1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * RPR-0521 ROHM Ambient Light and Proximity Sensor
4 *
5 * Copyright (c) 2015, Intel Corporation.
6 *
7 * IIO driver for RPR-0521RS (7-bit I2C slave address 0x38).
8 *
9 * TODO: illuminance channel
10 */
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/init.h>
15 #include <linux/i2c.h>
16 #include <linux/regmap.h>
17 #include <linux/delay.h>
18
19 #include <linux/iio/iio.h>
20 #include <linux/iio/buffer.h>
21 #include <linux/iio/trigger.h>
22 #include <linux/iio/trigger_consumer.h>
23 #include <linux/iio/triggered_buffer.h>
24 #include <linux/iio/sysfs.h>
25 #include <linux/pm_runtime.h>
26
27 #define RPR0521_REG_SYSTEM_CTRL 0x40
28 #define RPR0521_REG_MODE_CTRL 0x41
29 #define RPR0521_REG_ALS_CTRL 0x42
30 #define RPR0521_REG_PXS_CTRL 0x43
31 #define RPR0521_REG_PXS_DATA 0x44 /* 16-bit, little endian */
32 #define RPR0521_REG_ALS_DATA0 0x46 /* 16-bit, little endian */
33 #define RPR0521_REG_ALS_DATA1 0x48 /* 16-bit, little endian */
34 #define RPR0521_REG_INTERRUPT 0x4A
35 #define RPR0521_REG_PS_OFFSET_LSB 0x53
36 #define RPR0521_REG_ID 0x92
37
38 #define RPR0521_MODE_ALS_MASK BIT(7)
39 #define RPR0521_MODE_PXS_MASK BIT(6)
40 #define RPR0521_MODE_MEAS_TIME_MASK GENMASK(3, 0)
41 #define RPR0521_ALS_DATA0_GAIN_MASK GENMASK(5, 4)
42 #define RPR0521_ALS_DATA0_GAIN_SHIFT 4
43 #define RPR0521_ALS_DATA1_GAIN_MASK GENMASK(3, 2)
44 #define RPR0521_ALS_DATA1_GAIN_SHIFT 2
45 #define RPR0521_PXS_GAIN_MASK GENMASK(5, 4)
46 #define RPR0521_PXS_GAIN_SHIFT 4
47 #define RPR0521_PXS_PERSISTENCE_MASK GENMASK(3, 0)
48 #define RPR0521_INTERRUPT_INT_TRIG_PS_MASK BIT(0)
49 #define RPR0521_INTERRUPT_INT_TRIG_ALS_MASK BIT(1)
50 #define RPR0521_INTERRUPT_INT_REASSERT_MASK BIT(3)
51 #define RPR0521_INTERRUPT_ALS_INT_STATUS_MASK BIT(6)
52 #define RPR0521_INTERRUPT_PS_INT_STATUS_MASK BIT(7)
53
54 #define RPR0521_MODE_ALS_ENABLE BIT(7)
55 #define RPR0521_MODE_ALS_DISABLE 0x00
56 #define RPR0521_MODE_PXS_ENABLE BIT(6)
57 #define RPR0521_MODE_PXS_DISABLE 0x00
58 #define RPR0521_PXS_PERSISTENCE_DRDY 0x00
59
60 #define RPR0521_INTERRUPT_INT_TRIG_PS_ENABLE BIT(0)
61 #define RPR0521_INTERRUPT_INT_TRIG_PS_DISABLE 0x00
62 #define RPR0521_INTERRUPT_INT_TRIG_ALS_ENABLE BIT(1)
63 #define RPR0521_INTERRUPT_INT_TRIG_ALS_DISABLE 0x00
64 #define RPR0521_INTERRUPT_INT_REASSERT_ENABLE BIT(3)
65 #define RPR0521_INTERRUPT_INT_REASSERT_DISABLE 0x00
66
67 #define RPR0521_MANUFACT_ID 0xE0
68 #define RPR0521_DEFAULT_MEAS_TIME 0x06 /* ALS - 100ms, PXS - 100ms */
69
70 #define RPR0521_DRV_NAME "RPR0521"
71 #define RPR0521_IRQ_NAME "rpr0521_event"
72 #define RPR0521_REGMAP_NAME "rpr0521_regmap"
73
74 #define RPR0521_SLEEP_DELAY_MS 2000
75
76 #define RPR0521_ALS_SCALE_AVAIL "0.007812 0.015625 0.5 1"
77 #define RPR0521_PXS_SCALE_AVAIL "0.125 0.5 1"
78
79 struct rpr0521_gain {
80 int scale;
81 int uscale;
82 };
83
84 static const struct rpr0521_gain rpr0521_als_gain[4] = {
85 {1, 0}, /* x1 */
86 {0, 500000}, /* x2 */
87 {0, 15625}, /* x64 */
88 {0, 7812}, /* x128 */
89 };
90
91 static const struct rpr0521_gain rpr0521_pxs_gain[3] = {
92 {1, 0}, /* x1 */
93 {0, 500000}, /* x2 */
94 {0, 125000}, /* x4 */
95 };
96
97 enum rpr0521_channel {
98 RPR0521_CHAN_PXS,
99 RPR0521_CHAN_ALS_DATA0,
100 RPR0521_CHAN_ALS_DATA1,
101 };
102
103 struct rpr0521_reg_desc {
104 u8 address;
105 u8 device_mask;
106 };
107
108 static const struct rpr0521_reg_desc rpr0521_data_reg[] = {
109 [RPR0521_CHAN_PXS] = {
110 .address = RPR0521_REG_PXS_DATA,
111 .device_mask = RPR0521_MODE_PXS_MASK,
112 },
113 [RPR0521_CHAN_ALS_DATA0] = {
114 .address = RPR0521_REG_ALS_DATA0,
115 .device_mask = RPR0521_MODE_ALS_MASK,
116 },
117 [RPR0521_CHAN_ALS_DATA1] = {
118 .address = RPR0521_REG_ALS_DATA1,
119 .device_mask = RPR0521_MODE_ALS_MASK,
120 },
121 };
122
123 static const struct rpr0521_gain_info {
124 u8 reg;
125 u8 mask;
126 u8 shift;
127 const struct rpr0521_gain *gain;
128 int size;
129 } rpr0521_gain[] = {
130 [RPR0521_CHAN_PXS] = {
131 .reg = RPR0521_REG_PXS_CTRL,
132 .mask = RPR0521_PXS_GAIN_MASK,
133 .shift = RPR0521_PXS_GAIN_SHIFT,
134 .gain = rpr0521_pxs_gain,
135 .size = ARRAY_SIZE(rpr0521_pxs_gain),
136 },
137 [RPR0521_CHAN_ALS_DATA0] = {
138 .reg = RPR0521_REG_ALS_CTRL,
139 .mask = RPR0521_ALS_DATA0_GAIN_MASK,
140 .shift = RPR0521_ALS_DATA0_GAIN_SHIFT,
141 .gain = rpr0521_als_gain,
142 .size = ARRAY_SIZE(rpr0521_als_gain),
143 },
144 [RPR0521_CHAN_ALS_DATA1] = {
145 .reg = RPR0521_REG_ALS_CTRL,
146 .mask = RPR0521_ALS_DATA1_GAIN_MASK,
147 .shift = RPR0521_ALS_DATA1_GAIN_SHIFT,
148 .gain = rpr0521_als_gain,
149 .size = ARRAY_SIZE(rpr0521_als_gain),
150 },
151 };
152
153 struct rpr0521_samp_freq {
154 int als_hz;
155 int als_uhz;
156 int pxs_hz;
157 int pxs_uhz;
158 };
159
160 static const struct rpr0521_samp_freq rpr0521_samp_freq_i[13] = {
161 /* {ALS, PXS}, W==currently writable option */
162 {0, 0, 0, 0}, /* W0000, 0=standby */
163 {0, 0, 100, 0}, /* 0001 */
164 {0, 0, 25, 0}, /* 0010 */
165 {0, 0, 10, 0}, /* 0011 */
166 {0, 0, 2, 500000}, /* 0100 */
167 {10, 0, 20, 0}, /* 0101 */
168 {10, 0, 10, 0}, /* W0110 */
169 {10, 0, 2, 500000}, /* 0111 */
170 {2, 500000, 20, 0}, /* 1000, measurement 100ms, sleep 300ms */
171 {2, 500000, 10, 0}, /* 1001, measurement 100ms, sleep 300ms */
172 {2, 500000, 0, 0}, /* 1010, high sensitivity mode */
173 {2, 500000, 2, 500000}, /* W1011, high sensitivity mode */
174 {20, 0, 20, 0} /* 1100, ALS_data x 0.5, see specification P.18 */
175 };
176
177 struct rpr0521_data {
178 struct i2c_client *client;
179
180 /* protect device params updates (e.g state, gain) */
181 struct mutex lock;
182
183 /* device active status */
184 bool als_dev_en;
185 bool pxs_dev_en;
186
187 struct iio_trigger *drdy_trigger0;
188 s64 irq_timestamp;
189
190 /* optimize runtime pm ops - enable/disable device only if needed */
191 bool als_ps_need_en;
192 bool pxs_ps_need_en;
193 bool als_need_dis;
194 bool pxs_need_dis;
195
196 struct regmap *regmap;
197
198 /*
199 * Ensure correct naturally aligned timestamp.
200 * Note that the read will put garbage data into
201 * the padding but this should not be a problem
202 */
203 struct {
204 __le16 channels[3];
205 u8 garbage;
206 aligned_s64 ts;
207 } scan;
208 };
209
210 static IIO_CONST_ATTR(in_intensity_scale_available, RPR0521_ALS_SCALE_AVAIL);
211 static IIO_CONST_ATTR(in_proximity_scale_available, RPR0521_PXS_SCALE_AVAIL);
212
213 /*
214 * Start with easy freq first, whole table of freq combinations is more
215 * complicated.
216 */
217 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("2.5 10");
218
219 static struct attribute *rpr0521_attributes[] = {
220 &iio_const_attr_in_intensity_scale_available.dev_attr.attr,
221 &iio_const_attr_in_proximity_scale_available.dev_attr.attr,
222 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
223 NULL,
224 };
225
226 static const struct attribute_group rpr0521_attribute_group = {
227 .attrs = rpr0521_attributes,
228 };
229
230 /* Order of the channel data in buffer */
231 enum rpr0521_scan_index_order {
232 RPR0521_CHAN_INDEX_PXS,
233 RPR0521_CHAN_INDEX_BOTH,
234 RPR0521_CHAN_INDEX_IR,
235 };
236
237 static const unsigned long rpr0521_available_scan_masks[] = {
238 BIT(RPR0521_CHAN_INDEX_PXS) | BIT(RPR0521_CHAN_INDEX_BOTH) |
239 BIT(RPR0521_CHAN_INDEX_IR),
240 0
241 };
242
243 static const struct iio_chan_spec rpr0521_channels[] = {
244 {
245 .type = IIO_PROXIMITY,
246 .address = RPR0521_CHAN_PXS,
247 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
248 BIT(IIO_CHAN_INFO_OFFSET) |
249 BIT(IIO_CHAN_INFO_SCALE),
250 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
251 .scan_index = RPR0521_CHAN_INDEX_PXS,
252 .scan_type = {
253 .sign = 'u',
254 .realbits = 16,
255 .storagebits = 16,
256 .endianness = IIO_LE,
257 },
258 },
259 {
260 .type = IIO_INTENSITY,
261 .modified = 1,
262 .address = RPR0521_CHAN_ALS_DATA0,
263 .channel2 = IIO_MOD_LIGHT_BOTH,
264 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
265 BIT(IIO_CHAN_INFO_SCALE),
266 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
267 .scan_index = RPR0521_CHAN_INDEX_BOTH,
268 .scan_type = {
269 .sign = 'u',
270 .realbits = 16,
271 .storagebits = 16,
272 .endianness = IIO_LE,
273 },
274 },
275 {
276 .type = IIO_INTENSITY,
277 .modified = 1,
278 .address = RPR0521_CHAN_ALS_DATA1,
279 .channel2 = IIO_MOD_LIGHT_IR,
280 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
281 BIT(IIO_CHAN_INFO_SCALE),
282 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
283 .scan_index = RPR0521_CHAN_INDEX_IR,
284 .scan_type = {
285 .sign = 'u',
286 .realbits = 16,
287 .storagebits = 16,
288 .endianness = IIO_LE,
289 },
290 },
291 };
292
rpr0521_als_enable(struct rpr0521_data * data,u8 status)293 static int rpr0521_als_enable(struct rpr0521_data *data, u8 status)
294 {
295 int ret;
296
297 ret = regmap_update_bits(data->regmap, RPR0521_REG_MODE_CTRL,
298 RPR0521_MODE_ALS_MASK,
299 status);
300 if (ret < 0)
301 return ret;
302
303 if (status & RPR0521_MODE_ALS_MASK)
304 data->als_dev_en = true;
305 else
306 data->als_dev_en = false;
307
308 return 0;
309 }
310
rpr0521_pxs_enable(struct rpr0521_data * data,u8 status)311 static int rpr0521_pxs_enable(struct rpr0521_data *data, u8 status)
312 {
313 int ret;
314
315 ret = regmap_update_bits(data->regmap, RPR0521_REG_MODE_CTRL,
316 RPR0521_MODE_PXS_MASK,
317 status);
318 if (ret < 0)
319 return ret;
320
321 if (status & RPR0521_MODE_PXS_MASK)
322 data->pxs_dev_en = true;
323 else
324 data->pxs_dev_en = false;
325
326 return 0;
327 }
328
329 /**
330 * rpr0521_set_power_state - handles runtime PM state and sensors enabled status
331 *
332 * @data: rpr0521 device private data
333 * @on: state to be set for devices in @device_mask
334 * @device_mask: bitmask specifying for which device we need to update @on state
335 *
336 * Calls for this function must be balanced so that each ON should have matching
337 * OFF. Otherwise pm usage_count gets out of sync.
338 */
rpr0521_set_power_state(struct rpr0521_data * data,bool on,u8 device_mask)339 static int rpr0521_set_power_state(struct rpr0521_data *data, bool on,
340 u8 device_mask)
341 {
342 #ifdef CONFIG_PM
343 int ret;
344
345 if (device_mask & RPR0521_MODE_ALS_MASK) {
346 data->als_ps_need_en = on;
347 data->als_need_dis = !on;
348 }
349
350 if (device_mask & RPR0521_MODE_PXS_MASK) {
351 data->pxs_ps_need_en = on;
352 data->pxs_need_dis = !on;
353 }
354
355 /*
356 * On: _resume() is called only when we are suspended
357 * Off: _suspend() is called after delay if _resume() is not
358 * called before that.
359 * Note: If either measurement is re-enabled before _suspend(),
360 * both stay enabled until _suspend().
361 */
362 if (on) {
363 ret = pm_runtime_resume_and_get(&data->client->dev);
364 } else {
365 pm_runtime_mark_last_busy(&data->client->dev);
366 ret = pm_runtime_put_autosuspend(&data->client->dev);
367 }
368 if (ret < 0) {
369 dev_err(&data->client->dev,
370 "Failed: rpr0521_set_power_state for %d, ret %d\n",
371 on, ret);
372 return ret;
373 }
374
375 if (on) {
376 /* If _resume() was not called, enable measurement now. */
377 if (data->als_ps_need_en) {
378 ret = rpr0521_als_enable(data, RPR0521_MODE_ALS_ENABLE);
379 if (ret)
380 return ret;
381 data->als_ps_need_en = false;
382 }
383
384 if (data->pxs_ps_need_en) {
385 ret = rpr0521_pxs_enable(data, RPR0521_MODE_PXS_ENABLE);
386 if (ret)
387 return ret;
388 data->pxs_ps_need_en = false;
389 }
390 }
391 #endif
392 return 0;
393 }
394
395 /* Interrupt register tells if this sensor caused the interrupt or not. */
rpr0521_is_triggered(struct rpr0521_data * data)396 static inline bool rpr0521_is_triggered(struct rpr0521_data *data)
397 {
398 int ret;
399 int reg;
400
401 ret = regmap_read(data->regmap, RPR0521_REG_INTERRUPT, ®);
402 if (ret < 0)
403 return false; /* Reg read failed. */
404 if (reg &
405 (RPR0521_INTERRUPT_ALS_INT_STATUS_MASK |
406 RPR0521_INTERRUPT_PS_INT_STATUS_MASK))
407 return true;
408 else
409 return false; /* Int not from this sensor. */
410 }
411
412 /* IRQ to trigger handler */
rpr0521_drdy_irq_handler(int irq,void * private)413 static irqreturn_t rpr0521_drdy_irq_handler(int irq, void *private)
414 {
415 struct iio_dev *indio_dev = private;
416 struct rpr0521_data *data = iio_priv(indio_dev);
417
418 data->irq_timestamp = iio_get_time_ns(indio_dev);
419 /*
420 * We need to wake the thread to read the interrupt reg. It
421 * is not possible to do that here because regmap_read takes a
422 * mutex.
423 */
424
425 return IRQ_WAKE_THREAD;
426 }
427
rpr0521_drdy_irq_thread(int irq,void * private)428 static irqreturn_t rpr0521_drdy_irq_thread(int irq, void *private)
429 {
430 struct iio_dev *indio_dev = private;
431 struct rpr0521_data *data = iio_priv(indio_dev);
432
433 if (rpr0521_is_triggered(data)) {
434 iio_trigger_poll_nested(data->drdy_trigger0);
435 return IRQ_HANDLED;
436 }
437
438 return IRQ_NONE;
439 }
440
rpr0521_trigger_consumer_handler(int irq,void * p)441 static irqreturn_t rpr0521_trigger_consumer_handler(int irq, void *p)
442 {
443 struct iio_poll_func *pf = p;
444 struct iio_dev *indio_dev = pf->indio_dev;
445 struct rpr0521_data *data = iio_priv(indio_dev);
446 int err;
447
448 /* Use irq timestamp when reasonable. */
449 if (iio_trigger_using_own(indio_dev) && data->irq_timestamp) {
450 pf->timestamp = data->irq_timestamp;
451 data->irq_timestamp = 0;
452 }
453 /* Other chained trigger polls get timestamp only here. */
454 if (!pf->timestamp)
455 pf->timestamp = iio_get_time_ns(indio_dev);
456
457 err = regmap_bulk_read(data->regmap, RPR0521_REG_PXS_DATA,
458 data->scan.channels,
459 (3 * 2) + 1); /* 3 * 16-bit + (discarded) int clear reg. */
460 if (!err)
461 iio_push_to_buffers_with_timestamp(indio_dev,
462 &data->scan, pf->timestamp);
463 else
464 dev_err(&data->client->dev,
465 "Trigger consumer can't read from sensor.\n");
466 pf->timestamp = 0;
467
468 iio_trigger_notify_done(indio_dev->trig);
469
470 return IRQ_HANDLED;
471 }
472
rpr0521_write_int_enable(struct rpr0521_data * data)473 static int rpr0521_write_int_enable(struct rpr0521_data *data)
474 {
475 int err;
476
477 /* Interrupt after each measurement */
478 err = regmap_update_bits(data->regmap, RPR0521_REG_PXS_CTRL,
479 RPR0521_PXS_PERSISTENCE_MASK,
480 RPR0521_PXS_PERSISTENCE_DRDY);
481 if (err) {
482 dev_err(&data->client->dev, "PS control reg write fail.\n");
483 return -EBUSY;
484 }
485
486 /* Ignore latch and mode because of drdy */
487 err = regmap_write(data->regmap, RPR0521_REG_INTERRUPT,
488 RPR0521_INTERRUPT_INT_REASSERT_DISABLE |
489 RPR0521_INTERRUPT_INT_TRIG_ALS_DISABLE |
490 RPR0521_INTERRUPT_INT_TRIG_PS_ENABLE
491 );
492 if (err) {
493 dev_err(&data->client->dev, "Interrupt setup write fail.\n");
494 return -EBUSY;
495 }
496
497 return 0;
498 }
499
rpr0521_write_int_disable(struct rpr0521_data * data)500 static int rpr0521_write_int_disable(struct rpr0521_data *data)
501 {
502 /* Don't care of clearing mode, assert and latch. */
503 return regmap_write(data->regmap, RPR0521_REG_INTERRUPT,
504 RPR0521_INTERRUPT_INT_TRIG_ALS_DISABLE |
505 RPR0521_INTERRUPT_INT_TRIG_PS_DISABLE
506 );
507 }
508
509 /*
510 * Trigger producer enable / disable. Note that there will be trigs only when
511 * measurement data is ready to be read.
512 */
rpr0521_pxs_drdy_set_state(struct iio_trigger * trigger,bool enable_drdy)513 static int rpr0521_pxs_drdy_set_state(struct iio_trigger *trigger,
514 bool enable_drdy)
515 {
516 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trigger);
517 struct rpr0521_data *data = iio_priv(indio_dev);
518 int err;
519
520 if (enable_drdy)
521 err = rpr0521_write_int_enable(data);
522 else
523 err = rpr0521_write_int_disable(data);
524 if (err)
525 dev_err(&data->client->dev, "rpr0521_pxs_drdy_set_state failed\n");
526
527 return err;
528 }
529
530 static const struct iio_trigger_ops rpr0521_trigger_ops = {
531 .set_trigger_state = rpr0521_pxs_drdy_set_state,
532 };
533
534
rpr0521_buffer_preenable(struct iio_dev * indio_dev)535 static int rpr0521_buffer_preenable(struct iio_dev *indio_dev)
536 {
537 int err;
538 struct rpr0521_data *data = iio_priv(indio_dev);
539
540 mutex_lock(&data->lock);
541 err = rpr0521_set_power_state(data, true,
542 (RPR0521_MODE_PXS_MASK | RPR0521_MODE_ALS_MASK));
543 mutex_unlock(&data->lock);
544 if (err)
545 dev_err(&data->client->dev, "_buffer_preenable fail\n");
546
547 return err;
548 }
549
rpr0521_buffer_postdisable(struct iio_dev * indio_dev)550 static int rpr0521_buffer_postdisable(struct iio_dev *indio_dev)
551 {
552 int err;
553 struct rpr0521_data *data = iio_priv(indio_dev);
554
555 mutex_lock(&data->lock);
556 err = rpr0521_set_power_state(data, false,
557 (RPR0521_MODE_PXS_MASK | RPR0521_MODE_ALS_MASK));
558 mutex_unlock(&data->lock);
559 if (err)
560 dev_err(&data->client->dev, "_buffer_postdisable fail\n");
561
562 return err;
563 }
564
565 static const struct iio_buffer_setup_ops rpr0521_buffer_setup_ops = {
566 .preenable = rpr0521_buffer_preenable,
567 .postdisable = rpr0521_buffer_postdisable,
568 };
569
rpr0521_get_gain(struct rpr0521_data * data,int chan,int * val,int * val2)570 static int rpr0521_get_gain(struct rpr0521_data *data, int chan,
571 int *val, int *val2)
572 {
573 int ret, reg, idx;
574
575 ret = regmap_read(data->regmap, rpr0521_gain[chan].reg, ®);
576 if (ret < 0)
577 return ret;
578
579 idx = (rpr0521_gain[chan].mask & reg) >> rpr0521_gain[chan].shift;
580 *val = rpr0521_gain[chan].gain[idx].scale;
581 *val2 = rpr0521_gain[chan].gain[idx].uscale;
582
583 return 0;
584 }
585
rpr0521_set_gain(struct rpr0521_data * data,int chan,int val,int val2)586 static int rpr0521_set_gain(struct rpr0521_data *data, int chan,
587 int val, int val2)
588 {
589 int i, idx = -EINVAL;
590
591 /* get gain index */
592 for (i = 0; i < rpr0521_gain[chan].size; i++)
593 if (val == rpr0521_gain[chan].gain[i].scale &&
594 val2 == rpr0521_gain[chan].gain[i].uscale) {
595 idx = i;
596 break;
597 }
598
599 if (idx < 0)
600 return idx;
601
602 return regmap_update_bits(data->regmap, rpr0521_gain[chan].reg,
603 rpr0521_gain[chan].mask,
604 idx << rpr0521_gain[chan].shift);
605 }
606
rpr0521_read_samp_freq(struct rpr0521_data * data,enum iio_chan_type chan_type,int * val,int * val2)607 static int rpr0521_read_samp_freq(struct rpr0521_data *data,
608 enum iio_chan_type chan_type,
609 int *val, int *val2)
610 {
611 int reg, ret;
612
613 ret = regmap_read(data->regmap, RPR0521_REG_MODE_CTRL, ®);
614 if (ret < 0)
615 return ret;
616
617 reg &= RPR0521_MODE_MEAS_TIME_MASK;
618 if (reg >= ARRAY_SIZE(rpr0521_samp_freq_i))
619 return -EINVAL;
620
621 switch (chan_type) {
622 case IIO_INTENSITY:
623 *val = rpr0521_samp_freq_i[reg].als_hz;
624 *val2 = rpr0521_samp_freq_i[reg].als_uhz;
625 return 0;
626
627 case IIO_PROXIMITY:
628 *val = rpr0521_samp_freq_i[reg].pxs_hz;
629 *val2 = rpr0521_samp_freq_i[reg].pxs_uhz;
630 return 0;
631
632 default:
633 return -EINVAL;
634 }
635 }
636
rpr0521_write_samp_freq_common(struct rpr0521_data * data,enum iio_chan_type chan_type,int val,int val2)637 static int rpr0521_write_samp_freq_common(struct rpr0521_data *data,
638 enum iio_chan_type chan_type,
639 int val, int val2)
640 {
641 int i;
642
643 /*
644 * Ignore channel
645 * both pxs and als are setup only to same freq because of simplicity
646 */
647 switch (val) {
648 case 0:
649 i = 0;
650 break;
651
652 case 2:
653 if (val2 != 500000)
654 return -EINVAL;
655
656 i = 11;
657 break;
658
659 case 10:
660 i = 6;
661 break;
662
663 default:
664 return -EINVAL;
665 }
666
667 return regmap_update_bits(data->regmap,
668 RPR0521_REG_MODE_CTRL,
669 RPR0521_MODE_MEAS_TIME_MASK,
670 i);
671 }
672
rpr0521_read_ps_offset(struct rpr0521_data * data,int * offset)673 static int rpr0521_read_ps_offset(struct rpr0521_data *data, int *offset)
674 {
675 int ret;
676 __le16 buffer;
677
678 ret = regmap_bulk_read(data->regmap,
679 RPR0521_REG_PS_OFFSET_LSB, &buffer, sizeof(buffer));
680
681 if (ret < 0) {
682 dev_err(&data->client->dev, "Failed to read PS OFFSET register\n");
683 return ret;
684 }
685 *offset = le16_to_cpu(buffer);
686
687 return ret;
688 }
689
rpr0521_write_ps_offset(struct rpr0521_data * data,int offset)690 static int rpr0521_write_ps_offset(struct rpr0521_data *data, int offset)
691 {
692 int ret;
693 __le16 buffer;
694
695 buffer = cpu_to_le16(offset & 0x3ff);
696 ret = regmap_raw_write(data->regmap,
697 RPR0521_REG_PS_OFFSET_LSB, &buffer, sizeof(buffer));
698
699 if (ret < 0) {
700 dev_err(&data->client->dev, "Failed to write PS OFFSET register\n");
701 return ret;
702 }
703
704 return ret;
705 }
706
rpr0521_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)707 static int rpr0521_read_raw(struct iio_dev *indio_dev,
708 struct iio_chan_spec const *chan, int *val,
709 int *val2, long mask)
710 {
711 struct rpr0521_data *data = iio_priv(indio_dev);
712 int ret;
713 int busy;
714 u8 device_mask;
715 __le16 raw_data;
716
717 switch (mask) {
718 case IIO_CHAN_INFO_RAW:
719 if (chan->type != IIO_INTENSITY && chan->type != IIO_PROXIMITY)
720 return -EINVAL;
721
722 busy = iio_device_claim_direct_mode(indio_dev);
723 if (busy)
724 return -EBUSY;
725
726 device_mask = rpr0521_data_reg[chan->address].device_mask;
727
728 mutex_lock(&data->lock);
729 ret = rpr0521_set_power_state(data, true, device_mask);
730 if (ret < 0)
731 goto rpr0521_read_raw_out;
732
733 ret = regmap_bulk_read(data->regmap,
734 rpr0521_data_reg[chan->address].address,
735 &raw_data, sizeof(raw_data));
736 if (ret < 0) {
737 rpr0521_set_power_state(data, false, device_mask);
738 goto rpr0521_read_raw_out;
739 }
740
741 ret = rpr0521_set_power_state(data, false, device_mask);
742
743 rpr0521_read_raw_out:
744 mutex_unlock(&data->lock);
745 iio_device_release_direct_mode(indio_dev);
746 if (ret < 0)
747 return ret;
748
749 *val = le16_to_cpu(raw_data);
750
751 return IIO_VAL_INT;
752
753 case IIO_CHAN_INFO_SCALE:
754 mutex_lock(&data->lock);
755 ret = rpr0521_get_gain(data, chan->address, val, val2);
756 mutex_unlock(&data->lock);
757 if (ret < 0)
758 return ret;
759
760 return IIO_VAL_INT_PLUS_MICRO;
761
762 case IIO_CHAN_INFO_SAMP_FREQ:
763 mutex_lock(&data->lock);
764 ret = rpr0521_read_samp_freq(data, chan->type, val, val2);
765 mutex_unlock(&data->lock);
766 if (ret < 0)
767 return ret;
768
769 return IIO_VAL_INT_PLUS_MICRO;
770
771 case IIO_CHAN_INFO_OFFSET:
772 mutex_lock(&data->lock);
773 ret = rpr0521_read_ps_offset(data, val);
774 mutex_unlock(&data->lock);
775 if (ret < 0)
776 return ret;
777
778 return IIO_VAL_INT;
779
780 default:
781 return -EINVAL;
782 }
783 }
784
rpr0521_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)785 static int rpr0521_write_raw(struct iio_dev *indio_dev,
786 struct iio_chan_spec const *chan, int val,
787 int val2, long mask)
788 {
789 struct rpr0521_data *data = iio_priv(indio_dev);
790 int ret;
791
792 switch (mask) {
793 case IIO_CHAN_INFO_SCALE:
794 mutex_lock(&data->lock);
795 ret = rpr0521_set_gain(data, chan->address, val, val2);
796 mutex_unlock(&data->lock);
797
798 return ret;
799
800 case IIO_CHAN_INFO_SAMP_FREQ:
801 mutex_lock(&data->lock);
802 ret = rpr0521_write_samp_freq_common(data, chan->type,
803 val, val2);
804 mutex_unlock(&data->lock);
805
806 return ret;
807
808 case IIO_CHAN_INFO_OFFSET:
809 mutex_lock(&data->lock);
810 ret = rpr0521_write_ps_offset(data, val);
811 mutex_unlock(&data->lock);
812
813 return ret;
814
815 default:
816 return -EINVAL;
817 }
818 }
819
820 static const struct iio_info rpr0521_info = {
821 .read_raw = rpr0521_read_raw,
822 .write_raw = rpr0521_write_raw,
823 .attrs = &rpr0521_attribute_group,
824 };
825
rpr0521_init(struct rpr0521_data * data)826 static int rpr0521_init(struct rpr0521_data *data)
827 {
828 int ret;
829 int id;
830
831 ret = regmap_read(data->regmap, RPR0521_REG_ID, &id);
832 if (ret < 0) {
833 dev_err(&data->client->dev, "Failed to read REG_ID register\n");
834 return ret;
835 }
836
837 if (id != RPR0521_MANUFACT_ID) {
838 dev_err(&data->client->dev, "Wrong id, got %x, expected %x\n",
839 id, RPR0521_MANUFACT_ID);
840 return -ENODEV;
841 }
842
843 /* set default measurement time - 100 ms for both ALS and PS */
844 ret = regmap_update_bits(data->regmap, RPR0521_REG_MODE_CTRL,
845 RPR0521_MODE_MEAS_TIME_MASK,
846 RPR0521_DEFAULT_MEAS_TIME);
847 if (ret) {
848 pr_err("regmap_update_bits returned %d\n", ret);
849 return ret;
850 }
851
852 #ifndef CONFIG_PM
853 ret = rpr0521_als_enable(data, RPR0521_MODE_ALS_ENABLE);
854 if (ret < 0)
855 return ret;
856 ret = rpr0521_pxs_enable(data, RPR0521_MODE_PXS_ENABLE);
857 if (ret < 0)
858 return ret;
859 #endif
860
861 data->irq_timestamp = 0;
862
863 return 0;
864 }
865
rpr0521_poweroff(struct rpr0521_data * data)866 static int rpr0521_poweroff(struct rpr0521_data *data)
867 {
868 int ret;
869 int tmp;
870
871 ret = regmap_update_bits(data->regmap, RPR0521_REG_MODE_CTRL,
872 RPR0521_MODE_ALS_MASK |
873 RPR0521_MODE_PXS_MASK,
874 RPR0521_MODE_ALS_DISABLE |
875 RPR0521_MODE_PXS_DISABLE);
876 if (ret < 0)
877 return ret;
878
879 data->als_dev_en = false;
880 data->pxs_dev_en = false;
881
882 /*
883 * Int pin keeps state after power off. Set pin to high impedance
884 * mode to prevent power drain.
885 */
886 ret = regmap_read(data->regmap, RPR0521_REG_INTERRUPT, &tmp);
887 if (ret) {
888 dev_err(&data->client->dev, "Failed to reset int pin.\n");
889 return ret;
890 }
891
892 return 0;
893 }
894
rpr0521_is_volatile_reg(struct device * dev,unsigned int reg)895 static bool rpr0521_is_volatile_reg(struct device *dev, unsigned int reg)
896 {
897 switch (reg) {
898 case RPR0521_REG_MODE_CTRL:
899 case RPR0521_REG_ALS_CTRL:
900 case RPR0521_REG_PXS_CTRL:
901 return false;
902 default:
903 return true;
904 }
905 }
906
907 static const struct regmap_config rpr0521_regmap_config = {
908 .name = RPR0521_REGMAP_NAME,
909
910 .reg_bits = 8,
911 .val_bits = 8,
912
913 .max_register = RPR0521_REG_ID,
914 .cache_type = REGCACHE_RBTREE,
915 .volatile_reg = rpr0521_is_volatile_reg,
916 };
917
rpr0521_probe(struct i2c_client * client)918 static int rpr0521_probe(struct i2c_client *client)
919 {
920 struct rpr0521_data *data;
921 struct iio_dev *indio_dev;
922 struct regmap *regmap;
923 int ret;
924
925 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
926 if (!indio_dev)
927 return -ENOMEM;
928
929 regmap = devm_regmap_init_i2c(client, &rpr0521_regmap_config);
930 if (IS_ERR(regmap)) {
931 dev_err(&client->dev, "regmap_init failed!\n");
932 return PTR_ERR(regmap);
933 }
934
935 data = iio_priv(indio_dev);
936 i2c_set_clientdata(client, indio_dev);
937 data->client = client;
938 data->regmap = regmap;
939
940 mutex_init(&data->lock);
941
942 indio_dev->info = &rpr0521_info;
943 indio_dev->name = RPR0521_DRV_NAME;
944 indio_dev->channels = rpr0521_channels;
945 indio_dev->num_channels = ARRAY_SIZE(rpr0521_channels);
946 indio_dev->modes = INDIO_DIRECT_MODE;
947
948 ret = rpr0521_init(data);
949 if (ret < 0) {
950 dev_err(&client->dev, "rpr0521 chip init failed\n");
951 return ret;
952 }
953
954 ret = pm_runtime_set_active(&client->dev);
955 if (ret < 0)
956 goto err_poweroff;
957
958 pm_runtime_enable(&client->dev);
959 pm_runtime_set_autosuspend_delay(&client->dev, RPR0521_SLEEP_DELAY_MS);
960 pm_runtime_use_autosuspend(&client->dev);
961
962 /*
963 * If sensor write/read is needed in _probe after _use_autosuspend,
964 * sensor needs to be _resumed first using rpr0521_set_power_state().
965 */
966
967 /* IRQ to trigger setup */
968 if (client->irq) {
969 /* Trigger0 producer setup */
970 data->drdy_trigger0 = devm_iio_trigger_alloc(
971 indio_dev->dev.parent,
972 "%s-dev%d", indio_dev->name, iio_device_id(indio_dev));
973 if (!data->drdy_trigger0) {
974 ret = -ENOMEM;
975 goto err_pm_disable;
976 }
977 data->drdy_trigger0->ops = &rpr0521_trigger_ops;
978 indio_dev->available_scan_masks = rpr0521_available_scan_masks;
979 iio_trigger_set_drvdata(data->drdy_trigger0, indio_dev);
980
981 /* Ties irq to trigger producer handler. */
982 ret = devm_request_threaded_irq(&client->dev, client->irq,
983 rpr0521_drdy_irq_handler, rpr0521_drdy_irq_thread,
984 IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
985 RPR0521_IRQ_NAME, indio_dev);
986 if (ret < 0) {
987 dev_err(&client->dev, "request irq %d for trigger0 failed\n",
988 client->irq);
989 goto err_pm_disable;
990 }
991
992 ret = devm_iio_trigger_register(indio_dev->dev.parent,
993 data->drdy_trigger0);
994 if (ret) {
995 dev_err(&client->dev, "iio trigger register failed\n");
996 goto err_pm_disable;
997 }
998
999 /*
1000 * Now whole pipe from physical interrupt (irq defined by
1001 * devicetree to device) to trigger0 output is set up.
1002 */
1003
1004 /* Trigger consumer setup */
1005 ret = devm_iio_triggered_buffer_setup(indio_dev->dev.parent,
1006 indio_dev,
1007 iio_pollfunc_store_time,
1008 rpr0521_trigger_consumer_handler,
1009 &rpr0521_buffer_setup_ops);
1010 if (ret < 0) {
1011 dev_err(&client->dev, "iio triggered buffer setup failed\n");
1012 goto err_pm_disable;
1013 }
1014 }
1015
1016 ret = iio_device_register(indio_dev);
1017 if (ret)
1018 goto err_pm_disable;
1019
1020 return 0;
1021
1022 err_pm_disable:
1023 pm_runtime_disable(&client->dev);
1024 pm_runtime_set_suspended(&client->dev);
1025 err_poweroff:
1026 rpr0521_poweroff(data);
1027
1028 return ret;
1029 }
1030
rpr0521_remove(struct i2c_client * client)1031 static void rpr0521_remove(struct i2c_client *client)
1032 {
1033 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1034
1035 iio_device_unregister(indio_dev);
1036
1037 pm_runtime_disable(&client->dev);
1038 pm_runtime_set_suspended(&client->dev);
1039
1040 rpr0521_poweroff(iio_priv(indio_dev));
1041 }
1042
rpr0521_runtime_suspend(struct device * dev)1043 static int rpr0521_runtime_suspend(struct device *dev)
1044 {
1045 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1046 struct rpr0521_data *data = iio_priv(indio_dev);
1047 int ret;
1048
1049 mutex_lock(&data->lock);
1050 /* If measurements are enabled, enable them on resume */
1051 if (!data->als_need_dis)
1052 data->als_ps_need_en = data->als_dev_en;
1053 if (!data->pxs_need_dis)
1054 data->pxs_ps_need_en = data->pxs_dev_en;
1055
1056 /* disable channels and sets {als,pxs}_dev_en to false */
1057 ret = rpr0521_poweroff(data);
1058 regcache_mark_dirty(data->regmap);
1059 mutex_unlock(&data->lock);
1060
1061 return ret;
1062 }
1063
rpr0521_runtime_resume(struct device * dev)1064 static int rpr0521_runtime_resume(struct device *dev)
1065 {
1066 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1067 struct rpr0521_data *data = iio_priv(indio_dev);
1068 int ret;
1069
1070 regcache_sync(data->regmap);
1071 if (data->als_ps_need_en) {
1072 ret = rpr0521_als_enable(data, RPR0521_MODE_ALS_ENABLE);
1073 if (ret < 0)
1074 return ret;
1075 data->als_ps_need_en = false;
1076 }
1077
1078 if (data->pxs_ps_need_en) {
1079 ret = rpr0521_pxs_enable(data, RPR0521_MODE_PXS_ENABLE);
1080 if (ret < 0)
1081 return ret;
1082 data->pxs_ps_need_en = false;
1083 }
1084 msleep(100); //wait for first measurement result
1085
1086 return 0;
1087 }
1088
1089 static const struct dev_pm_ops rpr0521_pm_ops = {
1090 RUNTIME_PM_OPS(rpr0521_runtime_suspend, rpr0521_runtime_resume, NULL)
1091 };
1092
1093 static const struct acpi_device_id rpr0521_acpi_match[] = {
1094 {"RPR0521", 0},
1095 { }
1096 };
1097 MODULE_DEVICE_TABLE(acpi, rpr0521_acpi_match);
1098
1099 static const struct i2c_device_id rpr0521_id[] = {
1100 { "rpr0521" },
1101 { }
1102 };
1103
1104 MODULE_DEVICE_TABLE(i2c, rpr0521_id);
1105
1106 static struct i2c_driver rpr0521_driver = {
1107 .driver = {
1108 .name = RPR0521_DRV_NAME,
1109 .pm = pm_ptr(&rpr0521_pm_ops),
1110 .acpi_match_table = rpr0521_acpi_match,
1111 },
1112 .probe = rpr0521_probe,
1113 .remove = rpr0521_remove,
1114 .id_table = rpr0521_id,
1115 };
1116
1117 module_i2c_driver(rpr0521_driver);
1118
1119 MODULE_AUTHOR("Daniel Baluta <[email protected]>");
1120 MODULE_DESCRIPTION("RPR0521 ROHM Ambient Light and Proximity Sensor driver");
1121 MODULE_LICENSE("GPL v2");
1122