1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MEMSensing digital 3-Axis accelerometer
4  *
5  * MSA311 is a tri-axial, low-g accelerometer with I2C digital output for
6  * sensitivity consumer applications. It has dynamic user-selectable full
7  * scales range of +-2g/+-4g/+-8g/+-16g and allows acceleration measurements
8  * with output data rates from 1Hz to 1000Hz.
9  *
10  * MSA311 is available in an ultra small (2mm x 2mm, height 0.95mm) LGA package
11  * and is guaranteed to operate over -40C to +85C.
12  *
13  * This driver supports following MSA311 features:
14  *     - IIO interface
15  *     - Different power modes: NORMAL, SUSPEND
16  *     - ODR (Output Data Rate) selection
17  *     - Scale selection
18  *     - IIO triggered buffer
19  *     - NEW_DATA interrupt + trigger
20  *
21  * Below features to be done:
22  *     - Motion Events: ACTIVE, TAP, ORIENT, FREEFALL
23  *     - Low Power mode
24  *
25  * Copyright (c) 2022, SberDevices. All Rights Reserved.
26  *
27  * Author: Dmitry Rokosov <[email protected]>
28  */
29 
30 #include <linux/i2c.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/module.h>
33 #include <linux/pm.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/regmap.h>
36 #include <linux/string_choices.h>
37 #include <linux/types.h>
38 #include <linux/units.h>
39 
40 #include <linux/iio/buffer.h>
41 #include <linux/iio/iio.h>
42 #include <linux/iio/sysfs.h>
43 #include <linux/iio/trigger.h>
44 #include <linux/iio/trigger_consumer.h>
45 #include <linux/iio/triggered_buffer.h>
46 
47 #define MSA311_SOFT_RESET_REG     0x00
48 #define MSA311_PARTID_REG         0x01
49 #define MSA311_ACC_X_REG          0x02
50 #define MSA311_ACC_Y_REG          0x04
51 #define MSA311_ACC_Z_REG          0x06
52 #define MSA311_MOTION_INT_REG     0x09
53 #define MSA311_DATA_INT_REG       0x0A
54 #define MSA311_TAP_ACTIVE_STS_REG 0x0B
55 #define MSA311_ORIENT_STS_REG     0x0C
56 #define MSA311_RANGE_REG          0x0F
57 #define MSA311_ODR_REG            0x10
58 #define MSA311_PWR_MODE_REG       0x11
59 #define MSA311_SWAP_POLARITY_REG  0x12
60 #define MSA311_INT_SET_0_REG      0x16
61 #define MSA311_INT_SET_1_REG      0x17
62 #define MSA311_INT_MAP_0_REG      0x19
63 #define MSA311_INT_MAP_1_REG      0x1A
64 #define MSA311_INT_CONFIG_REG     0x20
65 #define MSA311_INT_LATCH_REG      0x21
66 #define MSA311_FREEFALL_DUR_REG   0x22
67 #define MSA311_FREEFALL_TH_REG    0x23
68 #define MSA311_FREEFALL_HY_REG    0x24
69 #define MSA311_ACTIVE_DUR_REG     0x27
70 #define MSA311_ACTIVE_TH_REG      0x28
71 #define MSA311_TAP_DUR_REG        0x2A
72 #define MSA311_TAP_TH_REG         0x2B
73 #define MSA311_ORIENT_HY_REG      0x2C
74 #define MSA311_Z_BLOCK_REG        0x2D
75 #define MSA311_OFFSET_X_REG       0x38
76 #define MSA311_OFFSET_Y_REG       0x39
77 #define MSA311_OFFSET_Z_REG       0x3A
78 
79 enum msa311_fields {
80 	/* Soft_Reset */
81 	F_SOFT_RESET_I2C, F_SOFT_RESET_SPI,
82 	/* Motion_Interrupt */
83 	F_ORIENT_INT, F_S_TAP_INT, F_D_TAP_INT, F_ACTIVE_INT, F_FREEFALL_INT,
84 	/* Data_Interrupt */
85 	F_NEW_DATA_INT,
86 	/* Tap_Active_Status */
87 	F_TAP_SIGN, F_TAP_FIRST_X, F_TAP_FIRST_Y, F_TAP_FIRST_Z, F_ACTV_SIGN,
88 	F_ACTV_FIRST_X, F_ACTV_FIRST_Y, F_ACTV_FIRST_Z,
89 	/* Orientation_Status */
90 	F_ORIENT_Z, F_ORIENT_X_Y,
91 	/* Range */
92 	F_FS,
93 	/* ODR */
94 	F_X_AXIS_DIS, F_Y_AXIS_DIS, F_Z_AXIS_DIS, F_ODR,
95 	/* Power Mode/Bandwidth */
96 	F_PWR_MODE, F_LOW_POWER_BW,
97 	/* Swap_Polarity */
98 	F_X_POLARITY, F_Y_POLARITY, F_Z_POLARITY, F_X_Y_SWAP,
99 	/* Int_Set_0 */
100 	F_ORIENT_INT_EN, F_S_TAP_INT_EN, F_D_TAP_INT_EN, F_ACTIVE_INT_EN_Z,
101 	F_ACTIVE_INT_EN_Y, F_ACTIVE_INT_EN_X,
102 	/* Int_Set_1 */
103 	F_NEW_DATA_INT_EN, F_FREEFALL_INT_EN,
104 	/* Int_Map_0 */
105 	F_INT1_ORIENT, F_INT1_S_TAP, F_INT1_D_TAP, F_INT1_ACTIVE,
106 	F_INT1_FREEFALL,
107 	/* Int_Map_1 */
108 	F_INT1_NEW_DATA,
109 	/* Int_Config */
110 	F_INT1_OD, F_INT1_LVL,
111 	/* Int_Latch */
112 	F_RESET_INT, F_LATCH_INT,
113 	/* Freefall_Hy */
114 	F_FREEFALL_MODE, F_FREEFALL_HY,
115 	/* Active_Dur */
116 	F_ACTIVE_DUR,
117 	/* Tap_Dur */
118 	F_TAP_QUIET, F_TAP_SHOCK, F_TAP_DUR,
119 	/* Tap_Th */
120 	F_TAP_TH,
121 	/* Orient_Hy */
122 	F_ORIENT_HYST, F_ORIENT_BLOCKING, F_ORIENT_MODE,
123 	/* Z_Block */
124 	F_Z_BLOCKING,
125 	/* End of register map */
126 	F_MAX_FIELDS,
127 };
128 
129 static const struct reg_field msa311_reg_fields[] = {
130 	/* Soft_Reset */
131 	[F_SOFT_RESET_I2C] = REG_FIELD(MSA311_SOFT_RESET_REG, 2, 2),
132 	[F_SOFT_RESET_SPI] = REG_FIELD(MSA311_SOFT_RESET_REG, 5, 5),
133 	/* Motion_Interrupt */
134 	[F_ORIENT_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 6, 6),
135 	[F_S_TAP_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 5, 5),
136 	[F_D_TAP_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 4, 4),
137 	[F_ACTIVE_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 2, 2),
138 	[F_FREEFALL_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 0, 0),
139 	/* Data_Interrupt */
140 	[F_NEW_DATA_INT] = REG_FIELD(MSA311_DATA_INT_REG, 0, 0),
141 	/* Tap_Active_Status */
142 	[F_TAP_SIGN] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 7, 7),
143 	[F_TAP_FIRST_X] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 6, 6),
144 	[F_TAP_FIRST_Y] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 5, 5),
145 	[F_TAP_FIRST_Z] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 4, 4),
146 	[F_ACTV_SIGN] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 3, 3),
147 	[F_ACTV_FIRST_X] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 2, 2),
148 	[F_ACTV_FIRST_Y] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 1, 1),
149 	[F_ACTV_FIRST_Z] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 0, 0),
150 	/* Orientation_Status */
151 	[F_ORIENT_Z] = REG_FIELD(MSA311_ORIENT_STS_REG, 6, 6),
152 	[F_ORIENT_X_Y] = REG_FIELD(MSA311_ORIENT_STS_REG, 4, 5),
153 	/* Range */
154 	[F_FS] = REG_FIELD(MSA311_RANGE_REG, 0, 1),
155 	/* ODR */
156 	[F_X_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 7, 7),
157 	[F_Y_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 6, 6),
158 	[F_Z_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 5, 5),
159 	[F_ODR] = REG_FIELD(MSA311_ODR_REG, 0, 3),
160 	/* Power Mode/Bandwidth */
161 	[F_PWR_MODE] = REG_FIELD(MSA311_PWR_MODE_REG, 6, 7),
162 	[F_LOW_POWER_BW] = REG_FIELD(MSA311_PWR_MODE_REG, 1, 4),
163 	/* Swap_Polarity */
164 	[F_X_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 3, 3),
165 	[F_Y_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 2, 2),
166 	[F_Z_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 1, 1),
167 	[F_X_Y_SWAP] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 0, 0),
168 	/* Int_Set_0 */
169 	[F_ORIENT_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 6, 6),
170 	[F_S_TAP_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 5, 5),
171 	[F_D_TAP_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 4, 4),
172 	[F_ACTIVE_INT_EN_Z] = REG_FIELD(MSA311_INT_SET_0_REG, 2, 2),
173 	[F_ACTIVE_INT_EN_Y] = REG_FIELD(MSA311_INT_SET_0_REG, 1, 1),
174 	[F_ACTIVE_INT_EN_X] = REG_FIELD(MSA311_INT_SET_0_REG, 0, 0),
175 	/* Int_Set_1 */
176 	[F_NEW_DATA_INT_EN] = REG_FIELD(MSA311_INT_SET_1_REG, 4, 4),
177 	[F_FREEFALL_INT_EN] = REG_FIELD(MSA311_INT_SET_1_REG, 3, 3),
178 	/* Int_Map_0 */
179 	[F_INT1_ORIENT] = REG_FIELD(MSA311_INT_MAP_0_REG, 6, 6),
180 	[F_INT1_S_TAP] = REG_FIELD(MSA311_INT_MAP_0_REG, 5, 5),
181 	[F_INT1_D_TAP] = REG_FIELD(MSA311_INT_MAP_0_REG, 4, 4),
182 	[F_INT1_ACTIVE] = REG_FIELD(MSA311_INT_MAP_0_REG, 2, 2),
183 	[F_INT1_FREEFALL] = REG_FIELD(MSA311_INT_MAP_0_REG, 0, 0),
184 	/* Int_Map_1 */
185 	[F_INT1_NEW_DATA] = REG_FIELD(MSA311_INT_MAP_1_REG, 0, 0),
186 	/* Int_Config */
187 	[F_INT1_OD] = REG_FIELD(MSA311_INT_CONFIG_REG, 1, 1),
188 	[F_INT1_LVL] = REG_FIELD(MSA311_INT_CONFIG_REG, 0, 0),
189 	/* Int_Latch */
190 	[F_RESET_INT] = REG_FIELD(MSA311_INT_LATCH_REG, 7, 7),
191 	[F_LATCH_INT] = REG_FIELD(MSA311_INT_LATCH_REG, 0, 3),
192 	/* Freefall_Hy */
193 	[F_FREEFALL_MODE] = REG_FIELD(MSA311_FREEFALL_HY_REG, 2, 2),
194 	[F_FREEFALL_HY] = REG_FIELD(MSA311_FREEFALL_HY_REG, 0, 1),
195 	/* Active_Dur */
196 	[F_ACTIVE_DUR] = REG_FIELD(MSA311_ACTIVE_DUR_REG, 0, 1),
197 	/* Tap_Dur */
198 	[F_TAP_QUIET] = REG_FIELD(MSA311_TAP_DUR_REG, 7, 7),
199 	[F_TAP_SHOCK] = REG_FIELD(MSA311_TAP_DUR_REG, 6, 6),
200 	[F_TAP_DUR] = REG_FIELD(MSA311_TAP_DUR_REG, 0, 2),
201 	/* Tap_Th */
202 	[F_TAP_TH] = REG_FIELD(MSA311_TAP_TH_REG, 0, 4),
203 	/* Orient_Hy */
204 	[F_ORIENT_HYST] = REG_FIELD(MSA311_ORIENT_HY_REG, 4, 6),
205 	[F_ORIENT_BLOCKING] = REG_FIELD(MSA311_ORIENT_HY_REG, 2, 3),
206 	[F_ORIENT_MODE] = REG_FIELD(MSA311_ORIENT_HY_REG, 0, 1),
207 	/* Z_Block */
208 	[F_Z_BLOCKING] = REG_FIELD(MSA311_Z_BLOCK_REG, 0, 3),
209 };
210 
211 #define MSA311_WHO_AM_I 0x13
212 
213 /*
214  * Possible Full Scale ranges
215  *
216  * Axis data is 12-bit signed value, so
217  *
218  * fs0 = (2 + 2) * 9.81 / (2^11) = 0.009580
219  * fs1 = (4 + 4) * 9.81 / (2^11) = 0.019160
220  * fs2 = (8 + 8) * 9.81 / (2^11) = 0.038320
221  * fs3 = (16 + 16) * 9.81 / (2^11) = 0.076641
222  */
223 enum {
224 	MSA311_FS_2G,
225 	MSA311_FS_4G,
226 	MSA311_FS_8G,
227 	MSA311_FS_16G,
228 };
229 
230 struct iio_decimal_fract {
231 	int integral;
232 	int microfract;
233 };
234 
235 static const struct iio_decimal_fract msa311_fs_table[] = {
236 	{0, 9580}, {0, 19160}, {0, 38320}, {0, 76641},
237 };
238 
239 /* Possible Output Data Rate values */
240 enum {
241 	MSA311_ODR_1_HZ,
242 	MSA311_ODR_1_95_HZ,
243 	MSA311_ODR_3_9_HZ,
244 	MSA311_ODR_7_81_HZ,
245 	MSA311_ODR_15_63_HZ,
246 	MSA311_ODR_31_25_HZ,
247 	MSA311_ODR_62_5_HZ,
248 	MSA311_ODR_125_HZ,
249 	MSA311_ODR_250_HZ,
250 	MSA311_ODR_500_HZ,
251 	MSA311_ODR_1000_HZ,
252 };
253 
254 static const struct iio_decimal_fract msa311_odr_table[] = {
255 	{1, 0}, {1, 950000}, {3, 900000}, {7, 810000}, {15, 630000},
256 	{31, 250000}, {62, 500000}, {125, 0}, {250, 0}, {500, 0}, {1000, 0},
257 };
258 
259 /* All supported power modes */
260 #define MSA311_PWR_MODE_NORMAL  0b00
261 #define MSA311_PWR_MODE_LOW     0b01
262 #define MSA311_PWR_MODE_UNKNOWN 0b10
263 #define MSA311_PWR_MODE_SUSPEND 0b11
264 static const char * const msa311_pwr_modes[] = {
265 	[MSA311_PWR_MODE_NORMAL] = "normal",
266 	[MSA311_PWR_MODE_LOW] = "low",
267 	[MSA311_PWR_MODE_UNKNOWN] = "unknown",
268 	[MSA311_PWR_MODE_SUSPEND] = "suspend",
269 };
270 
271 /* Autosuspend delay */
272 #define MSA311_PWR_SLEEP_DELAY_MS 2000
273 
274 /* Possible INT1 types and levels */
275 enum {
276 	MSA311_INT1_OD_PUSH_PULL,
277 	MSA311_INT1_OD_OPEN_DRAIN,
278 };
279 
280 enum {
281 	MSA311_INT1_LVL_LOW,
282 	MSA311_INT1_LVL_HIGH,
283 };
284 
285 /* Latch INT modes */
286 #define MSA311_LATCH_INT_NOT_LATCHED 0b0000
287 #define MSA311_LATCH_INT_250MS       0b0001
288 #define MSA311_LATCH_INT_500MS       0b0010
289 #define MSA311_LATCH_INT_1S          0b0011
290 #define MSA311_LATCH_INT_2S          0b0100
291 #define MSA311_LATCH_INT_4S          0b0101
292 #define MSA311_LATCH_INT_8S          0b0110
293 #define MSA311_LATCH_INT_1MS         0b1010
294 #define MSA311_LATCH_INT_2MS         0b1011
295 #define MSA311_LATCH_INT_25MS        0b1100
296 #define MSA311_LATCH_INT_50MS        0b1101
297 #define MSA311_LATCH_INT_100MS       0b1110
298 #define MSA311_LATCH_INT_LATCHED     0b0111
299 
300 static const struct regmap_range msa311_readonly_registers[] = {
301 	regmap_reg_range(MSA311_PARTID_REG, MSA311_ORIENT_STS_REG),
302 };
303 
304 static const struct regmap_access_table msa311_writeable_table = {
305 	.no_ranges = msa311_readonly_registers,
306 	.n_no_ranges = ARRAY_SIZE(msa311_readonly_registers),
307 };
308 
309 static const struct regmap_range msa311_writeonly_registers[] = {
310 	regmap_reg_range(MSA311_SOFT_RESET_REG, MSA311_SOFT_RESET_REG),
311 };
312 
313 static const struct regmap_access_table msa311_readable_table = {
314 	.no_ranges = msa311_writeonly_registers,
315 	.n_no_ranges = ARRAY_SIZE(msa311_writeonly_registers),
316 };
317 
318 static const struct regmap_range msa311_volatile_registers[] = {
319 	regmap_reg_range(MSA311_ACC_X_REG, MSA311_ORIENT_STS_REG),
320 };
321 
322 static const struct regmap_access_table msa311_volatile_table = {
323 	.yes_ranges = msa311_volatile_registers,
324 	.n_yes_ranges = ARRAY_SIZE(msa311_volatile_registers),
325 };
326 
327 static const struct regmap_config msa311_regmap_config = {
328 	.name = "msa311",
329 	.reg_bits = 8,
330 	.val_bits = 8,
331 	.max_register = MSA311_OFFSET_Z_REG,
332 	.wr_table = &msa311_writeable_table,
333 	.rd_table = &msa311_readable_table,
334 	.volatile_table = &msa311_volatile_table,
335 	.cache_type = REGCACHE_RBTREE,
336 };
337 
338 #define MSA311_GENMASK(field) ({                \
339 	typeof(&(msa311_reg_fields)[0]) _field; \
340 	_field = &msa311_reg_fields[(field)];   \
341 	GENMASK(_field->msb, _field->lsb);      \
342 })
343 
344 /**
345  * struct msa311_priv - MSA311 internal private state
346  * @regs: Underlying I2C bus adapter used to abstract slave
347  *        register accesses
348  * @fields: Abstract objects for each registers fields access
349  * @dev: Device handler associated with appropriate bus client
350  * @lock: Protects msa311 device state between setup and data access routines
351  *        (power transitions, samp_freq/scale tune, retrieving axes data, etc)
352  * @chip_name: Chip name in the format "msa311-%02x" % partid
353  * @new_data_trig: Optional NEW_DATA interrupt driven trigger used
354  *                 to notify external consumers a new sample is ready
355  */
356 struct msa311_priv {
357 	struct regmap *regs;
358 	struct regmap_field *fields[F_MAX_FIELDS];
359 
360 	struct device *dev;
361 	struct mutex lock;
362 	char *chip_name;
363 
364 	struct iio_trigger *new_data_trig;
365 };
366 
367 enum msa311_si {
368 	MSA311_SI_X,
369 	MSA311_SI_Y,
370 	MSA311_SI_Z,
371 	MSA311_SI_TIMESTAMP,
372 };
373 
374 #define MSA311_ACCEL_CHANNEL(axis) {                                        \
375 	.type = IIO_ACCEL,                                                  \
376 	.modified = 1,                                                      \
377 	.channel2 = IIO_MOD_##axis,                                         \
378 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),                       \
379 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |              \
380 				    BIT(IIO_CHAN_INFO_SAMP_FREQ),           \
381 	.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE) |    \
382 					      BIT(IIO_CHAN_INFO_SAMP_FREQ), \
383 	.scan_index = MSA311_SI_##axis,                                     \
384 	.scan_type = {                                                      \
385 		.sign = 's',                                                \
386 		.realbits = 12,                                             \
387 		.storagebits = 16,                                          \
388 		.shift = 4,                                                 \
389 		.endianness = IIO_LE,                                       \
390 	},                                                                  \
391 	.datasheet_name = "ACC_"#axis,                                      \
392 }
393 
394 static const struct iio_chan_spec msa311_channels[] = {
395 	MSA311_ACCEL_CHANNEL(X),
396 	MSA311_ACCEL_CHANNEL(Y),
397 	MSA311_ACCEL_CHANNEL(Z),
398 	IIO_CHAN_SOFT_TIMESTAMP(MSA311_SI_TIMESTAMP),
399 };
400 
401 /**
402  * msa311_get_odr() - Read Output Data Rate (ODR) value from MSA311 accel
403  * @msa311: MSA311 internal private state
404  * @odr: output ODR value
405  *
406  * This function should be called under msa311->lock.
407  *
408  * Return: 0 on success, -ERRNO in other failures
409  */
msa311_get_odr(struct msa311_priv * msa311,unsigned int * odr)410 static int msa311_get_odr(struct msa311_priv *msa311, unsigned int *odr)
411 {
412 	int err;
413 
414 	err = regmap_field_read(msa311->fields[F_ODR], odr);
415 	if (err)
416 		return err;
417 
418 	/*
419 	 * Filter the same 1000Hz ODR register values based on datasheet info.
420 	 * ODR can be equal to 1010-1111 for 1000Hz, but function returns 1010
421 	 * all the time.
422 	 */
423 	if (*odr > MSA311_ODR_1000_HZ)
424 		*odr = MSA311_ODR_1000_HZ;
425 
426 	return 0;
427 }
428 
429 /**
430  * msa311_set_odr() - Setup Output Data Rate (ODR) value for MSA311 accel
431  * @msa311: MSA311 internal private state
432  * @odr: requested ODR value
433  *
434  * This function should be called under msa311->lock. Possible ODR values:
435  *     - 1Hz (not available in normal mode)
436  *     - 1.95Hz (not available in normal mode)
437  *     - 3.9Hz
438  *     - 7.81Hz
439  *     - 15.63Hz
440  *     - 31.25Hz
441  *     - 62.5Hz
442  *     - 125Hz
443  *     - 250Hz
444  *     - 500Hz
445  *     - 1000Hz
446  *
447  * Return: 0 on success, -EINVAL for bad ODR value in the certain power mode,
448  *         -ERRNO in other failures
449  */
msa311_set_odr(struct msa311_priv * msa311,unsigned int odr)450 static int msa311_set_odr(struct msa311_priv *msa311, unsigned int odr)
451 {
452 	struct device *dev = msa311->dev;
453 	unsigned int pwr_mode;
454 	bool good_odr;
455 	int err;
456 
457 	err = regmap_field_read(msa311->fields[F_PWR_MODE], &pwr_mode);
458 	if (err)
459 		return err;
460 
461 	/* Filter bad ODR values */
462 	if (pwr_mode == MSA311_PWR_MODE_NORMAL)
463 		good_odr = (odr > MSA311_ODR_1_95_HZ);
464 	else
465 		good_odr = false;
466 
467 	if (!good_odr) {
468 		dev_err(dev,
469 			"can't set odr %u.%06uHz, not available in %s mode\n",
470 			msa311_odr_table[odr].integral,
471 			msa311_odr_table[odr].microfract,
472 			msa311_pwr_modes[pwr_mode]);
473 		return -EINVAL;
474 	}
475 
476 	return regmap_field_write(msa311->fields[F_ODR], odr);
477 }
478 
479 /**
480  * msa311_wait_for_next_data() - Wait next accel data available after resume
481  * @msa311: MSA311 internal private state
482  *
483  * Return: 0 on success, -EINTR if msleep() was interrupted,
484  *         -ERRNO in other failures
485  */
msa311_wait_for_next_data(struct msa311_priv * msa311)486 static int msa311_wait_for_next_data(struct msa311_priv *msa311)
487 {
488 	static const unsigned int unintr_thresh_ms = 20;
489 	struct device *dev = msa311->dev;
490 	unsigned long freq_uhz;
491 	unsigned long wait_ms;
492 	unsigned int odr;
493 	int err;
494 
495 	err = msa311_get_odr(msa311, &odr);
496 	if (err) {
497 		dev_err(dev, "can't get actual frequency (%pe)\n",
498 			ERR_PTR(err));
499 		return err;
500 	}
501 
502 	/*
503 	 * After msa311 resuming is done, we need to wait for data
504 	 * to be refreshed by accel logic.
505 	 * A certain timeout is calculated based on the current ODR value.
506 	 * If requested timeout isn't so long (let's assume 20ms),
507 	 * we can wait for next data in uninterruptible sleep.
508 	 */
509 	freq_uhz = msa311_odr_table[odr].integral * MICROHZ_PER_HZ +
510 		   msa311_odr_table[odr].microfract;
511 	wait_ms = (MICROHZ_PER_HZ / freq_uhz) * MSEC_PER_SEC;
512 
513 	if (wait_ms < unintr_thresh_ms)
514 		usleep_range(wait_ms * USEC_PER_MSEC,
515 			     unintr_thresh_ms * USEC_PER_MSEC);
516 	else if (msleep_interruptible(wait_ms))
517 		return -EINTR;
518 
519 	return 0;
520 }
521 
522 /**
523  * msa311_set_pwr_mode() - Install certain MSA311 power mode
524  * @msa311: MSA311 internal private state
525  * @mode: Power mode can be equal to NORMAL or SUSPEND
526  *
527  * This function should be called under msa311->lock.
528  *
529  * Return: 0 on success, -ERRNO on failure
530  */
msa311_set_pwr_mode(struct msa311_priv * msa311,unsigned int mode)531 static int msa311_set_pwr_mode(struct msa311_priv *msa311, unsigned int mode)
532 {
533 	struct device *dev = msa311->dev;
534 	unsigned int prev_mode;
535 	int err;
536 
537 	if (mode >= ARRAY_SIZE(msa311_pwr_modes))
538 		return -EINVAL;
539 
540 	dev_dbg(dev, "transition to %s mode\n", msa311_pwr_modes[mode]);
541 
542 	err = regmap_field_read(msa311->fields[F_PWR_MODE], &prev_mode);
543 	if (err)
544 		return err;
545 
546 	err = regmap_field_write(msa311->fields[F_PWR_MODE], mode);
547 	if (err)
548 		return err;
549 
550 	/* Wait actual data if we wake up */
551 	if (prev_mode == MSA311_PWR_MODE_SUSPEND &&
552 	    mode == MSA311_PWR_MODE_NORMAL)
553 		return msa311_wait_for_next_data(msa311);
554 
555 	return 0;
556 }
557 
558 /**
559  * msa311_get_axis() - Read MSA311 accel data for certain IIO channel axis spec
560  * @msa311: MSA311 internal private state
561  * @chan: IIO channel specification
562  * @axis: Output accel axis data for requested IIO channel spec
563  *
564  * This function should be called under msa311->lock.
565  *
566  * Return: 0 on success, -EINVAL for unknown IIO channel specification,
567  *         -ERRNO in other failures
568  */
msa311_get_axis(struct msa311_priv * msa311,const struct iio_chan_spec * const chan,__le16 * axis)569 static int msa311_get_axis(struct msa311_priv *msa311,
570 			   const struct iio_chan_spec * const chan,
571 			   __le16 *axis)
572 {
573 	struct device *dev = msa311->dev;
574 	unsigned int axis_reg;
575 
576 	if (chan->scan_index < MSA311_SI_X || chan->scan_index > MSA311_SI_Z) {
577 		dev_err(dev, "invalid scan_index value [%d]\n",
578 			chan->scan_index);
579 		return -EINVAL;
580 	}
581 
582 	/* Axes data layout has 2 byte gap for each axis starting from X axis */
583 	axis_reg = MSA311_ACC_X_REG + (chan->scan_index << 1);
584 
585 	return regmap_bulk_read(msa311->regs, axis_reg, axis, sizeof(*axis));
586 }
587 
msa311_read_raw_data(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2)588 static int msa311_read_raw_data(struct iio_dev *indio_dev,
589 				struct iio_chan_spec const *chan,
590 				int *val, int *val2)
591 {
592 	struct msa311_priv *msa311 = iio_priv(indio_dev);
593 	struct device *dev = msa311->dev;
594 	__le16 axis;
595 	int err;
596 
597 	err = iio_device_claim_direct_mode(indio_dev);
598 	if (err)
599 		return err;
600 
601 	err = pm_runtime_resume_and_get(dev);
602 	if (err) {
603 		iio_device_release_direct_mode(indio_dev);
604 		return err;
605 	}
606 
607 	mutex_lock(&msa311->lock);
608 	err = msa311_get_axis(msa311, chan, &axis);
609 	mutex_unlock(&msa311->lock);
610 
611 	pm_runtime_mark_last_busy(dev);
612 	pm_runtime_put_autosuspend(dev);
613 
614 	iio_device_release_direct_mode(indio_dev);
615 
616 	if (err) {
617 		dev_err(dev, "can't get axis %s (%pe)\n",
618 			chan->datasheet_name, ERR_PTR(err));
619 		return err;
620 	}
621 
622 	/*
623 	 * Axis data format is:
624 	 * ACC_X = (ACC_X_MSB[7:0] << 4) | ACC_X_LSB[7:4]
625 	 */
626 	*val = sign_extend32(le16_to_cpu(axis) >> chan->scan_type.shift,
627 			     chan->scan_type.realbits - 1);
628 
629 	return IIO_VAL_INT;
630 }
631 
msa311_read_scale(struct iio_dev * indio_dev,int * val,int * val2)632 static int msa311_read_scale(struct iio_dev *indio_dev, int *val, int *val2)
633 {
634 	struct msa311_priv *msa311 = iio_priv(indio_dev);
635 	struct device *dev = msa311->dev;
636 	unsigned int fs;
637 	int err;
638 
639 	mutex_lock(&msa311->lock);
640 	err = regmap_field_read(msa311->fields[F_FS], &fs);
641 	mutex_unlock(&msa311->lock);
642 	if (err) {
643 		dev_err(dev, "can't get actual scale (%pe)\n", ERR_PTR(err));
644 		return err;
645 	}
646 
647 	*val = msa311_fs_table[fs].integral;
648 	*val2 = msa311_fs_table[fs].microfract;
649 
650 	return IIO_VAL_INT_PLUS_MICRO;
651 }
652 
msa311_read_samp_freq(struct iio_dev * indio_dev,int * val,int * val2)653 static int msa311_read_samp_freq(struct iio_dev *indio_dev,
654 				 int *val, int *val2)
655 {
656 	struct msa311_priv *msa311 = iio_priv(indio_dev);
657 	struct device *dev = msa311->dev;
658 	unsigned int odr;
659 	int err;
660 
661 	mutex_lock(&msa311->lock);
662 	err = msa311_get_odr(msa311, &odr);
663 	mutex_unlock(&msa311->lock);
664 	if (err) {
665 		dev_err(dev, "can't get actual frequency (%pe)\n",
666 			ERR_PTR(err));
667 		return err;
668 	}
669 
670 	*val = msa311_odr_table[odr].integral;
671 	*val2 = msa311_odr_table[odr].microfract;
672 
673 	return IIO_VAL_INT_PLUS_MICRO;
674 }
675 
msa311_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)676 static int msa311_read_raw(struct iio_dev *indio_dev,
677 			   struct iio_chan_spec const *chan,
678 			   int *val, int *val2, long mask)
679 {
680 	switch (mask) {
681 	case IIO_CHAN_INFO_RAW:
682 		return msa311_read_raw_data(indio_dev, chan, val, val2);
683 
684 	case IIO_CHAN_INFO_SCALE:
685 		return msa311_read_scale(indio_dev, val, val2);
686 
687 	case IIO_CHAN_INFO_SAMP_FREQ:
688 		return msa311_read_samp_freq(indio_dev, val, val2);
689 
690 	default:
691 		return -EINVAL;
692 	}
693 }
694 
msa311_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)695 static int msa311_read_avail(struct iio_dev *indio_dev,
696 			     struct iio_chan_spec const *chan,
697 			     const int **vals, int *type,
698 			     int *length, long mask)
699 {
700 	switch (mask) {
701 	case IIO_CHAN_INFO_SAMP_FREQ:
702 		*vals = (int *)msa311_odr_table;
703 		*type = IIO_VAL_INT_PLUS_MICRO;
704 		/* ODR value has 2 ints (integer and fractional parts) */
705 		*length = ARRAY_SIZE(msa311_odr_table) * 2;
706 		return IIO_AVAIL_LIST;
707 
708 	case IIO_CHAN_INFO_SCALE:
709 		*vals = (int *)msa311_fs_table;
710 		*type = IIO_VAL_INT_PLUS_MICRO;
711 		/* FS value has 2 ints (integer and fractional parts) */
712 		*length = ARRAY_SIZE(msa311_fs_table) * 2;
713 		return IIO_AVAIL_LIST;
714 
715 	default:
716 		return -EINVAL;
717 	}
718 }
719 
msa311_write_scale(struct iio_dev * indio_dev,int val,int val2)720 static int msa311_write_scale(struct iio_dev *indio_dev, int val, int val2)
721 {
722 	struct msa311_priv *msa311 = iio_priv(indio_dev);
723 	struct device *dev = msa311->dev;
724 	unsigned int fs;
725 	int err;
726 
727 	/* We do not have fs >= 1, so skip such values */
728 	if (val)
729 		return 0;
730 
731 	err = pm_runtime_resume_and_get(dev);
732 	if (err)
733 		return err;
734 
735 	err = -EINVAL;
736 	for (fs = 0; fs < ARRAY_SIZE(msa311_fs_table); fs++)
737 		/* Do not check msa311_fs_table[fs].integral, it's always 0 */
738 		if (val2 == msa311_fs_table[fs].microfract) {
739 			mutex_lock(&msa311->lock);
740 			err = regmap_field_write(msa311->fields[F_FS], fs);
741 			mutex_unlock(&msa311->lock);
742 			break;
743 		}
744 
745 	pm_runtime_mark_last_busy(dev);
746 	pm_runtime_put_autosuspend(dev);
747 
748 	if (err)
749 		dev_err(dev, "can't update scale (%pe)\n", ERR_PTR(err));
750 
751 	return err;
752 }
753 
msa311_write_samp_freq(struct iio_dev * indio_dev,int val,int val2)754 static int msa311_write_samp_freq(struct iio_dev *indio_dev, int val, int val2)
755 {
756 	struct msa311_priv *msa311 = iio_priv(indio_dev);
757 	struct device *dev = msa311->dev;
758 	unsigned int odr;
759 	int err;
760 
761 	/*
762 	 * Sampling frequency changing is prohibited when buffer mode is
763 	 * enabled, because sometimes MSA311 chip returns outliers during
764 	 * frequency values growing up in the read operation moment.
765 	 */
766 	err = iio_device_claim_direct_mode(indio_dev);
767 	if (err)
768 		return err;
769 
770 	err = pm_runtime_resume_and_get(dev);
771 	if (err) {
772 		iio_device_release_direct_mode(indio_dev);
773 		return err;
774 	}
775 
776 	err = -EINVAL;
777 	for (odr = 0; odr < ARRAY_SIZE(msa311_odr_table); odr++)
778 		if (val == msa311_odr_table[odr].integral &&
779 		    val2 == msa311_odr_table[odr].microfract) {
780 			mutex_lock(&msa311->lock);
781 			err = msa311_set_odr(msa311, odr);
782 			mutex_unlock(&msa311->lock);
783 			break;
784 		}
785 
786 	pm_runtime_mark_last_busy(dev);
787 	pm_runtime_put_autosuspend(dev);
788 
789 	iio_device_release_direct_mode(indio_dev);
790 
791 	if (err)
792 		dev_err(dev, "can't update frequency (%pe)\n", ERR_PTR(err));
793 
794 	return err;
795 }
796 
msa311_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)797 static int msa311_write_raw(struct iio_dev *indio_dev,
798 			    struct iio_chan_spec const *chan,
799 			    int val, int val2, long mask)
800 {
801 	switch (mask) {
802 	case IIO_CHAN_INFO_SCALE:
803 		return msa311_write_scale(indio_dev, val, val2);
804 
805 	case IIO_CHAN_INFO_SAMP_FREQ:
806 		return msa311_write_samp_freq(indio_dev, val, val2);
807 
808 	default:
809 		return -EINVAL;
810 	}
811 }
812 
msa311_debugfs_reg_access(struct iio_dev * indio_dev,unsigned int reg,unsigned int writeval,unsigned int * readval)813 static int msa311_debugfs_reg_access(struct iio_dev *indio_dev,
814 				     unsigned int reg, unsigned int writeval,
815 				     unsigned int *readval)
816 {
817 	struct msa311_priv *msa311 = iio_priv(indio_dev);
818 	struct device *dev = msa311->dev;
819 	int err;
820 
821 	if (reg > regmap_get_max_register(msa311->regs))
822 		return -EINVAL;
823 
824 	err = pm_runtime_resume_and_get(dev);
825 	if (err)
826 		return err;
827 
828 	mutex_lock(&msa311->lock);
829 
830 	if (readval)
831 		err = regmap_read(msa311->regs, reg, readval);
832 	else
833 		err = regmap_write(msa311->regs, reg, writeval);
834 
835 	mutex_unlock(&msa311->lock);
836 
837 	pm_runtime_mark_last_busy(dev);
838 	pm_runtime_put_autosuspend(dev);
839 
840 	if (err)
841 		dev_err(dev, "can't %s register %u from debugfs (%pe)\n",
842 			str_read_write(readval), reg, ERR_PTR(err));
843 
844 	return err;
845 }
846 
msa311_buffer_preenable(struct iio_dev * indio_dev)847 static int msa311_buffer_preenable(struct iio_dev *indio_dev)
848 {
849 	struct msa311_priv *msa311 = iio_priv(indio_dev);
850 	struct device *dev = msa311->dev;
851 
852 	return pm_runtime_resume_and_get(dev);
853 }
854 
msa311_buffer_postdisable(struct iio_dev * indio_dev)855 static int msa311_buffer_postdisable(struct iio_dev *indio_dev)
856 {
857 	struct msa311_priv *msa311 = iio_priv(indio_dev);
858 	struct device *dev = msa311->dev;
859 
860 	pm_runtime_mark_last_busy(dev);
861 	pm_runtime_put_autosuspend(dev);
862 
863 	return 0;
864 }
865 
msa311_set_new_data_trig_state(struct iio_trigger * trig,bool state)866 static int msa311_set_new_data_trig_state(struct iio_trigger *trig, bool state)
867 {
868 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
869 	struct msa311_priv *msa311 = iio_priv(indio_dev);
870 	struct device *dev = msa311->dev;
871 	int err;
872 
873 	mutex_lock(&msa311->lock);
874 	err = regmap_field_write(msa311->fields[F_NEW_DATA_INT_EN], state);
875 	mutex_unlock(&msa311->lock);
876 	if (err)
877 		dev_err(dev,
878 			"can't %s buffer due to new_data_int failure (%pe)\n",
879 			str_enable_disable(state), ERR_PTR(err));
880 
881 	return err;
882 }
883 
msa311_validate_device(struct iio_trigger * trig,struct iio_dev * indio_dev)884 static int msa311_validate_device(struct iio_trigger *trig,
885 				  struct iio_dev *indio_dev)
886 {
887 	return iio_trigger_get_drvdata(trig) == indio_dev ? 0 : -EINVAL;
888 }
889 
msa311_buffer_thread(int irq,void * p)890 static irqreturn_t msa311_buffer_thread(int irq, void *p)
891 {
892 	struct iio_poll_func *pf = p;
893 	struct msa311_priv *msa311 = iio_priv(pf->indio_dev);
894 	struct iio_dev *indio_dev = pf->indio_dev;
895 	const struct iio_chan_spec *chan;
896 	struct device *dev = msa311->dev;
897 	int bit, err, i = 0;
898 	__le16 axis;
899 	struct {
900 		__le16 channels[MSA311_SI_Z + 1];
901 		aligned_s64 ts;
902 	} buf;
903 
904 	memset(&buf, 0, sizeof(buf));
905 
906 	mutex_lock(&msa311->lock);
907 
908 	iio_for_each_active_channel(indio_dev, bit) {
909 		chan = &msa311_channels[bit];
910 
911 		err = msa311_get_axis(msa311, chan, &axis);
912 		if (err) {
913 			mutex_unlock(&msa311->lock);
914 			dev_err(dev, "can't get axis %s (%pe)\n",
915 				chan->datasheet_name, ERR_PTR(err));
916 			goto notify_done;
917 		}
918 
919 		buf.channels[i++] = axis;
920 	}
921 
922 	mutex_unlock(&msa311->lock);
923 
924 	iio_push_to_buffers_with_timestamp(indio_dev, &buf,
925 					   iio_get_time_ns(indio_dev));
926 
927 notify_done:
928 	iio_trigger_notify_done(indio_dev->trig);
929 
930 	return IRQ_HANDLED;
931 }
932 
msa311_irq_thread(int irq,void * p)933 static irqreturn_t msa311_irq_thread(int irq, void *p)
934 {
935 	struct msa311_priv *msa311 = iio_priv(p);
936 	unsigned int new_data_int_enabled;
937 	struct device *dev = msa311->dev;
938 	int err;
939 
940 	mutex_lock(&msa311->lock);
941 
942 	/*
943 	 * We do not check NEW_DATA int status, because based on the
944 	 * specification it's cleared automatically after a fixed time.
945 	 * So just check that is enabled by driver logic.
946 	 */
947 	err = regmap_field_read(msa311->fields[F_NEW_DATA_INT_EN],
948 				&new_data_int_enabled);
949 
950 	mutex_unlock(&msa311->lock);
951 	if (err) {
952 		dev_err(dev, "can't read new_data interrupt state (%pe)\n",
953 			ERR_PTR(err));
954 		return IRQ_NONE;
955 	}
956 
957 	if (new_data_int_enabled)
958 		iio_trigger_poll_nested(msa311->new_data_trig);
959 
960 	return IRQ_HANDLED;
961 }
962 
963 static const struct iio_info msa311_info = {
964 	.read_raw = msa311_read_raw,
965 	.read_avail = msa311_read_avail,
966 	.write_raw = msa311_write_raw,
967 	.debugfs_reg_access = msa311_debugfs_reg_access,
968 };
969 
970 static const struct iio_buffer_setup_ops msa311_buffer_setup_ops = {
971 	.preenable = msa311_buffer_preenable,
972 	.postdisable = msa311_buffer_postdisable,
973 };
974 
975 static const struct iio_trigger_ops msa311_new_data_trig_ops = {
976 	.set_trigger_state = msa311_set_new_data_trig_state,
977 	.validate_device = msa311_validate_device,
978 };
979 
msa311_check_partid(struct msa311_priv * msa311)980 static int msa311_check_partid(struct msa311_priv *msa311)
981 {
982 	struct device *dev = msa311->dev;
983 	unsigned int partid;
984 	int err;
985 
986 	err = regmap_read(msa311->regs, MSA311_PARTID_REG, &partid);
987 	if (err)
988 		return dev_err_probe(dev, err, "failed to read partid\n");
989 
990 	if (partid != MSA311_WHO_AM_I)
991 		dev_warn(dev, "invalid partid (%#x), expected (%#x)\n",
992 			 partid, MSA311_WHO_AM_I);
993 
994 	msa311->chip_name = devm_kasprintf(dev, GFP_KERNEL,
995 					   "msa311-%02x", partid);
996 	if (!msa311->chip_name)
997 		return dev_err_probe(dev, -ENOMEM, "can't alloc chip name\n");
998 
999 	return 0;
1000 }
1001 
msa311_soft_reset(struct msa311_priv * msa311)1002 static int msa311_soft_reset(struct msa311_priv *msa311)
1003 {
1004 	struct device *dev = msa311->dev;
1005 	int err;
1006 
1007 	err = regmap_write(msa311->regs, MSA311_SOFT_RESET_REG,
1008 			   MSA311_GENMASK(F_SOFT_RESET_I2C) |
1009 			   MSA311_GENMASK(F_SOFT_RESET_SPI));
1010 	if (err)
1011 		return dev_err_probe(dev, err, "can't soft reset all logic\n");
1012 
1013 	return 0;
1014 }
1015 
msa311_chip_init(struct msa311_priv * msa311)1016 static int msa311_chip_init(struct msa311_priv *msa311)
1017 {
1018 	struct device *dev = msa311->dev;
1019 	const char zero_bulk[2] = { };
1020 	int err;
1021 
1022 	err = regmap_write(msa311->regs, MSA311_RANGE_REG, MSA311_FS_16G);
1023 	if (err)
1024 		return dev_err_probe(dev, err, "failed to setup accel range\n");
1025 
1026 	/* Disable all interrupts by default */
1027 	err = regmap_bulk_write(msa311->regs, MSA311_INT_SET_0_REG,
1028 				zero_bulk, sizeof(zero_bulk));
1029 	if (err)
1030 		return dev_err_probe(dev, err,
1031 				     "can't disable set0/set1 interrupts\n");
1032 
1033 	/* Unmap all INT1 interrupts by default */
1034 	err = regmap_bulk_write(msa311->regs, MSA311_INT_MAP_0_REG,
1035 				zero_bulk, sizeof(zero_bulk));
1036 	if (err)
1037 		return dev_err_probe(dev, err,
1038 				     "failed to unmap map0/map1 interrupts\n");
1039 
1040 	/* Disable all axes by default */
1041 	err = regmap_clear_bits(msa311->regs, MSA311_ODR_REG,
1042 				MSA311_GENMASK(F_X_AXIS_DIS) |
1043 				MSA311_GENMASK(F_Y_AXIS_DIS) |
1044 				MSA311_GENMASK(F_Z_AXIS_DIS));
1045 	if (err)
1046 		return dev_err_probe(dev, err, "can't enable all axes\n");
1047 
1048 	err = msa311_set_odr(msa311, MSA311_ODR_125_HZ);
1049 	if (err)
1050 		return dev_err_probe(dev, err,
1051 				     "failed to set accel frequency\n");
1052 
1053 	return 0;
1054 }
1055 
msa311_setup_interrupts(struct msa311_priv * msa311)1056 static int msa311_setup_interrupts(struct msa311_priv *msa311)
1057 {
1058 	struct device *dev = msa311->dev;
1059 	struct i2c_client *i2c = to_i2c_client(dev);
1060 	struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
1061 	struct iio_trigger *trig;
1062 	int err;
1063 
1064 	/* Keep going without interrupts if no initialized I2C IRQ */
1065 	if (i2c->irq <= 0)
1066 		return 0;
1067 
1068 	err = devm_request_threaded_irq(&i2c->dev, i2c->irq, NULL,
1069 					msa311_irq_thread, IRQF_ONESHOT,
1070 					msa311->chip_name, indio_dev);
1071 	if (err)
1072 		return dev_err_probe(dev, err, "failed to request IRQ\n");
1073 
1074 	trig = devm_iio_trigger_alloc(dev, "%s-new-data", msa311->chip_name);
1075 	if (!trig)
1076 		return dev_err_probe(dev, -ENOMEM,
1077 				     "can't allocate newdata trigger\n");
1078 
1079 	msa311->new_data_trig = trig;
1080 	msa311->new_data_trig->ops = &msa311_new_data_trig_ops;
1081 	iio_trigger_set_drvdata(msa311->new_data_trig, indio_dev);
1082 
1083 	err = devm_iio_trigger_register(dev, msa311->new_data_trig);
1084 	if (err)
1085 		return dev_err_probe(dev, err,
1086 				     "can't register newdata trigger\n");
1087 
1088 	err = regmap_field_write(msa311->fields[F_INT1_OD],
1089 				 MSA311_INT1_OD_PUSH_PULL);
1090 	if (err)
1091 		return dev_err_probe(dev, err,
1092 				     "can't enable push-pull interrupt\n");
1093 
1094 	err = regmap_field_write(msa311->fields[F_INT1_LVL],
1095 				 MSA311_INT1_LVL_HIGH);
1096 	if (err)
1097 		return dev_err_probe(dev, err,
1098 				     "can't set active interrupt level\n");
1099 
1100 	err = regmap_field_write(msa311->fields[F_LATCH_INT],
1101 				 MSA311_LATCH_INT_LATCHED);
1102 	if (err)
1103 		return dev_err_probe(dev, err,
1104 				     "can't latch interrupt\n");
1105 
1106 	err = regmap_field_write(msa311->fields[F_RESET_INT], 1);
1107 	if (err)
1108 		return dev_err_probe(dev, err,
1109 				     "can't reset interrupt\n");
1110 
1111 	err = regmap_field_write(msa311->fields[F_INT1_NEW_DATA], 1);
1112 	if (err)
1113 		return dev_err_probe(dev, err,
1114 				     "can't map new data interrupt\n");
1115 
1116 	return 0;
1117 }
1118 
msa311_regmap_init(struct msa311_priv * msa311)1119 static int msa311_regmap_init(struct msa311_priv *msa311)
1120 {
1121 	struct regmap_field **fields = msa311->fields;
1122 	struct device *dev = msa311->dev;
1123 	struct i2c_client *i2c = to_i2c_client(dev);
1124 	struct regmap *regmap;
1125 	int i;
1126 
1127 	regmap = devm_regmap_init_i2c(i2c, &msa311_regmap_config);
1128 	if (IS_ERR(regmap))
1129 		return dev_err_probe(dev, PTR_ERR(regmap),
1130 				     "failed to register i2c regmap\n");
1131 
1132 	msa311->regs = regmap;
1133 
1134 	for (i = 0; i < F_MAX_FIELDS; i++) {
1135 		fields[i] = devm_regmap_field_alloc(dev,
1136 						    msa311->regs,
1137 						    msa311_reg_fields[i]);
1138 		if (IS_ERR(msa311->fields[i]))
1139 			return dev_err_probe(dev, PTR_ERR(msa311->fields[i]),
1140 					     "can't alloc field[%d]\n", i);
1141 	}
1142 
1143 	return 0;
1144 }
1145 
msa311_powerdown(void * msa311)1146 static void msa311_powerdown(void *msa311)
1147 {
1148 	msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_SUSPEND);
1149 }
1150 
msa311_probe(struct i2c_client * i2c)1151 static int msa311_probe(struct i2c_client *i2c)
1152 {
1153 	struct device *dev = &i2c->dev;
1154 	struct msa311_priv *msa311;
1155 	struct iio_dev *indio_dev;
1156 	int err;
1157 
1158 	indio_dev = devm_iio_device_alloc(dev, sizeof(*msa311));
1159 	if (!indio_dev)
1160 		return dev_err_probe(dev, -ENOMEM,
1161 				     "IIO device allocation failed\n");
1162 
1163 	msa311 = iio_priv(indio_dev);
1164 	msa311->dev = dev;
1165 	i2c_set_clientdata(i2c, indio_dev);
1166 
1167 	err = msa311_regmap_init(msa311);
1168 	if (err)
1169 		return err;
1170 
1171 	mutex_init(&msa311->lock);
1172 
1173 	err = devm_regulator_get_enable(dev, "vdd");
1174 	if (err)
1175 		return dev_err_probe(dev, err, "can't get vdd supply\n");
1176 
1177 	err = msa311_check_partid(msa311);
1178 	if (err)
1179 		return err;
1180 
1181 	err = msa311_soft_reset(msa311);
1182 	if (err)
1183 		return err;
1184 
1185 	err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_NORMAL);
1186 	if (err)
1187 		return dev_err_probe(dev, err, "failed to power on device\n");
1188 
1189 	/*
1190 	 * Register powerdown deferred callback which suspends the chip
1191 	 * after module unloaded.
1192 	 *
1193 	 * MSA311 should be in SUSPEND mode in the two cases:
1194 	 * 1) When driver is loaded, but we do not have any data or
1195 	 *    configuration requests to it (we are solving it using
1196 	 *    autosuspend feature).
1197 	 * 2) When driver is unloaded and device is not used (devm action is
1198 	 *    used in this case).
1199 	 */
1200 	err = devm_add_action_or_reset(dev, msa311_powerdown, msa311);
1201 	if (err)
1202 		return dev_err_probe(dev, err, "can't add powerdown action\n");
1203 
1204 	err = pm_runtime_set_active(dev);
1205 	if (err)
1206 		return err;
1207 
1208 	err = devm_pm_runtime_enable(dev);
1209 	if (err)
1210 		return err;
1211 
1212 	pm_runtime_get_noresume(dev);
1213 	pm_runtime_set_autosuspend_delay(dev, MSA311_PWR_SLEEP_DELAY_MS);
1214 	pm_runtime_use_autosuspend(dev);
1215 
1216 	err = msa311_chip_init(msa311);
1217 	if (err)
1218 		return err;
1219 
1220 	indio_dev->modes = INDIO_DIRECT_MODE;
1221 	indio_dev->channels = msa311_channels;
1222 	indio_dev->num_channels = ARRAY_SIZE(msa311_channels);
1223 	indio_dev->name = msa311->chip_name;
1224 	indio_dev->info = &msa311_info;
1225 
1226 	err = devm_iio_triggered_buffer_setup(dev, indio_dev,
1227 					      iio_pollfunc_store_time,
1228 					      msa311_buffer_thread,
1229 					      &msa311_buffer_setup_ops);
1230 	if (err)
1231 		return dev_err_probe(dev, err,
1232 				     "can't setup IIO trigger buffer\n");
1233 
1234 	err = msa311_setup_interrupts(msa311);
1235 	if (err)
1236 		return err;
1237 
1238 	pm_runtime_mark_last_busy(dev);
1239 	pm_runtime_put_autosuspend(dev);
1240 
1241 	err = devm_iio_device_register(dev, indio_dev);
1242 	if (err)
1243 		return dev_err_probe(dev, err, "IIO device register failed\n");
1244 
1245 	return 0;
1246 }
1247 
msa311_runtime_suspend(struct device * dev)1248 static int msa311_runtime_suspend(struct device *dev)
1249 {
1250 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1251 	struct msa311_priv *msa311 = iio_priv(indio_dev);
1252 	int err;
1253 
1254 	mutex_lock(&msa311->lock);
1255 	err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_SUSPEND);
1256 	mutex_unlock(&msa311->lock);
1257 	if (err)
1258 		dev_err(dev, "failed to power off device (%pe)\n",
1259 			ERR_PTR(err));
1260 
1261 	return err;
1262 }
1263 
msa311_runtime_resume(struct device * dev)1264 static int msa311_runtime_resume(struct device *dev)
1265 {
1266 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1267 	struct msa311_priv *msa311 = iio_priv(indio_dev);
1268 	int err;
1269 
1270 	mutex_lock(&msa311->lock);
1271 	err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_NORMAL);
1272 	mutex_unlock(&msa311->lock);
1273 	if (err)
1274 		dev_err(dev, "failed to power on device (%pe)\n",
1275 			ERR_PTR(err));
1276 
1277 	return err;
1278 }
1279 
1280 static DEFINE_RUNTIME_DEV_PM_OPS(msa311_pm_ops, msa311_runtime_suspend,
1281 				 msa311_runtime_resume, NULL);
1282 
1283 static const struct i2c_device_id msa311_i2c_id[] = {
1284 	{ .name = "msa311" },
1285 	{ }
1286 };
1287 MODULE_DEVICE_TABLE(i2c, msa311_i2c_id);
1288 
1289 static const struct of_device_id msa311_of_match[] = {
1290 	{ .compatible = "memsensing,msa311" },
1291 	{ }
1292 };
1293 MODULE_DEVICE_TABLE(of, msa311_of_match);
1294 
1295 static struct i2c_driver msa311_driver = {
1296 	.driver = {
1297 		.name = "msa311",
1298 		.of_match_table = msa311_of_match,
1299 		.pm = pm_ptr(&msa311_pm_ops),
1300 	},
1301 	.probe		= msa311_probe,
1302 	.id_table	= msa311_i2c_id,
1303 };
1304 module_i2c_driver(msa311_driver);
1305 
1306 MODULE_AUTHOR("Dmitry Rokosov <[email protected]>");
1307 MODULE_DESCRIPTION("MEMSensing MSA311 3-axis accelerometer driver");
1308 MODULE_LICENSE("GPL");
1309