1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/device.h>
25 #include <linux/export.h>
26 #include <linux/err.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/compat.h>
33 #include <uapi/linux/kfd_ioctl.h>
34 #include <linux/time.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/ptrace.h>
38 #include <linux/dma-buf.h>
39 #include <linux/processor.h>
40 #include "kfd_priv.h"
41 #include "kfd_device_queue_manager.h"
42 #include "kfd_svm.h"
43 #include "amdgpu_amdkfd.h"
44 #include "kfd_smi_events.h"
45 #include "amdgpu_dma_buf.h"
46 #include "kfd_debug.h"
47 
48 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
49 static int kfd_open(struct inode *, struct file *);
50 static int kfd_release(struct inode *, struct file *);
51 static int kfd_mmap(struct file *, struct vm_area_struct *);
52 
53 static const char kfd_dev_name[] = "kfd";
54 
55 static const struct file_operations kfd_fops = {
56 	.owner = THIS_MODULE,
57 	.unlocked_ioctl = kfd_ioctl,
58 	.compat_ioctl = compat_ptr_ioctl,
59 	.open = kfd_open,
60 	.release = kfd_release,
61 	.mmap = kfd_mmap,
62 };
63 
64 static int kfd_char_dev_major = -1;
65 struct device *kfd_device;
66 static const struct class kfd_class = {
67 	.name = kfd_dev_name,
68 };
69 
kfd_lock_pdd_by_id(struct kfd_process * p,__u32 gpu_id)70 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
71 {
72 	struct kfd_process_device *pdd;
73 
74 	mutex_lock(&p->mutex);
75 	pdd = kfd_process_device_data_by_id(p, gpu_id);
76 
77 	if (pdd)
78 		return pdd;
79 
80 	mutex_unlock(&p->mutex);
81 	return NULL;
82 }
83 
kfd_unlock_pdd(struct kfd_process_device * pdd)84 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
85 {
86 	mutex_unlock(&pdd->process->mutex);
87 }
88 
kfd_chardev_init(void)89 int kfd_chardev_init(void)
90 {
91 	int err = 0;
92 
93 	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
94 	err = kfd_char_dev_major;
95 	if (err < 0)
96 		goto err_register_chrdev;
97 
98 	err = class_register(&kfd_class);
99 	if (err)
100 		goto err_class_create;
101 
102 	kfd_device = device_create(&kfd_class, NULL,
103 				   MKDEV(kfd_char_dev_major, 0),
104 				   NULL, kfd_dev_name);
105 	err = PTR_ERR(kfd_device);
106 	if (IS_ERR(kfd_device))
107 		goto err_device_create;
108 
109 	return 0;
110 
111 err_device_create:
112 	class_unregister(&kfd_class);
113 err_class_create:
114 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
115 err_register_chrdev:
116 	return err;
117 }
118 
kfd_chardev_exit(void)119 void kfd_chardev_exit(void)
120 {
121 	device_destroy(&kfd_class, MKDEV(kfd_char_dev_major, 0));
122 	class_unregister(&kfd_class);
123 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
124 	kfd_device = NULL;
125 }
126 
127 
kfd_open(struct inode * inode,struct file * filep)128 static int kfd_open(struct inode *inode, struct file *filep)
129 {
130 	struct kfd_process *process;
131 	bool is_32bit_user_mode;
132 
133 	if (iminor(inode) != 0)
134 		return -ENODEV;
135 
136 	is_32bit_user_mode = in_compat_syscall();
137 
138 	if (is_32bit_user_mode) {
139 		dev_warn(kfd_device,
140 			"Process %d (32-bit) failed to open /dev/kfd\n"
141 			"32-bit processes are not supported by amdkfd\n",
142 			current->pid);
143 		return -EPERM;
144 	}
145 
146 	process = kfd_create_process(current);
147 	if (IS_ERR(process))
148 		return PTR_ERR(process);
149 
150 	if (kfd_process_init_cwsr_apu(process, filep)) {
151 		kfd_unref_process(process);
152 		return -EFAULT;
153 	}
154 
155 	/* filep now owns the reference returned by kfd_create_process */
156 	filep->private_data = process;
157 
158 	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
159 		process->pasid, process->is_32bit_user_mode);
160 
161 	return 0;
162 }
163 
kfd_release(struct inode * inode,struct file * filep)164 static int kfd_release(struct inode *inode, struct file *filep)
165 {
166 	struct kfd_process *process = filep->private_data;
167 
168 	if (process)
169 		kfd_unref_process(process);
170 
171 	return 0;
172 }
173 
kfd_ioctl_get_version(struct file * filep,struct kfd_process * p,void * data)174 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
175 					void *data)
176 {
177 	struct kfd_ioctl_get_version_args *args = data;
178 
179 	args->major_version = KFD_IOCTL_MAJOR_VERSION;
180 	args->minor_version = KFD_IOCTL_MINOR_VERSION;
181 
182 	return 0;
183 }
184 
set_queue_properties_from_user(struct queue_properties * q_properties,struct kfd_ioctl_create_queue_args * args)185 static int set_queue_properties_from_user(struct queue_properties *q_properties,
186 				struct kfd_ioctl_create_queue_args *args)
187 {
188 	/*
189 	 * Repurpose queue percentage to accommodate new features:
190 	 * bit 0-7: queue percentage
191 	 * bit 8-15: pm4_target_xcc
192 	 */
193 	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
194 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
195 		return -EINVAL;
196 	}
197 
198 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
199 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
200 		return -EINVAL;
201 	}
202 
203 	if ((args->ring_base_address) &&
204 		(!access_ok((const void __user *) args->ring_base_address,
205 			sizeof(uint64_t)))) {
206 		pr_err("Can't access ring base address\n");
207 		return -EFAULT;
208 	}
209 
210 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
211 		pr_err("Ring size must be a power of 2 or 0\n");
212 		return -EINVAL;
213 	}
214 
215 	if (args->ring_size < KFD_MIN_QUEUE_RING_SIZE) {
216 		args->ring_size = KFD_MIN_QUEUE_RING_SIZE;
217 		pr_debug("Size lower. clamped to KFD_MIN_QUEUE_RING_SIZE");
218 	}
219 
220 	if (!access_ok((const void __user *) args->read_pointer_address,
221 			sizeof(uint32_t))) {
222 		pr_err("Can't access read pointer\n");
223 		return -EFAULT;
224 	}
225 
226 	if (!access_ok((const void __user *) args->write_pointer_address,
227 			sizeof(uint32_t))) {
228 		pr_err("Can't access write pointer\n");
229 		return -EFAULT;
230 	}
231 
232 	if (args->eop_buffer_address &&
233 		!access_ok((const void __user *) args->eop_buffer_address,
234 			sizeof(uint32_t))) {
235 		pr_debug("Can't access eop buffer");
236 		return -EFAULT;
237 	}
238 
239 	if (args->ctx_save_restore_address &&
240 		!access_ok((const void __user *) args->ctx_save_restore_address,
241 			sizeof(uint32_t))) {
242 		pr_debug("Can't access ctx save restore buffer");
243 		return -EFAULT;
244 	}
245 
246 	q_properties->is_interop = false;
247 	q_properties->is_gws = false;
248 	q_properties->queue_percent = args->queue_percentage & 0xFF;
249 	/* bit 8-15 are repurposed to be PM4 target XCC */
250 	q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
251 	q_properties->priority = args->queue_priority;
252 	q_properties->queue_address = args->ring_base_address;
253 	q_properties->queue_size = args->ring_size;
254 	q_properties->read_ptr = (void __user *)args->read_pointer_address;
255 	q_properties->write_ptr = (void __user *)args->write_pointer_address;
256 	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
257 	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
258 	q_properties->ctx_save_restore_area_address =
259 			args->ctx_save_restore_address;
260 	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
261 	q_properties->ctl_stack_size = args->ctl_stack_size;
262 	q_properties->sdma_engine_id = args->sdma_engine_id;
263 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
264 		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
265 		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
266 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
267 		q_properties->type = KFD_QUEUE_TYPE_SDMA;
268 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
269 		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
270 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_BY_ENG_ID)
271 		q_properties->type = KFD_QUEUE_TYPE_SDMA_BY_ENG_ID;
272 	else
273 		return -ENOTSUPP;
274 
275 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
276 		q_properties->format = KFD_QUEUE_FORMAT_AQL;
277 	else
278 		q_properties->format = KFD_QUEUE_FORMAT_PM4;
279 
280 	pr_debug("Queue Percentage: %d, %d\n",
281 			q_properties->queue_percent, args->queue_percentage);
282 
283 	pr_debug("Queue Priority: %d, %d\n",
284 			q_properties->priority, args->queue_priority);
285 
286 	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
287 			q_properties->queue_address, args->ring_base_address);
288 
289 	pr_debug("Queue Size: 0x%llX, %u\n",
290 			q_properties->queue_size, args->ring_size);
291 
292 	pr_debug("Queue r/w Pointers: %px, %px\n",
293 			q_properties->read_ptr,
294 			q_properties->write_ptr);
295 
296 	pr_debug("Queue Format: %d\n", q_properties->format);
297 
298 	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
299 
300 	pr_debug("Queue CTX save area: 0x%llX\n",
301 			q_properties->ctx_save_restore_area_address);
302 
303 	return 0;
304 }
305 
kfd_ioctl_create_queue(struct file * filep,struct kfd_process * p,void * data)306 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
307 					void *data)
308 {
309 	struct kfd_ioctl_create_queue_args *args = data;
310 	struct kfd_node *dev;
311 	int err = 0;
312 	unsigned int queue_id;
313 	struct kfd_process_device *pdd;
314 	struct queue_properties q_properties;
315 	uint32_t doorbell_offset_in_process = 0;
316 
317 	memset(&q_properties, 0, sizeof(struct queue_properties));
318 
319 	pr_debug("Creating queue ioctl\n");
320 
321 	err = set_queue_properties_from_user(&q_properties, args);
322 	if (err)
323 		return err;
324 
325 	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
326 
327 	mutex_lock(&p->mutex);
328 
329 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
330 	if (!pdd) {
331 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
332 		err = -EINVAL;
333 		goto err_pdd;
334 	}
335 	dev = pdd->dev;
336 
337 	pdd = kfd_bind_process_to_device(dev, p);
338 	if (IS_ERR(pdd)) {
339 		err = -ESRCH;
340 		goto err_bind_process;
341 	}
342 
343 	if (q_properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
344 		int max_sdma_eng_id = kfd_get_num_sdma_engines(dev) +
345 				      kfd_get_num_xgmi_sdma_engines(dev) - 1;
346 
347 		if (q_properties.sdma_engine_id > max_sdma_eng_id) {
348 			err = -EINVAL;
349 			pr_err("sdma_engine_id %i exceeds maximum id of %i\n",
350 			       q_properties.sdma_engine_id, max_sdma_eng_id);
351 			goto err_sdma_engine_id;
352 		}
353 	}
354 
355 	if (!pdd->qpd.proc_doorbells) {
356 		err = kfd_alloc_process_doorbells(dev->kfd, pdd);
357 		if (err) {
358 			pr_debug("failed to allocate process doorbells\n");
359 			goto err_bind_process;
360 		}
361 	}
362 
363 	err = kfd_queue_acquire_buffers(pdd, &q_properties);
364 	if (err) {
365 		pr_debug("failed to acquire user queue buffers\n");
366 		goto err_acquire_queue_buf;
367 	}
368 
369 	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
370 			p->pasid,
371 			dev->id);
372 
373 	err = pqm_create_queue(&p->pqm, dev, &q_properties, &queue_id,
374 			NULL, NULL, NULL, &doorbell_offset_in_process);
375 	if (err != 0)
376 		goto err_create_queue;
377 
378 	args->queue_id = queue_id;
379 
380 
381 	/* Return gpu_id as doorbell offset for mmap usage */
382 	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
383 	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
384 	if (KFD_IS_SOC15(dev))
385 		/* On SOC15 ASICs, include the doorbell offset within the
386 		 * process doorbell frame, which is 2 pages.
387 		 */
388 		args->doorbell_offset |= doorbell_offset_in_process;
389 
390 	mutex_unlock(&p->mutex);
391 
392 	pr_debug("Queue id %d was created successfully\n", args->queue_id);
393 
394 	pr_debug("Ring buffer address == 0x%016llX\n",
395 			args->ring_base_address);
396 
397 	pr_debug("Read ptr address    == 0x%016llX\n",
398 			args->read_pointer_address);
399 
400 	pr_debug("Write ptr address   == 0x%016llX\n",
401 			args->write_pointer_address);
402 
403 	kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
404 	return 0;
405 
406 err_create_queue:
407 	kfd_queue_unref_bo_vas(pdd, &q_properties);
408 	kfd_queue_release_buffers(pdd, &q_properties);
409 err_acquire_queue_buf:
410 err_sdma_engine_id:
411 err_bind_process:
412 err_pdd:
413 	mutex_unlock(&p->mutex);
414 	return err;
415 }
416 
kfd_ioctl_destroy_queue(struct file * filp,struct kfd_process * p,void * data)417 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
418 					void *data)
419 {
420 	int retval;
421 	struct kfd_ioctl_destroy_queue_args *args = data;
422 
423 	pr_debug("Destroying queue id %d for pasid 0x%x\n",
424 				args->queue_id,
425 				p->pasid);
426 
427 	mutex_lock(&p->mutex);
428 
429 	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
430 
431 	mutex_unlock(&p->mutex);
432 	return retval;
433 }
434 
kfd_ioctl_update_queue(struct file * filp,struct kfd_process * p,void * data)435 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
436 					void *data)
437 {
438 	int retval;
439 	struct kfd_ioctl_update_queue_args *args = data;
440 	struct queue_properties properties;
441 
442 	/*
443 	 * Repurpose queue percentage to accommodate new features:
444 	 * bit 0-7: queue percentage
445 	 * bit 8-15: pm4_target_xcc
446 	 */
447 	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
448 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
449 		return -EINVAL;
450 	}
451 
452 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
453 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
454 		return -EINVAL;
455 	}
456 
457 	if ((args->ring_base_address) &&
458 		(!access_ok((const void __user *) args->ring_base_address,
459 			sizeof(uint64_t)))) {
460 		pr_err("Can't access ring base address\n");
461 		return -EFAULT;
462 	}
463 
464 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
465 		pr_err("Ring size must be a power of 2 or 0\n");
466 		return -EINVAL;
467 	}
468 
469 	if (args->ring_size < KFD_MIN_QUEUE_RING_SIZE) {
470 		args->ring_size = KFD_MIN_QUEUE_RING_SIZE;
471 		pr_debug("Size lower. clamped to KFD_MIN_QUEUE_RING_SIZE");
472 	}
473 
474 	properties.queue_address = args->ring_base_address;
475 	properties.queue_size = args->ring_size;
476 	properties.queue_percent = args->queue_percentage & 0xFF;
477 	/* bit 8-15 are repurposed to be PM4 target XCC */
478 	properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
479 	properties.priority = args->queue_priority;
480 
481 	pr_debug("Updating queue id %d for pasid 0x%x\n",
482 			args->queue_id, p->pasid);
483 
484 	mutex_lock(&p->mutex);
485 
486 	retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
487 
488 	mutex_unlock(&p->mutex);
489 
490 	return retval;
491 }
492 
kfd_ioctl_set_cu_mask(struct file * filp,struct kfd_process * p,void * data)493 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
494 					void *data)
495 {
496 	int retval;
497 	const int max_num_cus = 1024;
498 	struct kfd_ioctl_set_cu_mask_args *args = data;
499 	struct mqd_update_info minfo = {0};
500 	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
501 	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
502 
503 	if ((args->num_cu_mask % 32) != 0) {
504 		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
505 				args->num_cu_mask);
506 		return -EINVAL;
507 	}
508 
509 	minfo.cu_mask.count = args->num_cu_mask;
510 	if (minfo.cu_mask.count == 0) {
511 		pr_debug("CU mask cannot be 0");
512 		return -EINVAL;
513 	}
514 
515 	/* To prevent an unreasonably large CU mask size, set an arbitrary
516 	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
517 	 * past max_num_cus bits and just use the first max_num_cus bits.
518 	 */
519 	if (minfo.cu_mask.count > max_num_cus) {
520 		pr_debug("CU mask cannot be greater than 1024 bits");
521 		minfo.cu_mask.count = max_num_cus;
522 		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
523 	}
524 
525 	minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
526 	if (!minfo.cu_mask.ptr)
527 		return -ENOMEM;
528 
529 	retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
530 	if (retval) {
531 		pr_debug("Could not copy CU mask from userspace");
532 		retval = -EFAULT;
533 		goto out;
534 	}
535 
536 	mutex_lock(&p->mutex);
537 
538 	retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
539 
540 	mutex_unlock(&p->mutex);
541 
542 out:
543 	kfree(minfo.cu_mask.ptr);
544 	return retval;
545 }
546 
kfd_ioctl_get_queue_wave_state(struct file * filep,struct kfd_process * p,void * data)547 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
548 					  struct kfd_process *p, void *data)
549 {
550 	struct kfd_ioctl_get_queue_wave_state_args *args = data;
551 	int r;
552 
553 	mutex_lock(&p->mutex);
554 
555 	r = pqm_get_wave_state(&p->pqm, args->queue_id,
556 			       (void __user *)args->ctl_stack_address,
557 			       &args->ctl_stack_used_size,
558 			       &args->save_area_used_size);
559 
560 	mutex_unlock(&p->mutex);
561 
562 	return r;
563 }
564 
kfd_ioctl_set_memory_policy(struct file * filep,struct kfd_process * p,void * data)565 static int kfd_ioctl_set_memory_policy(struct file *filep,
566 					struct kfd_process *p, void *data)
567 {
568 	struct kfd_ioctl_set_memory_policy_args *args = data;
569 	int err = 0;
570 	struct kfd_process_device *pdd;
571 	enum cache_policy default_policy, alternate_policy;
572 
573 	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
574 	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
575 		return -EINVAL;
576 	}
577 
578 	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
579 	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
580 		return -EINVAL;
581 	}
582 
583 	mutex_lock(&p->mutex);
584 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
585 	if (!pdd) {
586 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
587 		err = -EINVAL;
588 		goto err_pdd;
589 	}
590 
591 	pdd = kfd_bind_process_to_device(pdd->dev, p);
592 	if (IS_ERR(pdd)) {
593 		err = -ESRCH;
594 		goto out;
595 	}
596 
597 	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
598 			 ? cache_policy_coherent : cache_policy_noncoherent;
599 
600 	alternate_policy =
601 		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
602 		   ? cache_policy_coherent : cache_policy_noncoherent;
603 
604 	if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
605 				&pdd->qpd,
606 				default_policy,
607 				alternate_policy,
608 				(void __user *)args->alternate_aperture_base,
609 				args->alternate_aperture_size))
610 		err = -EINVAL;
611 
612 out:
613 err_pdd:
614 	mutex_unlock(&p->mutex);
615 
616 	return err;
617 }
618 
kfd_ioctl_set_trap_handler(struct file * filep,struct kfd_process * p,void * data)619 static int kfd_ioctl_set_trap_handler(struct file *filep,
620 					struct kfd_process *p, void *data)
621 {
622 	struct kfd_ioctl_set_trap_handler_args *args = data;
623 	int err = 0;
624 	struct kfd_process_device *pdd;
625 
626 	mutex_lock(&p->mutex);
627 
628 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
629 	if (!pdd) {
630 		err = -EINVAL;
631 		goto err_pdd;
632 	}
633 
634 	pdd = kfd_bind_process_to_device(pdd->dev, p);
635 	if (IS_ERR(pdd)) {
636 		err = -ESRCH;
637 		goto out;
638 	}
639 
640 	kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
641 
642 out:
643 err_pdd:
644 	mutex_unlock(&p->mutex);
645 
646 	return err;
647 }
648 
kfd_ioctl_dbg_register(struct file * filep,struct kfd_process * p,void * data)649 static int kfd_ioctl_dbg_register(struct file *filep,
650 				struct kfd_process *p, void *data)
651 {
652 	return -EPERM;
653 }
654 
kfd_ioctl_dbg_unregister(struct file * filep,struct kfd_process * p,void * data)655 static int kfd_ioctl_dbg_unregister(struct file *filep,
656 				struct kfd_process *p, void *data)
657 {
658 	return -EPERM;
659 }
660 
kfd_ioctl_dbg_address_watch(struct file * filep,struct kfd_process * p,void * data)661 static int kfd_ioctl_dbg_address_watch(struct file *filep,
662 					struct kfd_process *p, void *data)
663 {
664 	return -EPERM;
665 }
666 
667 /* Parse and generate fixed size data structure for wave control */
kfd_ioctl_dbg_wave_control(struct file * filep,struct kfd_process * p,void * data)668 static int kfd_ioctl_dbg_wave_control(struct file *filep,
669 					struct kfd_process *p, void *data)
670 {
671 	return -EPERM;
672 }
673 
kfd_ioctl_get_clock_counters(struct file * filep,struct kfd_process * p,void * data)674 static int kfd_ioctl_get_clock_counters(struct file *filep,
675 				struct kfd_process *p, void *data)
676 {
677 	struct kfd_ioctl_get_clock_counters_args *args = data;
678 	struct kfd_process_device *pdd;
679 
680 	mutex_lock(&p->mutex);
681 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
682 	mutex_unlock(&p->mutex);
683 	if (pdd)
684 		/* Reading GPU clock counter from KGD */
685 		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
686 	else
687 		/* Node without GPU resource */
688 		args->gpu_clock_counter = 0;
689 
690 	/* No access to rdtsc. Using raw monotonic time */
691 	args->cpu_clock_counter = ktime_get_raw_ns();
692 	args->system_clock_counter = ktime_get_boottime_ns();
693 
694 	/* Since the counter is in nano-seconds we use 1GHz frequency */
695 	args->system_clock_freq = 1000000000;
696 
697 	return 0;
698 }
699 
700 
kfd_ioctl_get_process_apertures(struct file * filp,struct kfd_process * p,void * data)701 static int kfd_ioctl_get_process_apertures(struct file *filp,
702 				struct kfd_process *p, void *data)
703 {
704 	struct kfd_ioctl_get_process_apertures_args *args = data;
705 	struct kfd_process_device_apertures *pAperture;
706 	int i;
707 
708 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
709 
710 	args->num_of_nodes = 0;
711 
712 	mutex_lock(&p->mutex);
713 	/* Run over all pdd of the process */
714 	for (i = 0; i < p->n_pdds; i++) {
715 		struct kfd_process_device *pdd = p->pdds[i];
716 
717 		pAperture =
718 			&args->process_apertures[args->num_of_nodes];
719 		pAperture->gpu_id = pdd->dev->id;
720 		pAperture->lds_base = pdd->lds_base;
721 		pAperture->lds_limit = pdd->lds_limit;
722 		pAperture->gpuvm_base = pdd->gpuvm_base;
723 		pAperture->gpuvm_limit = pdd->gpuvm_limit;
724 		pAperture->scratch_base = pdd->scratch_base;
725 		pAperture->scratch_limit = pdd->scratch_limit;
726 
727 		dev_dbg(kfd_device,
728 			"node id %u\n", args->num_of_nodes);
729 		dev_dbg(kfd_device,
730 			"gpu id %u\n", pdd->dev->id);
731 		dev_dbg(kfd_device,
732 			"lds_base %llX\n", pdd->lds_base);
733 		dev_dbg(kfd_device,
734 			"lds_limit %llX\n", pdd->lds_limit);
735 		dev_dbg(kfd_device,
736 			"gpuvm_base %llX\n", pdd->gpuvm_base);
737 		dev_dbg(kfd_device,
738 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
739 		dev_dbg(kfd_device,
740 			"scratch_base %llX\n", pdd->scratch_base);
741 		dev_dbg(kfd_device,
742 			"scratch_limit %llX\n", pdd->scratch_limit);
743 
744 		if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
745 			break;
746 	}
747 	mutex_unlock(&p->mutex);
748 
749 	return 0;
750 }
751 
kfd_ioctl_get_process_apertures_new(struct file * filp,struct kfd_process * p,void * data)752 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
753 				struct kfd_process *p, void *data)
754 {
755 	struct kfd_ioctl_get_process_apertures_new_args *args = data;
756 	struct kfd_process_device_apertures *pa;
757 	int ret;
758 	int i;
759 
760 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
761 
762 	if (args->num_of_nodes == 0) {
763 		/* Return number of nodes, so that user space can alloacate
764 		 * sufficient memory
765 		 */
766 		mutex_lock(&p->mutex);
767 		args->num_of_nodes = p->n_pdds;
768 		goto out_unlock;
769 	}
770 
771 	/* Fill in process-aperture information for all available
772 	 * nodes, but not more than args->num_of_nodes as that is
773 	 * the amount of memory allocated by user
774 	 */
775 	pa = kcalloc(args->num_of_nodes, sizeof(struct kfd_process_device_apertures),
776 		     GFP_KERNEL);
777 	if (!pa)
778 		return -ENOMEM;
779 
780 	mutex_lock(&p->mutex);
781 
782 	if (!p->n_pdds) {
783 		args->num_of_nodes = 0;
784 		kfree(pa);
785 		goto out_unlock;
786 	}
787 
788 	/* Run over all pdd of the process */
789 	for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
790 		struct kfd_process_device *pdd = p->pdds[i];
791 
792 		pa[i].gpu_id = pdd->dev->id;
793 		pa[i].lds_base = pdd->lds_base;
794 		pa[i].lds_limit = pdd->lds_limit;
795 		pa[i].gpuvm_base = pdd->gpuvm_base;
796 		pa[i].gpuvm_limit = pdd->gpuvm_limit;
797 		pa[i].scratch_base = pdd->scratch_base;
798 		pa[i].scratch_limit = pdd->scratch_limit;
799 
800 		dev_dbg(kfd_device,
801 			"gpu id %u\n", pdd->dev->id);
802 		dev_dbg(kfd_device,
803 			"lds_base %llX\n", pdd->lds_base);
804 		dev_dbg(kfd_device,
805 			"lds_limit %llX\n", pdd->lds_limit);
806 		dev_dbg(kfd_device,
807 			"gpuvm_base %llX\n", pdd->gpuvm_base);
808 		dev_dbg(kfd_device,
809 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
810 		dev_dbg(kfd_device,
811 			"scratch_base %llX\n", pdd->scratch_base);
812 		dev_dbg(kfd_device,
813 			"scratch_limit %llX\n", pdd->scratch_limit);
814 	}
815 	mutex_unlock(&p->mutex);
816 
817 	args->num_of_nodes = i;
818 	ret = copy_to_user(
819 			(void __user *)args->kfd_process_device_apertures_ptr,
820 			pa,
821 			(i * sizeof(struct kfd_process_device_apertures)));
822 	kfree(pa);
823 	return ret ? -EFAULT : 0;
824 
825 out_unlock:
826 	mutex_unlock(&p->mutex);
827 	return 0;
828 }
829 
kfd_ioctl_create_event(struct file * filp,struct kfd_process * p,void * data)830 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
831 					void *data)
832 {
833 	struct kfd_ioctl_create_event_args *args = data;
834 	int err;
835 
836 	/* For dGPUs the event page is allocated in user mode. The
837 	 * handle is passed to KFD with the first call to this IOCTL
838 	 * through the event_page_offset field.
839 	 */
840 	if (args->event_page_offset) {
841 		mutex_lock(&p->mutex);
842 		err = kfd_kmap_event_page(p, args->event_page_offset);
843 		mutex_unlock(&p->mutex);
844 		if (err)
845 			return err;
846 	}
847 
848 	err = kfd_event_create(filp, p, args->event_type,
849 				args->auto_reset != 0, args->node_id,
850 				&args->event_id, &args->event_trigger_data,
851 				&args->event_page_offset,
852 				&args->event_slot_index);
853 
854 	pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
855 	return err;
856 }
857 
kfd_ioctl_destroy_event(struct file * filp,struct kfd_process * p,void * data)858 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
859 					void *data)
860 {
861 	struct kfd_ioctl_destroy_event_args *args = data;
862 
863 	return kfd_event_destroy(p, args->event_id);
864 }
865 
kfd_ioctl_set_event(struct file * filp,struct kfd_process * p,void * data)866 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
867 				void *data)
868 {
869 	struct kfd_ioctl_set_event_args *args = data;
870 
871 	return kfd_set_event(p, args->event_id);
872 }
873 
kfd_ioctl_reset_event(struct file * filp,struct kfd_process * p,void * data)874 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
875 				void *data)
876 {
877 	struct kfd_ioctl_reset_event_args *args = data;
878 
879 	return kfd_reset_event(p, args->event_id);
880 }
881 
kfd_ioctl_wait_events(struct file * filp,struct kfd_process * p,void * data)882 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
883 				void *data)
884 {
885 	struct kfd_ioctl_wait_events_args *args = data;
886 
887 	return kfd_wait_on_events(p, args->num_events,
888 			(void __user *)args->events_ptr,
889 			(args->wait_for_all != 0),
890 			&args->timeout, &args->wait_result);
891 }
kfd_ioctl_set_scratch_backing_va(struct file * filep,struct kfd_process * p,void * data)892 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
893 					struct kfd_process *p, void *data)
894 {
895 	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
896 	struct kfd_process_device *pdd;
897 	struct kfd_node *dev;
898 	long err;
899 
900 	mutex_lock(&p->mutex);
901 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
902 	if (!pdd) {
903 		err = -EINVAL;
904 		goto err_pdd;
905 	}
906 	dev = pdd->dev;
907 
908 	pdd = kfd_bind_process_to_device(dev, p);
909 	if (IS_ERR(pdd)) {
910 		err = PTR_ERR(pdd);
911 		goto bind_process_to_device_fail;
912 	}
913 
914 	pdd->qpd.sh_hidden_private_base = args->va_addr;
915 
916 	mutex_unlock(&p->mutex);
917 
918 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
919 	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
920 		dev->kfd2kgd->set_scratch_backing_va(
921 			dev->adev, args->va_addr, pdd->qpd.vmid);
922 
923 	return 0;
924 
925 bind_process_to_device_fail:
926 err_pdd:
927 	mutex_unlock(&p->mutex);
928 	return err;
929 }
930 
kfd_ioctl_get_tile_config(struct file * filep,struct kfd_process * p,void * data)931 static int kfd_ioctl_get_tile_config(struct file *filep,
932 		struct kfd_process *p, void *data)
933 {
934 	struct kfd_ioctl_get_tile_config_args *args = data;
935 	struct kfd_process_device *pdd;
936 	struct tile_config config;
937 	int err = 0;
938 
939 	mutex_lock(&p->mutex);
940 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
941 	mutex_unlock(&p->mutex);
942 	if (!pdd)
943 		return -EINVAL;
944 
945 	amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
946 
947 	args->gb_addr_config = config.gb_addr_config;
948 	args->num_banks = config.num_banks;
949 	args->num_ranks = config.num_ranks;
950 
951 	if (args->num_tile_configs > config.num_tile_configs)
952 		args->num_tile_configs = config.num_tile_configs;
953 	err = copy_to_user((void __user *)args->tile_config_ptr,
954 			config.tile_config_ptr,
955 			args->num_tile_configs * sizeof(uint32_t));
956 	if (err) {
957 		args->num_tile_configs = 0;
958 		return -EFAULT;
959 	}
960 
961 	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
962 		args->num_macro_tile_configs =
963 				config.num_macro_tile_configs;
964 	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
965 			config.macro_tile_config_ptr,
966 			args->num_macro_tile_configs * sizeof(uint32_t));
967 	if (err) {
968 		args->num_macro_tile_configs = 0;
969 		return -EFAULT;
970 	}
971 
972 	return 0;
973 }
974 
kfd_ioctl_acquire_vm(struct file * filep,struct kfd_process * p,void * data)975 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
976 				void *data)
977 {
978 	struct kfd_ioctl_acquire_vm_args *args = data;
979 	struct kfd_process_device *pdd;
980 	struct file *drm_file;
981 	int ret;
982 
983 	drm_file = fget(args->drm_fd);
984 	if (!drm_file)
985 		return -EINVAL;
986 
987 	mutex_lock(&p->mutex);
988 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
989 	if (!pdd) {
990 		ret = -EINVAL;
991 		goto err_pdd;
992 	}
993 
994 	if (pdd->drm_file) {
995 		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
996 		goto err_drm_file;
997 	}
998 
999 	ret = kfd_process_device_init_vm(pdd, drm_file);
1000 	if (ret)
1001 		goto err_unlock;
1002 
1003 	/* On success, the PDD keeps the drm_file reference */
1004 	mutex_unlock(&p->mutex);
1005 
1006 	return 0;
1007 
1008 err_unlock:
1009 err_pdd:
1010 err_drm_file:
1011 	mutex_unlock(&p->mutex);
1012 	fput(drm_file);
1013 	return ret;
1014 }
1015 
kfd_dev_is_large_bar(struct kfd_node * dev)1016 bool kfd_dev_is_large_bar(struct kfd_node *dev)
1017 {
1018 	if (dev->kfd->adev->debug_largebar) {
1019 		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1020 		return true;
1021 	}
1022 
1023 	if (dev->local_mem_info.local_mem_size_private == 0 &&
1024 	    dev->local_mem_info.local_mem_size_public > 0)
1025 		return true;
1026 
1027 	if (dev->local_mem_info.local_mem_size_public == 0 &&
1028 	    dev->kfd->adev->gmc.is_app_apu) {
1029 		pr_debug("APP APU, Consider like a large bar system\n");
1030 		return true;
1031 	}
1032 
1033 	return false;
1034 }
1035 
kfd_ioctl_get_available_memory(struct file * filep,struct kfd_process * p,void * data)1036 static int kfd_ioctl_get_available_memory(struct file *filep,
1037 					  struct kfd_process *p, void *data)
1038 {
1039 	struct kfd_ioctl_get_available_memory_args *args = data;
1040 	struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1041 
1042 	if (!pdd)
1043 		return -EINVAL;
1044 	args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1045 							pdd->dev->node_id);
1046 	kfd_unlock_pdd(pdd);
1047 	return 0;
1048 }
1049 
kfd_ioctl_alloc_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1050 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1051 					struct kfd_process *p, void *data)
1052 {
1053 	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1054 	struct kfd_process_device *pdd;
1055 	void *mem;
1056 	struct kfd_node *dev;
1057 	int idr_handle;
1058 	long err;
1059 	uint64_t offset = args->mmap_offset;
1060 	uint32_t flags = args->flags;
1061 
1062 	if (args->size == 0)
1063 		return -EINVAL;
1064 
1065 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1066 	/* Flush pending deferred work to avoid racing with deferred actions
1067 	 * from previous memory map changes (e.g. munmap).
1068 	 */
1069 	svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1070 	mutex_lock(&p->svms.lock);
1071 	mmap_write_unlock(current->mm);
1072 	if (interval_tree_iter_first(&p->svms.objects,
1073 				     args->va_addr >> PAGE_SHIFT,
1074 				     (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1075 		pr_err("Address: 0x%llx already allocated by SVM\n",
1076 			args->va_addr);
1077 		mutex_unlock(&p->svms.lock);
1078 		return -EADDRINUSE;
1079 	}
1080 
1081 	/* When register user buffer check if it has been registered by svm by
1082 	 * buffer cpu virtual address.
1083 	 */
1084 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1085 	    interval_tree_iter_first(&p->svms.objects,
1086 				     args->mmap_offset >> PAGE_SHIFT,
1087 				     (args->mmap_offset  + args->size - 1) >> PAGE_SHIFT)) {
1088 		pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1089 			args->mmap_offset);
1090 		mutex_unlock(&p->svms.lock);
1091 		return -EADDRINUSE;
1092 	}
1093 
1094 	mutex_unlock(&p->svms.lock);
1095 #endif
1096 	mutex_lock(&p->mutex);
1097 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1098 	if (!pdd) {
1099 		err = -EINVAL;
1100 		goto err_pdd;
1101 	}
1102 
1103 	dev = pdd->dev;
1104 
1105 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1106 		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1107 		!kfd_dev_is_large_bar(dev)) {
1108 		pr_err("Alloc host visible vram on small bar is not allowed\n");
1109 		err = -EINVAL;
1110 		goto err_large_bar;
1111 	}
1112 
1113 	pdd = kfd_bind_process_to_device(dev, p);
1114 	if (IS_ERR(pdd)) {
1115 		err = PTR_ERR(pdd);
1116 		goto err_unlock;
1117 	}
1118 
1119 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1120 		if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1121 			err = -EINVAL;
1122 			goto err_unlock;
1123 		}
1124 		offset = kfd_get_process_doorbells(pdd);
1125 		if (!offset) {
1126 			err = -ENOMEM;
1127 			goto err_unlock;
1128 		}
1129 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1130 		if (args->size != PAGE_SIZE) {
1131 			err = -EINVAL;
1132 			goto err_unlock;
1133 		}
1134 		offset = dev->adev->rmmio_remap.bus_addr;
1135 		if (!offset || (PAGE_SIZE > 4096)) {
1136 			err = -ENOMEM;
1137 			goto err_unlock;
1138 		}
1139 	}
1140 
1141 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1142 		dev->adev, args->va_addr, args->size,
1143 		pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1144 		flags, false);
1145 
1146 	if (err)
1147 		goto err_unlock;
1148 
1149 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1150 	if (idr_handle < 0) {
1151 		err = -EFAULT;
1152 		goto err_free;
1153 	}
1154 
1155 	/* Update the VRAM usage count */
1156 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1157 		uint64_t size = args->size;
1158 
1159 		if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1160 			size >>= 1;
1161 		atomic64_add(PAGE_ALIGN(size), &pdd->vram_usage);
1162 	}
1163 
1164 	mutex_unlock(&p->mutex);
1165 
1166 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1167 	args->mmap_offset = offset;
1168 
1169 	/* MMIO is mapped through kfd device
1170 	 * Generate a kfd mmap offset
1171 	 */
1172 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1173 		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1174 					| KFD_MMAP_GPU_ID(args->gpu_id);
1175 
1176 	return 0;
1177 
1178 err_free:
1179 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1180 					       pdd->drm_priv, NULL);
1181 err_unlock:
1182 err_pdd:
1183 err_large_bar:
1184 	mutex_unlock(&p->mutex);
1185 	return err;
1186 }
1187 
kfd_ioctl_free_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1188 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1189 					struct kfd_process *p, void *data)
1190 {
1191 	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1192 	struct kfd_process_device *pdd;
1193 	void *mem;
1194 	int ret;
1195 	uint64_t size = 0;
1196 
1197 	mutex_lock(&p->mutex);
1198 	/*
1199 	 * Safeguard to prevent user space from freeing signal BO.
1200 	 * It will be freed at process termination.
1201 	 */
1202 	if (p->signal_handle && (p->signal_handle == args->handle)) {
1203 		pr_err("Free signal BO is not allowed\n");
1204 		ret = -EPERM;
1205 		goto err_unlock;
1206 	}
1207 
1208 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1209 	if (!pdd) {
1210 		pr_err("Process device data doesn't exist\n");
1211 		ret = -EINVAL;
1212 		goto err_pdd;
1213 	}
1214 
1215 	mem = kfd_process_device_translate_handle(
1216 		pdd, GET_IDR_HANDLE(args->handle));
1217 	if (!mem) {
1218 		ret = -EINVAL;
1219 		goto err_unlock;
1220 	}
1221 
1222 	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1223 				(struct kgd_mem *)mem, pdd->drm_priv, &size);
1224 
1225 	/* If freeing the buffer failed, leave the handle in place for
1226 	 * clean-up during process tear-down.
1227 	 */
1228 	if (!ret)
1229 		kfd_process_device_remove_obj_handle(
1230 			pdd, GET_IDR_HANDLE(args->handle));
1231 
1232 	atomic64_sub(size, &pdd->vram_usage);
1233 
1234 err_unlock:
1235 err_pdd:
1236 	mutex_unlock(&p->mutex);
1237 	return ret;
1238 }
1239 
kfd_ioctl_map_memory_to_gpu(struct file * filep,struct kfd_process * p,void * data)1240 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1241 					struct kfd_process *p, void *data)
1242 {
1243 	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1244 	struct kfd_process_device *pdd, *peer_pdd;
1245 	void *mem;
1246 	struct kfd_node *dev;
1247 	long err = 0;
1248 	int i;
1249 	uint32_t *devices_arr = NULL;
1250 
1251 	if (!args->n_devices) {
1252 		pr_debug("Device IDs array empty\n");
1253 		return -EINVAL;
1254 	}
1255 	if (args->n_success > args->n_devices) {
1256 		pr_debug("n_success exceeds n_devices\n");
1257 		return -EINVAL;
1258 	}
1259 
1260 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1261 				    GFP_KERNEL);
1262 	if (!devices_arr)
1263 		return -ENOMEM;
1264 
1265 	err = copy_from_user(devices_arr,
1266 			     (void __user *)args->device_ids_array_ptr,
1267 			     args->n_devices * sizeof(*devices_arr));
1268 	if (err != 0) {
1269 		err = -EFAULT;
1270 		goto copy_from_user_failed;
1271 	}
1272 
1273 	mutex_lock(&p->mutex);
1274 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1275 	if (!pdd) {
1276 		err = -EINVAL;
1277 		goto get_process_device_data_failed;
1278 	}
1279 	dev = pdd->dev;
1280 
1281 	pdd = kfd_bind_process_to_device(dev, p);
1282 	if (IS_ERR(pdd)) {
1283 		err = PTR_ERR(pdd);
1284 		goto bind_process_to_device_failed;
1285 	}
1286 
1287 	mem = kfd_process_device_translate_handle(pdd,
1288 						GET_IDR_HANDLE(args->handle));
1289 	if (!mem) {
1290 		err = -ENOMEM;
1291 		goto get_mem_obj_from_handle_failed;
1292 	}
1293 
1294 	for (i = args->n_success; i < args->n_devices; i++) {
1295 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1296 		if (!peer_pdd) {
1297 			pr_debug("Getting device by id failed for 0x%x\n",
1298 				 devices_arr[i]);
1299 			err = -EINVAL;
1300 			goto get_mem_obj_from_handle_failed;
1301 		}
1302 
1303 		peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1304 		if (IS_ERR(peer_pdd)) {
1305 			err = PTR_ERR(peer_pdd);
1306 			goto get_mem_obj_from_handle_failed;
1307 		}
1308 
1309 		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1310 			peer_pdd->dev->adev, (struct kgd_mem *)mem,
1311 			peer_pdd->drm_priv);
1312 		if (err) {
1313 			struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1314 
1315 			dev_err(dev->adev->dev,
1316 			       "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1317 			       pci_domain_nr(pdev->bus),
1318 			       pdev->bus->number,
1319 			       PCI_SLOT(pdev->devfn),
1320 			       PCI_FUNC(pdev->devfn),
1321 			       ((struct kgd_mem *)mem)->domain);
1322 			goto map_memory_to_gpu_failed;
1323 		}
1324 		args->n_success = i+1;
1325 	}
1326 
1327 	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1328 	if (err) {
1329 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1330 		goto sync_memory_failed;
1331 	}
1332 
1333 	mutex_unlock(&p->mutex);
1334 
1335 	/* Flush TLBs after waiting for the page table updates to complete */
1336 	for (i = 0; i < args->n_devices; i++) {
1337 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1338 		if (WARN_ON_ONCE(!peer_pdd))
1339 			continue;
1340 		kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1341 	}
1342 	kfree(devices_arr);
1343 
1344 	return err;
1345 
1346 get_process_device_data_failed:
1347 bind_process_to_device_failed:
1348 get_mem_obj_from_handle_failed:
1349 map_memory_to_gpu_failed:
1350 sync_memory_failed:
1351 	mutex_unlock(&p->mutex);
1352 copy_from_user_failed:
1353 	kfree(devices_arr);
1354 
1355 	return err;
1356 }
1357 
kfd_ioctl_unmap_memory_from_gpu(struct file * filep,struct kfd_process * p,void * data)1358 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1359 					struct kfd_process *p, void *data)
1360 {
1361 	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1362 	struct kfd_process_device *pdd, *peer_pdd;
1363 	void *mem;
1364 	long err = 0;
1365 	uint32_t *devices_arr = NULL, i;
1366 	bool flush_tlb;
1367 
1368 	if (!args->n_devices) {
1369 		pr_debug("Device IDs array empty\n");
1370 		return -EINVAL;
1371 	}
1372 	if (args->n_success > args->n_devices) {
1373 		pr_debug("n_success exceeds n_devices\n");
1374 		return -EINVAL;
1375 	}
1376 
1377 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1378 				    GFP_KERNEL);
1379 	if (!devices_arr)
1380 		return -ENOMEM;
1381 
1382 	err = copy_from_user(devices_arr,
1383 			     (void __user *)args->device_ids_array_ptr,
1384 			     args->n_devices * sizeof(*devices_arr));
1385 	if (err != 0) {
1386 		err = -EFAULT;
1387 		goto copy_from_user_failed;
1388 	}
1389 
1390 	mutex_lock(&p->mutex);
1391 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1392 	if (!pdd) {
1393 		err = -EINVAL;
1394 		goto bind_process_to_device_failed;
1395 	}
1396 
1397 	mem = kfd_process_device_translate_handle(pdd,
1398 						GET_IDR_HANDLE(args->handle));
1399 	if (!mem) {
1400 		err = -ENOMEM;
1401 		goto get_mem_obj_from_handle_failed;
1402 	}
1403 
1404 	for (i = args->n_success; i < args->n_devices; i++) {
1405 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1406 		if (!peer_pdd) {
1407 			err = -EINVAL;
1408 			goto get_mem_obj_from_handle_failed;
1409 		}
1410 		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1411 			peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1412 		if (err) {
1413 			pr_debug("Failed to unmap from gpu %d/%d\n", i, args->n_devices);
1414 			goto unmap_memory_from_gpu_failed;
1415 		}
1416 		args->n_success = i+1;
1417 	}
1418 
1419 	flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1420 	if (flush_tlb) {
1421 		err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1422 				(struct kgd_mem *) mem, true);
1423 		if (err) {
1424 			pr_debug("Sync memory failed, wait interrupted by user signal\n");
1425 			goto sync_memory_failed;
1426 		}
1427 	}
1428 
1429 	/* Flush TLBs after waiting for the page table updates to complete */
1430 	for (i = 0; i < args->n_devices; i++) {
1431 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1432 		if (WARN_ON_ONCE(!peer_pdd))
1433 			continue;
1434 		if (flush_tlb)
1435 			kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1436 
1437 		/* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */
1438 		err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv);
1439 		if (err)
1440 			goto sync_memory_failed;
1441 	}
1442 
1443 	mutex_unlock(&p->mutex);
1444 
1445 	kfree(devices_arr);
1446 
1447 	return 0;
1448 
1449 bind_process_to_device_failed:
1450 get_mem_obj_from_handle_failed:
1451 unmap_memory_from_gpu_failed:
1452 sync_memory_failed:
1453 	mutex_unlock(&p->mutex);
1454 copy_from_user_failed:
1455 	kfree(devices_arr);
1456 	return err;
1457 }
1458 
kfd_ioctl_alloc_queue_gws(struct file * filep,struct kfd_process * p,void * data)1459 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1460 		struct kfd_process *p, void *data)
1461 {
1462 	int retval;
1463 	struct kfd_ioctl_alloc_queue_gws_args *args = data;
1464 	struct queue *q;
1465 	struct kfd_node *dev;
1466 
1467 	mutex_lock(&p->mutex);
1468 	q = pqm_get_user_queue(&p->pqm, args->queue_id);
1469 
1470 	if (q) {
1471 		dev = q->device;
1472 	} else {
1473 		retval = -EINVAL;
1474 		goto out_unlock;
1475 	}
1476 
1477 	if (!dev->gws) {
1478 		retval = -ENODEV;
1479 		goto out_unlock;
1480 	}
1481 
1482 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1483 		retval = -ENODEV;
1484 		goto out_unlock;
1485 	}
1486 
1487 	if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1488 				      kfd_dbg_has_cwsr_workaround(dev))) {
1489 		retval = -EBUSY;
1490 		goto out_unlock;
1491 	}
1492 
1493 	retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1494 	mutex_unlock(&p->mutex);
1495 
1496 	args->first_gws = 0;
1497 	return retval;
1498 
1499 out_unlock:
1500 	mutex_unlock(&p->mutex);
1501 	return retval;
1502 }
1503 
kfd_ioctl_get_dmabuf_info(struct file * filep,struct kfd_process * p,void * data)1504 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1505 		struct kfd_process *p, void *data)
1506 {
1507 	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1508 	struct kfd_node *dev = NULL;
1509 	struct amdgpu_device *dmabuf_adev;
1510 	void *metadata_buffer = NULL;
1511 	uint32_t flags;
1512 	int8_t xcp_id;
1513 	unsigned int i;
1514 	int r;
1515 
1516 	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1517 	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1518 		if (dev && !kfd_devcgroup_check_permission(dev))
1519 			break;
1520 	if (!dev)
1521 		return -EINVAL;
1522 
1523 	if (args->metadata_ptr) {
1524 		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1525 		if (!metadata_buffer)
1526 			return -ENOMEM;
1527 	}
1528 
1529 	/* Get dmabuf info from KGD */
1530 	r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1531 					  &dmabuf_adev, &args->size,
1532 					  metadata_buffer, args->metadata_size,
1533 					  &args->metadata_size, &flags, &xcp_id);
1534 	if (r)
1535 		goto exit;
1536 
1537 	if (xcp_id >= 0)
1538 		args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1539 	else
1540 		args->gpu_id = dev->id;
1541 	args->flags = flags;
1542 
1543 	/* Copy metadata buffer to user mode */
1544 	if (metadata_buffer) {
1545 		r = copy_to_user((void __user *)args->metadata_ptr,
1546 				 metadata_buffer, args->metadata_size);
1547 		if (r != 0)
1548 			r = -EFAULT;
1549 	}
1550 
1551 exit:
1552 	kfree(metadata_buffer);
1553 
1554 	return r;
1555 }
1556 
kfd_ioctl_import_dmabuf(struct file * filep,struct kfd_process * p,void * data)1557 static int kfd_ioctl_import_dmabuf(struct file *filep,
1558 				   struct kfd_process *p, void *data)
1559 {
1560 	struct kfd_ioctl_import_dmabuf_args *args = data;
1561 	struct kfd_process_device *pdd;
1562 	int idr_handle;
1563 	uint64_t size;
1564 	void *mem;
1565 	int r;
1566 
1567 	mutex_lock(&p->mutex);
1568 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1569 	if (!pdd) {
1570 		r = -EINVAL;
1571 		goto err_unlock;
1572 	}
1573 
1574 	pdd = kfd_bind_process_to_device(pdd->dev, p);
1575 	if (IS_ERR(pdd)) {
1576 		r = PTR_ERR(pdd);
1577 		goto err_unlock;
1578 	}
1579 
1580 	r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd,
1581 						 args->va_addr, pdd->drm_priv,
1582 						 (struct kgd_mem **)&mem, &size,
1583 						 NULL);
1584 	if (r)
1585 		goto err_unlock;
1586 
1587 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1588 	if (idr_handle < 0) {
1589 		r = -EFAULT;
1590 		goto err_free;
1591 	}
1592 
1593 	mutex_unlock(&p->mutex);
1594 
1595 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1596 
1597 	return 0;
1598 
1599 err_free:
1600 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1601 					       pdd->drm_priv, NULL);
1602 err_unlock:
1603 	mutex_unlock(&p->mutex);
1604 	return r;
1605 }
1606 
kfd_ioctl_export_dmabuf(struct file * filep,struct kfd_process * p,void * data)1607 static int kfd_ioctl_export_dmabuf(struct file *filep,
1608 				   struct kfd_process *p, void *data)
1609 {
1610 	struct kfd_ioctl_export_dmabuf_args *args = data;
1611 	struct kfd_process_device *pdd;
1612 	struct dma_buf *dmabuf;
1613 	struct kfd_node *dev;
1614 	void *mem;
1615 	int ret = 0;
1616 
1617 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1618 	if (!dev)
1619 		return -EINVAL;
1620 
1621 	mutex_lock(&p->mutex);
1622 
1623 	pdd = kfd_get_process_device_data(dev, p);
1624 	if (!pdd) {
1625 		ret = -EINVAL;
1626 		goto err_unlock;
1627 	}
1628 
1629 	mem = kfd_process_device_translate_handle(pdd,
1630 						GET_IDR_HANDLE(args->handle));
1631 	if (!mem) {
1632 		ret = -EINVAL;
1633 		goto err_unlock;
1634 	}
1635 
1636 	ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1637 	mutex_unlock(&p->mutex);
1638 	if (ret)
1639 		goto err_out;
1640 
1641 	ret = dma_buf_fd(dmabuf, args->flags);
1642 	if (ret < 0) {
1643 		dma_buf_put(dmabuf);
1644 		goto err_out;
1645 	}
1646 	/* dma_buf_fd assigns the reference count to the fd, no need to
1647 	 * put the reference here.
1648 	 */
1649 	args->dmabuf_fd = ret;
1650 
1651 	return 0;
1652 
1653 err_unlock:
1654 	mutex_unlock(&p->mutex);
1655 err_out:
1656 	return ret;
1657 }
1658 
1659 /* Handle requests for watching SMI events */
kfd_ioctl_smi_events(struct file * filep,struct kfd_process * p,void * data)1660 static int kfd_ioctl_smi_events(struct file *filep,
1661 				struct kfd_process *p, void *data)
1662 {
1663 	struct kfd_ioctl_smi_events_args *args = data;
1664 	struct kfd_process_device *pdd;
1665 
1666 	mutex_lock(&p->mutex);
1667 
1668 	pdd = kfd_process_device_data_by_id(p, args->gpuid);
1669 	mutex_unlock(&p->mutex);
1670 	if (!pdd)
1671 		return -EINVAL;
1672 
1673 	return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1674 }
1675 
1676 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1677 
kfd_ioctl_set_xnack_mode(struct file * filep,struct kfd_process * p,void * data)1678 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1679 				    struct kfd_process *p, void *data)
1680 {
1681 	struct kfd_ioctl_set_xnack_mode_args *args = data;
1682 	int r = 0;
1683 
1684 	mutex_lock(&p->mutex);
1685 	if (args->xnack_enabled >= 0) {
1686 		if (!list_empty(&p->pqm.queues)) {
1687 			pr_debug("Process has user queues running\n");
1688 			r = -EBUSY;
1689 			goto out_unlock;
1690 		}
1691 
1692 		if (p->xnack_enabled == args->xnack_enabled)
1693 			goto out_unlock;
1694 
1695 		if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1696 			r = -EPERM;
1697 			goto out_unlock;
1698 		}
1699 
1700 		r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1701 	} else {
1702 		args->xnack_enabled = p->xnack_enabled;
1703 	}
1704 
1705 out_unlock:
1706 	mutex_unlock(&p->mutex);
1707 
1708 	return r;
1709 }
1710 
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1711 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1712 {
1713 	struct kfd_ioctl_svm_args *args = data;
1714 	int r = 0;
1715 
1716 	pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1717 		 args->start_addr, args->size, args->op, args->nattr);
1718 
1719 	if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1720 		return -EINVAL;
1721 	if (!args->start_addr || !args->size)
1722 		return -EINVAL;
1723 
1724 	r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1725 		      args->attrs);
1726 
1727 	return r;
1728 }
1729 #else
kfd_ioctl_set_xnack_mode(struct file * filep,struct kfd_process * p,void * data)1730 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1731 				    struct kfd_process *p, void *data)
1732 {
1733 	return -EPERM;
1734 }
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1735 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1736 {
1737 	return -EPERM;
1738 }
1739 #endif
1740 
criu_checkpoint_process(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_offset)1741 static int criu_checkpoint_process(struct kfd_process *p,
1742 			     uint8_t __user *user_priv_data,
1743 			     uint64_t *priv_offset)
1744 {
1745 	struct kfd_criu_process_priv_data process_priv;
1746 	int ret;
1747 
1748 	memset(&process_priv, 0, sizeof(process_priv));
1749 
1750 	process_priv.version = KFD_CRIU_PRIV_VERSION;
1751 	/* For CR, we don't consider negative xnack mode which is used for
1752 	 * querying without changing it, here 0 simply means disabled and 1
1753 	 * means enabled so retry for finding a valid PTE.
1754 	 */
1755 	process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1756 
1757 	ret = copy_to_user(user_priv_data + *priv_offset,
1758 				&process_priv, sizeof(process_priv));
1759 
1760 	if (ret) {
1761 		pr_err("Failed to copy process information to user\n");
1762 		ret = -EFAULT;
1763 	}
1764 
1765 	*priv_offset += sizeof(process_priv);
1766 	return ret;
1767 }
1768 
criu_checkpoint_devices(struct kfd_process * p,uint32_t num_devices,uint8_t __user * user_addr,uint8_t __user * user_priv_data,uint64_t * priv_offset)1769 static int criu_checkpoint_devices(struct kfd_process *p,
1770 			     uint32_t num_devices,
1771 			     uint8_t __user *user_addr,
1772 			     uint8_t __user *user_priv_data,
1773 			     uint64_t *priv_offset)
1774 {
1775 	struct kfd_criu_device_priv_data *device_priv = NULL;
1776 	struct kfd_criu_device_bucket *device_buckets = NULL;
1777 	int ret = 0, i;
1778 
1779 	device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1780 	if (!device_buckets) {
1781 		ret = -ENOMEM;
1782 		goto exit;
1783 	}
1784 
1785 	device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1786 	if (!device_priv) {
1787 		ret = -ENOMEM;
1788 		goto exit;
1789 	}
1790 
1791 	for (i = 0; i < num_devices; i++) {
1792 		struct kfd_process_device *pdd = p->pdds[i];
1793 
1794 		device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1795 		device_buckets[i].actual_gpu_id = pdd->dev->id;
1796 
1797 		/*
1798 		 * priv_data does not contain useful information for now and is reserved for
1799 		 * future use, so we do not set its contents.
1800 		 */
1801 	}
1802 
1803 	ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1804 	if (ret) {
1805 		pr_err("Failed to copy device information to user\n");
1806 		ret = -EFAULT;
1807 		goto exit;
1808 	}
1809 
1810 	ret = copy_to_user(user_priv_data + *priv_offset,
1811 			   device_priv,
1812 			   num_devices * sizeof(*device_priv));
1813 	if (ret) {
1814 		pr_err("Failed to copy device information to user\n");
1815 		ret = -EFAULT;
1816 	}
1817 	*priv_offset += num_devices * sizeof(*device_priv);
1818 
1819 exit:
1820 	kvfree(device_buckets);
1821 	kvfree(device_priv);
1822 	return ret;
1823 }
1824 
get_process_num_bos(struct kfd_process * p)1825 static uint32_t get_process_num_bos(struct kfd_process *p)
1826 {
1827 	uint32_t num_of_bos = 0;
1828 	int i;
1829 
1830 	/* Run over all PDDs of the process */
1831 	for (i = 0; i < p->n_pdds; i++) {
1832 		struct kfd_process_device *pdd = p->pdds[i];
1833 		void *mem;
1834 		int id;
1835 
1836 		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1837 			struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1838 
1839 			if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1840 				num_of_bos++;
1841 		}
1842 	}
1843 	return num_of_bos;
1844 }
1845 
criu_get_prime_handle(struct kgd_mem * mem,int flags,u32 * shared_fd,struct file ** file)1846 static int criu_get_prime_handle(struct kgd_mem *mem,
1847 				 int flags, u32 *shared_fd,
1848 				 struct file **file)
1849 {
1850 	struct dma_buf *dmabuf;
1851 	int ret;
1852 
1853 	ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1854 	if (ret) {
1855 		pr_err("dmabuf export failed for the BO\n");
1856 		return ret;
1857 	}
1858 
1859 	ret = get_unused_fd_flags(flags);
1860 	if (ret < 0) {
1861 		pr_err("dmabuf create fd failed, ret:%d\n", ret);
1862 		goto out_free_dmabuf;
1863 	}
1864 
1865 	*shared_fd = ret;
1866 	*file = dmabuf->file;
1867 	return 0;
1868 
1869 out_free_dmabuf:
1870 	dma_buf_put(dmabuf);
1871 	return ret;
1872 }
1873 
commit_files(struct file ** files,struct kfd_criu_bo_bucket * bo_buckets,unsigned int count,int err)1874 static void commit_files(struct file **files,
1875 			 struct kfd_criu_bo_bucket *bo_buckets,
1876 			 unsigned int count,
1877 			 int err)
1878 {
1879 	while (count--) {
1880 		struct file *file = files[count];
1881 
1882 		if (!file)
1883 			continue;
1884 		if (err) {
1885 			fput(file);
1886 			put_unused_fd(bo_buckets[count].dmabuf_fd);
1887 		} else {
1888 			fd_install(bo_buckets[count].dmabuf_fd, file);
1889 		}
1890 	}
1891 }
1892 
criu_checkpoint_bos(struct kfd_process * p,uint32_t num_bos,uint8_t __user * user_bos,uint8_t __user * user_priv_data,uint64_t * priv_offset)1893 static int criu_checkpoint_bos(struct kfd_process *p,
1894 			       uint32_t num_bos,
1895 			       uint8_t __user *user_bos,
1896 			       uint8_t __user *user_priv_data,
1897 			       uint64_t *priv_offset)
1898 {
1899 	struct kfd_criu_bo_bucket *bo_buckets;
1900 	struct kfd_criu_bo_priv_data *bo_privs;
1901 	struct file **files = NULL;
1902 	int ret = 0, pdd_index, bo_index = 0, id;
1903 	void *mem;
1904 
1905 	bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1906 	if (!bo_buckets)
1907 		return -ENOMEM;
1908 
1909 	bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1910 	if (!bo_privs) {
1911 		ret = -ENOMEM;
1912 		goto exit;
1913 	}
1914 
1915 	files = kvzalloc(num_bos * sizeof(struct file *), GFP_KERNEL);
1916 	if (!files) {
1917 		ret = -ENOMEM;
1918 		goto exit;
1919 	}
1920 
1921 	for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1922 		struct kfd_process_device *pdd = p->pdds[pdd_index];
1923 		struct amdgpu_bo *dumper_bo;
1924 		struct kgd_mem *kgd_mem;
1925 
1926 		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1927 			struct kfd_criu_bo_bucket *bo_bucket;
1928 			struct kfd_criu_bo_priv_data *bo_priv;
1929 			int i, dev_idx = 0;
1930 
1931 			kgd_mem = (struct kgd_mem *)mem;
1932 			dumper_bo = kgd_mem->bo;
1933 
1934 			/* Skip checkpointing BOs that are used for Trap handler
1935 			 * code and state. Currently, these BOs have a VA that
1936 			 * is less GPUVM Base
1937 			 */
1938 			if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1939 				continue;
1940 
1941 			bo_bucket = &bo_buckets[bo_index];
1942 			bo_priv = &bo_privs[bo_index];
1943 
1944 			bo_bucket->gpu_id = pdd->user_gpu_id;
1945 			bo_bucket->addr = (uint64_t)kgd_mem->va;
1946 			bo_bucket->size = amdgpu_bo_size(dumper_bo);
1947 			bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1948 			bo_priv->idr_handle = id;
1949 
1950 			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1951 				ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1952 								&bo_priv->user_addr);
1953 				if (ret) {
1954 					pr_err("Failed to obtain user address for user-pointer bo\n");
1955 					goto exit;
1956 				}
1957 			}
1958 			if (bo_bucket->alloc_flags
1959 			    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1960 				ret = criu_get_prime_handle(kgd_mem,
1961 						bo_bucket->alloc_flags &
1962 						KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1963 						&bo_bucket->dmabuf_fd, &files[bo_index]);
1964 				if (ret)
1965 					goto exit;
1966 			} else {
1967 				bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1968 			}
1969 
1970 			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1971 				bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1972 					KFD_MMAP_GPU_ID(pdd->dev->id);
1973 			else if (bo_bucket->alloc_flags &
1974 				KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1975 				bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1976 					KFD_MMAP_GPU_ID(pdd->dev->id);
1977 			else
1978 				bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1979 
1980 			for (i = 0; i < p->n_pdds; i++) {
1981 				if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->drm_priv, kgd_mem))
1982 					bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1983 			}
1984 
1985 			pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1986 					"gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1987 					bo_bucket->size,
1988 					bo_bucket->addr,
1989 					bo_bucket->offset,
1990 					bo_bucket->gpu_id,
1991 					bo_bucket->alloc_flags,
1992 					bo_priv->idr_handle);
1993 			bo_index++;
1994 		}
1995 	}
1996 
1997 	ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1998 	if (ret) {
1999 		pr_err("Failed to copy BO information to user\n");
2000 		ret = -EFAULT;
2001 		goto exit;
2002 	}
2003 
2004 	ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
2005 	if (ret) {
2006 		pr_err("Failed to copy BO priv information to user\n");
2007 		ret = -EFAULT;
2008 		goto exit;
2009 	}
2010 
2011 	*priv_offset += num_bos * sizeof(*bo_privs);
2012 
2013 exit:
2014 	commit_files(files, bo_buckets, bo_index, ret);
2015 	kvfree(files);
2016 	kvfree(bo_buckets);
2017 	kvfree(bo_privs);
2018 	return ret;
2019 }
2020 
criu_get_process_object_info(struct kfd_process * p,uint32_t * num_devices,uint32_t * num_bos,uint32_t * num_objects,uint64_t * objs_priv_size)2021 static int criu_get_process_object_info(struct kfd_process *p,
2022 					uint32_t *num_devices,
2023 					uint32_t *num_bos,
2024 					uint32_t *num_objects,
2025 					uint64_t *objs_priv_size)
2026 {
2027 	uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2028 	uint32_t num_queues, num_events, num_svm_ranges;
2029 	int ret;
2030 
2031 	*num_devices = p->n_pdds;
2032 	*num_bos = get_process_num_bos(p);
2033 
2034 	ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2035 	if (ret)
2036 		return ret;
2037 
2038 	num_events = kfd_get_num_events(p);
2039 
2040 	ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2041 	if (ret)
2042 		return ret;
2043 
2044 	*num_objects = num_queues + num_events + num_svm_ranges;
2045 
2046 	if (objs_priv_size) {
2047 		priv_size = sizeof(struct kfd_criu_process_priv_data);
2048 		priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2049 		priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2050 		priv_size += queues_priv_data_size;
2051 		priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2052 		priv_size += svm_priv_data_size;
2053 		*objs_priv_size = priv_size;
2054 	}
2055 	return 0;
2056 }
2057 
criu_checkpoint(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2058 static int criu_checkpoint(struct file *filep,
2059 			   struct kfd_process *p,
2060 			   struct kfd_ioctl_criu_args *args)
2061 {
2062 	int ret;
2063 	uint32_t num_devices, num_bos, num_objects;
2064 	uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2065 
2066 	if (!args->devices || !args->bos || !args->priv_data)
2067 		return -EINVAL;
2068 
2069 	mutex_lock(&p->mutex);
2070 
2071 	if (!p->n_pdds) {
2072 		pr_err("No pdd for given process\n");
2073 		ret = -ENODEV;
2074 		goto exit_unlock;
2075 	}
2076 
2077 	/* Confirm all process queues are evicted */
2078 	if (!p->queues_paused) {
2079 		pr_err("Cannot dump process when queues are not in evicted state\n");
2080 		/* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2081 		ret = -EINVAL;
2082 		goto exit_unlock;
2083 	}
2084 
2085 	ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2086 	if (ret)
2087 		goto exit_unlock;
2088 
2089 	if (num_devices != args->num_devices ||
2090 	    num_bos != args->num_bos ||
2091 	    num_objects != args->num_objects ||
2092 	    priv_size != args->priv_data_size) {
2093 
2094 		ret = -EINVAL;
2095 		goto exit_unlock;
2096 	}
2097 
2098 	/* each function will store private data inside priv_data and adjust priv_offset */
2099 	ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2100 	if (ret)
2101 		goto exit_unlock;
2102 
2103 	ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2104 				(uint8_t __user *)args->priv_data, &priv_offset);
2105 	if (ret)
2106 		goto exit_unlock;
2107 
2108 	/* Leave room for BOs in the private data. They need to be restored
2109 	 * before events, but we checkpoint them last to simplify the error
2110 	 * handling.
2111 	 */
2112 	bo_priv_offset = priv_offset;
2113 	priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2114 
2115 	if (num_objects) {
2116 		ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2117 						 &priv_offset);
2118 		if (ret)
2119 			goto exit_unlock;
2120 
2121 		ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2122 						 &priv_offset);
2123 		if (ret)
2124 			goto exit_unlock;
2125 
2126 		ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2127 		if (ret)
2128 			goto exit_unlock;
2129 	}
2130 
2131 	/* This must be the last thing in this function that can fail.
2132 	 * Otherwise we leak dmabuf file descriptors.
2133 	 */
2134 	ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2135 			   (uint8_t __user *)args->priv_data, &bo_priv_offset);
2136 
2137 exit_unlock:
2138 	mutex_unlock(&p->mutex);
2139 	if (ret)
2140 		pr_err("Failed to dump CRIU ret:%d\n", ret);
2141 	else
2142 		pr_debug("CRIU dump ret:%d\n", ret);
2143 
2144 	return ret;
2145 }
2146 
criu_restore_process(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2147 static int criu_restore_process(struct kfd_process *p,
2148 				struct kfd_ioctl_criu_args *args,
2149 				uint64_t *priv_offset,
2150 				uint64_t max_priv_data_size)
2151 {
2152 	int ret = 0;
2153 	struct kfd_criu_process_priv_data process_priv;
2154 
2155 	if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2156 		return -EINVAL;
2157 
2158 	ret = copy_from_user(&process_priv,
2159 				(void __user *)(args->priv_data + *priv_offset),
2160 				sizeof(process_priv));
2161 	if (ret) {
2162 		pr_err("Failed to copy process private information from user\n");
2163 		ret = -EFAULT;
2164 		goto exit;
2165 	}
2166 	*priv_offset += sizeof(process_priv);
2167 
2168 	if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2169 		pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2170 			process_priv.version, KFD_CRIU_PRIV_VERSION);
2171 		return -EINVAL;
2172 	}
2173 
2174 	pr_debug("Setting XNACK mode\n");
2175 	if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2176 		pr_err("xnack mode cannot be set\n");
2177 		ret = -EPERM;
2178 		goto exit;
2179 	} else {
2180 		pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2181 		p->xnack_enabled = process_priv.xnack_mode;
2182 	}
2183 
2184 exit:
2185 	return ret;
2186 }
2187 
criu_restore_devices(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2188 static int criu_restore_devices(struct kfd_process *p,
2189 				struct kfd_ioctl_criu_args *args,
2190 				uint64_t *priv_offset,
2191 				uint64_t max_priv_data_size)
2192 {
2193 	struct kfd_criu_device_bucket *device_buckets;
2194 	struct kfd_criu_device_priv_data *device_privs;
2195 	int ret = 0;
2196 	uint32_t i;
2197 
2198 	if (args->num_devices != p->n_pdds)
2199 		return -EINVAL;
2200 
2201 	if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2202 		return -EINVAL;
2203 
2204 	device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2205 	if (!device_buckets)
2206 		return -ENOMEM;
2207 
2208 	ret = copy_from_user(device_buckets, (void __user *)args->devices,
2209 				args->num_devices * sizeof(*device_buckets));
2210 	if (ret) {
2211 		pr_err("Failed to copy devices buckets from user\n");
2212 		ret = -EFAULT;
2213 		goto exit;
2214 	}
2215 
2216 	for (i = 0; i < args->num_devices; i++) {
2217 		struct kfd_node *dev;
2218 		struct kfd_process_device *pdd;
2219 		struct file *drm_file;
2220 
2221 		/* device private data is not currently used */
2222 
2223 		if (!device_buckets[i].user_gpu_id) {
2224 			pr_err("Invalid user gpu_id\n");
2225 			ret = -EINVAL;
2226 			goto exit;
2227 		}
2228 
2229 		dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2230 		if (!dev) {
2231 			pr_err("Failed to find device with gpu_id = %x\n",
2232 				device_buckets[i].actual_gpu_id);
2233 			ret = -EINVAL;
2234 			goto exit;
2235 		}
2236 
2237 		pdd = kfd_get_process_device_data(dev, p);
2238 		if (!pdd) {
2239 			pr_err("Failed to get pdd for gpu_id = %x\n",
2240 					device_buckets[i].actual_gpu_id);
2241 			ret = -EINVAL;
2242 			goto exit;
2243 		}
2244 		pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2245 
2246 		drm_file = fget(device_buckets[i].drm_fd);
2247 		if (!drm_file) {
2248 			pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2249 				device_buckets[i].drm_fd);
2250 			ret = -EINVAL;
2251 			goto exit;
2252 		}
2253 
2254 		if (pdd->drm_file) {
2255 			ret = -EINVAL;
2256 			goto exit;
2257 		}
2258 
2259 		/* create the vm using render nodes for kfd pdd */
2260 		if (kfd_process_device_init_vm(pdd, drm_file)) {
2261 			pr_err("could not init vm for given pdd\n");
2262 			/* On success, the PDD keeps the drm_file reference */
2263 			fput(drm_file);
2264 			ret = -EINVAL;
2265 			goto exit;
2266 		}
2267 		/*
2268 		 * pdd now already has the vm bound to render node so below api won't create a new
2269 		 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2270 		 * for iommu v2 binding  and runtime pm.
2271 		 */
2272 		pdd = kfd_bind_process_to_device(dev, p);
2273 		if (IS_ERR(pdd)) {
2274 			ret = PTR_ERR(pdd);
2275 			goto exit;
2276 		}
2277 
2278 		if (!pdd->qpd.proc_doorbells) {
2279 			ret = kfd_alloc_process_doorbells(dev->kfd, pdd);
2280 			if (ret)
2281 				goto exit;
2282 		}
2283 	}
2284 
2285 	/*
2286 	 * We are not copying device private data from user as we are not using the data for now,
2287 	 * but we still adjust for its private data.
2288 	 */
2289 	*priv_offset += args->num_devices * sizeof(*device_privs);
2290 
2291 exit:
2292 	kfree(device_buckets);
2293 	return ret;
2294 }
2295 
criu_restore_memory_of_gpu(struct kfd_process_device * pdd,struct kfd_criu_bo_bucket * bo_bucket,struct kfd_criu_bo_priv_data * bo_priv,struct kgd_mem ** kgd_mem)2296 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2297 				      struct kfd_criu_bo_bucket *bo_bucket,
2298 				      struct kfd_criu_bo_priv_data *bo_priv,
2299 				      struct kgd_mem **kgd_mem)
2300 {
2301 	int idr_handle;
2302 	int ret;
2303 	const bool criu_resume = true;
2304 	u64 offset;
2305 
2306 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2307 		if (bo_bucket->size !=
2308 				kfd_doorbell_process_slice(pdd->dev->kfd))
2309 			return -EINVAL;
2310 
2311 		offset = kfd_get_process_doorbells(pdd);
2312 		if (!offset)
2313 			return -ENOMEM;
2314 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2315 		/* MMIO BOs need remapped bus address */
2316 		if (bo_bucket->size != PAGE_SIZE) {
2317 			pr_err("Invalid page size\n");
2318 			return -EINVAL;
2319 		}
2320 		offset = pdd->dev->adev->rmmio_remap.bus_addr;
2321 		if (!offset || (PAGE_SIZE > 4096)) {
2322 			pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2323 			return -ENOMEM;
2324 		}
2325 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2326 		offset = bo_priv->user_addr;
2327 	}
2328 	/* Create the BO */
2329 	ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2330 						      bo_bucket->size, pdd->drm_priv, kgd_mem,
2331 						      &offset, bo_bucket->alloc_flags, criu_resume);
2332 	if (ret) {
2333 		pr_err("Could not create the BO\n");
2334 		return ret;
2335 	}
2336 	pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2337 		 bo_bucket->size, bo_bucket->addr, offset);
2338 
2339 	/* Restore previous IDR handle */
2340 	pr_debug("Restoring old IDR handle for the BO");
2341 	idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2342 			       bo_priv->idr_handle + 1, GFP_KERNEL);
2343 
2344 	if (idr_handle < 0) {
2345 		pr_err("Could not allocate idr\n");
2346 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2347 						       NULL);
2348 		return -ENOMEM;
2349 	}
2350 
2351 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2352 		bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2353 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2354 		bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2355 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2356 		bo_bucket->restored_offset = offset;
2357 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2358 		bo_bucket->restored_offset = offset;
2359 		/* Update the VRAM usage count */
2360 		atomic64_add(bo_bucket->size, &pdd->vram_usage);
2361 	}
2362 	return 0;
2363 }
2364 
criu_restore_bo(struct kfd_process * p,struct kfd_criu_bo_bucket * bo_bucket,struct kfd_criu_bo_priv_data * bo_priv,struct file ** file)2365 static int criu_restore_bo(struct kfd_process *p,
2366 			   struct kfd_criu_bo_bucket *bo_bucket,
2367 			   struct kfd_criu_bo_priv_data *bo_priv,
2368 			   struct file **file)
2369 {
2370 	struct kfd_process_device *pdd;
2371 	struct kgd_mem *kgd_mem;
2372 	int ret;
2373 	int j;
2374 
2375 	pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2376 		 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2377 		 bo_priv->idr_handle);
2378 
2379 	pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2380 	if (!pdd) {
2381 		pr_err("Failed to get pdd\n");
2382 		return -ENODEV;
2383 	}
2384 
2385 	ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2386 	if (ret)
2387 		return ret;
2388 
2389 	/* now map these BOs to GPU/s */
2390 	for (j = 0; j < p->n_pdds; j++) {
2391 		struct kfd_node *peer;
2392 		struct kfd_process_device *peer_pdd;
2393 
2394 		if (!bo_priv->mapped_gpuids[j])
2395 			break;
2396 
2397 		peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2398 		if (!peer_pdd)
2399 			return -EINVAL;
2400 
2401 		peer = peer_pdd->dev;
2402 
2403 		peer_pdd = kfd_bind_process_to_device(peer, p);
2404 		if (IS_ERR(peer_pdd))
2405 			return PTR_ERR(peer_pdd);
2406 
2407 		ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2408 							    peer_pdd->drm_priv);
2409 		if (ret) {
2410 			pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2411 			return ret;
2412 		}
2413 	}
2414 
2415 	pr_debug("map memory was successful for the BO\n");
2416 	/* create the dmabuf object and export the bo */
2417 	if (bo_bucket->alloc_flags
2418 	    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2419 		ret = criu_get_prime_handle(kgd_mem, DRM_RDWR,
2420 					    &bo_bucket->dmabuf_fd, file);
2421 		if (ret)
2422 			return ret;
2423 	} else {
2424 		bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2425 	}
2426 
2427 	return 0;
2428 }
2429 
criu_restore_bos(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2430 static int criu_restore_bos(struct kfd_process *p,
2431 			    struct kfd_ioctl_criu_args *args,
2432 			    uint64_t *priv_offset,
2433 			    uint64_t max_priv_data_size)
2434 {
2435 	struct kfd_criu_bo_bucket *bo_buckets = NULL;
2436 	struct kfd_criu_bo_priv_data *bo_privs = NULL;
2437 	struct file **files = NULL;
2438 	int ret = 0;
2439 	uint32_t i = 0;
2440 
2441 	if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2442 		return -EINVAL;
2443 
2444 	/* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2445 	amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2446 
2447 	bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2448 	if (!bo_buckets)
2449 		return -ENOMEM;
2450 
2451 	files = kvzalloc(args->num_bos * sizeof(struct file *), GFP_KERNEL);
2452 	if (!files) {
2453 		ret = -ENOMEM;
2454 		goto exit;
2455 	}
2456 
2457 	ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2458 			     args->num_bos * sizeof(*bo_buckets));
2459 	if (ret) {
2460 		pr_err("Failed to copy BOs information from user\n");
2461 		ret = -EFAULT;
2462 		goto exit;
2463 	}
2464 
2465 	bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2466 	if (!bo_privs) {
2467 		ret = -ENOMEM;
2468 		goto exit;
2469 	}
2470 
2471 	ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2472 			     args->num_bos * sizeof(*bo_privs));
2473 	if (ret) {
2474 		pr_err("Failed to copy BOs information from user\n");
2475 		ret = -EFAULT;
2476 		goto exit;
2477 	}
2478 	*priv_offset += args->num_bos * sizeof(*bo_privs);
2479 
2480 	/* Create and map new BOs */
2481 	for (; i < args->num_bos; i++) {
2482 		ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i], &files[i]);
2483 		if (ret) {
2484 			pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2485 			goto exit;
2486 		}
2487 	} /* done */
2488 
2489 	/* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2490 	ret = copy_to_user((void __user *)args->bos,
2491 				bo_buckets,
2492 				(args->num_bos * sizeof(*bo_buckets)));
2493 	if (ret)
2494 		ret = -EFAULT;
2495 
2496 exit:
2497 	commit_files(files, bo_buckets, i, ret);
2498 	kvfree(files);
2499 	kvfree(bo_buckets);
2500 	kvfree(bo_privs);
2501 	return ret;
2502 }
2503 
criu_restore_objects(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2504 static int criu_restore_objects(struct file *filep,
2505 				struct kfd_process *p,
2506 				struct kfd_ioctl_criu_args *args,
2507 				uint64_t *priv_offset,
2508 				uint64_t max_priv_data_size)
2509 {
2510 	int ret = 0;
2511 	uint32_t i;
2512 
2513 	BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2514 	BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2515 	BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2516 
2517 	for (i = 0; i < args->num_objects; i++) {
2518 		uint32_t object_type;
2519 
2520 		if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2521 			pr_err("Invalid private data size\n");
2522 			return -EINVAL;
2523 		}
2524 
2525 		ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2526 		if (ret) {
2527 			pr_err("Failed to copy private information from user\n");
2528 			goto exit;
2529 		}
2530 
2531 		switch (object_type) {
2532 		case KFD_CRIU_OBJECT_TYPE_QUEUE:
2533 			ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2534 						     priv_offset, max_priv_data_size);
2535 			if (ret)
2536 				goto exit;
2537 			break;
2538 		case KFD_CRIU_OBJECT_TYPE_EVENT:
2539 			ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2540 						     priv_offset, max_priv_data_size);
2541 			if (ret)
2542 				goto exit;
2543 			break;
2544 		case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2545 			ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2546 						     priv_offset, max_priv_data_size);
2547 			if (ret)
2548 				goto exit;
2549 			break;
2550 		default:
2551 			pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2552 			ret = -EINVAL;
2553 			goto exit;
2554 		}
2555 	}
2556 exit:
2557 	return ret;
2558 }
2559 
criu_restore(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2560 static int criu_restore(struct file *filep,
2561 			struct kfd_process *p,
2562 			struct kfd_ioctl_criu_args *args)
2563 {
2564 	uint64_t priv_offset = 0;
2565 	int ret = 0;
2566 
2567 	pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2568 		 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2569 
2570 	if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2571 	    !args->num_devices || !args->num_bos)
2572 		return -EINVAL;
2573 
2574 	mutex_lock(&p->mutex);
2575 
2576 	/*
2577 	 * Set the process to evicted state to avoid running any new queues before all the memory
2578 	 * mappings are ready.
2579 	 */
2580 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2581 	if (ret)
2582 		goto exit_unlock;
2583 
2584 	/* Each function will adjust priv_offset based on how many bytes they consumed */
2585 	ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2586 	if (ret)
2587 		goto exit_unlock;
2588 
2589 	ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2590 	if (ret)
2591 		goto exit_unlock;
2592 
2593 	ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2594 	if (ret)
2595 		goto exit_unlock;
2596 
2597 	ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2598 	if (ret)
2599 		goto exit_unlock;
2600 
2601 	if (priv_offset != args->priv_data_size) {
2602 		pr_err("Invalid private data size\n");
2603 		ret = -EINVAL;
2604 	}
2605 
2606 exit_unlock:
2607 	mutex_unlock(&p->mutex);
2608 	if (ret)
2609 		pr_err("Failed to restore CRIU ret:%d\n", ret);
2610 	else
2611 		pr_debug("CRIU restore successful\n");
2612 
2613 	return ret;
2614 }
2615 
criu_unpause(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2616 static int criu_unpause(struct file *filep,
2617 			struct kfd_process *p,
2618 			struct kfd_ioctl_criu_args *args)
2619 {
2620 	int ret;
2621 
2622 	mutex_lock(&p->mutex);
2623 
2624 	if (!p->queues_paused) {
2625 		mutex_unlock(&p->mutex);
2626 		return -EINVAL;
2627 	}
2628 
2629 	ret = kfd_process_restore_queues(p);
2630 	if (ret)
2631 		pr_err("Failed to unpause queues ret:%d\n", ret);
2632 	else
2633 		p->queues_paused = false;
2634 
2635 	mutex_unlock(&p->mutex);
2636 
2637 	return ret;
2638 }
2639 
criu_resume(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2640 static int criu_resume(struct file *filep,
2641 			struct kfd_process *p,
2642 			struct kfd_ioctl_criu_args *args)
2643 {
2644 	struct kfd_process *target = NULL;
2645 	struct pid *pid = NULL;
2646 	int ret = 0;
2647 
2648 	pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2649 		 args->pid);
2650 
2651 	pid = find_get_pid(args->pid);
2652 	if (!pid) {
2653 		pr_err("Cannot find pid info for %i\n", args->pid);
2654 		return -ESRCH;
2655 	}
2656 
2657 	pr_debug("calling kfd_lookup_process_by_pid\n");
2658 	target = kfd_lookup_process_by_pid(pid);
2659 
2660 	put_pid(pid);
2661 
2662 	if (!target) {
2663 		pr_debug("Cannot find process info for %i\n", args->pid);
2664 		return -ESRCH;
2665 	}
2666 
2667 	mutex_lock(&target->mutex);
2668 	ret = kfd_criu_resume_svm(target);
2669 	if (ret) {
2670 		pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2671 		goto exit;
2672 	}
2673 
2674 	ret =  amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2675 	if (ret)
2676 		pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2677 
2678 exit:
2679 	mutex_unlock(&target->mutex);
2680 
2681 	kfd_unref_process(target);
2682 	return ret;
2683 }
2684 
criu_process_info(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2685 static int criu_process_info(struct file *filep,
2686 				struct kfd_process *p,
2687 				struct kfd_ioctl_criu_args *args)
2688 {
2689 	int ret = 0;
2690 
2691 	mutex_lock(&p->mutex);
2692 
2693 	if (!p->n_pdds) {
2694 		pr_err("No pdd for given process\n");
2695 		ret = -ENODEV;
2696 		goto err_unlock;
2697 	}
2698 
2699 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2700 	if (ret)
2701 		goto err_unlock;
2702 
2703 	p->queues_paused = true;
2704 
2705 	args->pid = task_pid_nr_ns(p->lead_thread,
2706 					task_active_pid_ns(p->lead_thread));
2707 
2708 	ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2709 					   &args->num_objects, &args->priv_data_size);
2710 	if (ret)
2711 		goto err_unlock;
2712 
2713 	dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2714 				args->num_devices, args->num_bos, args->num_objects,
2715 				args->priv_data_size);
2716 
2717 err_unlock:
2718 	if (ret) {
2719 		kfd_process_restore_queues(p);
2720 		p->queues_paused = false;
2721 	}
2722 	mutex_unlock(&p->mutex);
2723 	return ret;
2724 }
2725 
kfd_ioctl_criu(struct file * filep,struct kfd_process * p,void * data)2726 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2727 {
2728 	struct kfd_ioctl_criu_args *args = data;
2729 	int ret;
2730 
2731 	dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2732 	switch (args->op) {
2733 	case KFD_CRIU_OP_PROCESS_INFO:
2734 		ret = criu_process_info(filep, p, args);
2735 		break;
2736 	case KFD_CRIU_OP_CHECKPOINT:
2737 		ret = criu_checkpoint(filep, p, args);
2738 		break;
2739 	case KFD_CRIU_OP_UNPAUSE:
2740 		ret = criu_unpause(filep, p, args);
2741 		break;
2742 	case KFD_CRIU_OP_RESTORE:
2743 		ret = criu_restore(filep, p, args);
2744 		break;
2745 	case KFD_CRIU_OP_RESUME:
2746 		ret = criu_resume(filep, p, args);
2747 		break;
2748 	default:
2749 		dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2750 		ret = -EINVAL;
2751 		break;
2752 	}
2753 
2754 	if (ret)
2755 		dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2756 
2757 	return ret;
2758 }
2759 
runtime_enable(struct kfd_process * p,uint64_t r_debug,bool enable_ttmp_setup)2760 static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2761 			bool enable_ttmp_setup)
2762 {
2763 	int i = 0, ret = 0;
2764 
2765 	if (p->is_runtime_retry)
2766 		goto retry;
2767 
2768 	if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2769 		return -EBUSY;
2770 
2771 	for (i = 0; i < p->n_pdds; i++) {
2772 		struct kfd_process_device *pdd = p->pdds[i];
2773 
2774 		if (pdd->qpd.queue_count)
2775 			return -EEXIST;
2776 
2777 		/*
2778 		 * Setup TTMPs by default.
2779 		 * Note that this call must remain here for MES ADD QUEUE to
2780 		 * skip_process_ctx_clear unconditionally as the first call to
2781 		 * SET_SHADER_DEBUGGER clears any stale process context data
2782 		 * saved in MES.
2783 		 */
2784 		if (pdd->dev->kfd->shared_resources.enable_mes)
2785 			kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev));
2786 	}
2787 
2788 	p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2789 	p->runtime_info.r_debug = r_debug;
2790 	p->runtime_info.ttmp_setup = enable_ttmp_setup;
2791 
2792 	if (p->runtime_info.ttmp_setup) {
2793 		for (i = 0; i < p->n_pdds; i++) {
2794 			struct kfd_process_device *pdd = p->pdds[i];
2795 
2796 			if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
2797 				amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
2798 				pdd->dev->kfd2kgd->enable_debug_trap(
2799 						pdd->dev->adev,
2800 						true,
2801 						pdd->dev->vm_info.last_vmid_kfd);
2802 			} else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2803 				pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2804 						pdd->dev->adev,
2805 						false,
2806 						0);
2807 			}
2808 		}
2809 	}
2810 
2811 retry:
2812 	if (p->debug_trap_enabled) {
2813 		if (!p->is_runtime_retry) {
2814 			kfd_dbg_trap_activate(p);
2815 			kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2816 					p, NULL, 0, false, NULL, 0);
2817 		}
2818 
2819 		mutex_unlock(&p->mutex);
2820 		ret = down_interruptible(&p->runtime_enable_sema);
2821 		mutex_lock(&p->mutex);
2822 
2823 		p->is_runtime_retry = !!ret;
2824 	}
2825 
2826 	return ret;
2827 }
2828 
runtime_disable(struct kfd_process * p)2829 static int runtime_disable(struct kfd_process *p)
2830 {
2831 	int i = 0, ret;
2832 	bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2833 
2834 	p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2835 	p->runtime_info.r_debug = 0;
2836 
2837 	if (p->debug_trap_enabled) {
2838 		if (was_enabled)
2839 			kfd_dbg_trap_deactivate(p, false, 0);
2840 
2841 		if (!p->is_runtime_retry)
2842 			kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2843 					p, NULL, 0, false, NULL, 0);
2844 
2845 		mutex_unlock(&p->mutex);
2846 		ret = down_interruptible(&p->runtime_enable_sema);
2847 		mutex_lock(&p->mutex);
2848 
2849 		p->is_runtime_retry = !!ret;
2850 		if (ret)
2851 			return ret;
2852 	}
2853 
2854 	if (was_enabled && p->runtime_info.ttmp_setup) {
2855 		for (i = 0; i < p->n_pdds; i++) {
2856 			struct kfd_process_device *pdd = p->pdds[i];
2857 
2858 			if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
2859 				amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
2860 		}
2861 	}
2862 
2863 	p->runtime_info.ttmp_setup = false;
2864 
2865 	/* disable ttmp setup */
2866 	for (i = 0; i < p->n_pdds; i++) {
2867 		struct kfd_process_device *pdd = p->pdds[i];
2868 
2869 		if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2870 			pdd->spi_dbg_override =
2871 					pdd->dev->kfd2kgd->disable_debug_trap(
2872 					pdd->dev->adev,
2873 					false,
2874 					pdd->dev->vm_info.last_vmid_kfd);
2875 
2876 			if (!pdd->dev->kfd->shared_resources.enable_mes)
2877 				debug_refresh_runlist(pdd->dev->dqm);
2878 			else
2879 				kfd_dbg_set_mes_debug_mode(pdd,
2880 							   !kfd_dbg_has_cwsr_workaround(pdd->dev));
2881 		}
2882 	}
2883 
2884 	return 0;
2885 }
2886 
kfd_ioctl_runtime_enable(struct file * filep,struct kfd_process * p,void * data)2887 static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2888 {
2889 	struct kfd_ioctl_runtime_enable_args *args = data;
2890 	int r;
2891 
2892 	mutex_lock(&p->mutex);
2893 
2894 	if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2895 		r = runtime_enable(p, args->r_debug,
2896 				!!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2897 	else
2898 		r = runtime_disable(p);
2899 
2900 	mutex_unlock(&p->mutex);
2901 
2902 	return r;
2903 }
2904 
kfd_ioctl_set_debug_trap(struct file * filep,struct kfd_process * p,void * data)2905 static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2906 {
2907 	struct kfd_ioctl_dbg_trap_args *args = data;
2908 	struct task_struct *thread = NULL;
2909 	struct mm_struct *mm = NULL;
2910 	struct pid *pid = NULL;
2911 	struct kfd_process *target = NULL;
2912 	struct kfd_process_device *pdd = NULL;
2913 	int r = 0;
2914 
2915 	if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2916 		pr_err("Debugging does not support sched_policy %i", sched_policy);
2917 		return -EINVAL;
2918 	}
2919 
2920 	pid = find_get_pid(args->pid);
2921 	if (!pid) {
2922 		pr_debug("Cannot find pid info for %i\n", args->pid);
2923 		r = -ESRCH;
2924 		goto out;
2925 	}
2926 
2927 	thread = get_pid_task(pid, PIDTYPE_PID);
2928 	if (!thread) {
2929 		r = -ESRCH;
2930 		goto out;
2931 	}
2932 
2933 	mm = get_task_mm(thread);
2934 	if (!mm) {
2935 		r = -ESRCH;
2936 		goto out;
2937 	}
2938 
2939 	if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2940 		bool create_process;
2941 
2942 		rcu_read_lock();
2943 		create_process = thread && thread != current && ptrace_parent(thread) == current;
2944 		rcu_read_unlock();
2945 
2946 		target = create_process ? kfd_create_process(thread) :
2947 					kfd_lookup_process_by_pid(pid);
2948 	} else {
2949 		target = kfd_lookup_process_by_pid(pid);
2950 	}
2951 
2952 	if (IS_ERR_OR_NULL(target)) {
2953 		pr_debug("Cannot find process PID %i to debug\n", args->pid);
2954 		r = target ? PTR_ERR(target) : -ESRCH;
2955 		target = NULL;
2956 		goto out;
2957 	}
2958 
2959 	/* Check if target is still PTRACED. */
2960 	rcu_read_lock();
2961 	if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2962 				&& ptrace_parent(target->lead_thread) != current) {
2963 		pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2964 		r = -EPERM;
2965 	}
2966 	rcu_read_unlock();
2967 
2968 	if (r)
2969 		goto out;
2970 
2971 	mutex_lock(&target->mutex);
2972 
2973 	if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2974 		pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2975 		r = -EINVAL;
2976 		goto unlock_out;
2977 	}
2978 
2979 	if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2980 			(args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2981 			 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2982 			 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2983 			 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2984 			 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2985 			 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2986 			 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2987 		r = -EPERM;
2988 		goto unlock_out;
2989 	}
2990 
2991 	if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2992 	    args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2993 		int user_gpu_id = kfd_process_get_user_gpu_id(target,
2994 				args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2995 					args->set_node_address_watch.gpu_id :
2996 					args->clear_node_address_watch.gpu_id);
2997 
2998 		pdd = kfd_process_device_data_by_id(target, user_gpu_id);
2999 		if (user_gpu_id == -EINVAL || !pdd) {
3000 			r = -ENODEV;
3001 			goto unlock_out;
3002 		}
3003 	}
3004 
3005 	switch (args->op) {
3006 	case KFD_IOC_DBG_TRAP_ENABLE:
3007 		if (target != p)
3008 			target->debugger_process = p;
3009 
3010 		r = kfd_dbg_trap_enable(target,
3011 					args->enable.dbg_fd,
3012 					(void __user *)args->enable.rinfo_ptr,
3013 					&args->enable.rinfo_size);
3014 		if (!r)
3015 			target->exception_enable_mask = args->enable.exception_mask;
3016 
3017 		break;
3018 	case KFD_IOC_DBG_TRAP_DISABLE:
3019 		r = kfd_dbg_trap_disable(target);
3020 		break;
3021 	case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3022 		r = kfd_dbg_send_exception_to_runtime(target,
3023 				args->send_runtime_event.gpu_id,
3024 				args->send_runtime_event.queue_id,
3025 				args->send_runtime_event.exception_mask);
3026 		break;
3027 	case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3028 		kfd_dbg_set_enabled_debug_exception_mask(target,
3029 				args->set_exceptions_enabled.exception_mask);
3030 		break;
3031 	case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3032 		r = kfd_dbg_trap_set_wave_launch_override(target,
3033 				args->launch_override.override_mode,
3034 				args->launch_override.enable_mask,
3035 				args->launch_override.support_request_mask,
3036 				&args->launch_override.enable_mask,
3037 				&args->launch_override.support_request_mask);
3038 		break;
3039 	case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3040 		r = kfd_dbg_trap_set_wave_launch_mode(target,
3041 				args->launch_mode.launch_mode);
3042 		break;
3043 	case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3044 		r = suspend_queues(target,
3045 				args->suspend_queues.num_queues,
3046 				args->suspend_queues.grace_period,
3047 				args->suspend_queues.exception_mask,
3048 				(uint32_t *)args->suspend_queues.queue_array_ptr);
3049 
3050 		break;
3051 	case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3052 		r = resume_queues(target, args->resume_queues.num_queues,
3053 				(uint32_t *)args->resume_queues.queue_array_ptr);
3054 		break;
3055 	case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3056 		r = kfd_dbg_trap_set_dev_address_watch(pdd,
3057 				args->set_node_address_watch.address,
3058 				args->set_node_address_watch.mask,
3059 				&args->set_node_address_watch.id,
3060 				args->set_node_address_watch.mode);
3061 		break;
3062 	case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3063 		r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3064 				args->clear_node_address_watch.id);
3065 		break;
3066 	case KFD_IOC_DBG_TRAP_SET_FLAGS:
3067 		r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
3068 		break;
3069 	case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3070 		r = kfd_dbg_ev_query_debug_event(target,
3071 				&args->query_debug_event.queue_id,
3072 				&args->query_debug_event.gpu_id,
3073 				args->query_debug_event.exception_mask,
3074 				&args->query_debug_event.exception_mask);
3075 		break;
3076 	case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3077 		r = kfd_dbg_trap_query_exception_info(target,
3078 				args->query_exception_info.source_id,
3079 				args->query_exception_info.exception_code,
3080 				args->query_exception_info.clear_exception,
3081 				(void __user *)args->query_exception_info.info_ptr,
3082 				&args->query_exception_info.info_size);
3083 		break;
3084 	case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3085 		r = pqm_get_queue_snapshot(&target->pqm,
3086 				args->queue_snapshot.exception_mask,
3087 				(void __user *)args->queue_snapshot.snapshot_buf_ptr,
3088 				&args->queue_snapshot.num_queues,
3089 				&args->queue_snapshot.entry_size);
3090 		break;
3091 	case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3092 		r = kfd_dbg_trap_device_snapshot(target,
3093 				args->device_snapshot.exception_mask,
3094 				(void __user *)args->device_snapshot.snapshot_buf_ptr,
3095 				&args->device_snapshot.num_devices,
3096 				&args->device_snapshot.entry_size);
3097 		break;
3098 	default:
3099 		pr_err("Invalid option: %i\n", args->op);
3100 		r = -EINVAL;
3101 	}
3102 
3103 unlock_out:
3104 	mutex_unlock(&target->mutex);
3105 
3106 out:
3107 	if (thread)
3108 		put_task_struct(thread);
3109 
3110 	if (mm)
3111 		mmput(mm);
3112 
3113 	if (pid)
3114 		put_pid(pid);
3115 
3116 	if (target)
3117 		kfd_unref_process(target);
3118 
3119 	return r;
3120 }
3121 
3122 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3123 	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3124 			    .cmd_drv = 0, .name = #ioctl}
3125 
3126 /** Ioctl table */
3127 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3128 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3129 			kfd_ioctl_get_version, 0),
3130 
3131 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3132 			kfd_ioctl_create_queue, 0),
3133 
3134 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3135 			kfd_ioctl_destroy_queue, 0),
3136 
3137 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3138 			kfd_ioctl_set_memory_policy, 0),
3139 
3140 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3141 			kfd_ioctl_get_clock_counters, 0),
3142 
3143 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3144 			kfd_ioctl_get_process_apertures, 0),
3145 
3146 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3147 			kfd_ioctl_update_queue, 0),
3148 
3149 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3150 			kfd_ioctl_create_event, 0),
3151 
3152 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3153 			kfd_ioctl_destroy_event, 0),
3154 
3155 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3156 			kfd_ioctl_set_event, 0),
3157 
3158 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3159 			kfd_ioctl_reset_event, 0),
3160 
3161 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3162 			kfd_ioctl_wait_events, 0),
3163 
3164 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3165 			kfd_ioctl_dbg_register, 0),
3166 
3167 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3168 			kfd_ioctl_dbg_unregister, 0),
3169 
3170 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3171 			kfd_ioctl_dbg_address_watch, 0),
3172 
3173 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3174 			kfd_ioctl_dbg_wave_control, 0),
3175 
3176 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3177 			kfd_ioctl_set_scratch_backing_va, 0),
3178 
3179 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3180 			kfd_ioctl_get_tile_config, 0),
3181 
3182 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3183 			kfd_ioctl_set_trap_handler, 0),
3184 
3185 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3186 			kfd_ioctl_get_process_apertures_new, 0),
3187 
3188 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3189 			kfd_ioctl_acquire_vm, 0),
3190 
3191 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3192 			kfd_ioctl_alloc_memory_of_gpu, 0),
3193 
3194 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3195 			kfd_ioctl_free_memory_of_gpu, 0),
3196 
3197 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3198 			kfd_ioctl_map_memory_to_gpu, 0),
3199 
3200 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3201 			kfd_ioctl_unmap_memory_from_gpu, 0),
3202 
3203 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3204 			kfd_ioctl_set_cu_mask, 0),
3205 
3206 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3207 			kfd_ioctl_get_queue_wave_state, 0),
3208 
3209 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3210 				kfd_ioctl_get_dmabuf_info, 0),
3211 
3212 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3213 				kfd_ioctl_import_dmabuf, 0),
3214 
3215 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3216 			kfd_ioctl_alloc_queue_gws, 0),
3217 
3218 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3219 			kfd_ioctl_smi_events, 0),
3220 
3221 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3222 
3223 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3224 			kfd_ioctl_set_xnack_mode, 0),
3225 
3226 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3227 			kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3228 
3229 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3230 			kfd_ioctl_get_available_memory, 0),
3231 
3232 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3233 				kfd_ioctl_export_dmabuf, 0),
3234 
3235 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3236 			kfd_ioctl_runtime_enable, 0),
3237 
3238 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3239 			kfd_ioctl_set_debug_trap, 0),
3240 };
3241 
3242 #define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
3243 
kfd_ioctl(struct file * filep,unsigned int cmd,unsigned long arg)3244 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3245 {
3246 	struct kfd_process *process;
3247 	amdkfd_ioctl_t *func;
3248 	const struct amdkfd_ioctl_desc *ioctl = NULL;
3249 	unsigned int nr = _IOC_NR(cmd);
3250 	char stack_kdata[128];
3251 	char *kdata = NULL;
3252 	unsigned int usize, asize;
3253 	int retcode = -EINVAL;
3254 	bool ptrace_attached = false;
3255 
3256 	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
3257 		goto err_i1;
3258 
3259 	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3260 		u32 amdkfd_size;
3261 
3262 		ioctl = &amdkfd_ioctls[nr];
3263 
3264 		amdkfd_size = _IOC_SIZE(ioctl->cmd);
3265 		usize = asize = _IOC_SIZE(cmd);
3266 		if (amdkfd_size > asize)
3267 			asize = amdkfd_size;
3268 
3269 		cmd = ioctl->cmd;
3270 	} else
3271 		goto err_i1;
3272 
3273 	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3274 
3275 	/* Get the process struct from the filep. Only the process
3276 	 * that opened /dev/kfd can use the file descriptor. Child
3277 	 * processes need to create their own KFD device context.
3278 	 */
3279 	process = filep->private_data;
3280 
3281 	rcu_read_lock();
3282 	if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3283 	    ptrace_parent(process->lead_thread) == current)
3284 		ptrace_attached = true;
3285 	rcu_read_unlock();
3286 
3287 	if (process->lead_thread != current->group_leader
3288 	    && !ptrace_attached) {
3289 		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3290 		retcode = -EBADF;
3291 		goto err_i1;
3292 	}
3293 
3294 	/* Do not trust userspace, use our own definition */
3295 	func = ioctl->func;
3296 
3297 	if (unlikely(!func)) {
3298 		dev_dbg(kfd_device, "no function\n");
3299 		retcode = -EINVAL;
3300 		goto err_i1;
3301 	}
3302 
3303 	/*
3304 	 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3305 	 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3306 	 * more priviledged access.
3307 	 */
3308 	if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3309 		if (!capable(CAP_CHECKPOINT_RESTORE) &&
3310 						!capable(CAP_SYS_ADMIN)) {
3311 			retcode = -EACCES;
3312 			goto err_i1;
3313 		}
3314 	}
3315 
3316 	if (cmd & (IOC_IN | IOC_OUT)) {
3317 		if (asize <= sizeof(stack_kdata)) {
3318 			kdata = stack_kdata;
3319 		} else {
3320 			kdata = kmalloc(asize, GFP_KERNEL);
3321 			if (!kdata) {
3322 				retcode = -ENOMEM;
3323 				goto err_i1;
3324 			}
3325 		}
3326 		if (asize > usize)
3327 			memset(kdata + usize, 0, asize - usize);
3328 	}
3329 
3330 	if (cmd & IOC_IN) {
3331 		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
3332 			retcode = -EFAULT;
3333 			goto err_i1;
3334 		}
3335 	} else if (cmd & IOC_OUT) {
3336 		memset(kdata, 0, usize);
3337 	}
3338 
3339 	retcode = func(filep, process, kdata);
3340 
3341 	if (cmd & IOC_OUT)
3342 		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
3343 			retcode = -EFAULT;
3344 
3345 err_i1:
3346 	if (!ioctl)
3347 		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3348 			  task_pid_nr(current), cmd, nr);
3349 
3350 	if (kdata != stack_kdata)
3351 		kfree(kdata);
3352 
3353 	if (retcode)
3354 		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3355 				nr, arg, retcode);
3356 
3357 	return retcode;
3358 }
3359 
kfd_mmio_mmap(struct kfd_node * dev,struct kfd_process * process,struct vm_area_struct * vma)3360 static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3361 		      struct vm_area_struct *vma)
3362 {
3363 	phys_addr_t address;
3364 
3365 	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
3366 		return -EINVAL;
3367 
3368 	if (PAGE_SIZE > 4096)
3369 		return -EINVAL;
3370 
3371 	address = dev->adev->rmmio_remap.bus_addr;
3372 
3373 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3374 				VM_DONTDUMP | VM_PFNMAP);
3375 
3376 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3377 
3378 	pr_debug("pasid 0x%x mapping mmio page\n"
3379 		 "     target user address == 0x%08llX\n"
3380 		 "     physical address    == 0x%08llX\n"
3381 		 "     vm_flags            == 0x%04lX\n"
3382 		 "     size                == 0x%04lX\n",
3383 		 process->pasid, (unsigned long long) vma->vm_start,
3384 		 address, vma->vm_flags, PAGE_SIZE);
3385 
3386 	return io_remap_pfn_range(vma,
3387 				vma->vm_start,
3388 				address >> PAGE_SHIFT,
3389 				PAGE_SIZE,
3390 				vma->vm_page_prot);
3391 }
3392 
3393 
kfd_mmap(struct file * filp,struct vm_area_struct * vma)3394 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3395 {
3396 	struct kfd_process *process;
3397 	struct kfd_node *dev = NULL;
3398 	unsigned long mmap_offset;
3399 	unsigned int gpu_id;
3400 
3401 	process = kfd_get_process(current);
3402 	if (IS_ERR(process))
3403 		return PTR_ERR(process);
3404 
3405 	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3406 	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3407 	if (gpu_id)
3408 		dev = kfd_device_by_id(gpu_id);
3409 
3410 	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3411 	case KFD_MMAP_TYPE_DOORBELL:
3412 		if (!dev)
3413 			return -ENODEV;
3414 		return kfd_doorbell_mmap(dev, process, vma);
3415 
3416 	case KFD_MMAP_TYPE_EVENTS:
3417 		return kfd_event_mmap(process, vma);
3418 
3419 	case KFD_MMAP_TYPE_RESERVED_MEM:
3420 		if (!dev)
3421 			return -ENODEV;
3422 		return kfd_reserved_mem_mmap(dev, process, vma);
3423 	case KFD_MMAP_TYPE_MMIO:
3424 		if (!dev)
3425 			return -ENODEV;
3426 		return kfd_mmio_mmap(dev, process, vma);
3427 	}
3428 
3429 	return -EFAULT;
3430 }
3431