) {
1730 ret = PTR_ERR(net);
1731 goto net_err;
1732 }
1733
1734 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1735 ret = -EPERM;
1736 goto ns_err;
1737 }
1738
1739 /*
1740 * All the ib_clients, including uverbs, are reset when the namespace is
1741 * changed and this cannot be blocked waiting for userspace to do
1742 * something, so disassociation is mandatory.
1743 */
1744 if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1745 ret = -EOPNOTSUPP;
1746 goto ns_err;
1747 }
1748
1749 get_device(&dev->dev);
1750 ib_device_put(dev);
1751 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1752 put_device(&dev->dev);
1753
1754 put_net(net);
1755 return ret;
1756
1757 ns_err:
1758 put_net(net);
1759 net_err:
1760 ib_device_put(dev);
1761 return ret;
1762 }
1763
1764 static struct pernet_operations rdma_dev_net_ops = {
1765 .init = rdma_dev_init_net,
1766 .exit = rdma_dev_exit_net,
1767 .id = &rdma_dev_net_id,
1768 .size = sizeof(struct rdma_dev_net),
1769 };
1770
assign_client_id(struct ib_client * client)1771 static int assign_client_id(struct ib_client *client)
1772 {
1773 int ret;
1774
1775 lockdep_assert_held(&clients_rwsem);
1776 /*
1777 * The add/remove callbacks must be called in FIFO/LIFO order. To
1778 * achieve this we assign client_ids so they are sorted in
1779 * registration order.
1780 */
1781 client->client_id = highest_client_id;
1782 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1783 if (ret)
1784 return ret;
1785
1786 highest_client_id++;
1787 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1788 return 0;
1789 }
1790
remove_client_id(struct ib_client * client)1791 static void remove_client_id(struct ib_client *client)
1792 {
1793 down_write(&clients_rwsem);
1794 xa_erase(&clients, client->client_id);
1795 for (; highest_client_id; highest_client_id--)
1796 if (xa_load(&clients, highest_client_id - 1))
1797 break;
1798 up_write(&clients_rwsem);
1799 }
1800
1801 /**
1802 * ib_register_client - Register an IB client
1803 * @client:Client to register
1804 *
1805 * Upper level users of the IB drivers can use ib_register_client() to
1806 * register callbacks for IB device addition and removal. When an IB
1807 * device is added, each registered client's add method will be called
1808 * (in the order the clients were registered), and when a device is
1809 * removed, each client's remove method will be called (in the reverse
1810 * order that clients were registered). In addition, when
1811 * ib_register_client() is called, the client will receive an add
1812 * callback for all devices already registered.
1813 */
ib_register_client(struct ib_client * client)1814 int ib_register_client(struct ib_client *client)
1815 {
1816 struct ib_device *device;
1817 unsigned long index;
1818 bool need_unreg = false;
1819 int ret;
1820
1821 refcount_set(&client->uses, 1);
1822 init_completion(&client->uses_zero);
1823
1824 /*
1825 * The devices_rwsem is held in write mode to ensure that a racing
1826 * ib_register_device() sees a consisent view of clients and devices.
1827 */
1828 down_write(&devices_rwsem);
1829 down_write(&clients_rwsem);
1830 ret = assign_client_id(client);
1831 if (ret)
1832 goto out;
1833
1834 need_unreg = true;
1835 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1836 ret = add_client_context(device, client);
1837 if (ret)
1838 goto out;
1839 }
1840 ret = 0;
1841 out:
1842 up_write(&clients_rwsem);
1843 up_write(&devices_rwsem);
1844 if (need_unreg && ret)
1845 ib_unregister_client(client);
1846 return ret;
1847 }
1848 EXPORT_SYMBOL(ib_register_client);
1849
1850 /**
1851 * ib_unregister_client - Unregister an IB client
1852 * @client:Client to unregister
1853 *
1854 * Upper level users use ib_unregister_client() to remove their client
1855 * registration. When ib_unregister_client() is called, the client
1856 * will receive a remove callback for each IB device still registered.
1857 *
1858 * This is a full fence, once it returns no client callbacks will be called,
1859 * or are running in another thread.
1860 */
ib_unregister_client(struct ib_client * client)1861 void ib_unregister_client(struct ib_client *client)
1862 {
1863 struct ib_device *device;
1864 unsigned long index;
1865
1866 down_write(&clients_rwsem);
1867 ib_client_put(client);
1868 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1869 up_write(&clients_rwsem);
1870
1871 /* We do not want to have locks while calling client->remove() */
1872 rcu_read_lock();
1873 xa_for_each (&devices, index, device) {
1874 if (!ib_device_try_get(device))
1875 continue;
1876 rcu_read_unlock();
1877
1878 remove_client_context(device, client->client_id);
1879
1880 ib_device_put(device);
1881 rcu_read_lock();
1882 }
1883 rcu_read_unlock();
1884
1885 /*
1886 * remove_client_context() is not a fence, it can return even though a
1887 * removal is ongoing. Wait until all removals are completed.
1888 */
1889 wait_for_completion(&client->uses_zero);
1890 remove_client_id(client);
1891 }
1892 EXPORT_SYMBOL(ib_unregister_client);
1893
__ib_get_global_client_nl_info(const char * client_name,struct ib_client_nl_info * res)1894 static int __ib_get_global_client_nl_info(const char *client_name,
1895 struct ib_client_nl_info *res)
1896 {
1897 struct ib_client *client;
1898 unsigned long index;
1899 int ret = -ENOENT;
1900
1901 down_read(&clients_rwsem);
1902 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1903 if (strcmp(client->name, client_name) != 0)
1904 continue;
1905 if (!client->get_global_nl_info) {
1906 ret = -EOPNOTSUPP;
1907 break;
1908 }
1909 ret = client->get_global_nl_info(res);
1910 if (WARN_ON(ret == -ENOENT))
1911 ret = -EINVAL;
1912 if (!ret && res->cdev)
1913 get_device(res->cdev);
1914 break;
1915 }
1916 up_read(&clients_rwsem);
1917 return ret;
1918 }
1919
__ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1920 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1921 const char *client_name,
1922 struct ib_client_nl_info *res)
1923 {
1924 unsigned long index;
1925 void *client_data;
1926 int ret = -ENOENT;
1927
1928 down_read(&ibdev->client_data_rwsem);
1929 xan_for_each_marked (&ibdev->client_data, index, client_data,
1930 CLIENT_DATA_REGISTERED) {
1931 struct ib_client *client = xa_load(&clients, index);
1932
1933 if (!client || strcmp(client->name, client_name) != 0)
1934 continue;
1935 if (!client->get_nl_info) {
1936 ret = -EOPNOTSUPP;
1937 break;
1938 }
1939 ret = client->get_nl_info(ibdev, client_data, res);
1940 if (WARN_ON(ret == -ENOENT))
1941 ret = -EINVAL;
1942
1943 /*
1944 * The cdev is guaranteed valid as long as we are inside the
1945 * client_data_rwsem as remove_one can't be called. Keep it
1946 * valid for the caller.
1947 */
1948 if (!ret && res->cdev)
1949 get_device(res->cdev);
1950 break;
1951 }
1952 up_read(&ibdev->client_data_rwsem);
1953
1954 return ret;
1955 }
1956
1957 /**
1958 * ib_get_client_nl_info - Fetch the nl_info from a client
1959 * @ibdev: IB device
1960 * @client_name: Name of the client
1961 * @res: Result of the query
1962 */
ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1963 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1964 struct ib_client_nl_info *res)
1965 {
1966 int ret;
1967
1968 if (ibdev)
1969 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1970 else
1971 ret = __ib_get_global_client_nl_info(client_name, res);
1972 #ifdef CONFIG_MODULES
1973 if (ret == -ENOENT) {
1974 request_module("rdma-client-%s", client_name);
1975 if (ibdev)
1976 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1977 else
1978 ret = __ib_get_global_client_nl_info(client_name, res);
1979 }
1980 #endif
1981 if (ret) {
1982 if (ret == -ENOENT)
1983 return -EOPNOTSUPP;
1984 return ret;
1985 }
1986
1987 if (WARN_ON(!res->cdev))
1988 return -EINVAL;
1989 return 0;
1990 }
1991
1992 /**
1993 * ib_set_client_data - Set IB client context
1994 * @device:Device to set context for
1995 * @client:Client to set context for
1996 * @data:Context to set
1997 *
1998 * ib_set_client_data() sets client context data that can be retrieved with
1999 * ib_get_client_data(). This can only be called while the client is
2000 * registered to the device, once the ib_client remove() callback returns this
2001 * cannot be called.
2002 */
ib_set_client_data(struct ib_device * device,struct ib_client * client,void * data)2003 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2004 void *data)
2005 {
2006 void *rc;
2007
2008 if (WARN_ON(IS_ERR(data)))
2009 data = NULL;
2010
2011 rc = xa_store(&device->client_data, client->client_id, data,
2012 GFP_KERNEL);
2013 WARN_ON(xa_is_err(rc));
2014 }
2015 EXPORT_SYMBOL(ib_set_client_data);
2016
2017 /**
2018 * ib_register_event_handler - Register an IB event handler
2019 * @event_handler:Handler to register
2020 *
2021 * ib_register_event_handler() registers an event handler that will be
2022 * called back when asynchronous IB events occur (as defined in
2023 * chapter 11 of the InfiniBand Architecture Specification). This
2024 * callback occurs in workqueue context.
2025 */
ib_register_event_handler(struct ib_event_handler * event_handler)2026 void ib_register_event_handler(struct ib_event_handler *event_handler)
2027 {
2028 down_write(&event_handler->device->event_handler_rwsem);
2029 list_add_tail(&event_handler->list,
2030 &event_handler->device->event_handler_list);
2031 up_write(&event_handler->device->event_handler_rwsem);
2032 }
2033 EXPORT_SYMBOL(ib_register_event_handler);
2034
2035 /**
2036 * ib_unregister_event_handler - Unregister an event handler
2037 * @event_handler:Handler to unregister
2038 *
2039 * Unregister an event handler registered with
2040 * ib_register_event_handler().
2041 */
ib_unregister_event_handler(struct ib_event_handler * event_handler)2042 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
2043 {
2044 down_write(&event_handler->device->event_handler_rwsem);
2045 list_del(&event_handler->list);
2046 up_write(&event_handler->device->event_handler_rwsem);
2047 }
2048 EXPORT_SYMBOL(ib_unregister_event_handler);
2049
ib_dispatch_event_clients(struct ib_event * event)2050 void ib_dispatch_event_clients(struct ib_event *event)
2051 {
2052 struct ib_event_handler *handler;
2053
2054 down_read(&event->device->event_handler_rwsem);
2055
2056 list_for_each_entry(handler, &event->device->event_handler_list, list)
2057 handler->handler(handler, event);
2058
2059 up_read(&event->device->event_handler_rwsem);
2060 }
2061
iw_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2062 static int iw_query_port(struct ib_device *device,
2063 u32 port_num,
2064 struct ib_port_attr *port_attr)
2065 {
2066 struct in_device *inetdev;
2067 struct net_device *netdev;
2068
2069 memset(port_attr, 0, sizeof(*port_attr));
2070
2071 netdev = ib_device_get_netdev(device, port_num);
2072 if (!netdev)
2073 return -ENODEV;
2074
2075 port_attr->max_mtu = IB_MTU_4096;
2076 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2077
2078 if (!netif_carrier_ok(netdev)) {
2079 port_attr->state = IB_PORT_DOWN;
2080 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2081 } else {
2082 rcu_read_lock();
2083 inetdev = __in_dev_get_rcu(netdev);
2084
2085 if (inetdev && inetdev->ifa_list) {
2086 port_attr->state = IB_PORT_ACTIVE;
2087 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2088 } else {
2089 port_attr->state = IB_PORT_INIT;
2090 port_attr->phys_state =
2091 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2092 }
2093
2094 rcu_read_unlock();
2095 }
2096
2097 dev_put(netdev);
2098 return device->ops.query_port(device, port_num, port_attr);
2099 }
2100
__ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2101 static int __ib_query_port(struct ib_device *device,
2102 u32 port_num,
2103 struct ib_port_attr *port_attr)
2104 {
2105 int err;
2106
2107 memset(port_attr, 0, sizeof(*port_attr));
2108
2109 err = device->ops.query_port(device, port_num, port_attr);
2110 if (err || port_attr->subnet_prefix)
2111 return err;
2112
2113 if (rdma_port_get_link_layer(device, port_num) !=
2114 IB_LINK_LAYER_INFINIBAND)
2115 return 0;
2116
2117 ib_get_cached_subnet_prefix(device, port_num,
2118 &port_attr->subnet_prefix);
2119 return 0;
2120 }
2121
2122 /**
2123 * ib_query_port - Query IB port attributes
2124 * @device:Device to query
2125 * @port_num:Port number to query
2126 * @port_attr:Port attributes
2127 *
2128 * ib_query_port() returns the attributes of a port through the
2129 * @port_attr pointer.
2130 */
ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2131 int ib_query_port(struct ib_device *device,
2132 u32 port_num,
2133 struct ib_port_attr *port_attr)
2134 {
2135 if (!rdma_is_port_valid(device, port_num))
2136 return -EINVAL;
2137
2138 if (rdma_protocol_iwarp(device, port_num))
2139 return iw_query_port(device, port_num, port_attr);
2140 else
2141 return __ib_query_port(device, port_num, port_attr);
2142 }
2143 EXPORT_SYMBOL(ib_query_port);
2144
add_ndev_hash(struct ib_port_data * pdata)2145 static void add_ndev_hash(struct ib_port_data *pdata)
2146 {
2147 unsigned long flags;
2148
2149 might_sleep();
2150
2151 spin_lock_irqsave(&ndev_hash_lock, flags);
2152 if (hash_hashed(&pdata->ndev_hash_link)) {
2153 hash_del_rcu(&pdata->ndev_hash_link);
2154 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2155 /*
2156 * We cannot do hash_add_rcu after a hash_del_rcu until the
2157 * grace period
2158 */
2159 synchronize_rcu();
2160 spin_lock_irqsave(&ndev_hash_lock, flags);
2161 }
2162 if (pdata->netdev)
2163 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2164 (uintptr_t)pdata->netdev);
2165 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2166 }
2167
2168 /**
2169 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2170 * @ib_dev: Device to modify
2171 * @ndev: net_device to affiliate, may be NULL
2172 * @port: IB port the net_device is connected to
2173 *
2174 * Drivers should use this to link the ib_device to a netdev so the netdev
2175 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2176 * affiliated with any port.
2177 *
2178 * The caller must ensure that the given ndev is not unregistered or
2179 * unregistering, and that either the ib_device is unregistered or
2180 * ib_device_set_netdev() is called with NULL when the ndev sends a
2181 * NETDEV_UNREGISTER event.
2182 */
ib_device_set_netdev(struct ib_device * ib_dev,struct net_device * ndev,u32 port)2183 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2184 u32 port)
2185 {
2186 enum rdma_nl_notify_event_type etype;
2187 struct net_device *old_ndev;
2188 struct ib_port_data *pdata;
2189 unsigned long flags;
2190 int ret;
2191
2192 if (!rdma_is_port_valid(ib_dev, port))
2193 return -EINVAL;
2194
2195 /*
2196 * Drivers wish to call this before ib_register_driver, so we have to
2197 * setup the port data early.
2198 */
2199 ret = alloc_port_data(ib_dev);
2200 if (ret)
2201 return ret;
2202
2203 pdata = &ib_dev->port_data[port];
2204 spin_lock_irqsave(&pdata->netdev_lock, flags);
2205 old_ndev = rcu_dereference_protected(
2206 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2207 if (old_ndev == ndev) {
2208 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2209 return 0;
2210 }
2211
2212 rcu_assign_pointer(pdata->netdev, ndev);
2213 netdev_put(old_ndev, &pdata->netdev_tracker);
2214 netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC);
2215 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2216
2217 add_ndev_hash(pdata);
2218
2219 /* Make sure that the device is registered before we send events */
2220 if (xa_load(&devices, ib_dev->index) != ib_dev)
2221 return 0;
2222
2223 etype = ndev ? RDMA_NETDEV_ATTACH_EVENT : RDMA_NETDEV_DETACH_EVENT;
2224 rdma_nl_notify_event(ib_dev, port, etype);
2225
2226 return 0;
2227 }
2228 EXPORT_SYMBOL(ib_device_set_netdev);
2229
free_netdevs(struct ib_device * ib_dev)2230 static void free_netdevs(struct ib_device *ib_dev)
2231 {
2232 unsigned long flags;
2233 u32 port;
2234
2235 if (!ib_dev->port_data)
2236 return;
2237
2238 rdma_for_each_port (ib_dev, port) {
2239 struct ib_port_data *pdata = &ib_dev->port_data[port];
2240 struct net_device *ndev;
2241
2242 spin_lock_irqsave(&pdata->netdev_lock, flags);
2243 ndev = rcu_dereference_protected(
2244 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2245 if (ndev) {
2246 spin_lock(&ndev_hash_lock);
2247 hash_del_rcu(&pdata->ndev_hash_link);
2248 spin_unlock(&ndev_hash_lock);
2249
2250 /*
2251 * If this is the last dev_put there is still a
2252 * synchronize_rcu before the netdev is kfreed, so we
2253 * can continue to rely on unlocked pointer
2254 * comparisons after the put
2255 */
2256 rcu_assign_pointer(pdata->netdev, NULL);
2257 netdev_put(ndev, &pdata->netdev_tracker);
2258 }
2259 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2260 }
2261 }
2262
ib_device_get_netdev(struct ib_device * ib_dev,u32 port)2263 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2264 u32 port)
2265 {
2266 struct ib_port_data *pdata;
2267 struct net_device *res;
2268
2269 if (!rdma_is_port_valid(ib_dev, port))
2270 return NULL;
2271
2272 if (!ib_dev->port_data)
2273 return NULL;
2274
2275 pdata = &ib_dev->port_data[port];
2276
2277 /*
2278 * New drivers should use ib_device_set_netdev() not the legacy
2279 * get_netdev().
2280 */
2281 if (ib_dev->ops.get_netdev)
2282 res = ib_dev->ops.get_netdev(ib_dev, port);
2283 else {
2284 spin_lock(&pdata->netdev_lock);
2285 res = rcu_dereference_protected(
2286 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2287 dev_hold(res);
2288 spin_unlock(&pdata->netdev_lock);
2289 }
2290
2291 return res;
2292 }
2293 EXPORT_SYMBOL(ib_device_get_netdev);
2294
2295 /**
2296 * ib_query_netdev_port - Query the port number of a net_device
2297 * associated with an ibdev
2298 * @ibdev: IB device
2299 * @ndev: Network device
2300 * @port: IB port the net_device is connected to
2301 */
ib_query_netdev_port(struct ib_device * ibdev,struct net_device * ndev,u32 * port)2302 int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev,
2303 u32 *port)
2304 {
2305 struct net_device *ib_ndev;
2306 u32 port_num;
2307
2308 rdma_for_each_port(ibdev, port_num) {
2309 ib_ndev = ib_device_get_netdev(ibdev, port_num);
2310 if (ndev == ib_ndev) {
2311 *port = port_num;
2312 dev_put(ib_ndev);
2313 return 0;
2314 }
2315 dev_put(ib_ndev);
2316 }
2317
2318 return -ENOENT;
2319 }
2320 EXPORT_SYMBOL(ib_query_netdev_port);
2321
2322 /**
2323 * ib_device_get_by_netdev - Find an IB device associated with a netdev
2324 * @ndev: netdev to locate
2325 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2326 *
2327 * Find and hold an ib_device that is associated with a netdev via
2328 * ib_device_set_netdev(). The caller must call ib_device_put() on the
2329 * returned pointer.
2330 */
ib_device_get_by_netdev(struct net_device * ndev,enum rdma_driver_id driver_id)2331 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2332 enum rdma_driver_id driver_id)
2333 {
2334 struct ib_device *res = NULL;
2335 struct ib_port_data *cur;
2336
2337 rcu_read_lock();
2338 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2339 (uintptr_t)ndev) {
2340 if (rcu_access_pointer(cur->netdev) == ndev &&
2341 (driver_id == RDMA_DRIVER_UNKNOWN ||
2342 cur->ib_dev->ops.driver_id == driver_id) &&
2343 ib_device_try_get(cur->ib_dev)) {
2344 res = cur->ib_dev;
2345 break;
2346 }
2347 }
2348 rcu_read_unlock();
2349
2350 return res;
2351 }
2352 EXPORT_SYMBOL(ib_device_get_by_netdev);
2353
2354 /**
2355 * ib_enum_roce_netdev - enumerate all RoCE ports
2356 * @ib_dev : IB device we want to query
2357 * @filter: Should we call the callback?
2358 * @filter_cookie: Cookie passed to filter
2359 * @cb: Callback to call for each found RoCE ports
2360 * @cookie: Cookie passed back to the callback
2361 *
2362 * Enumerates all of the physical RoCE ports of ib_dev
2363 * which are related to netdevice and calls callback() on each
2364 * device for which filter() function returns non zero.
2365 */
ib_enum_roce_netdev(struct ib_device * ib_dev,roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2366 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2367 roce_netdev_filter filter,
2368 void *filter_cookie,
2369 roce_netdev_callback cb,
2370 void *cookie)
2371 {
2372 u32 port;
2373
2374 rdma_for_each_port (ib_dev, port)
2375 if (rdma_protocol_roce(ib_dev, port)) {
2376 struct net_device *idev =
2377 ib_device_get_netdev(ib_dev, port);
2378
2379 if (filter(ib_dev, port, idev, filter_cookie))
2380 cb(ib_dev, port, idev, cookie);
2381 dev_put(idev);
2382 }
2383 }
2384
2385 /**
2386 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2387 * @filter: Should we call the callback?
2388 * @filter_cookie: Cookie passed to filter
2389 * @cb: Callback to call for each found RoCE ports
2390 * @cookie: Cookie passed back to the callback
2391 *
2392 * Enumerates all RoCE devices' physical ports which are related
2393 * to netdevices and calls callback() on each device for which
2394 * filter() function returns non zero.
2395 */
ib_enum_all_roce_netdevs(roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2396 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2397 void *filter_cookie,
2398 roce_netdev_callback cb,
2399 void *cookie)
2400 {
2401 struct ib_device *dev;
2402 unsigned long index;
2403
2404 down_read(&devices_rwsem);
2405 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2406 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2407 up_read(&devices_rwsem);
2408 }
2409
2410 /*
2411 * ib_enum_all_devs - enumerate all ib_devices
2412 * @cb: Callback to call for each found ib_device
2413 *
2414 * Enumerates all ib_devices and calls callback() on each device.
2415 */
ib_enum_all_devs(nldev_callback nldev_cb,struct sk_buff * skb,struct netlink_callback * cb)2416 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2417 struct netlink_callback *cb)
2418 {
2419 unsigned long index;
2420 struct ib_device *dev;
2421 unsigned int idx = 0;
2422 int ret = 0;
2423
2424 down_read(&devices_rwsem);
2425 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2426 if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2427 continue;
2428
2429 ret = nldev_cb(dev, skb, cb, idx);
2430 if (ret)
2431 break;
2432 idx++;
2433 }
2434 up_read(&devices_rwsem);
2435 return ret;
2436 }
2437
2438 /**
2439 * ib_query_pkey - Get P_Key table entry
2440 * @device:Device to query
2441 * @port_num:Port number to query
2442 * @index:P_Key table index to query
2443 * @pkey:Returned P_Key
2444 *
2445 * ib_query_pkey() fetches the specified P_Key table entry.
2446 */
ib_query_pkey(struct ib_device * device,u32 port_num,u16 index,u16 * pkey)2447 int ib_query_pkey(struct ib_device *device,
2448 u32 port_num, u16 index, u16 *pkey)
2449 {
2450 if (!rdma_is_port_valid(device, port_num))
2451 return -EINVAL;
2452
2453 if (!device->ops.query_pkey)
2454 return -EOPNOTSUPP;
2455
2456 return device->ops.query_pkey(device, port_num, index, pkey);
2457 }
2458 EXPORT_SYMBOL(ib_query_pkey);
2459
2460 /**
2461 * ib_modify_device - Change IB device attributes
2462 * @device:Device to modify
2463 * @device_modify_mask:Mask of attributes to change
2464 * @device_modify:New attribute values
2465 *
2466 * ib_modify_device() changes a device's attributes as specified by
2467 * the @device_modify_mask and @device_modify structure.
2468 */
ib_modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)2469 int ib_modify_device(struct ib_device *device,
2470 int device_modify_mask,
2471 struct ib_device_modify *device_modify)
2472 {
2473 if (!device->ops.modify_device)
2474 return -EOPNOTSUPP;
2475
2476 return device->ops.modify_device(device, device_modify_mask,
2477 device_modify);
2478 }
2479 EXPORT_SYMBOL(ib_modify_device);
2480
2481 /**
2482 * ib_modify_port - Modifies the attributes for the specified port.
2483 * @device: The device to modify.
2484 * @port_num: The number of the port to modify.
2485 * @port_modify_mask: Mask used to specify which attributes of the port
2486 * to change.
2487 * @port_modify: New attribute values for the port.
2488 *
2489 * ib_modify_port() changes a port's attributes as specified by the
2490 * @port_modify_mask and @port_modify structure.
2491 */
ib_modify_port(struct ib_device * device,u32 port_num,int port_modify_mask,struct ib_port_modify * port_modify)2492 int ib_modify_port(struct ib_device *device,
2493 u32 port_num, int port_modify_mask,
2494 struct ib_port_modify *port_modify)
2495 {
2496 int rc;
2497
2498 if (!rdma_is_port_valid(device, port_num))
2499 return -EINVAL;
2500
2501 if (device->ops.modify_port)
2502 rc = device->ops.modify_port(device, port_num,
2503 port_modify_mask,
2504 port_modify);
2505 else if (rdma_protocol_roce(device, port_num) &&
2506 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2507 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2508 rc = 0;
2509 else
2510 rc = -EOPNOTSUPP;
2511 return rc;
2512 }
2513 EXPORT_SYMBOL(ib_modify_port);
2514
2515 /**
2516 * ib_find_gid - Returns the port number and GID table index where
2517 * a specified GID value occurs. Its searches only for IB link layer.
2518 * @device: The device to query.
2519 * @gid: The GID value to search for.
2520 * @port_num: The port number of the device where the GID value was found.
2521 * @index: The index into the GID table where the GID was found. This
2522 * parameter may be NULL.
2523 */
ib_find_gid(struct ib_device * device,union ib_gid * gid,u32 * port_num,u16 * index)2524 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2525 u32 *port_num, u16 *index)
2526 {
2527 union ib_gid tmp_gid;
2528 u32 port;
2529 int ret, i;
2530
2531 rdma_for_each_port (device, port) {
2532 if (!rdma_protocol_ib(device, port))
2533 continue;
2534
2535 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2536 ++i) {
2537 ret = rdma_query_gid(device, port, i, &tmp_gid);
2538 if (ret)
2539 continue;
2540
2541 if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2542 *port_num = port;
2543 if (index)
2544 *index = i;
2545 return 0;
2546 }
2547 }
2548 }
2549
2550 return -ENOENT;
2551 }
2552 EXPORT_SYMBOL(ib_find_gid);
2553
2554 /**
2555 * ib_find_pkey - Returns the PKey table index where a specified
2556 * PKey value occurs.
2557 * @device: The device to query.
2558 * @port_num: The port number of the device to search for the PKey.
2559 * @pkey: The PKey value to search for.
2560 * @index: The index into the PKey table where the PKey was found.
2561 */
ib_find_pkey(struct ib_device * device,u32 port_num,u16 pkey,u16 * index)2562 int ib_find_pkey(struct ib_device *device,
2563 u32 port_num, u16 pkey, u16 *index)
2564 {
2565 int ret, i;
2566 u16 tmp_pkey;
2567 int partial_ix = -1;
2568
2569 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2570 ++i) {
2571 ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2572 if (ret)
2573 return ret;
2574 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2575 /* if there is full-member pkey take it.*/
2576 if (tmp_pkey & 0x8000) {
2577 *index = i;
2578 return 0;
2579 }
2580 if (partial_ix < 0)
2581 partial_ix = i;
2582 }
2583 }
2584
2585 /*no full-member, if exists take the limited*/
2586 if (partial_ix >= 0) {
2587 *index = partial_ix;
2588 return 0;
2589 }
2590 return -ENOENT;
2591 }
2592 EXPORT_SYMBOL(ib_find_pkey);
2593
2594 /**
2595 * ib_get_net_dev_by_params() - Return the appropriate net_dev
2596 * for a received CM request
2597 * @dev: An RDMA device on which the request has been received.
2598 * @port: Port number on the RDMA device.
2599 * @pkey: The Pkey the request came on.
2600 * @gid: A GID that the net_dev uses to communicate.
2601 * @addr: Contains the IP address that the request specified as its
2602 * destination.
2603 *
2604 */
ib_get_net_dev_by_params(struct ib_device * dev,u32 port,u16 pkey,const union ib_gid * gid,const struct sockaddr * addr)2605 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2606 u32 port,
2607 u16 pkey,
2608 const union ib_gid *gid,
2609 const struct sockaddr *addr)
2610 {
2611 struct net_device *net_dev = NULL;
2612 unsigned long index;
2613 void *client_data;
2614
2615 if (!rdma_protocol_ib(dev, port))
2616 return NULL;
2617
2618 /*
2619 * Holding the read side guarantees that the client will not become
2620 * unregistered while we are calling get_net_dev_by_params()
2621 */
2622 down_read(&dev->client_data_rwsem);
2623 xan_for_each_marked (&dev->client_data, index, client_data,
2624 CLIENT_DATA_REGISTERED) {
2625 struct ib_client *client = xa_load(&clients, index);
2626
2627 if (!client || !client->get_net_dev_by_params)
2628 continue;
2629
2630 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2631 addr, client_data);
2632 if (net_dev)
2633 break;
2634 }
2635 up_read(&dev->client_data_rwsem);
2636
2637 return net_dev;
2638 }
2639 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2640
ib_set_device_ops(struct ib_device * dev,const struct ib_device_ops * ops)2641 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2642 {
2643 struct ib_device_ops *dev_ops = &dev->ops;
2644 #define SET_DEVICE_OP(ptr, name) \
2645 do { \
2646 if (ops->name) \
2647 if (!((ptr)->name)) \
2648 (ptr)->name = ops->name; \
2649 } while (0)
2650
2651 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2652
2653 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2654 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2655 dev_ops->driver_id != ops->driver_id);
2656 dev_ops->driver_id = ops->driver_id;
2657 }
2658 if (ops->owner) {
2659 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2660 dev_ops->owner = ops->owner;
2661 }
2662 if (ops->uverbs_abi_ver)
2663 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2664
2665 dev_ops->uverbs_no_driver_id_binding |=
2666 ops->uverbs_no_driver_id_binding;
2667
2668 SET_DEVICE_OP(dev_ops, add_gid);
2669 SET_DEVICE_OP(dev_ops, add_sub_dev);
2670 SET_DEVICE_OP(dev_ops, advise_mr);
2671 SET_DEVICE_OP(dev_ops, alloc_dm);
2672 SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2673 SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2674 SET_DEVICE_OP(dev_ops, alloc_mr);
2675 SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2676 SET_DEVICE_OP(dev_ops, alloc_mw);
2677 SET_DEVICE_OP(dev_ops, alloc_pd);
2678 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2679 SET_DEVICE_OP(dev_ops, alloc_ucontext);
2680 SET_DEVICE_OP(dev_ops, alloc_xrcd);
2681 SET_DEVICE_OP(dev_ops, attach_mcast);
2682 SET_DEVICE_OP(dev_ops, check_mr_status);
2683 SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2684 SET_DEVICE_OP(dev_ops, counter_bind_qp);
2685 SET_DEVICE_OP(dev_ops, counter_dealloc);
2686 SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2687 SET_DEVICE_OP(dev_ops, counter_update_stats);
2688 SET_DEVICE_OP(dev_ops, create_ah);
2689 SET_DEVICE_OP(dev_ops, create_counters);
2690 SET_DEVICE_OP(dev_ops, create_cq);
2691 SET_DEVICE_OP(dev_ops, create_flow);
2692 SET_DEVICE_OP(dev_ops, create_qp);
2693 SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2694 SET_DEVICE_OP(dev_ops, create_srq);
2695 SET_DEVICE_OP(dev_ops, create_user_ah);
2696 SET_DEVICE_OP(dev_ops, create_wq);
2697 SET_DEVICE_OP(dev_ops, dealloc_dm);
2698 SET_DEVICE_OP(dev_ops, dealloc_driver);
2699 SET_DEVICE_OP(dev_ops, dealloc_mw);
2700 SET_DEVICE_OP(dev_ops, dealloc_pd);
2701 SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2702 SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2703 SET_DEVICE_OP(dev_ops, del_gid);
2704 SET_DEVICE_OP(dev_ops, del_sub_dev);
2705 SET_DEVICE_OP(dev_ops, dereg_mr);
2706 SET_DEVICE_OP(dev_ops, destroy_ah);
2707 SET_DEVICE_OP(dev_ops, destroy_counters);
2708 SET_DEVICE_OP(dev_ops, destroy_cq);
2709 SET_DEVICE_OP(dev_ops, destroy_flow);
2710 SET_DEVICE_OP(dev_ops, destroy_flow_action);
2711 SET_DEVICE_OP(dev_ops, destroy_qp);
2712 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2713 SET_DEVICE_OP(dev_ops, destroy_srq);
2714 SET_DEVICE_OP(dev_ops, destroy_wq);
2715 SET_DEVICE_OP(dev_ops, device_group);
2716 SET_DEVICE_OP(dev_ops, detach_mcast);
2717 SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2718 SET_DEVICE_OP(dev_ops, drain_rq);
2719 SET_DEVICE_OP(dev_ops, drain_sq);
2720 SET_DEVICE_OP(dev_ops, enable_driver);
2721 SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2722 SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2723 SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2724 SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2725 SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2726 SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2727 SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2728 SET_DEVICE_OP(dev_ops, fill_res_srq_entry);
2729 SET_DEVICE_OP(dev_ops, fill_res_srq_entry_raw);
2730 SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2731 SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2732 SET_DEVICE_OP(dev_ops, get_dma_mr);
2733 SET_DEVICE_OP(dev_ops, get_hw_stats);
2734 SET_DEVICE_OP(dev_ops, get_link_layer);
2735 SET_DEVICE_OP(dev_ops, get_netdev);
2736 SET_DEVICE_OP(dev_ops, get_numa_node);
2737 SET_DEVICE_OP(dev_ops, get_port_immutable);
2738 SET_DEVICE_OP(dev_ops, get_vector_affinity);
2739 SET_DEVICE_OP(dev_ops, get_vf_config);
2740 SET_DEVICE_OP(dev_ops, get_vf_guid);
2741 SET_DEVICE_OP(dev_ops, get_vf_stats);
2742 SET_DEVICE_OP(dev_ops, iw_accept);
2743 SET_DEVICE_OP(dev_ops, iw_add_ref);
2744 SET_DEVICE_OP(dev_ops, iw_connect);
2745 SET_DEVICE_OP(dev_ops, iw_create_listen);
2746 SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2747 SET_DEVICE_OP(dev_ops, iw_get_qp);
2748 SET_DEVICE_OP(dev_ops, iw_reject);
2749 SET_DEVICE_OP(dev_ops, iw_rem_ref);
2750 SET_DEVICE_OP(dev_ops, map_mr_sg);
2751 SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2752 SET_DEVICE_OP(dev_ops, mmap);
2753 SET_DEVICE_OP(dev_ops, mmap_free);
2754 SET_DEVICE_OP(dev_ops, modify_ah);
2755 SET_DEVICE_OP(dev_ops, modify_cq);
2756 SET_DEVICE_OP(dev_ops, modify_device);
2757 SET_DEVICE_OP(dev_ops, modify_hw_stat);
2758 SET_DEVICE_OP(dev_ops, modify_port);
2759 SET_DEVICE_OP(dev_ops, modify_qp);
2760 SET_DEVICE_OP(dev_ops, modify_srq);
2761 SET_DEVICE_OP(dev_ops, modify_wq);
2762 SET_DEVICE_OP(dev_ops, peek_cq);
2763 SET_DEVICE_OP(dev_ops, poll_cq);
2764 SET_DEVICE_OP(dev_ops, port_groups);
2765 SET_DEVICE_OP(dev_ops, post_recv);
2766 SET_DEVICE_OP(dev_ops, post_send);
2767 SET_DEVICE_OP(dev_ops, post_srq_recv);
2768 SET_DEVICE_OP(dev_ops, process_mad);
2769 SET_DEVICE_OP(dev_ops, query_ah);
2770 SET_DEVICE_OP(dev_ops, query_device);
2771 SET_DEVICE_OP(dev_ops, query_gid);
2772 SET_DEVICE_OP(dev_ops, query_pkey);
2773 SET_DEVICE_OP(dev_ops, query_port);
2774 SET_DEVICE_OP(dev_ops, query_qp);
2775 SET_DEVICE_OP(dev_ops, query_srq);
2776 SET_DEVICE_OP(dev_ops, query_ucontext);
2777 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2778 SET_DEVICE_OP(dev_ops, read_counters);
2779 SET_DEVICE_OP(dev_ops, reg_dm_mr);
2780 SET_DEVICE_OP(dev_ops, reg_user_mr);
2781 SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2782 SET_DEVICE_OP(dev_ops, req_notify_cq);
2783 SET_DEVICE_OP(dev_ops, rereg_user_mr);
2784 SET_DEVICE_OP(dev_ops, resize_cq);
2785 SET_DEVICE_OP(dev_ops, set_vf_guid);
2786 SET_DEVICE_OP(dev_ops, set_vf_link_state);
2787 SET_DEVICE_OP(dev_ops, ufile_hw_cleanup);
2788 SET_DEVICE_OP(dev_ops, report_port_event);
2789
2790 SET_OBJ_SIZE(dev_ops, ib_ah);
2791 SET_OBJ_SIZE(dev_ops, ib_counters);
2792 SET_OBJ_SIZE(dev_ops, ib_cq);
2793 SET_OBJ_SIZE(dev_ops, ib_mw);
2794 SET_OBJ_SIZE(dev_ops, ib_pd);
2795 SET_OBJ_SIZE(dev_ops, ib_qp);
2796 SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2797 SET_OBJ_SIZE(dev_ops, ib_srq);
2798 SET_OBJ_SIZE(dev_ops, ib_ucontext);
2799 SET_OBJ_SIZE(dev_ops, ib_xrcd);
2800 }
2801 EXPORT_SYMBOL(ib_set_device_ops);
2802
ib_add_sub_device(struct ib_device * parent,enum rdma_nl_dev_type type,const char * name)2803 int ib_add_sub_device(struct ib_device *parent,
2804 enum rdma_nl_dev_type type,
2805 const char *name)
2806 {
2807 struct ib_device *sub;
2808 int ret = 0;
2809
2810 if (!parent->ops.add_sub_dev || !parent->ops.del_sub_dev)
2811 return -EOPNOTSUPP;
2812
2813 if (!ib_device_try_get(parent))
2814 return -EINVAL;
2815
2816 sub = parent->ops.add_sub_dev(parent, type, name);
2817 if (IS_ERR(sub)) {
2818 ib_device_put(parent);
2819 return PTR_ERR(sub);
2820 }
2821
2822 sub->type = type;
2823 sub->parent = parent;
2824
2825 mutex_lock(&parent->subdev_lock);
2826 list_add_tail(&parent->subdev_list_head, &sub->subdev_list);
2827 mutex_unlock(&parent->subdev_lock);
2828
2829 return ret;
2830 }
2831 EXPORT_SYMBOL(ib_add_sub_device);
2832
ib_del_sub_device_and_put(struct ib_device * sub)2833 int ib_del_sub_device_and_put(struct ib_device *sub)
2834 {
2835 struct ib_device *parent = sub->parent;
2836
2837 if (!parent)
2838 return -EOPNOTSUPP;
2839
2840 mutex_lock(&parent->subdev_lock);
2841 list_del(&sub->subdev_list);
2842 mutex_unlock(&parent->subdev_lock);
2843
2844 ib_device_put(sub);
2845 parent->ops.del_sub_dev(sub);
2846 ib_device_put(parent);
2847
2848 return 0;
2849 }
2850 EXPORT_SYMBOL(ib_del_sub_device_and_put);
2851
2852 #ifdef CONFIG_INFINIBAND_VIRT_DMA
ib_dma_virt_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents)2853 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2854 {
2855 struct scatterlist *s;
2856 int i;
2857
2858 for_each_sg(sg, s, nents, i) {
2859 sg_dma_address(s) = (uintptr_t)sg_virt(s);
2860 sg_dma_len(s) = s->length;
2861 }
2862 return nents;
2863 }
2864 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2865 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2866
2867 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2868 [RDMA_NL_LS_OP_RESOLVE] = {
2869 .doit = ib_nl_handle_resolve_resp,
2870 .flags = RDMA_NL_ADMIN_PERM,
2871 },
2872 [RDMA_NL_LS_OP_SET_TIMEOUT] = {
2873 .doit = ib_nl_handle_set_timeout,
2874 .flags = RDMA_NL_ADMIN_PERM,
2875 },
2876 [RDMA_NL_LS_OP_IP_RESOLVE] = {
2877 .doit = ib_nl_handle_ip_res_resp,
2878 .flags = RDMA_NL_ADMIN_PERM,
2879 },
2880 };
2881
ib_dispatch_port_state_event(struct ib_device * ibdev,struct net_device * ndev)2882 void ib_dispatch_port_state_event(struct ib_device *ibdev, struct net_device *ndev)
2883 {
2884 enum ib_port_state curr_state;
2885 struct ib_event ibevent = {};
2886 u32 port;
2887
2888 if (ib_query_netdev_port(ibdev, ndev, &port))
2889 return;
2890
2891 curr_state = ib_get_curr_port_state(ndev);
2892
2893 write_lock_irq(&ibdev->cache_lock);
2894 if (ibdev->port_data[port].cache.last_port_state == curr_state) {
2895 write_unlock_irq(&ibdev->cache_lock);
2896 return;
2897 }
2898 ibdev->port_data[port].cache.last_port_state = curr_state;
2899 write_unlock_irq(&ibdev->cache_lock);
2900
2901 ibevent.event = (curr_state == IB_PORT_DOWN) ?
2902 IB_EVENT_PORT_ERR : IB_EVENT_PORT_ACTIVE;
2903 ibevent.device = ibdev;
2904 ibevent.element.port_num = port;
2905 ib_dispatch_event(&ibevent);
2906 }
2907 EXPORT_SYMBOL(ib_dispatch_port_state_event);
2908
handle_port_event(struct net_device * ndev,unsigned long event)2909 static void handle_port_event(struct net_device *ndev, unsigned long event)
2910 {
2911 struct ib_device *ibdev;
2912
2913 /* Currently, link events in bonding scenarios are still
2914 * reported by drivers that support bonding.
2915 */
2916 if (netif_is_lag_master(ndev) || netif_is_lag_port(ndev))
2917 return;
2918
2919 ibdev = ib_device_get_by_netdev(ndev, RDMA_DRIVER_UNKNOWN);
2920 if (!ibdev)
2921 return;
2922
2923 if (ibdev->ops.report_port_event) {
2924 ibdev->ops.report_port_event(ibdev, ndev, event);
2925 goto put_ibdev;
2926 }
2927
2928 ib_dispatch_port_state_event(ibdev, ndev);
2929
2930 put_ibdev:
2931 ib_device_put(ibdev);
2932 };
2933
ib_netdevice_event(struct notifier_block * this,unsigned long event,void * ptr)2934 static int ib_netdevice_event(struct notifier_block *this,
2935 unsigned long event, void *ptr)
2936 {
2937 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
2938 struct ib_device *ibdev;
2939 u32 port;
2940
2941 switch (event) {
2942 case NETDEV_CHANGENAME:
2943 ibdev = ib_device_get_by_netdev(ndev, RDMA_DRIVER_UNKNOWN);
2944 if (!ibdev)
2945 return NOTIFY_DONE;
2946
2947 if (ib_query_netdev_port(ibdev, ndev, &port)) {
2948 ib_device_put(ibdev);
2949 break;
2950 }
2951
2952 rdma_nl_notify_event(ibdev, port, RDMA_NETDEV_RENAME_EVENT);
2953 ib_device_put(ibdev);
2954 break;
2955
2956 case NETDEV_UP:
2957 case NETDEV_CHANGE:
2958 case NETDEV_DOWN:
2959 handle_port_event(ndev, event);
2960 break;
2961
2962 default:
2963 break;
2964 }
2965
2966 return NOTIFY_DONE;
2967 }
2968
2969 static struct notifier_block nb_netdevice = {
2970 .notifier_call = ib_netdevice_event,
2971 };
2972
ib_core_init(void)2973 static int __init ib_core_init(void)
2974 {
2975 int ret = -ENOMEM;
2976
2977 ib_wq = alloc_workqueue("infiniband", 0, 0);
2978 if (!ib_wq)
2979 return -ENOMEM;
2980
2981 ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
2982 WQ_UNBOUND_MAX_ACTIVE);
2983 if (!ib_unreg_wq)
2984 goto err;
2985
2986 ib_comp_wq = alloc_workqueue("ib-comp-wq",
2987 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2988 if (!ib_comp_wq)
2989 goto err_unbound;
2990
2991 ib_comp_unbound_wq =
2992 alloc_workqueue("ib-comp-unb-wq",
2993 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2994 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2995 if (!ib_comp_unbound_wq)
2996 goto err_comp;
2997
2998 ret = class_register(&ib_class);
2999 if (ret) {
3000 pr_warn("Couldn't create InfiniBand device class\n");
3001 goto err_comp_unbound;
3002 }
3003
3004 rdma_nl_init();
3005
3006 ret = addr_init();
3007 if (ret) {
3008 pr_warn("Couldn't init IB address resolution\n");
3009 goto err_ibnl;
3010 }
3011
3012 ret = ib_mad_init();
3013 if (ret) {
3014 pr_warn("Couldn't init IB MAD\n");
3015 goto err_addr;
3016 }
3017
3018 ret = ib_sa_init();
3019 if (ret) {
3020 pr_warn("Couldn't init SA\n");
3021 goto err_mad;
3022 }
3023
3024 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
3025 if (ret) {
3026 pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
3027 goto err_sa;
3028 }
3029
3030 ret = register_pernet_device(&rdma_dev_net_ops);
3031 if (ret) {
3032 pr_warn("Couldn't init compat dev. ret %d\n", ret);
3033 goto err_compat;
3034 }
3035
3036 nldev_init();
3037 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
3038 ret = roce_gid_mgmt_init();
3039 if (ret) {
3040 pr_warn("Couldn't init RoCE GID management\n");
3041 goto err_parent;
3042 }
3043
3044 register_netdevice_notifier(&nb_netdevice);
3045
3046 return 0;
3047
3048 err_parent:
3049 rdma_nl_unregister(RDMA_NL_LS);
3050 nldev_exit();
3051 unregister_pernet_device(&rdma_dev_net_ops);
3052 err_compat:
3053 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
3054 err_sa:
3055 ib_sa_cleanup();
3056 err_mad:
3057 ib_mad_cleanup();
3058 err_addr:
3059 addr_cleanup();
3060 err_ibnl:
3061 class_unregister(&ib_class);
3062 err_comp_unbound:
3063 destroy_workqueue(ib_comp_unbound_wq);
3064 err_comp:
3065 destroy_workqueue(ib_comp_wq);
3066 err_unbound:
3067 destroy_workqueue(ib_unreg_wq);
3068 err:
3069 destroy_workqueue(ib_wq);
3070 return ret;
3071 }
3072
ib_core_cleanup(void)3073 static void __exit ib_core_cleanup(void)
3074 {
3075 unregister_netdevice_notifier(&nb_netdevice);
3076 roce_gid_mgmt_cleanup();
3077 rdma_nl_unregister(RDMA_NL_LS);
3078 nldev_exit();
3079 unregister_pernet_device(&rdma_dev_net_ops);
3080 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
3081 ib_sa_cleanup();
3082 ib_mad_cleanup();
3083 addr_cleanup();
3084 rdma_nl_exit();
3085 class_unregister(&ib_class);
3086 destroy_workqueue(ib_comp_unbound_wq);
3087 destroy_workqueue(ib_comp_wq);
3088 /* Make sure that any pending umem accounting work is done. */
3089 destroy_workqueue(ib_wq);
3090 destroy_workqueue(ib_unreg_wq);
3091 WARN_ON(!xa_empty(&clients));
3092 WARN_ON(!xa_empty(&devices));
3093 }
3094
3095 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
3096
3097 /* ib core relies on netdev stack to first register net_ns_type_operations
3098 * ns kobject type before ib_core initialization.
3099 */
3100 fs_initcall(ib_core_init);
3101 module_exit(ib_core_cleanup);
3102