1 /*
2 * Copyright 2012 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #include <nvif/push006c.h>
25
26 #include <nvif/class.h>
27 #include <nvif/cl0002.h>
28 #include <nvif/if0020.h>
29
30 #include "nouveau_drv.h"
31 #include "nouveau_dma.h"
32 #include "nouveau_bo.h"
33 #include "nouveau_chan.h"
34 #include "nouveau_fence.h"
35 #include "nouveau_abi16.h"
36 #include "nouveau_vmm.h"
37 #include "nouveau_svm.h"
38
39 MODULE_PARM_DESC(vram_pushbuf, "Create DMA push buffers in VRAM");
40 int nouveau_vram_pushbuf;
41 module_param_named(vram_pushbuf, nouveau_vram_pushbuf, int, 0400);
42
43 void
nouveau_channel_kill(struct nouveau_channel * chan)44 nouveau_channel_kill(struct nouveau_channel *chan)
45 {
46 atomic_set(&chan->killed, 1);
47 if (chan->fence)
48 nouveau_fence_context_kill(chan->fence, -ENODEV);
49 }
50
51 static int
nouveau_channel_killed(struct nvif_event * event,void * repv,u32 repc)52 nouveau_channel_killed(struct nvif_event *event, void *repv, u32 repc)
53 {
54 struct nouveau_channel *chan = container_of(event, typeof(*chan), kill);
55 struct nouveau_cli *cli = chan->cli;
56
57 NV_PRINTK(warn, cli, "channel %d killed!\n", chan->chid);
58
59 if (unlikely(!atomic_read(&chan->killed)))
60 nouveau_channel_kill(chan);
61
62 return NVIF_EVENT_DROP;
63 }
64
65 int
nouveau_channel_idle(struct nouveau_channel * chan)66 nouveau_channel_idle(struct nouveau_channel *chan)
67 {
68 if (likely(chan && chan->fence && !atomic_read(&chan->killed))) {
69 struct nouveau_cli *cli = chan->cli;
70 struct nouveau_fence *fence = NULL;
71 int ret;
72
73 ret = nouveau_fence_new(&fence, chan);
74 if (!ret) {
75 ret = nouveau_fence_wait(fence, false, false);
76 nouveau_fence_unref(&fence);
77 }
78
79 if (ret) {
80 NV_PRINTK(err, cli, "failed to idle channel %d [%s]\n",
81 chan->chid, cli->name);
82 return ret;
83 }
84 }
85 return 0;
86 }
87
88 void
nouveau_channel_del(struct nouveau_channel ** pchan)89 nouveau_channel_del(struct nouveau_channel **pchan)
90 {
91 struct nouveau_channel *chan = *pchan;
92 if (chan) {
93 if (chan->fence)
94 nouveau_fence(chan->cli->drm)->context_del(chan);
95
96 if (nvif_object_constructed(&chan->user))
97 nouveau_svmm_part(chan->vmm->svmm, chan->inst);
98
99 nvif_object_dtor(&chan->blit);
100 nvif_object_dtor(&chan->nvsw);
101 nvif_object_dtor(&chan->gart);
102 nvif_object_dtor(&chan->vram);
103 nvif_event_dtor(&chan->kill);
104 nvif_object_dtor(&chan->user);
105 nvif_mem_dtor(&chan->mem_userd);
106 nvif_object_dtor(&chan->push.ctxdma);
107 nouveau_vma_del(&chan->push.vma);
108 nouveau_bo_unmap(chan->push.buffer);
109 if (chan->push.buffer && chan->push.buffer->bo.pin_count)
110 nouveau_bo_unpin(chan->push.buffer);
111 nouveau_bo_fini(chan->push.buffer);
112 kfree(chan);
113 }
114 *pchan = NULL;
115 }
116
117 static void
nouveau_channel_kick(struct nvif_push * push)118 nouveau_channel_kick(struct nvif_push *push)
119 {
120 struct nouveau_channel *chan = container_of(push, typeof(*chan), chan.push);
121 chan->dma.cur = chan->dma.cur + (chan->chan.push.cur - chan->chan.push.bgn);
122 FIRE_RING(chan);
123 chan->chan.push.bgn = chan->chan.push.cur;
124 }
125
126 static int
nouveau_channel_wait(struct nvif_push * push,u32 size)127 nouveau_channel_wait(struct nvif_push *push, u32 size)
128 {
129 struct nouveau_channel *chan = container_of(push, typeof(*chan), chan.push);
130 int ret;
131 chan->dma.cur = chan->dma.cur + (chan->chan.push.cur - chan->chan.push.bgn);
132 ret = RING_SPACE(chan, size);
133 if (ret == 0) {
134 chan->chan.push.bgn = chan->chan.push.mem.object.map.ptr;
135 chan->chan.push.bgn = chan->chan.push.bgn + chan->dma.cur;
136 chan->chan.push.cur = chan->chan.push.bgn;
137 chan->chan.push.end = chan->chan.push.bgn + size;
138 }
139 return ret;
140 }
141
142 static int
nouveau_channel_prep(struct nouveau_cli * cli,u32 size,struct nouveau_channel ** pchan)143 nouveau_channel_prep(struct nouveau_cli *cli,
144 u32 size, struct nouveau_channel **pchan)
145 {
146 struct nouveau_drm *drm = cli->drm;
147 struct nvif_device *device = &cli->device;
148 struct nv_dma_v0 args = {};
149 struct nouveau_channel *chan;
150 u32 target;
151 int ret;
152
153 chan = *pchan = kzalloc(sizeof(*chan), GFP_KERNEL);
154 if (!chan)
155 return -ENOMEM;
156
157 chan->cli = cli;
158 chan->vmm = nouveau_cli_vmm(cli);
159 atomic_set(&chan->killed, 0);
160
161 /* allocate memory for dma push buffer */
162 target = NOUVEAU_GEM_DOMAIN_GART | NOUVEAU_GEM_DOMAIN_COHERENT;
163 if (nouveau_vram_pushbuf)
164 target = NOUVEAU_GEM_DOMAIN_VRAM;
165
166 ret = nouveau_bo_new(cli, size, 0, target, 0, 0, NULL, NULL,
167 &chan->push.buffer);
168 if (ret == 0) {
169 ret = nouveau_bo_pin(chan->push.buffer, target, false);
170 if (ret == 0)
171 ret = nouveau_bo_map(chan->push.buffer);
172 }
173
174 if (ret) {
175 nouveau_channel_del(pchan);
176 return ret;
177 }
178
179 chan->chan.push.mem.object.parent = cli->base.object.parent;
180 chan->chan.push.mem.object.client = &cli->base;
181 chan->chan.push.mem.object.name = "chanPush";
182 chan->chan.push.mem.object.map.ptr = chan->push.buffer->kmap.virtual;
183 chan->chan.push.wait = nouveau_channel_wait;
184 chan->chan.push.kick = nouveau_channel_kick;
185
186 /* create dma object covering the *entire* memory space that the
187 * pushbuf lives in, this is because the GEM code requires that
188 * we be able to call out to other (indirect) push buffers
189 */
190 chan->push.addr = chan->push.buffer->offset;
191
192 if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
193 ret = nouveau_vma_new(chan->push.buffer, chan->vmm,
194 &chan->push.vma);
195 if (ret) {
196 nouveau_channel_del(pchan);
197 return ret;
198 }
199
200 chan->push.addr = chan->push.vma->addr;
201
202 if (device->info.family >= NV_DEVICE_INFO_V0_FERMI)
203 return 0;
204
205 args.target = NV_DMA_V0_TARGET_VM;
206 args.access = NV_DMA_V0_ACCESS_VM;
207 args.start = 0;
208 args.limit = chan->vmm->vmm.limit - 1;
209 } else
210 if (chan->push.buffer->bo.resource->mem_type == TTM_PL_VRAM) {
211 if (device->info.family == NV_DEVICE_INFO_V0_TNT) {
212 /* nv04 vram pushbuf hack, retarget to its location in
213 * the framebuffer bar rather than direct vram access..
214 * nfi why this exists, it came from the -nv ddx.
215 */
216 args.target = NV_DMA_V0_TARGET_PCI;
217 args.access = NV_DMA_V0_ACCESS_RDWR;
218 args.start = nvxx_device(drm)->func->resource_addr(nvxx_device(drm), 1);
219 args.limit = args.start + device->info.ram_user - 1;
220 } else {
221 args.target = NV_DMA_V0_TARGET_VRAM;
222 args.access = NV_DMA_V0_ACCESS_RDWR;
223 args.start = 0;
224 args.limit = device->info.ram_user - 1;
225 }
226 } else {
227 if (drm->agp.bridge) {
228 args.target = NV_DMA_V0_TARGET_AGP;
229 args.access = NV_DMA_V0_ACCESS_RDWR;
230 args.start = drm->agp.base;
231 args.limit = drm->agp.base + drm->agp.size - 1;
232 } else {
233 args.target = NV_DMA_V0_TARGET_VM;
234 args.access = NV_DMA_V0_ACCESS_RDWR;
235 args.start = 0;
236 args.limit = chan->vmm->vmm.limit - 1;
237 }
238 }
239
240 ret = nvif_object_ctor(&device->object, "abi16PushCtxDma", 0,
241 NV_DMA_FROM_MEMORY, &args, sizeof(args),
242 &chan->push.ctxdma);
243 if (ret) {
244 nouveau_channel_del(pchan);
245 return ret;
246 }
247
248 return 0;
249 }
250
251 static int
nouveau_channel_ctor(struct nouveau_cli * cli,bool priv,u64 runm,struct nouveau_channel ** pchan)252 nouveau_channel_ctor(struct nouveau_cli *cli, bool priv, u64 runm,
253 struct nouveau_channel **pchan)
254 {
255 const struct nvif_mclass hosts[] = {
256 { AMPERE_CHANNEL_GPFIFO_B, 0 },
257 { AMPERE_CHANNEL_GPFIFO_A, 0 },
258 { TURING_CHANNEL_GPFIFO_A, 0 },
259 { VOLTA_CHANNEL_GPFIFO_A, 0 },
260 { PASCAL_CHANNEL_GPFIFO_A, 0 },
261 { MAXWELL_CHANNEL_GPFIFO_A, 0 },
262 { KEPLER_CHANNEL_GPFIFO_B, 0 },
263 { KEPLER_CHANNEL_GPFIFO_A, 0 },
264 { FERMI_CHANNEL_GPFIFO , 0 },
265 { G82_CHANNEL_GPFIFO , 0 },
266 { NV50_CHANNEL_GPFIFO , 0 },
267 { NV40_CHANNEL_DMA , 0 },
268 { NV17_CHANNEL_DMA , 0 },
269 { NV10_CHANNEL_DMA , 0 },
270 { NV03_CHANNEL_DMA , 0 },
271 {}
272 };
273 struct {
274 struct nvif_chan_v0 chan;
275 char name[TASK_COMM_LEN+16];
276 } args;
277 struct nvif_device *device = &cli->device;
278 struct nouveau_channel *chan;
279 const u64 plength = 0x10000;
280 const u64 ioffset = plength;
281 const u64 ilength = 0x02000;
282 int cid, ret;
283 u64 size;
284
285 cid = nvif_mclass(&device->object, hosts);
286 if (cid < 0)
287 return cid;
288
289 if (hosts[cid].oclass < NV50_CHANNEL_GPFIFO)
290 size = plength;
291 else
292 size = ioffset + ilength;
293
294 /* allocate dma push buffer */
295 ret = nouveau_channel_prep(cli, size, &chan);
296 *pchan = chan;
297 if (ret)
298 return ret;
299
300 /* create channel object */
301 args.chan.version = 0;
302 args.chan.namelen = sizeof(args.name);
303 args.chan.runlist = __ffs64(runm);
304 args.chan.runq = 0;
305 args.chan.priv = priv;
306 args.chan.devm = BIT(0);
307 if (hosts[cid].oclass < NV50_CHANNEL_GPFIFO) {
308 args.chan.vmm = 0;
309 args.chan.ctxdma = nvif_handle(&chan->push.ctxdma);
310 args.chan.offset = chan->push.addr;
311 args.chan.length = 0;
312 } else {
313 args.chan.vmm = nvif_handle(&chan->vmm->vmm.object);
314 if (hosts[cid].oclass < FERMI_CHANNEL_GPFIFO)
315 args.chan.ctxdma = nvif_handle(&chan->push.ctxdma);
316 else
317 args.chan.ctxdma = 0;
318 args.chan.offset = ioffset + chan->push.addr;
319 args.chan.length = ilength;
320 }
321 args.chan.huserd = 0;
322 args.chan.ouserd = 0;
323
324 /* allocate userd */
325 if (hosts[cid].oclass >= VOLTA_CHANNEL_GPFIFO_A) {
326 ret = nvif_mem_ctor(&cli->mmu, "abi16ChanUSERD", NVIF_CLASS_MEM_GF100,
327 NVIF_MEM_VRAM | NVIF_MEM_COHERENT | NVIF_MEM_MAPPABLE,
328 0, PAGE_SIZE, NULL, 0, &chan->mem_userd);
329 if (ret)
330 return ret;
331
332 args.chan.huserd = nvif_handle(&chan->mem_userd.object);
333 args.chan.ouserd = 0;
334
335 chan->userd = &chan->mem_userd.object;
336 } else {
337 chan->userd = &chan->user;
338 }
339
340 snprintf(args.name, sizeof(args.name), "%s[%d]", current->comm, task_pid_nr(current));
341
342 ret = nvif_object_ctor(&device->object, "abi16ChanUser", 0, hosts[cid].oclass,
343 &args, sizeof(args), &chan->user);
344 if (ret) {
345 nouveau_channel_del(pchan);
346 return ret;
347 }
348
349 chan->runlist = args.chan.runlist;
350 chan->chid = args.chan.chid;
351 chan->inst = args.chan.inst;
352 chan->token = args.chan.token;
353 return 0;
354 }
355
356 static int
nouveau_channel_init(struct nouveau_channel * chan,u32 vram,u32 gart)357 nouveau_channel_init(struct nouveau_channel *chan, u32 vram, u32 gart)
358 {
359 struct nouveau_cli *cli = chan->cli;
360 struct nouveau_drm *drm = cli->drm;
361 struct nvif_device *device = &cli->device;
362 struct nv_dma_v0 args = {};
363 int ret, i;
364
365 ret = nvif_object_map(chan->userd, NULL, 0);
366 if (ret)
367 return ret;
368
369 if (chan->user.oclass >= FERMI_CHANNEL_GPFIFO) {
370 struct {
371 struct nvif_event_v0 base;
372 struct nvif_chan_event_v0 host;
373 } args;
374
375 args.host.version = 0;
376 args.host.type = NVIF_CHAN_EVENT_V0_KILLED;
377
378 ret = nvif_event_ctor(&chan->user, "abi16ChanKilled", chan->chid,
379 nouveau_channel_killed, false,
380 &args.base, sizeof(args), &chan->kill);
381 if (ret == 0)
382 ret = nvif_event_allow(&chan->kill);
383 if (ret) {
384 NV_ERROR(drm, "Failed to request channel kill "
385 "notification: %d\n", ret);
386 return ret;
387 }
388 }
389
390 /* allocate dma objects to cover all allowed vram, and gart */
391 if (device->info.family < NV_DEVICE_INFO_V0_FERMI) {
392 if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
393 args.target = NV_DMA_V0_TARGET_VM;
394 args.access = NV_DMA_V0_ACCESS_VM;
395 args.start = 0;
396 args.limit = chan->vmm->vmm.limit - 1;
397 } else {
398 args.target = NV_DMA_V0_TARGET_VRAM;
399 args.access = NV_DMA_V0_ACCESS_RDWR;
400 args.start = 0;
401 args.limit = device->info.ram_user - 1;
402 }
403
404 ret = nvif_object_ctor(&chan->user, "abi16ChanVramCtxDma", vram,
405 NV_DMA_IN_MEMORY, &args, sizeof(args),
406 &chan->vram);
407 if (ret)
408 return ret;
409
410 if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
411 args.target = NV_DMA_V0_TARGET_VM;
412 args.access = NV_DMA_V0_ACCESS_VM;
413 args.start = 0;
414 args.limit = chan->vmm->vmm.limit - 1;
415 } else
416 if (drm->agp.bridge) {
417 args.target = NV_DMA_V0_TARGET_AGP;
418 args.access = NV_DMA_V0_ACCESS_RDWR;
419 args.start = drm->agp.base;
420 args.limit = drm->agp.base + drm->agp.size - 1;
421 } else {
422 args.target = NV_DMA_V0_TARGET_VM;
423 args.access = NV_DMA_V0_ACCESS_RDWR;
424 args.start = 0;
425 args.limit = chan->vmm->vmm.limit - 1;
426 }
427
428 ret = nvif_object_ctor(&chan->user, "abi16ChanGartCtxDma", gart,
429 NV_DMA_IN_MEMORY, &args, sizeof(args),
430 &chan->gart);
431 if (ret)
432 return ret;
433 }
434
435 /* initialise dma tracking parameters */
436 switch (chan->user.oclass) {
437 case NV03_CHANNEL_DMA:
438 case NV10_CHANNEL_DMA:
439 case NV17_CHANNEL_DMA:
440 case NV40_CHANNEL_DMA:
441 chan->user_put = 0x40;
442 chan->user_get = 0x44;
443 chan->dma.max = (0x10000 / 4) - 2;
444 break;
445 default:
446 chan->user_put = 0x40;
447 chan->user_get = 0x44;
448 chan->user_get_hi = 0x60;
449 chan->dma.ib_base = 0x10000 / 4;
450 chan->dma.ib_max = NV50_DMA_IB_MAX;
451 chan->dma.ib_put = 0;
452 chan->dma.ib_free = chan->dma.ib_max - chan->dma.ib_put;
453 chan->dma.max = chan->dma.ib_base;
454 break;
455 }
456
457 chan->dma.put = 0;
458 chan->dma.cur = chan->dma.put;
459 chan->dma.free = chan->dma.max - chan->dma.cur;
460
461 ret = PUSH_WAIT(&chan->chan.push, NOUVEAU_DMA_SKIPS);
462 if (ret)
463 return ret;
464
465 for (i = 0; i < NOUVEAU_DMA_SKIPS; i++)
466 PUSH_DATA(&chan->chan.push, 0x00000000);
467
468 /* allocate software object class (used for fences on <= nv05) */
469 if (device->info.family < NV_DEVICE_INFO_V0_CELSIUS) {
470 ret = nvif_object_ctor(&chan->user, "abi16NvswFence", 0x006e,
471 NVIF_CLASS_SW_NV04,
472 NULL, 0, &chan->nvsw);
473 if (ret)
474 return ret;
475
476 ret = PUSH_WAIT(&chan->chan.push, 2);
477 if (ret)
478 return ret;
479
480 PUSH_NVSQ(&chan->chan.push, NV_SW, 0x0000, chan->nvsw.handle);
481 PUSH_KICK(&chan->chan.push);
482 }
483
484 /* initialise synchronisation */
485 return nouveau_fence(drm)->context_new(chan);
486 }
487
488 int
nouveau_channel_new(struct nouveau_cli * cli,bool priv,u64 runm,u32 vram,u32 gart,struct nouveau_channel ** pchan)489 nouveau_channel_new(struct nouveau_cli *cli,
490 bool priv, u64 runm, u32 vram, u32 gart, struct nouveau_channel **pchan)
491 {
492 int ret;
493
494 ret = nouveau_channel_ctor(cli, priv, runm, pchan);
495 if (ret) {
496 NV_PRINTK(dbg, cli, "channel create, %d\n", ret);
497 return ret;
498 }
499
500 ret = nouveau_channel_init(*pchan, vram, gart);
501 if (ret) {
502 NV_PRINTK(err, cli, "channel failed to initialise, %d\n", ret);
503 nouveau_channel_del(pchan);
504 return ret;
505 }
506
507 ret = nouveau_svmm_join((*pchan)->vmm->svmm, (*pchan)->inst);
508 if (ret)
509 nouveau_channel_del(pchan);
510
511 return ret;
512 }
513
514 void
nouveau_channels_fini(struct nouveau_drm * drm)515 nouveau_channels_fini(struct nouveau_drm *drm)
516 {
517 kfree(drm->runl);
518 }
519
520 int
nouveau_channels_init(struct nouveau_drm * drm)521 nouveau_channels_init(struct nouveau_drm *drm)
522 {
523 struct {
524 struct nv_device_info_v1 m;
525 struct {
526 struct nv_device_info_v1_data channels;
527 struct nv_device_info_v1_data runlists;
528 } v;
529 } args = {
530 .m.version = 1,
531 .m.count = sizeof(args.v) / sizeof(args.v.channels),
532 .v.channels.mthd = NV_DEVICE_HOST_CHANNELS,
533 .v.runlists.mthd = NV_DEVICE_HOST_RUNLISTS,
534 };
535 struct nvif_object *device = &drm->client.device.object;
536 int ret, i;
537
538 ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, &args, sizeof(args));
539 if (ret ||
540 args.v.runlists.mthd == NV_DEVICE_INFO_INVALID || !args.v.runlists.data ||
541 args.v.channels.mthd == NV_DEVICE_INFO_INVALID)
542 return -ENODEV;
543
544 drm->chan_nr = drm->chan_total = args.v.channels.data;
545 drm->runl_nr = fls64(args.v.runlists.data);
546 drm->runl = kcalloc(drm->runl_nr, sizeof(*drm->runl), GFP_KERNEL);
547 if (!drm->runl)
548 return -ENOMEM;
549
550 if (drm->chan_nr == 0) {
551 for (i = 0; i < drm->runl_nr; i++) {
552 if (!(args.v.runlists.data & BIT(i)))
553 continue;
554
555 args.v.channels.mthd = NV_DEVICE_HOST_RUNLIST_CHANNELS;
556 args.v.channels.data = i;
557
558 ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, &args, sizeof(args));
559 if (ret || args.v.channels.mthd == NV_DEVICE_INFO_INVALID)
560 return -ENODEV;
561
562 drm->runl[i].chan_nr = args.v.channels.data;
563 drm->runl[i].chan_id_base = drm->chan_total;
564 drm->runl[i].context_base = dma_fence_context_alloc(drm->runl[i].chan_nr);
565
566 drm->chan_total += drm->runl[i].chan_nr;
567 }
568 } else {
569 drm->runl[0].context_base = dma_fence_context_alloc(drm->chan_nr);
570 for (i = 1; i < drm->runl_nr; i++)
571 drm->runl[i].context_base = drm->runl[0].context_base;
572
573 }
574
575 return 0;
576 }
577