1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2022-2023 Intel Corporation
4 */
5
6 #include <drm/drm_vblank.h>
7
8 #include "i915_drv.h"
9 #include "i915_reg.h"
10 #include "intel_color.h"
11 #include "intel_crtc.h"
12 #include "intel_de.h"
13 #include "intel_display_types.h"
14 #include "intel_vblank.h"
15 #include "intel_vrr.h"
16
17 /*
18 * This timing diagram depicts the video signal in and
19 * around the vertical blanking period.
20 *
21 * Assumptions about the fictitious mode used in this example:
22 * vblank_start >= 3
23 * vsync_start = vblank_start + 1
24 * vsync_end = vblank_start + 2
25 * vtotal = vblank_start + 3
26 *
27 * start of vblank:
28 * latch double buffered registers
29 * increment frame counter (ctg+)
30 * generate start of vblank interrupt (gen4+)
31 * |
32 * | frame start:
33 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
34 * | may be shifted forward 1-3 extra lines via TRANSCONF
35 * | |
36 * | | start of vsync:
37 * | | generate vsync interrupt
38 * | | |
39 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
40 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
41 * ----va---> <-----------------vb--------------------> <--------va-------------
42 * | | <----vs-----> |
43 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
44 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
45 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
46 * | | |
47 * last visible pixel first visible pixel
48 * | increment frame counter (gen3/4)
49 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
50 *
51 * x = horizontal active
52 * _ = horizontal blanking
53 * hs = horizontal sync
54 * va = vertical active
55 * vb = vertical blanking
56 * vs = vertical sync
57 * vbs = vblank_start (number)
58 *
59 * Summary:
60 * - most events happen at the start of horizontal sync
61 * - frame start happens at the start of horizontal blank, 1-4 lines
62 * (depending on TRANSCONF settings) after the start of vblank
63 * - gen3/4 pixel and frame counter are synchronized with the start
64 * of horizontal active on the first line of vertical active
65 */
66
67 /*
68 * Called from drm generic code, passed a 'crtc', which we use as a pipe index.
69 */
i915_get_vblank_counter(struct drm_crtc * crtc)70 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
71 {
72 struct intel_display *display = to_intel_display(crtc->dev);
73 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
74 const struct drm_display_mode *mode = &vblank->hwmode;
75 enum pipe pipe = to_intel_crtc(crtc)->pipe;
76 u32 pixel, vbl_start, hsync_start, htotal;
77 u64 frame;
78
79 /*
80 * On i965gm TV output the frame counter only works up to
81 * the point when we enable the TV encoder. After that the
82 * frame counter ceases to work and reads zero. We need a
83 * vblank wait before enabling the TV encoder and so we
84 * have to enable vblank interrupts while the frame counter
85 * is still in a working state. However the core vblank code
86 * does not like us returning non-zero frame counter values
87 * when we've told it that we don't have a working frame
88 * counter. Thus we must stop non-zero values leaking out.
89 */
90 if (!vblank->max_vblank_count)
91 return 0;
92
93 htotal = mode->crtc_htotal;
94 hsync_start = mode->crtc_hsync_start;
95 vbl_start = intel_mode_vblank_start(mode);
96
97 /* Convert to pixel count */
98 vbl_start *= htotal;
99
100 /* Start of vblank event occurs at start of hsync */
101 vbl_start -= htotal - hsync_start;
102
103 /*
104 * High & low register fields aren't synchronized, so make sure
105 * we get a low value that's stable across two reads of the high
106 * register.
107 */
108 frame = intel_de_read64_2x32(display, PIPEFRAMEPIXEL(display, pipe),
109 PIPEFRAME(display, pipe));
110
111 pixel = frame & PIPE_PIXEL_MASK;
112 frame = (frame >> PIPE_FRAME_LOW_SHIFT) & 0xffffff;
113
114 /*
115 * The frame counter increments at beginning of active.
116 * Cook up a vblank counter by also checking the pixel
117 * counter against vblank start.
118 */
119 return (frame + (pixel >= vbl_start)) & 0xffffff;
120 }
121
g4x_get_vblank_counter(struct drm_crtc * crtc)122 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
123 {
124 struct intel_display *display = to_intel_display(crtc->dev);
125 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
126 enum pipe pipe = to_intel_crtc(crtc)->pipe;
127
128 if (!vblank->max_vblank_count)
129 return 0;
130
131 return intel_de_read(display, PIPE_FRMCOUNT_G4X(display, pipe));
132 }
133
intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc * crtc)134 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc)
135 {
136 struct intel_display *display = to_intel_display(crtc);
137 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base);
138 const struct drm_display_mode *mode = &vblank->hwmode;
139 u32 htotal = mode->crtc_htotal;
140 u32 clock = mode->crtc_clock;
141 u32 scan_prev_time, scan_curr_time, scan_post_time;
142
143 /*
144 * To avoid the race condition where we might cross into the
145 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
146 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
147 * during the same frame.
148 */
149 do {
150 /*
151 * This field provides read back of the display
152 * pipe frame time stamp. The time stamp value
153 * is sampled at every start of vertical blank.
154 */
155 scan_prev_time = intel_de_read_fw(display,
156 PIPE_FRMTMSTMP(crtc->pipe));
157
158 /*
159 * The TIMESTAMP_CTR register has the current
160 * time stamp value.
161 */
162 scan_curr_time = intel_de_read_fw(display, IVB_TIMESTAMP_CTR);
163
164 scan_post_time = intel_de_read_fw(display,
165 PIPE_FRMTMSTMP(crtc->pipe));
166 } while (scan_post_time != scan_prev_time);
167
168 return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
169 clock), 1000 * htotal);
170 }
171
172 /*
173 * On certain encoders on certain platforms, pipe
174 * scanline register will not work to get the scanline,
175 * since the timings are driven from the PORT or issues
176 * with scanline register updates.
177 * This function will use Framestamp and current
178 * timestamp registers to calculate the scanline.
179 */
__intel_get_crtc_scanline_from_timestamp(struct intel_crtc * crtc)180 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
181 {
182 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base);
183 const struct drm_display_mode *mode = &vblank->hwmode;
184 u32 vblank_start = mode->crtc_vblank_start;
185 u32 vtotal = mode->crtc_vtotal;
186 u32 scanline;
187
188 scanline = intel_crtc_scanlines_since_frame_timestamp(crtc);
189 scanline = min(scanline, vtotal - 1);
190 scanline = (scanline + vblank_start) % vtotal;
191
192 return scanline;
193 }
194
intel_crtc_scanline_offset(const struct intel_crtc_state * crtc_state)195 int intel_crtc_scanline_offset(const struct intel_crtc_state *crtc_state)
196 {
197 struct intel_display *display = to_intel_display(crtc_state);
198
199 /*
200 * The scanline counter increments at the leading edge of hsync.
201 *
202 * On most platforms it starts counting from vtotal-1 on the
203 * first active line. That means the scanline counter value is
204 * always one less than what we would expect. Ie. just after
205 * start of vblank, which also occurs at start of hsync (on the
206 * last active line), the scanline counter will read vblank_start-1.
207 *
208 * On gen2 the scanline counter starts counting from 1 instead
209 * of vtotal-1, so we have to subtract one.
210 *
211 * On HSW+ the behaviour of the scanline counter depends on the output
212 * type. For DP ports it behaves like most other platforms, but on HDMI
213 * there's an extra 1 line difference. So we need to add two instead of
214 * one to the value.
215 *
216 * On VLV/CHV DSI the scanline counter would appear to increment
217 * approx. 1/3 of a scanline before start of vblank. Unfortunately
218 * that means we can't tell whether we're in vblank or not while
219 * we're on that particular line. We must still set scanline_offset
220 * to 1 so that the vblank timestamps come out correct when we query
221 * the scanline counter from within the vblank interrupt handler.
222 * However if queried just before the start of vblank we'll get an
223 * answer that's slightly in the future.
224 */
225 if (DISPLAY_VER(display) >= 20 || display->platform.battlemage)
226 return 1;
227 else if (DISPLAY_VER(display) == 2)
228 return -1;
229 else if (HAS_DDI(display) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
230 return 2;
231 else
232 return 1;
233 }
234
235 /*
236 * intel_de_read_fw(), only for fast reads of display block, no need for
237 * forcewake etc.
238 */
__intel_get_crtc_scanline(struct intel_crtc * crtc)239 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
240 {
241 struct intel_display *display = to_intel_display(crtc);
242 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base);
243 const struct drm_display_mode *mode = &vblank->hwmode;
244 enum pipe pipe = crtc->pipe;
245 int position, vtotal;
246
247 if (!crtc->active)
248 return 0;
249
250 if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
251 return __intel_get_crtc_scanline_from_timestamp(crtc);
252
253 vtotal = intel_mode_vtotal(mode);
254
255 position = intel_de_read_fw(display, PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK;
256
257 /*
258 * On HSW, the DSL reg (0x70000) appears to return 0 if we
259 * read it just before the start of vblank. So try it again
260 * so we don't accidentally end up spanning a vblank frame
261 * increment, causing the pipe_update_end() code to squak at us.
262 *
263 * The nature of this problem means we can't simply check the ISR
264 * bit and return the vblank start value; nor can we use the scanline
265 * debug register in the transcoder as it appears to have the same
266 * problem. We may need to extend this to include other platforms,
267 * but so far testing only shows the problem on HSW.
268 */
269 if (HAS_DDI(display) && !position) {
270 int i, temp;
271
272 for (i = 0; i < 100; i++) {
273 udelay(1);
274 temp = intel_de_read_fw(display,
275 PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK;
276 if (temp != position) {
277 position = temp;
278 break;
279 }
280 }
281 }
282
283 /*
284 * See update_scanline_offset() for the details on the
285 * scanline_offset adjustment.
286 */
287 return (position + vtotal + crtc->scanline_offset) % vtotal;
288 }
289
290 /*
291 * The uncore version of the spin lock functions is used to decide
292 * whether we need to lock the uncore lock or not. This is only
293 * needed in i915, not in Xe.
294 *
295 * This lock in i915 is needed because some old platforms (at least
296 * IVB and possibly HSW as well), which are not supported in Xe, need
297 * all register accesses to the same cacheline to be serialized,
298 * otherwise they may hang.
299 */
300 #ifdef I915
intel_vblank_section_enter(struct intel_display * display)301 static void intel_vblank_section_enter(struct intel_display *display)
302 __acquires(i915->uncore.lock)
303 {
304 struct drm_i915_private *i915 = to_i915(display->drm);
305 spin_lock(&i915->uncore.lock);
306 }
307
intel_vblank_section_exit(struct intel_display * display)308 static void intel_vblank_section_exit(struct intel_display *display)
309 __releases(i915->uncore.lock)
310 {
311 struct drm_i915_private *i915 = to_i915(display->drm);
312 spin_unlock(&i915->uncore.lock);
313 }
314 #else
intel_vblank_section_enter(struct intel_display * display)315 static void intel_vblank_section_enter(struct intel_display *display)
316 {
317 }
318
intel_vblank_section_exit(struct intel_display * display)319 static void intel_vblank_section_exit(struct intel_display *display)
320 {
321 }
322 #endif
323
i915_get_crtc_scanoutpos(struct drm_crtc * _crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)324 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
325 bool in_vblank_irq,
326 int *vpos, int *hpos,
327 ktime_t *stime, ktime_t *etime,
328 const struct drm_display_mode *mode)
329 {
330 struct intel_display *display = to_intel_display(_crtc->dev);
331 struct intel_crtc *crtc = to_intel_crtc(_crtc);
332 enum pipe pipe = crtc->pipe;
333 int position;
334 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
335 unsigned long irqflags;
336 bool use_scanline_counter = DISPLAY_VER(display) >= 5 ||
337 display->platform.g4x || DISPLAY_VER(display) == 2 ||
338 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
339
340 if (drm_WARN_ON(display->drm, !mode->crtc_clock)) {
341 drm_dbg(display->drm,
342 "trying to get scanoutpos for disabled pipe %c\n",
343 pipe_name(pipe));
344 return false;
345 }
346
347 htotal = mode->crtc_htotal;
348 hsync_start = mode->crtc_hsync_start;
349 vtotal = intel_mode_vtotal(mode);
350 vbl_start = intel_mode_vblank_start(mode);
351 vbl_end = intel_mode_vblank_end(mode);
352
353 /*
354 * Enter vblank critical section, as we will do multiple
355 * timing critical raw register reads, potentially with
356 * preemption disabled, so the following code must not block.
357 */
358 local_irq_save(irqflags);
359 intel_vblank_section_enter(display);
360
361 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
362
363 /* Get optional system timestamp before query. */
364 if (stime)
365 *stime = ktime_get();
366
367 if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
368 int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc);
369
370 position = __intel_get_crtc_scanline(crtc);
371
372 /*
373 * Already exiting vblank? If so, shift our position
374 * so it looks like we're already apporaching the full
375 * vblank end. This should make the generated timestamp
376 * more or less match when the active portion will start.
377 */
378 if (position >= vbl_start && scanlines < position)
379 position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1);
380 } else if (use_scanline_counter) {
381 /* No obvious pixelcount register. Only query vertical
382 * scanout position from Display scan line register.
383 */
384 position = __intel_get_crtc_scanline(crtc);
385 } else {
386 /*
387 * Have access to pixelcount since start of frame.
388 * We can split this into vertical and horizontal
389 * scanout position.
390 */
391 position = (intel_de_read_fw(display, PIPEFRAMEPIXEL(display, pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
392
393 /* convert to pixel counts */
394 vbl_start *= htotal;
395 vbl_end *= htotal;
396 vtotal *= htotal;
397
398 /*
399 * In interlaced modes, the pixel counter counts all pixels,
400 * so one field will have htotal more pixels. In order to avoid
401 * the reported position from jumping backwards when the pixel
402 * counter is beyond the length of the shorter field, just
403 * clamp the position the length of the shorter field. This
404 * matches how the scanline counter based position works since
405 * the scanline counter doesn't count the two half lines.
406 */
407 position = min(position, vtotal - 1);
408
409 /*
410 * Start of vblank interrupt is triggered at start of hsync,
411 * just prior to the first active line of vblank. However we
412 * consider lines to start at the leading edge of horizontal
413 * active. So, should we get here before we've crossed into
414 * the horizontal active of the first line in vblank, we would
415 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
416 * always add htotal-hsync_start to the current pixel position.
417 */
418 position = (position + htotal - hsync_start) % vtotal;
419 }
420
421 /* Get optional system timestamp after query. */
422 if (etime)
423 *etime = ktime_get();
424
425 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
426
427 intel_vblank_section_exit(display);
428 local_irq_restore(irqflags);
429
430 /*
431 * While in vblank, position will be negative
432 * counting up towards 0 at vbl_end. And outside
433 * vblank, position will be positive counting
434 * up since vbl_end.
435 */
436 if (position >= vbl_start)
437 position -= vbl_end;
438 else
439 position += vtotal - vbl_end;
440
441 if (use_scanline_counter) {
442 *vpos = position;
443 *hpos = 0;
444 } else {
445 *vpos = position / htotal;
446 *hpos = position - (*vpos * htotal);
447 }
448
449 return true;
450 }
451
intel_crtc_get_vblank_timestamp(struct drm_crtc * crtc,int * max_error,ktime_t * vblank_time,bool in_vblank_irq)452 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
453 ktime_t *vblank_time, bool in_vblank_irq)
454 {
455 return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
456 crtc, max_error, vblank_time, in_vblank_irq,
457 i915_get_crtc_scanoutpos);
458 }
459
intel_get_crtc_scanline(struct intel_crtc * crtc)460 int intel_get_crtc_scanline(struct intel_crtc *crtc)
461 {
462 struct intel_display *display = to_intel_display(crtc);
463 unsigned long irqflags;
464 int position;
465
466 local_irq_save(irqflags);
467 intel_vblank_section_enter(display);
468
469 position = __intel_get_crtc_scanline(crtc);
470
471 intel_vblank_section_exit(display);
472 local_irq_restore(irqflags);
473
474 return position;
475 }
476
pipe_scanline_is_moving(struct intel_display * display,enum pipe pipe)477 static bool pipe_scanline_is_moving(struct intel_display *display,
478 enum pipe pipe)
479 {
480 i915_reg_t reg = PIPEDSL(display, pipe);
481 u32 line1, line2;
482
483 line1 = intel_de_read(display, reg) & PIPEDSL_LINE_MASK;
484 msleep(5);
485 line2 = intel_de_read(display, reg) & PIPEDSL_LINE_MASK;
486
487 return line1 != line2;
488 }
489
wait_for_pipe_scanline_moving(struct intel_crtc * crtc,bool state)490 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
491 {
492 struct intel_display *display = to_intel_display(crtc);
493 enum pipe pipe = crtc->pipe;
494
495 /* Wait for the display line to settle/start moving */
496 if (wait_for(pipe_scanline_is_moving(display, pipe) == state, 100))
497 drm_err(display->drm,
498 "pipe %c scanline %s wait timed out\n",
499 pipe_name(pipe), str_on_off(state));
500 }
501
intel_wait_for_pipe_scanline_stopped(struct intel_crtc * crtc)502 void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
503 {
504 wait_for_pipe_scanline_moving(crtc, false);
505 }
506
intel_wait_for_pipe_scanline_moving(struct intel_crtc * crtc)507 void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
508 {
509 wait_for_pipe_scanline_moving(crtc, true);
510 }
511
intel_crtc_update_active_timings(const struct intel_crtc_state * crtc_state,bool vrr_enable)512 void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state,
513 bool vrr_enable)
514 {
515 struct intel_display *display = to_intel_display(crtc_state);
516 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
517 u8 mode_flags = crtc_state->mode_flags;
518 struct drm_display_mode adjusted_mode;
519 int vmax_vblank_start = 0;
520 unsigned long irqflags;
521
522 drm_mode_init(&adjusted_mode, &crtc_state->hw.adjusted_mode);
523
524 if (vrr_enable) {
525 drm_WARN_ON(display->drm,
526 (mode_flags & I915_MODE_FLAG_VRR) == 0);
527
528 adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax;
529 adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax;
530 adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state);
531 vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state);
532 } else {
533 mode_flags &= ~I915_MODE_FLAG_VRR;
534 }
535
536 /*
537 * Belts and suspenders locking to guarantee everyone sees 100%
538 * consistent state during fastset seamless refresh rate changes.
539 *
540 * vblank_time_lock takes care of all drm_vblank.c stuff, and
541 * uncore.lock takes care of __intel_get_crtc_scanline() which
542 * may get called elsewhere as well.
543 *
544 * TODO maybe just protect everything (including
545 * __intel_get_crtc_scanline()) with vblank_time_lock?
546 * Need to audit everything to make sure it's safe.
547 */
548 spin_lock_irqsave(&display->drm->vblank_time_lock, irqflags);
549 intel_vblank_section_enter(display);
550
551 drm_calc_timestamping_constants(&crtc->base, &adjusted_mode);
552
553 crtc->vmax_vblank_start = vmax_vblank_start;
554
555 crtc->mode_flags = mode_flags;
556
557 crtc->scanline_offset = intel_crtc_scanline_offset(crtc_state);
558 intel_vblank_section_exit(display);
559 spin_unlock_irqrestore(&display->drm->vblank_time_lock, irqflags);
560 }
561
intel_mode_vdisplay(const struct drm_display_mode * mode)562 int intel_mode_vdisplay(const struct drm_display_mode *mode)
563 {
564 int vdisplay = mode->crtc_vdisplay;
565
566 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
567 vdisplay = DIV_ROUND_UP(vdisplay, 2);
568
569 return vdisplay;
570 }
571
intel_mode_vblank_start(const struct drm_display_mode * mode)572 int intel_mode_vblank_start(const struct drm_display_mode *mode)
573 {
574 int vblank_start = mode->crtc_vblank_start;
575
576 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
577 vblank_start = DIV_ROUND_UP(vblank_start, 2);
578
579 return vblank_start;
580 }
581
intel_mode_vblank_end(const struct drm_display_mode * mode)582 int intel_mode_vblank_end(const struct drm_display_mode *mode)
583 {
584 int vblank_end = mode->crtc_vblank_end;
585
586 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
587 vblank_end /= 2;
588
589 return vblank_end;
590 }
591
intel_mode_vtotal(const struct drm_display_mode * mode)592 int intel_mode_vtotal(const struct drm_display_mode *mode)
593 {
594 int vtotal = mode->crtc_vtotal;
595
596 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
597 vtotal /= 2;
598
599 return vtotal;
600 }
601
intel_vblank_evade_init(const struct intel_crtc_state * old_crtc_state,const struct intel_crtc_state * new_crtc_state,struct intel_vblank_evade_ctx * evade)602 void intel_vblank_evade_init(const struct intel_crtc_state *old_crtc_state,
603 const struct intel_crtc_state *new_crtc_state,
604 struct intel_vblank_evade_ctx *evade)
605 {
606 struct intel_display *display = to_intel_display(new_crtc_state);
607 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
608 const struct intel_crtc_state *crtc_state;
609 const struct drm_display_mode *adjusted_mode;
610
611 evade->crtc = crtc;
612
613 evade->need_vlv_dsi_wa = (display->platform.valleyview ||
614 display->platform.cherryview) &&
615 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI);
616
617 /*
618 * During fastsets/etc. the transcoder is still
619 * running with the old timings at this point.
620 *
621 * TODO: maybe just use the active timings here?
622 */
623 if (intel_crtc_needs_modeset(new_crtc_state))
624 crtc_state = new_crtc_state;
625 else
626 crtc_state = old_crtc_state;
627
628 adjusted_mode = &crtc_state->hw.adjusted_mode;
629
630 if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
631 /* timing changes should happen with VRR disabled */
632 drm_WARN_ON(crtc->base.dev, intel_crtc_needs_modeset(new_crtc_state) ||
633 new_crtc_state->update_m_n || new_crtc_state->update_lrr);
634
635 if (intel_vrr_is_push_sent(crtc_state))
636 evade->vblank_start = intel_vrr_vmin_vblank_start(crtc_state);
637 else
638 evade->vblank_start = intel_vrr_vmax_vblank_start(crtc_state);
639 } else {
640 evade->vblank_start = intel_mode_vblank_start(adjusted_mode);
641 }
642
643 /* FIXME needs to be calibrated sensibly */
644 evade->min = evade->vblank_start - intel_usecs_to_scanlines(adjusted_mode,
645 VBLANK_EVASION_TIME_US);
646 evade->max = evade->vblank_start - 1;
647
648 /*
649 * M/N and TRANS_VTOTAL are double buffered on the transcoder's
650 * undelayed vblank, so with seamless M/N and LRR we must evade
651 * both vblanks.
652 *
653 * DSB execution waits for the transcoder's undelayed vblank,
654 * hence we must kick off the commit before that.
655 */
656 if (intel_color_uses_dsb(new_crtc_state) ||
657 new_crtc_state->update_m_n || new_crtc_state->update_lrr)
658 evade->min -= intel_mode_vblank_start(adjusted_mode) -
659 intel_mode_vdisplay(adjusted_mode);
660 }
661
662 /* must be called with vblank interrupt already enabled! */
intel_vblank_evade(struct intel_vblank_evade_ctx * evade)663 int intel_vblank_evade(struct intel_vblank_evade_ctx *evade)
664 {
665 struct intel_crtc *crtc = evade->crtc;
666 struct intel_display *display = to_intel_display(crtc);
667 long timeout = msecs_to_jiffies_timeout(1);
668 wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base);
669 DEFINE_WAIT(wait);
670 int scanline;
671
672 if (evade->min <= 0 || evade->max <= 0)
673 return 0;
674
675 for (;;) {
676 /*
677 * prepare_to_wait() has a memory barrier, which guarantees
678 * other CPUs can see the task state update by the time we
679 * read the scanline.
680 */
681 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
682
683 scanline = intel_get_crtc_scanline(crtc);
684 if (scanline < evade->min || scanline > evade->max)
685 break;
686
687 if (!timeout) {
688 drm_err(display->drm,
689 "Potential atomic update failure on pipe %c\n",
690 pipe_name(crtc->pipe));
691 break;
692 }
693
694 local_irq_enable();
695
696 timeout = schedule_timeout(timeout);
697
698 local_irq_disable();
699 }
700
701 finish_wait(wq, &wait);
702
703 /*
704 * On VLV/CHV DSI the scanline counter would appear to
705 * increment approx. 1/3 of a scanline before start of vblank.
706 * The registers still get latched at start of vblank however.
707 * This means we must not write any registers on the first
708 * line of vblank (since not the whole line is actually in
709 * vblank). And unfortunately we can't use the interrupt to
710 * wait here since it will fire too soon. We could use the
711 * frame start interrupt instead since it will fire after the
712 * critical scanline, but that would require more changes
713 * in the interrupt code. So for now we'll just do the nasty
714 * thing and poll for the bad scanline to pass us by.
715 *
716 * FIXME figure out if BXT+ DSI suffers from this as well
717 */
718 while (evade->need_vlv_dsi_wa && scanline == evade->vblank_start)
719 scanline = intel_get_crtc_scanline(crtc);
720
721 return scanline;
722 }
723