1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Xilinx Zynq MPSoC Firmware layer
4 *
5 * Copyright (C) 2014-2022 Xilinx, Inc.
6 * Copyright (C) 2022 - 2024, Advanced Micro Devices, Inc.
7 *
8 * Michal Simek <[email protected]>
9 * Davorin Mista <[email protected]>
10 * Jolly Shah <[email protected]>
11 * Rajan Vaja <[email protected]>
12 */
13
14 #include <linux/arm-smccc.h>
15 #include <linux/compiler.h>
16 #include <linux/device.h>
17 #include <linux/init.h>
18 #include <linux/mfd/core.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/slab.h>
24 #include <linux/uaccess.h>
25 #include <linux/hashtable.h>
26
27 #include <linux/firmware/xlnx-zynqmp.h>
28 #include <linux/firmware/xlnx-event-manager.h>
29 #include "zynqmp-debug.h"
30
31 /* Max HashMap Order for PM API feature check (1<<7 = 128) */
32 #define PM_API_FEATURE_CHECK_MAX_ORDER 7
33
34 /* CRL registers and bitfields */
35 #define CRL_APB_BASE 0xFF5E0000U
36 /* BOOT_PIN_CTRL- Used to control the mode pins after boot */
37 #define CRL_APB_BOOT_PIN_CTRL (CRL_APB_BASE + (0x250U))
38 /* BOOT_PIN_CTRL_MASK- out_val[11:8], out_en[3:0] */
39 #define CRL_APB_BOOTPIN_CTRL_MASK 0xF0FU
40
41 /* IOCTL/QUERY feature payload size */
42 #define FEATURE_PAYLOAD_SIZE 2
43
44 static bool feature_check_enabled;
45 static DEFINE_HASHTABLE(pm_api_features_map, PM_API_FEATURE_CHECK_MAX_ORDER);
46 static u32 ioctl_features[FEATURE_PAYLOAD_SIZE];
47 static u32 query_features[FEATURE_PAYLOAD_SIZE];
48
49 static u32 sip_svc_version;
50 static struct platform_device *em_dev;
51
52 /**
53 * struct zynqmp_devinfo - Structure for Zynqmp device instance
54 * @dev: Device Pointer
55 * @feature_conf_id: Feature conf id
56 */
57 struct zynqmp_devinfo {
58 struct device *dev;
59 u32 feature_conf_id;
60 };
61
62 /**
63 * struct pm_api_feature_data - PM API Feature data
64 * @pm_api_id: PM API Id, used as key to index into hashmap
65 * @feature_status: status of PM API feature: valid, invalid
66 * @hentry: hlist_node that hooks this entry into hashtable
67 */
68 struct pm_api_feature_data {
69 u32 pm_api_id;
70 int feature_status;
71 struct hlist_node hentry;
72 };
73
74 static const struct mfd_cell firmware_devs[] = {
75 {
76 .name = "zynqmp_power_controller",
77 },
78 };
79
80 /**
81 * zynqmp_pm_ret_code() - Convert PMU-FW error codes to Linux error codes
82 * @ret_status: PMUFW return code
83 *
84 * Return: corresponding Linux error code
85 */
zynqmp_pm_ret_code(u32 ret_status)86 static int zynqmp_pm_ret_code(u32 ret_status)
87 {
88 switch (ret_status) {
89 case XST_PM_SUCCESS:
90 case XST_PM_DOUBLE_REQ:
91 return 0;
92 case XST_PM_NO_FEATURE:
93 return -ENOTSUPP;
94 case XST_PM_INVALID_VERSION:
95 return -EOPNOTSUPP;
96 case XST_PM_NO_ACCESS:
97 return -EACCES;
98 case XST_PM_ABORT_SUSPEND:
99 return -ECANCELED;
100 case XST_PM_MULT_USER:
101 return -EUSERS;
102 case XST_PM_INTERNAL:
103 case XST_PM_CONFLICT:
104 case XST_PM_INVALID_NODE:
105 case XST_PM_INVALID_CRC:
106 default:
107 return -EINVAL;
108 }
109 }
110
do_fw_call_fail(u32 * ret_payload,u32 num_args,...)111 static noinline int do_fw_call_fail(u32 *ret_payload, u32 num_args, ...)
112 {
113 return -ENODEV;
114 }
115
116 /*
117 * PM function call wrapper
118 * Invoke do_fw_call_smc or do_fw_call_hvc, depending on the configuration
119 */
120 static int (*do_fw_call)(u32 *ret_payload, u32, ...) = do_fw_call_fail;
121
122 /**
123 * do_fw_call_smc() - Call system-level platform management layer (SMC)
124 * @num_args: Number of variable arguments should be <= 8
125 * @ret_payload: Returned value array
126 *
127 * Invoke platform management function via SMC call (no hypervisor present).
128 *
129 * Return: Returns status, either success or error+reason
130 */
do_fw_call_smc(u32 * ret_payload,u32 num_args,...)131 static noinline int do_fw_call_smc(u32 *ret_payload, u32 num_args, ...)
132 {
133 struct arm_smccc_res res;
134 u64 args[8] = {0};
135 va_list arg_list;
136 u8 i;
137
138 if (num_args > 8)
139 return -EINVAL;
140
141 va_start(arg_list, num_args);
142
143 for (i = 0; i < num_args; i++)
144 args[i] = va_arg(arg_list, u64);
145
146 va_end(arg_list);
147
148 arm_smccc_smc(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], &res);
149
150 if (ret_payload) {
151 ret_payload[0] = lower_32_bits(res.a0);
152 ret_payload[1] = upper_32_bits(res.a0);
153 ret_payload[2] = lower_32_bits(res.a1);
154 ret_payload[3] = upper_32_bits(res.a1);
155 ret_payload[4] = lower_32_bits(res.a2);
156 ret_payload[5] = upper_32_bits(res.a2);
157 ret_payload[6] = lower_32_bits(res.a3);
158 }
159
160 return zynqmp_pm_ret_code((enum pm_ret_status)res.a0);
161 }
162
163 /**
164 * do_fw_call_hvc() - Call system-level platform management layer (HVC)
165 * @num_args: Number of variable arguments should be <= 8
166 * @ret_payload: Returned value array
167 *
168 * Invoke platform management function via HVC
169 * HVC-based for communication through hypervisor
170 * (no direct communication with ATF).
171 *
172 * Return: Returns status, either success or error+reason
173 */
do_fw_call_hvc(u32 * ret_payload,u32 num_args,...)174 static noinline int do_fw_call_hvc(u32 *ret_payload, u32 num_args, ...)
175 {
176 struct arm_smccc_res res;
177 u64 args[8] = {0};
178 va_list arg_list;
179 u8 i;
180
181 if (num_args > 8)
182 return -EINVAL;
183
184 va_start(arg_list, num_args);
185
186 for (i = 0; i < num_args; i++)
187 args[i] = va_arg(arg_list, u64);
188
189 va_end(arg_list);
190
191 arm_smccc_hvc(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], &res);
192
193 if (ret_payload) {
194 ret_payload[0] = lower_32_bits(res.a0);
195 ret_payload[1] = upper_32_bits(res.a0);
196 ret_payload[2] = lower_32_bits(res.a1);
197 ret_payload[3] = upper_32_bits(res.a1);
198 ret_payload[4] = lower_32_bits(res.a2);
199 ret_payload[5] = upper_32_bits(res.a2);
200 ret_payload[6] = lower_32_bits(res.a3);
201 }
202
203 return zynqmp_pm_ret_code((enum pm_ret_status)res.a0);
204 }
205
__do_feature_check_call(const u32 api_id,u32 * ret_payload)206 static int __do_feature_check_call(const u32 api_id, u32 *ret_payload)
207 {
208 int ret;
209 u64 smc_arg[2];
210 u32 module_id;
211 u32 feature_check_api_id;
212
213 module_id = FIELD_GET(MODULE_ID_MASK, api_id);
214
215 /*
216 * Feature check of APIs belonging to PM, XSEM, and TF-A are handled by calling
217 * PM_FEATURE_CHECK API. For other modules, call PM_API_FEATURES API.
218 */
219 if (module_id == PM_MODULE_ID || module_id == XSEM_MODULE_ID || module_id == TF_A_MODULE_ID)
220 feature_check_api_id = PM_FEATURE_CHECK;
221 else
222 feature_check_api_id = PM_API_FEATURES;
223
224 /*
225 * Feature check of TF-A APIs is done in the TF-A layer and it expects for
226 * MODULE_ID_MASK bits of SMC's arg[0] to be the same as PM_MODULE_ID.
227 */
228 if (module_id == TF_A_MODULE_ID) {
229 module_id = PM_MODULE_ID;
230 smc_arg[1] = api_id;
231 } else {
232 smc_arg[1] = (api_id & API_ID_MASK);
233 }
234
235 smc_arg[0] = PM_SIP_SVC | FIELD_PREP(MODULE_ID_MASK, module_id) | feature_check_api_id;
236
237 ret = do_fw_call(ret_payload, 2, smc_arg[0], smc_arg[1]);
238 if (ret)
239 ret = -EOPNOTSUPP;
240 else
241 ret = ret_payload[1];
242
243 return ret;
244 }
245
do_feature_check_call(const u32 api_id)246 static int do_feature_check_call(const u32 api_id)
247 {
248 int ret;
249 u32 ret_payload[PAYLOAD_ARG_CNT];
250 struct pm_api_feature_data *feature_data;
251
252 /* Check for existing entry in hash table for given api */
253 hash_for_each_possible(pm_api_features_map, feature_data, hentry,
254 api_id) {
255 if (feature_data->pm_api_id == api_id)
256 return feature_data->feature_status;
257 }
258
259 /* Add new entry if not present */
260 feature_data = kmalloc(sizeof(*feature_data), GFP_ATOMIC);
261 if (!feature_data)
262 return -ENOMEM;
263
264 feature_data->pm_api_id = api_id;
265 ret = __do_feature_check_call(api_id, ret_payload);
266
267 feature_data->feature_status = ret;
268 hash_add(pm_api_features_map, &feature_data->hentry, api_id);
269
270 if (api_id == PM_IOCTL)
271 /* Store supported IOCTL IDs mask */
272 memcpy(ioctl_features, &ret_payload[2], FEATURE_PAYLOAD_SIZE * 4);
273 else if (api_id == PM_QUERY_DATA)
274 /* Store supported QUERY IDs mask */
275 memcpy(query_features, &ret_payload[2], FEATURE_PAYLOAD_SIZE * 4);
276
277 return ret;
278 }
279
280 /**
281 * zynqmp_pm_feature() - Check whether given feature is supported or not and
282 * store supported IOCTL/QUERY ID mask
283 * @api_id: API ID to check
284 *
285 * Return: Returns status, either success or error+reason
286 */
zynqmp_pm_feature(const u32 api_id)287 int zynqmp_pm_feature(const u32 api_id)
288 {
289 int ret;
290
291 if (!feature_check_enabled)
292 return 0;
293
294 ret = do_feature_check_call(api_id);
295
296 return ret;
297 }
298 EXPORT_SYMBOL_GPL(zynqmp_pm_feature);
299
300 /**
301 * zynqmp_pm_is_function_supported() - Check whether given IOCTL/QUERY function
302 * is supported or not
303 * @api_id: PM_IOCTL or PM_QUERY_DATA
304 * @id: IOCTL or QUERY function IDs
305 *
306 * Return: Returns status, either success or error+reason
307 */
zynqmp_pm_is_function_supported(const u32 api_id,const u32 id)308 int zynqmp_pm_is_function_supported(const u32 api_id, const u32 id)
309 {
310 int ret;
311 u32 *bit_mask;
312
313 /* Input arguments validation */
314 if (id >= 64 || (api_id != PM_IOCTL && api_id != PM_QUERY_DATA))
315 return -EINVAL;
316
317 /* Check feature check API version */
318 ret = do_feature_check_call(PM_FEATURE_CHECK);
319 if (ret < 0)
320 return ret;
321
322 /* Check if feature check version 2 is supported or not */
323 if ((ret & FIRMWARE_VERSION_MASK) == PM_API_VERSION_2) {
324 /*
325 * Call feature check for IOCTL/QUERY API to get IOCTL ID or
326 * QUERY ID feature status.
327 */
328 ret = do_feature_check_call(api_id);
329 if (ret < 0)
330 return ret;
331
332 bit_mask = (api_id == PM_IOCTL) ? ioctl_features : query_features;
333
334 if ((bit_mask[(id / 32)] & BIT((id % 32))) == 0U)
335 return -EOPNOTSUPP;
336 } else {
337 return -ENODATA;
338 }
339
340 return 0;
341 }
342 EXPORT_SYMBOL_GPL(zynqmp_pm_is_function_supported);
343
344 /**
345 * zynqmp_pm_invoke_fw_fn() - Invoke the system-level platform management layer
346 * caller function depending on the configuration
347 * @pm_api_id: Requested PM-API call
348 * @ret_payload: Returned value array
349 * @num_args: Number of arguments to requested PM-API call
350 *
351 * Invoke platform management function for SMC or HVC call, depending on
352 * configuration.
353 * Following SMC Calling Convention (SMCCC) for SMC64:
354 * Pm Function Identifier,
355 * PM_SIP_SVC + PASS_THROUGH_FW_CMD_ID =
356 * ((SMC_TYPE_FAST << FUNCID_TYPE_SHIFT)
357 * ((SMC_64) << FUNCID_CC_SHIFT)
358 * ((SIP_START) << FUNCID_OEN_SHIFT)
359 * (PASS_THROUGH_FW_CMD_ID))
360 *
361 * PM_SIP_SVC - Registered ZynqMP SIP Service Call.
362 * PASS_THROUGH_FW_CMD_ID - Fixed SiP SVC call ID for FW specific calls.
363 *
364 * Return: Returns status, either success or error+reason
365 */
zynqmp_pm_invoke_fw_fn(u32 pm_api_id,u32 * ret_payload,u32 num_args,...)366 int zynqmp_pm_invoke_fw_fn(u32 pm_api_id, u32 *ret_payload, u32 num_args, ...)
367 {
368 /*
369 * Added SIP service call Function Identifier
370 * Make sure to stay in x0 register
371 */
372 u64 smc_arg[SMC_ARG_CNT_64];
373 int ret, i;
374 va_list arg_list;
375 u32 args[SMC_ARG_CNT_32] = {0};
376 u32 module_id;
377
378 if (num_args > SMC_ARG_CNT_32)
379 return -EINVAL;
380
381 va_start(arg_list, num_args);
382
383 /* Check if feature is supported or not */
384 ret = zynqmp_pm_feature(pm_api_id);
385 if (ret < 0)
386 return ret;
387
388 for (i = 0; i < num_args; i++)
389 args[i] = va_arg(arg_list, u32);
390
391 va_end(arg_list);
392
393 module_id = FIELD_GET(PLM_MODULE_ID_MASK, pm_api_id);
394
395 if (module_id == 0)
396 module_id = XPM_MODULE_ID;
397
398 smc_arg[0] = PM_SIP_SVC | PASS_THROUGH_FW_CMD_ID;
399 smc_arg[1] = ((u64)args[0] << 32U) | FIELD_PREP(PLM_MODULE_ID_MASK, module_id) |
400 (pm_api_id & API_ID_MASK);
401 for (i = 1; i < (SMC_ARG_CNT_64 - 1); i++)
402 smc_arg[i + 1] = ((u64)args[(i * 2)] << 32U) | args[(i * 2) - 1];
403
404 return do_fw_call(ret_payload, 8, smc_arg[0], smc_arg[1], smc_arg[2], smc_arg[3],
405 smc_arg[4], smc_arg[5], smc_arg[6], smc_arg[7]);
406 }
407
408 /**
409 * zynqmp_pm_invoke_fn() - Invoke the system-level platform management layer
410 * caller function depending on the configuration
411 * @pm_api_id: Requested PM-API call
412 * @ret_payload: Returned value array
413 * @num_args: Number of arguments to requested PM-API call
414 *
415 * Invoke platform management function for SMC or HVC call, depending on
416 * configuration.
417 * Following SMC Calling Convention (SMCCC) for SMC64:
418 * Pm Function Identifier,
419 * PM_SIP_SVC + PM_API_ID =
420 * ((SMC_TYPE_FAST << FUNCID_TYPE_SHIFT)
421 * ((SMC_64) << FUNCID_CC_SHIFT)
422 * ((SIP_START) << FUNCID_OEN_SHIFT)
423 * ((PM_API_ID) & FUNCID_NUM_MASK))
424 *
425 * PM_SIP_SVC - Registered ZynqMP SIP Service Call.
426 * PM_API_ID - Platform Management API ID.
427 *
428 * Return: Returns status, either success or error+reason
429 */
zynqmp_pm_invoke_fn(u32 pm_api_id,u32 * ret_payload,u32 num_args,...)430 int zynqmp_pm_invoke_fn(u32 pm_api_id, u32 *ret_payload, u32 num_args, ...)
431 {
432 /*
433 * Added SIP service call Function Identifier
434 * Make sure to stay in x0 register
435 */
436 u64 smc_arg[8];
437 int ret, i;
438 va_list arg_list;
439 u32 args[14] = {0};
440
441 if (num_args > 14)
442 return -EINVAL;
443
444 va_start(arg_list, num_args);
445
446 /* Check if feature is supported or not */
447 ret = zynqmp_pm_feature(pm_api_id);
448 if (ret < 0)
449 return ret;
450
451 for (i = 0; i < num_args; i++)
452 args[i] = va_arg(arg_list, u32);
453
454 va_end(arg_list);
455
456 smc_arg[0] = PM_SIP_SVC | pm_api_id;
457 for (i = 0; i < 7; i++)
458 smc_arg[i + 1] = ((u64)args[(i * 2) + 1] << 32) | args[i * 2];
459
460 return do_fw_call(ret_payload, 8, smc_arg[0], smc_arg[1], smc_arg[2], smc_arg[3],
461 smc_arg[4], smc_arg[5], smc_arg[6], smc_arg[7]);
462 }
463
464 static u32 pm_api_version;
465 static u32 pm_tz_version;
466 static u32 pm_family_code;
467 static u32 pm_sub_family_code;
468
zynqmp_pm_register_sgi(u32 sgi_num,u32 reset)469 int zynqmp_pm_register_sgi(u32 sgi_num, u32 reset)
470 {
471 int ret;
472
473 ret = zynqmp_pm_invoke_fn(TF_A_PM_REGISTER_SGI, NULL, 2, sgi_num, reset);
474 if (ret != -EOPNOTSUPP && !ret)
475 return ret;
476
477 /* try old implementation as fallback strategy if above fails */
478 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, IOCTL_REGISTER_SGI, sgi_num, reset);
479 }
480
481 /**
482 * zynqmp_pm_get_api_version() - Get version number of PMU PM firmware
483 * @version: Returned version value
484 *
485 * Return: Returns status, either success or error+reason
486 */
zynqmp_pm_get_api_version(u32 * version)487 int zynqmp_pm_get_api_version(u32 *version)
488 {
489 u32 ret_payload[PAYLOAD_ARG_CNT];
490 int ret;
491
492 if (!version)
493 return -EINVAL;
494
495 /* Check is PM API version already verified */
496 if (pm_api_version > 0) {
497 *version = pm_api_version;
498 return 0;
499 }
500 ret = zynqmp_pm_invoke_fn(PM_GET_API_VERSION, ret_payload, 0);
501 *version = ret_payload[1];
502
503 return ret;
504 }
505 EXPORT_SYMBOL_GPL(zynqmp_pm_get_api_version);
506
507 /**
508 * zynqmp_pm_get_chipid - Get silicon ID registers
509 * @idcode: IDCODE register
510 * @version: version register
511 *
512 * Return: Returns the status of the operation and the idcode and version
513 * registers in @idcode and @version.
514 */
zynqmp_pm_get_chipid(u32 * idcode,u32 * version)515 int zynqmp_pm_get_chipid(u32 *idcode, u32 *version)
516 {
517 u32 ret_payload[PAYLOAD_ARG_CNT];
518 int ret;
519
520 if (!idcode || !version)
521 return -EINVAL;
522
523 ret = zynqmp_pm_invoke_fn(PM_GET_CHIPID, ret_payload, 0);
524 *idcode = ret_payload[1];
525 *version = ret_payload[2];
526
527 return ret;
528 }
529 EXPORT_SYMBOL_GPL(zynqmp_pm_get_chipid);
530
531 /**
532 * zynqmp_pm_get_family_info() - Get family info of platform
533 * @family: Returned family code value
534 * @subfamily: Returned sub-family code value
535 *
536 * Return: Returns status, either success or error+reason
537 */
zynqmp_pm_get_family_info(u32 * family,u32 * subfamily)538 int zynqmp_pm_get_family_info(u32 *family, u32 *subfamily)
539 {
540 u32 ret_payload[PAYLOAD_ARG_CNT];
541 u32 idcode;
542 int ret;
543
544 /* Check is family or sub-family code already received */
545 if (pm_family_code && pm_sub_family_code) {
546 *family = pm_family_code;
547 *subfamily = pm_sub_family_code;
548 return 0;
549 }
550
551 ret = zynqmp_pm_invoke_fn(PM_GET_CHIPID, ret_payload, 0);
552 if (ret < 0)
553 return ret;
554
555 idcode = ret_payload[1];
556 pm_family_code = FIELD_GET(FAMILY_CODE_MASK, idcode);
557 pm_sub_family_code = FIELD_GET(SUB_FAMILY_CODE_MASK, idcode);
558 *family = pm_family_code;
559 *subfamily = pm_sub_family_code;
560
561 return 0;
562 }
563 EXPORT_SYMBOL_GPL(zynqmp_pm_get_family_info);
564
565 /**
566 * zynqmp_pm_get_sip_svc_version() - Get SiP service call version
567 * @version: Returned version value
568 *
569 * Return: Returns status, either success or error+reason
570 */
zynqmp_pm_get_sip_svc_version(u32 * version)571 static int zynqmp_pm_get_sip_svc_version(u32 *version)
572 {
573 struct arm_smccc_res res;
574 u64 args[SMC_ARG_CNT_64] = {0};
575
576 if (!version)
577 return -EINVAL;
578
579 /* Check if SiP SVC version already verified */
580 if (sip_svc_version > 0) {
581 *version = sip_svc_version;
582 return 0;
583 }
584
585 args[0] = GET_SIP_SVC_VERSION;
586
587 arm_smccc_smc(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], &res);
588
589 *version = ((lower_32_bits(res.a0) << 16U) | lower_32_bits(res.a1));
590
591 return zynqmp_pm_ret_code(XST_PM_SUCCESS);
592 }
593
594 /**
595 * zynqmp_pm_get_trustzone_version() - Get secure trustzone firmware version
596 * @version: Returned version value
597 *
598 * Return: Returns status, either success or error+reason
599 */
zynqmp_pm_get_trustzone_version(u32 * version)600 static int zynqmp_pm_get_trustzone_version(u32 *version)
601 {
602 u32 ret_payload[PAYLOAD_ARG_CNT];
603 int ret;
604
605 if (!version)
606 return -EINVAL;
607
608 /* Check is PM trustzone version already verified */
609 if (pm_tz_version > 0) {
610 *version = pm_tz_version;
611 return 0;
612 }
613 ret = zynqmp_pm_invoke_fn(PM_GET_TRUSTZONE_VERSION, ret_payload, 0);
614 *version = ret_payload[1];
615
616 return ret;
617 }
618
619 /**
620 * get_set_conduit_method() - Choose SMC or HVC based communication
621 * @np: Pointer to the device_node structure
622 *
623 * Use SMC or HVC-based functions to communicate with EL2/EL3.
624 *
625 * Return: Returns 0 on success or error code
626 */
get_set_conduit_method(struct device_node * np)627 static int get_set_conduit_method(struct device_node *np)
628 {
629 const char *method;
630
631 if (of_property_read_string(np, "method", &method)) {
632 pr_warn("%s missing \"method\" property\n", __func__);
633 return -ENXIO;
634 }
635
636 if (!strcmp("hvc", method)) {
637 do_fw_call = do_fw_call_hvc;
638 } else if (!strcmp("smc", method)) {
639 do_fw_call = do_fw_call_smc;
640 } else {
641 pr_warn("%s Invalid \"method\" property: %s\n",
642 __func__, method);
643 return -EINVAL;
644 }
645
646 return 0;
647 }
648
649 /**
650 * zynqmp_pm_query_data() - Get query data from firmware
651 * @qdata: Variable to the zynqmp_pm_query_data structure
652 * @out: Returned output value
653 *
654 * Return: Returns status, either success or error+reason
655 */
zynqmp_pm_query_data(struct zynqmp_pm_query_data qdata,u32 * out)656 int zynqmp_pm_query_data(struct zynqmp_pm_query_data qdata, u32 *out)
657 {
658 int ret, i = 0;
659 u32 ret_payload[PAYLOAD_ARG_CNT] = {0};
660
661 if (sip_svc_version >= SIP_SVC_PASSTHROUGH_VERSION) {
662 ret = zynqmp_pm_invoke_fw_fn(PM_QUERY_DATA, ret_payload, 4,
663 qdata.qid, qdata.arg1,
664 qdata.arg2, qdata.arg3);
665 /* To support backward compatibility */
666 if (!ret && !ret_payload[0]) {
667 /*
668 * TF-A passes return status on 0th index but
669 * api to get clock name reads data from 0th
670 * index so pass data at 0th index instead of
671 * return status
672 */
673 if (qdata.qid == PM_QID_CLOCK_GET_NAME ||
674 qdata.qid == PM_QID_PINCTRL_GET_FUNCTION_NAME)
675 i = 1;
676
677 for (; i < PAYLOAD_ARG_CNT; i++, out++)
678 *out = ret_payload[i];
679
680 return ret;
681 }
682 }
683
684 ret = zynqmp_pm_invoke_fn(PM_QUERY_DATA, out, 4, qdata.qid,
685 qdata.arg1, qdata.arg2, qdata.arg3);
686
687 /*
688 * For clock name query, all bytes in SMC response are clock name
689 * characters and return code is always success. For invalid clocks,
690 * clock name bytes would be zeros.
691 */
692 return qdata.qid == PM_QID_CLOCK_GET_NAME ? 0 : ret;
693 }
694 EXPORT_SYMBOL_GPL(zynqmp_pm_query_data);
695
696 /**
697 * zynqmp_pm_clock_enable() - Enable the clock for given id
698 * @clock_id: ID of the clock to be enabled
699 *
700 * This function is used by master to enable the clock
701 * including peripherals and PLL clocks.
702 *
703 * Return: Returns status, either success or error+reason
704 */
zynqmp_pm_clock_enable(u32 clock_id)705 int zynqmp_pm_clock_enable(u32 clock_id)
706 {
707 return zynqmp_pm_invoke_fn(PM_CLOCK_ENABLE, NULL, 1, clock_id);
708 }
709 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_enable);
710
711 /**
712 * zynqmp_pm_clock_disable() - Disable the clock for given id
713 * @clock_id: ID of the clock to be disable
714 *
715 * This function is used by master to disable the clock
716 * including peripherals and PLL clocks.
717 *
718 * Return: Returns status, either success or error+reason
719 */
zynqmp_pm_clock_disable(u32 clock_id)720 int zynqmp_pm_clock_disable(u32 clock_id)
721 {
722 return zynqmp_pm_invoke_fn(PM_CLOCK_DISABLE, NULL, 1, clock_id);
723 }
724 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_disable);
725
726 /**
727 * zynqmp_pm_clock_getstate() - Get the clock state for given id
728 * @clock_id: ID of the clock to be queried
729 * @state: 1/0 (Enabled/Disabled)
730 *
731 * This function is used by master to get the state of clock
732 * including peripherals and PLL clocks.
733 *
734 * Return: Returns status, either success or error+reason
735 */
zynqmp_pm_clock_getstate(u32 clock_id,u32 * state)736 int zynqmp_pm_clock_getstate(u32 clock_id, u32 *state)
737 {
738 u32 ret_payload[PAYLOAD_ARG_CNT];
739 int ret;
740
741 ret = zynqmp_pm_invoke_fn(PM_CLOCK_GETSTATE, ret_payload, 1, clock_id);
742 *state = ret_payload[1];
743
744 return ret;
745 }
746 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_getstate);
747
748 /**
749 * zynqmp_pm_clock_setdivider() - Set the clock divider for given id
750 * @clock_id: ID of the clock
751 * @divider: divider value
752 *
753 * This function is used by master to set divider for any clock
754 * to achieve desired rate.
755 *
756 * Return: Returns status, either success or error+reason
757 */
zynqmp_pm_clock_setdivider(u32 clock_id,u32 divider)758 int zynqmp_pm_clock_setdivider(u32 clock_id, u32 divider)
759 {
760 return zynqmp_pm_invoke_fn(PM_CLOCK_SETDIVIDER, NULL, 2, clock_id, divider);
761 }
762 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_setdivider);
763
764 /**
765 * zynqmp_pm_clock_getdivider() - Get the clock divider for given id
766 * @clock_id: ID of the clock
767 * @divider: divider value
768 *
769 * This function is used by master to get divider values
770 * for any clock.
771 *
772 * Return: Returns status, either success or error+reason
773 */
zynqmp_pm_clock_getdivider(u32 clock_id,u32 * divider)774 int zynqmp_pm_clock_getdivider(u32 clock_id, u32 *divider)
775 {
776 u32 ret_payload[PAYLOAD_ARG_CNT];
777 int ret;
778
779 ret = zynqmp_pm_invoke_fn(PM_CLOCK_GETDIVIDER, ret_payload, 1, clock_id);
780 *divider = ret_payload[1];
781
782 return ret;
783 }
784 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_getdivider);
785
786 /**
787 * zynqmp_pm_clock_setparent() - Set the clock parent for given id
788 * @clock_id: ID of the clock
789 * @parent_id: parent id
790 *
791 * This function is used by master to set parent for any clock.
792 *
793 * Return: Returns status, either success or error+reason
794 */
zynqmp_pm_clock_setparent(u32 clock_id,u32 parent_id)795 int zynqmp_pm_clock_setparent(u32 clock_id, u32 parent_id)
796 {
797 return zynqmp_pm_invoke_fn(PM_CLOCK_SETPARENT, NULL, 2, clock_id, parent_id);
798 }
799 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_setparent);
800
801 /**
802 * zynqmp_pm_clock_getparent() - Get the clock parent for given id
803 * @clock_id: ID of the clock
804 * @parent_id: parent id
805 *
806 * This function is used by master to get parent index
807 * for any clock.
808 *
809 * Return: Returns status, either success or error+reason
810 */
zynqmp_pm_clock_getparent(u32 clock_id,u32 * parent_id)811 int zynqmp_pm_clock_getparent(u32 clock_id, u32 *parent_id)
812 {
813 u32 ret_payload[PAYLOAD_ARG_CNT];
814 int ret;
815
816 ret = zynqmp_pm_invoke_fn(PM_CLOCK_GETPARENT, ret_payload, 1, clock_id);
817 *parent_id = ret_payload[1];
818
819 return ret;
820 }
821 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_getparent);
822
823 /**
824 * zynqmp_pm_set_pll_frac_mode() - PM API for set PLL mode
825 *
826 * @clk_id: PLL clock ID
827 * @mode: PLL mode (PLL_MODE_FRAC/PLL_MODE_INT)
828 *
829 * This function sets PLL mode
830 *
831 * Return: Returns status, either success or error+reason
832 */
zynqmp_pm_set_pll_frac_mode(u32 clk_id,u32 mode)833 int zynqmp_pm_set_pll_frac_mode(u32 clk_id, u32 mode)
834 {
835 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_PLL_FRAC_MODE, clk_id, mode);
836 }
837 EXPORT_SYMBOL_GPL(zynqmp_pm_set_pll_frac_mode);
838
839 /**
840 * zynqmp_pm_get_pll_frac_mode() - PM API for get PLL mode
841 *
842 * @clk_id: PLL clock ID
843 * @mode: PLL mode
844 *
845 * This function return current PLL mode
846 *
847 * Return: Returns status, either success or error+reason
848 */
zynqmp_pm_get_pll_frac_mode(u32 clk_id,u32 * mode)849 int zynqmp_pm_get_pll_frac_mode(u32 clk_id, u32 *mode)
850 {
851 return zynqmp_pm_invoke_fn(PM_IOCTL, mode, 3, 0, IOCTL_GET_PLL_FRAC_MODE, clk_id);
852 }
853 EXPORT_SYMBOL_GPL(zynqmp_pm_get_pll_frac_mode);
854
855 /**
856 * zynqmp_pm_set_pll_frac_data() - PM API for setting pll fraction data
857 *
858 * @clk_id: PLL clock ID
859 * @data: fraction data
860 *
861 * This function sets fraction data.
862 * It is valid for fraction mode only.
863 *
864 * Return: Returns status, either success or error+reason
865 */
zynqmp_pm_set_pll_frac_data(u32 clk_id,u32 data)866 int zynqmp_pm_set_pll_frac_data(u32 clk_id, u32 data)
867 {
868 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_PLL_FRAC_DATA, clk_id, data);
869 }
870 EXPORT_SYMBOL_GPL(zynqmp_pm_set_pll_frac_data);
871
872 /**
873 * zynqmp_pm_get_pll_frac_data() - PM API for getting pll fraction data
874 *
875 * @clk_id: PLL clock ID
876 * @data: fraction data
877 *
878 * This function returns fraction data value.
879 *
880 * Return: Returns status, either success or error+reason
881 */
zynqmp_pm_get_pll_frac_data(u32 clk_id,u32 * data)882 int zynqmp_pm_get_pll_frac_data(u32 clk_id, u32 *data)
883 {
884 return zynqmp_pm_invoke_fn(PM_IOCTL, data, 3, 0, IOCTL_GET_PLL_FRAC_DATA, clk_id);
885 }
886 EXPORT_SYMBOL_GPL(zynqmp_pm_get_pll_frac_data);
887
888 /**
889 * zynqmp_pm_set_sd_tapdelay() - Set tap delay for the SD device
890 *
891 * @node_id: Node ID of the device
892 * @type: Type of tap delay to set (input/output)
893 * @value: Value to set fot the tap delay
894 *
895 * This function sets input/output tap delay for the SD device.
896 *
897 * Return: Returns status, either success or error+reason
898 */
zynqmp_pm_set_sd_tapdelay(u32 node_id,u32 type,u32 value)899 int zynqmp_pm_set_sd_tapdelay(u32 node_id, u32 type, u32 value)
900 {
901 u32 reg = (type == PM_TAPDELAY_INPUT) ? SD_ITAPDLY : SD_OTAPDLYSEL;
902 u32 mask = (node_id == NODE_SD_0) ? GENMASK(15, 0) : GENMASK(31, 16);
903
904 if (value) {
905 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, node_id, IOCTL_SET_SD_TAPDELAY, type,
906 value);
907 }
908
909 /*
910 * Work around completely misdesigned firmware API on Xilinx ZynqMP.
911 * The IOCTL_SET_SD_TAPDELAY firmware call allows the caller to only
912 * ever set IOU_SLCR SD_ITAPDLY Register SD0_ITAPDLYENA/SD1_ITAPDLYENA
913 * bits, but there is no matching call to clear those bits. If those
914 * bits are not cleared, SDMMC tuning may fail.
915 *
916 * Luckily, there are PM_MMIO_READ/PM_MMIO_WRITE calls which seem to
917 * allow complete unrestricted access to all address space, including
918 * IOU_SLCR SD_ITAPDLY Register and all the other registers, access
919 * to which was supposed to be protected by the current firmware API.
920 *
921 * Use PM_MMIO_READ/PM_MMIO_WRITE to re-implement the missing counter
922 * part of IOCTL_SET_SD_TAPDELAY which clears SDx_ITAPDLYENA bits.
923 */
924 return zynqmp_pm_invoke_fn(PM_MMIO_WRITE, NULL, 2, reg, mask);
925 }
926 EXPORT_SYMBOL_GPL(zynqmp_pm_set_sd_tapdelay);
927
928 /**
929 * zynqmp_pm_sd_dll_reset() - Reset DLL logic
930 *
931 * @node_id: Node ID of the device
932 * @type: Reset type
933 *
934 * This function resets DLL logic for the SD device.
935 *
936 * Return: Returns status, either success or error+reason
937 */
zynqmp_pm_sd_dll_reset(u32 node_id,u32 type)938 int zynqmp_pm_sd_dll_reset(u32 node_id, u32 type)
939 {
940 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, node_id, IOCTL_SD_DLL_RESET, type);
941 }
942 EXPORT_SYMBOL_GPL(zynqmp_pm_sd_dll_reset);
943
944 /**
945 * zynqmp_pm_ospi_mux_select() - OSPI Mux selection
946 *
947 * @dev_id: Device Id of the OSPI device.
948 * @select: OSPI Mux select value.
949 *
950 * This function select the OSPI Mux.
951 *
952 * Return: Returns status, either success or error+reason
953 */
zynqmp_pm_ospi_mux_select(u32 dev_id,u32 select)954 int zynqmp_pm_ospi_mux_select(u32 dev_id, u32 select)
955 {
956 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, dev_id, IOCTL_OSPI_MUX_SELECT, select);
957 }
958 EXPORT_SYMBOL_GPL(zynqmp_pm_ospi_mux_select);
959
960 /**
961 * zynqmp_pm_write_ggs() - PM API for writing global general storage (ggs)
962 * @index: GGS register index
963 * @value: Register value to be written
964 *
965 * This function writes value to GGS register.
966 *
967 * Return: Returns status, either success or error+reason
968 */
zynqmp_pm_write_ggs(u32 index,u32 value)969 int zynqmp_pm_write_ggs(u32 index, u32 value)
970 {
971 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_WRITE_GGS, index, value);
972 }
973 EXPORT_SYMBOL_GPL(zynqmp_pm_write_ggs);
974
975 /**
976 * zynqmp_pm_read_ggs() - PM API for reading global general storage (ggs)
977 * @index: GGS register index
978 * @value: Register value to be written
979 *
980 * This function returns GGS register value.
981 *
982 * Return: Returns status, either success or error+reason
983 */
zynqmp_pm_read_ggs(u32 index,u32 * value)984 int zynqmp_pm_read_ggs(u32 index, u32 *value)
985 {
986 return zynqmp_pm_invoke_fn(PM_IOCTL, value, 3, 0, IOCTL_READ_GGS, index);
987 }
988 EXPORT_SYMBOL_GPL(zynqmp_pm_read_ggs);
989
990 /**
991 * zynqmp_pm_write_pggs() - PM API for writing persistent global general
992 * storage (pggs)
993 * @index: PGGS register index
994 * @value: Register value to be written
995 *
996 * This function writes value to PGGS register.
997 *
998 * Return: Returns status, either success or error+reason
999 */
zynqmp_pm_write_pggs(u32 index,u32 value)1000 int zynqmp_pm_write_pggs(u32 index, u32 value)
1001 {
1002 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_WRITE_PGGS, index, value);
1003 }
1004 EXPORT_SYMBOL_GPL(zynqmp_pm_write_pggs);
1005
1006 /**
1007 * zynqmp_pm_read_pggs() - PM API for reading persistent global general
1008 * storage (pggs)
1009 * @index: PGGS register index
1010 * @value: Register value to be written
1011 *
1012 * This function returns PGGS register value.
1013 *
1014 * Return: Returns status, either success or error+reason
1015 */
zynqmp_pm_read_pggs(u32 index,u32 * value)1016 int zynqmp_pm_read_pggs(u32 index, u32 *value)
1017 {
1018 return zynqmp_pm_invoke_fn(PM_IOCTL, value, 3, 0, IOCTL_READ_PGGS, index);
1019 }
1020 EXPORT_SYMBOL_GPL(zynqmp_pm_read_pggs);
1021
zynqmp_pm_set_tapdelay_bypass(u32 index,u32 value)1022 int zynqmp_pm_set_tapdelay_bypass(u32 index, u32 value)
1023 {
1024 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_TAPDELAY_BYPASS, index, value);
1025 }
1026 EXPORT_SYMBOL_GPL(zynqmp_pm_set_tapdelay_bypass);
1027
1028 /**
1029 * zynqmp_pm_set_boot_health_status() - PM API for setting healthy boot status
1030 * @value: Status value to be written
1031 *
1032 * This function sets healthy bit value to indicate boot health status
1033 * to firmware.
1034 *
1035 * Return: Returns status, either success or error+reason
1036 */
zynqmp_pm_set_boot_health_status(u32 value)1037 int zynqmp_pm_set_boot_health_status(u32 value)
1038 {
1039 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, 0, IOCTL_SET_BOOT_HEALTH_STATUS, value);
1040 }
1041
1042 /**
1043 * zynqmp_pm_reset_assert - Request setting of reset (1 - assert, 0 - release)
1044 * @reset: Reset to be configured
1045 * @assert_flag: Flag stating should reset be asserted (1) or
1046 * released (0)
1047 *
1048 * Return: Returns status, either success or error+reason
1049 */
zynqmp_pm_reset_assert(const u32 reset,const enum zynqmp_pm_reset_action assert_flag)1050 int zynqmp_pm_reset_assert(const u32 reset,
1051 const enum zynqmp_pm_reset_action assert_flag)
1052 {
1053 return zynqmp_pm_invoke_fn(PM_RESET_ASSERT, NULL, 2, reset, assert_flag);
1054 }
1055 EXPORT_SYMBOL_GPL(zynqmp_pm_reset_assert);
1056
1057 /**
1058 * zynqmp_pm_reset_get_status - Get status of the reset
1059 * @reset: Reset whose status should be returned
1060 * @status: Returned status
1061 *
1062 * Return: Returns status, either success or error+reason
1063 */
zynqmp_pm_reset_get_status(const u32 reset,u32 * status)1064 int zynqmp_pm_reset_get_status(const u32 reset, u32 *status)
1065 {
1066 u32 ret_payload[PAYLOAD_ARG_CNT];
1067 int ret;
1068
1069 if (!status)
1070 return -EINVAL;
1071
1072 ret = zynqmp_pm_invoke_fn(PM_RESET_GET_STATUS, ret_payload, 1, reset);
1073 *status = ret_payload[1];
1074
1075 return ret;
1076 }
1077 EXPORT_SYMBOL_GPL(zynqmp_pm_reset_get_status);
1078
1079 /**
1080 * zynqmp_pm_fpga_load - Perform the fpga load
1081 * @address: Address to write to
1082 * @size: pl bitstream size
1083 * @flags: Bitstream type
1084 * -XILINX_ZYNQMP_PM_FPGA_FULL: FPGA full reconfiguration
1085 * -XILINX_ZYNQMP_PM_FPGA_PARTIAL: FPGA partial reconfiguration
1086 *
1087 * This function provides access to pmufw. To transfer
1088 * the required bitstream into PL.
1089 *
1090 * Return: Returns status, either success or error+reason
1091 */
zynqmp_pm_fpga_load(const u64 address,const u32 size,const u32 flags)1092 int zynqmp_pm_fpga_load(const u64 address, const u32 size, const u32 flags)
1093 {
1094 u32 ret_payload[PAYLOAD_ARG_CNT];
1095 int ret;
1096
1097 ret = zynqmp_pm_invoke_fn(PM_FPGA_LOAD, ret_payload, 4, lower_32_bits(address),
1098 upper_32_bits(address), size, flags);
1099 if (ret_payload[0])
1100 return -ret_payload[0];
1101
1102 return ret;
1103 }
1104 EXPORT_SYMBOL_GPL(zynqmp_pm_fpga_load);
1105
1106 /**
1107 * zynqmp_pm_fpga_get_status - Read value from PCAP status register
1108 * @value: Value to read
1109 *
1110 * This function provides access to the pmufw to get the PCAP
1111 * status
1112 *
1113 * Return: Returns status, either success or error+reason
1114 */
zynqmp_pm_fpga_get_status(u32 * value)1115 int zynqmp_pm_fpga_get_status(u32 *value)
1116 {
1117 u32 ret_payload[PAYLOAD_ARG_CNT];
1118 int ret;
1119
1120 if (!value)
1121 return -EINVAL;
1122
1123 ret = zynqmp_pm_invoke_fn(PM_FPGA_GET_STATUS, ret_payload, 0);
1124 *value = ret_payload[1];
1125
1126 return ret;
1127 }
1128 EXPORT_SYMBOL_GPL(zynqmp_pm_fpga_get_status);
1129
1130 /**
1131 * zynqmp_pm_fpga_get_config_status - Get the FPGA configuration status.
1132 * @value: Buffer to store FPGA configuration status.
1133 *
1134 * This function provides access to the pmufw to get the FPGA configuration
1135 * status
1136 *
1137 * Return: 0 on success, a negative value on error
1138 */
zynqmp_pm_fpga_get_config_status(u32 * value)1139 int zynqmp_pm_fpga_get_config_status(u32 *value)
1140 {
1141 u32 ret_payload[PAYLOAD_ARG_CNT];
1142 u32 buf, lower_addr, upper_addr;
1143 int ret;
1144
1145 if (!value)
1146 return -EINVAL;
1147
1148 lower_addr = lower_32_bits((u64)&buf);
1149 upper_addr = upper_32_bits((u64)&buf);
1150
1151 ret = zynqmp_pm_invoke_fn(PM_FPGA_READ, ret_payload, 4,
1152 XILINX_ZYNQMP_PM_FPGA_CONFIG_STAT_OFFSET, lower_addr, upper_addr,
1153 XILINX_ZYNQMP_PM_FPGA_READ_CONFIG_REG);
1154
1155 *value = ret_payload[1];
1156
1157 return ret;
1158 }
1159 EXPORT_SYMBOL_GPL(zynqmp_pm_fpga_get_config_status);
1160
1161 /**
1162 * zynqmp_pm_pinctrl_request - Request Pin from firmware
1163 * @pin: Pin number to request
1164 *
1165 * This function requests pin from firmware.
1166 *
1167 * Return: Returns status, either success or error+reason.
1168 */
zynqmp_pm_pinctrl_request(const u32 pin)1169 int zynqmp_pm_pinctrl_request(const u32 pin)
1170 {
1171 return zynqmp_pm_invoke_fn(PM_PINCTRL_REQUEST, NULL, 1, pin);
1172 }
1173 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_request);
1174
1175 /**
1176 * zynqmp_pm_pinctrl_release - Inform firmware that Pin control is released
1177 * @pin: Pin number to release
1178 *
1179 * This function release pin from firmware.
1180 *
1181 * Return: Returns status, either success or error+reason.
1182 */
zynqmp_pm_pinctrl_release(const u32 pin)1183 int zynqmp_pm_pinctrl_release(const u32 pin)
1184 {
1185 return zynqmp_pm_invoke_fn(PM_PINCTRL_RELEASE, NULL, 1, pin);
1186 }
1187 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_release);
1188
1189 /**
1190 * zynqmp_pm_pinctrl_set_function - Set requested function for the pin
1191 * @pin: Pin number
1192 * @id: Function ID to set
1193 *
1194 * This function sets requested function for the given pin.
1195 *
1196 * Return: Returns status, either success or error+reason.
1197 */
zynqmp_pm_pinctrl_set_function(const u32 pin,const u32 id)1198 int zynqmp_pm_pinctrl_set_function(const u32 pin, const u32 id)
1199 {
1200 return zynqmp_pm_invoke_fn(PM_PINCTRL_SET_FUNCTION, NULL, 2, pin, id);
1201 }
1202 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_set_function);
1203
1204 /**
1205 * zynqmp_pm_pinctrl_get_config - Get configuration parameter for the pin
1206 * @pin: Pin number
1207 * @param: Parameter to get
1208 * @value: Buffer to store parameter value
1209 *
1210 * This function gets requested configuration parameter for the given pin.
1211 *
1212 * Return: Returns status, either success or error+reason.
1213 */
zynqmp_pm_pinctrl_get_config(const u32 pin,const u32 param,u32 * value)1214 int zynqmp_pm_pinctrl_get_config(const u32 pin, const u32 param,
1215 u32 *value)
1216 {
1217 u32 ret_payload[PAYLOAD_ARG_CNT];
1218 int ret;
1219
1220 if (!value)
1221 return -EINVAL;
1222
1223 ret = zynqmp_pm_invoke_fn(PM_PINCTRL_CONFIG_PARAM_GET, ret_payload, 2, pin, param);
1224 *value = ret_payload[1];
1225
1226 return ret;
1227 }
1228 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_get_config);
1229
1230 /**
1231 * zynqmp_pm_pinctrl_set_config - Set configuration parameter for the pin
1232 * @pin: Pin number
1233 * @param: Parameter to set
1234 * @value: Parameter value to set
1235 *
1236 * This function sets requested configuration parameter for the given pin.
1237 *
1238 * Return: Returns status, either success or error+reason.
1239 */
zynqmp_pm_pinctrl_set_config(const u32 pin,const u32 param,u32 value)1240 int zynqmp_pm_pinctrl_set_config(const u32 pin, const u32 param,
1241 u32 value)
1242 {
1243 int ret;
1244
1245 if (pm_family_code == ZYNQMP_FAMILY_CODE &&
1246 param == PM_PINCTRL_CONFIG_TRI_STATE) {
1247 ret = zynqmp_pm_feature(PM_PINCTRL_CONFIG_PARAM_SET);
1248 if (ret < PM_PINCTRL_PARAM_SET_VERSION) {
1249 pr_warn("The requested pinctrl feature is not supported in the current firmware.\n"
1250 "Expected firmware version is 2023.1 and above for this feature to work.\r\n");
1251 return -EOPNOTSUPP;
1252 }
1253 }
1254
1255 return zynqmp_pm_invoke_fn(PM_PINCTRL_CONFIG_PARAM_SET, NULL, 3, pin, param, value);
1256 }
1257 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_set_config);
1258
1259 /**
1260 * zynqmp_pm_bootmode_read() - PM Config API for read bootpin status
1261 * @ps_mode: Returned output value of ps_mode
1262 *
1263 * This API function is to be used for notify the power management controller
1264 * to read bootpin status.
1265 *
1266 * Return: status, either success or error+reason
1267 */
zynqmp_pm_bootmode_read(u32 * ps_mode)1268 unsigned int zynqmp_pm_bootmode_read(u32 *ps_mode)
1269 {
1270 unsigned int ret;
1271 u32 ret_payload[PAYLOAD_ARG_CNT];
1272
1273 ret = zynqmp_pm_invoke_fn(PM_MMIO_READ, ret_payload, 1, CRL_APB_BOOT_PIN_CTRL);
1274
1275 *ps_mode = ret_payload[1];
1276
1277 return ret;
1278 }
1279 EXPORT_SYMBOL_GPL(zynqmp_pm_bootmode_read);
1280
1281 /**
1282 * zynqmp_pm_bootmode_write() - PM Config API for Configure bootpin
1283 * @ps_mode: Value to be written to the bootpin ctrl register
1284 *
1285 * This API function is to be used for notify the power management controller
1286 * to configure bootpin.
1287 *
1288 * Return: Returns status, either success or error+reason
1289 */
zynqmp_pm_bootmode_write(u32 ps_mode)1290 int zynqmp_pm_bootmode_write(u32 ps_mode)
1291 {
1292 return zynqmp_pm_invoke_fn(PM_MMIO_WRITE, NULL, 3, CRL_APB_BOOT_PIN_CTRL,
1293 CRL_APB_BOOTPIN_CTRL_MASK, ps_mode);
1294 }
1295 EXPORT_SYMBOL_GPL(zynqmp_pm_bootmode_write);
1296
1297 /**
1298 * zynqmp_pm_init_finalize() - PM call to inform firmware that the caller
1299 * master has initialized its own power management
1300 *
1301 * Return: Returns status, either success or error+reason
1302 *
1303 * This API function is to be used for notify the power management controller
1304 * about the completed power management initialization.
1305 */
zynqmp_pm_init_finalize(void)1306 int zynqmp_pm_init_finalize(void)
1307 {
1308 return zynqmp_pm_invoke_fn(PM_PM_INIT_FINALIZE, NULL, 0);
1309 }
1310 EXPORT_SYMBOL_GPL(zynqmp_pm_init_finalize);
1311
1312 /**
1313 * zynqmp_pm_set_suspend_mode() - Set system suspend mode
1314 * @mode: Mode to set for system suspend
1315 *
1316 * This API function is used to set mode of system suspend.
1317 *
1318 * Return: Returns status, either success or error+reason
1319 */
zynqmp_pm_set_suspend_mode(u32 mode)1320 int zynqmp_pm_set_suspend_mode(u32 mode)
1321 {
1322 return zynqmp_pm_invoke_fn(PM_SET_SUSPEND_MODE, NULL, 1, mode);
1323 }
1324 EXPORT_SYMBOL_GPL(zynqmp_pm_set_suspend_mode);
1325
1326 /**
1327 * zynqmp_pm_request_node() - Request a node with specific capabilities
1328 * @node: Node ID of the slave
1329 * @capabilities: Requested capabilities of the slave
1330 * @qos: Quality of service (not supported)
1331 * @ack: Flag to specify whether acknowledge is requested
1332 *
1333 * This function is used by master to request particular node from firmware.
1334 * Every master must request node before using it.
1335 *
1336 * Return: Returns status, either success or error+reason
1337 */
zynqmp_pm_request_node(const u32 node,const u32 capabilities,const u32 qos,const enum zynqmp_pm_request_ack ack)1338 int zynqmp_pm_request_node(const u32 node, const u32 capabilities,
1339 const u32 qos, const enum zynqmp_pm_request_ack ack)
1340 {
1341 return zynqmp_pm_invoke_fn(PM_REQUEST_NODE, NULL, 4, node, capabilities, qos, ack);
1342 }
1343 EXPORT_SYMBOL_GPL(zynqmp_pm_request_node);
1344
1345 /**
1346 * zynqmp_pm_release_node() - Release a node
1347 * @node: Node ID of the slave
1348 *
1349 * This function is used by master to inform firmware that master
1350 * has released node. Once released, master must not use that node
1351 * without re-request.
1352 *
1353 * Return: Returns status, either success or error+reason
1354 */
zynqmp_pm_release_node(const u32 node)1355 int zynqmp_pm_release_node(const u32 node)
1356 {
1357 return zynqmp_pm_invoke_fn(PM_RELEASE_NODE, NULL, 1, node);
1358 }
1359 EXPORT_SYMBOL_GPL(zynqmp_pm_release_node);
1360
1361 /**
1362 * zynqmp_pm_get_rpu_mode() - Get RPU mode
1363 * @node_id: Node ID of the device
1364 * @rpu_mode: return by reference value
1365 * either split or lockstep
1366 *
1367 * Return: return 0 on success or error+reason.
1368 * if success, then rpu_mode will be set
1369 * to current rpu mode.
1370 */
zynqmp_pm_get_rpu_mode(u32 node_id,enum rpu_oper_mode * rpu_mode)1371 int zynqmp_pm_get_rpu_mode(u32 node_id, enum rpu_oper_mode *rpu_mode)
1372 {
1373 u32 ret_payload[PAYLOAD_ARG_CNT];
1374 int ret;
1375
1376 ret = zynqmp_pm_invoke_fn(PM_IOCTL, ret_payload, 2, node_id, IOCTL_GET_RPU_OPER_MODE);
1377
1378 /* only set rpu_mode if no error */
1379 if (ret == XST_PM_SUCCESS)
1380 *rpu_mode = ret_payload[0];
1381
1382 return ret;
1383 }
1384 EXPORT_SYMBOL_GPL(zynqmp_pm_get_rpu_mode);
1385
1386 /**
1387 * zynqmp_pm_set_rpu_mode() - Set RPU mode
1388 * @node_id: Node ID of the device
1389 * @rpu_mode: Argument 1 to requested IOCTL call. either split or lockstep
1390 *
1391 * This function is used to set RPU mode to split or
1392 * lockstep
1393 *
1394 * Return: Returns status, either success or error+reason
1395 */
zynqmp_pm_set_rpu_mode(u32 node_id,enum rpu_oper_mode rpu_mode)1396 int zynqmp_pm_set_rpu_mode(u32 node_id, enum rpu_oper_mode rpu_mode)
1397 {
1398 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, node_id, IOCTL_SET_RPU_OPER_MODE,
1399 (u32)rpu_mode);
1400 }
1401 EXPORT_SYMBOL_GPL(zynqmp_pm_set_rpu_mode);
1402
1403 /**
1404 * zynqmp_pm_set_tcm_config - configure TCM
1405 * @node_id: Firmware specific TCM subsystem ID
1406 * @tcm_mode: Argument 1 to requested IOCTL call
1407 * either PM_RPU_TCM_COMB or PM_RPU_TCM_SPLIT
1408 *
1409 * This function is used to set RPU mode to split or combined
1410 *
1411 * Return: status: 0 for success, else failure
1412 */
zynqmp_pm_set_tcm_config(u32 node_id,enum rpu_tcm_comb tcm_mode)1413 int zynqmp_pm_set_tcm_config(u32 node_id, enum rpu_tcm_comb tcm_mode)
1414 {
1415 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, node_id, IOCTL_TCM_COMB_CONFIG,
1416 (u32)tcm_mode);
1417 }
1418 EXPORT_SYMBOL_GPL(zynqmp_pm_set_tcm_config);
1419
1420 /**
1421 * zynqmp_pm_force_pwrdwn - PM call to request for another PU or subsystem to
1422 * be powered down forcefully
1423 * @node: Node ID of the targeted PU or subsystem
1424 * @ack: Flag to specify whether acknowledge is requested
1425 *
1426 * Return: status, either success or error+reason
1427 */
zynqmp_pm_force_pwrdwn(const u32 node,const enum zynqmp_pm_request_ack ack)1428 int zynqmp_pm_force_pwrdwn(const u32 node,
1429 const enum zynqmp_pm_request_ack ack)
1430 {
1431 return zynqmp_pm_invoke_fn(PM_FORCE_POWERDOWN, NULL, 2, node, ack);
1432 }
1433 EXPORT_SYMBOL_GPL(zynqmp_pm_force_pwrdwn);
1434
1435 /**
1436 * zynqmp_pm_request_wake - PM call to wake up selected master or subsystem
1437 * @node: Node ID of the master or subsystem
1438 * @set_addr: Specifies whether the address argument is relevant
1439 * @address: Address from which to resume when woken up
1440 * @ack: Flag to specify whether acknowledge requested
1441 *
1442 * Return: status, either success or error+reason
1443 */
zynqmp_pm_request_wake(const u32 node,const bool set_addr,const u64 address,const enum zynqmp_pm_request_ack ack)1444 int zynqmp_pm_request_wake(const u32 node,
1445 const bool set_addr,
1446 const u64 address,
1447 const enum zynqmp_pm_request_ack ack)
1448 {
1449 /* set_addr flag is encoded into 1st bit of address */
1450 return zynqmp_pm_invoke_fn(PM_REQUEST_WAKEUP, NULL, 4, node, address | set_addr,
1451 address >> 32, ack);
1452 }
1453 EXPORT_SYMBOL_GPL(zynqmp_pm_request_wake);
1454
1455 /**
1456 * zynqmp_pm_set_requirement() - PM call to set requirement for PM slaves
1457 * @node: Node ID of the slave
1458 * @capabilities: Requested capabilities of the slave
1459 * @qos: Quality of service (not supported)
1460 * @ack: Flag to specify whether acknowledge is requested
1461 *
1462 * This API function is to be used for slaves a PU already has requested
1463 * to change its capabilities.
1464 *
1465 * Return: Returns status, either success or error+reason
1466 */
zynqmp_pm_set_requirement(const u32 node,const u32 capabilities,const u32 qos,const enum zynqmp_pm_request_ack ack)1467 int zynqmp_pm_set_requirement(const u32 node, const u32 capabilities,
1468 const u32 qos,
1469 const enum zynqmp_pm_request_ack ack)
1470 {
1471 return zynqmp_pm_invoke_fn(PM_SET_REQUIREMENT, NULL, 4, node, capabilities, qos, ack);
1472 }
1473 EXPORT_SYMBOL_GPL(zynqmp_pm_set_requirement);
1474
1475 /**
1476 * zynqmp_pm_load_pdi - Load and process PDI
1477 * @src: Source device where PDI is located
1478 * @address: PDI src address
1479 *
1480 * This function provides support to load PDI from linux
1481 *
1482 * Return: Returns status, either success or error+reason
1483 */
zynqmp_pm_load_pdi(const u32 src,const u64 address)1484 int zynqmp_pm_load_pdi(const u32 src, const u64 address)
1485 {
1486 return zynqmp_pm_invoke_fn(PM_LOAD_PDI, NULL, 3, src, lower_32_bits(address),
1487 upper_32_bits(address));
1488 }
1489 EXPORT_SYMBOL_GPL(zynqmp_pm_load_pdi);
1490
1491 /**
1492 * zynqmp_pm_aes_engine - Access AES hardware to encrypt/decrypt the data using
1493 * AES-GCM core.
1494 * @address: Address of the AesParams structure.
1495 * @out: Returned output value
1496 *
1497 * Return: Returns status, either success or error code.
1498 */
zynqmp_pm_aes_engine(const u64 address,u32 * out)1499 int zynqmp_pm_aes_engine(const u64 address, u32 *out)
1500 {
1501 u32 ret_payload[PAYLOAD_ARG_CNT];
1502 int ret;
1503
1504 if (!out)
1505 return -EINVAL;
1506
1507 ret = zynqmp_pm_invoke_fn(PM_SECURE_AES, ret_payload, 2, upper_32_bits(address),
1508 lower_32_bits(address));
1509 *out = ret_payload[1];
1510
1511 return ret;
1512 }
1513 EXPORT_SYMBOL_GPL(zynqmp_pm_aes_engine);
1514
1515 /**
1516 * zynqmp_pm_efuse_access - Provides access to efuse memory.
1517 * @address: Address of the efuse params structure
1518 * @out: Returned output value
1519 *
1520 * Return: Returns status, either success or error code.
1521 */
zynqmp_pm_efuse_access(const u64 address,u32 * out)1522 int zynqmp_pm_efuse_access(const u64 address, u32 *out)
1523 {
1524 u32 ret_payload[PAYLOAD_ARG_CNT];
1525 int ret;
1526
1527 if (!out)
1528 return -EINVAL;
1529
1530 ret = zynqmp_pm_invoke_fn(PM_EFUSE_ACCESS, ret_payload, 2,
1531 upper_32_bits(address),
1532 lower_32_bits(address));
1533 *out = ret_payload[1];
1534
1535 return ret;
1536 }
1537 EXPORT_SYMBOL_GPL(zynqmp_pm_efuse_access);
1538
1539 /**
1540 * zynqmp_pm_sha_hash - Access the SHA engine to calculate the hash
1541 * @address: Address of the data/ Address of output buffer where
1542 * hash should be stored.
1543 * @size: Size of the data.
1544 * @flags:
1545 * BIT(0) - for initializing csudma driver and SHA3(Here address
1546 * and size inputs can be NULL).
1547 * BIT(1) - to call Sha3_Update API which can be called multiple
1548 * times when data is not contiguous.
1549 * BIT(2) - to get final hash of the whole updated data.
1550 * Hash will be overwritten at provided address with
1551 * 48 bytes.
1552 *
1553 * Return: Returns status, either success or error code.
1554 */
zynqmp_pm_sha_hash(const u64 address,const u32 size,const u32 flags)1555 int zynqmp_pm_sha_hash(const u64 address, const u32 size, const u32 flags)
1556 {
1557 u32 lower_addr = lower_32_bits(address);
1558 u32 upper_addr = upper_32_bits(address);
1559
1560 return zynqmp_pm_invoke_fn(PM_SECURE_SHA, NULL, 4, upper_addr, lower_addr, size, flags);
1561 }
1562 EXPORT_SYMBOL_GPL(zynqmp_pm_sha_hash);
1563
1564 /**
1565 * zynqmp_pm_register_notifier() - PM API for register a subsystem
1566 * to be notified about specific
1567 * event/error.
1568 * @node: Node ID to which the event is related.
1569 * @event: Event Mask of Error events for which wants to get notified.
1570 * @wake: Wake subsystem upon capturing the event if value 1
1571 * @enable: Enable the registration for value 1, disable for value 0
1572 *
1573 * This function is used to register/un-register for particular node-event
1574 * combination in firmware.
1575 *
1576 * Return: Returns status, either success or error+reason
1577 */
1578
zynqmp_pm_register_notifier(const u32 node,const u32 event,const u32 wake,const u32 enable)1579 int zynqmp_pm_register_notifier(const u32 node, const u32 event,
1580 const u32 wake, const u32 enable)
1581 {
1582 return zynqmp_pm_invoke_fn(PM_REGISTER_NOTIFIER, NULL, 4, node, event, wake, enable);
1583 }
1584 EXPORT_SYMBOL_GPL(zynqmp_pm_register_notifier);
1585
1586 /**
1587 * zynqmp_pm_system_shutdown - PM call to request a system shutdown or restart
1588 * @type: Shutdown or restart? 0 for shutdown, 1 for restart
1589 * @subtype: Specifies which system should be restarted or shut down
1590 *
1591 * Return: Returns status, either success or error+reason
1592 */
zynqmp_pm_system_shutdown(const u32 type,const u32 subtype)1593 int zynqmp_pm_system_shutdown(const u32 type, const u32 subtype)
1594 {
1595 return zynqmp_pm_invoke_fn(PM_SYSTEM_SHUTDOWN, NULL, 2, type, subtype);
1596 }
1597
1598 /**
1599 * zynqmp_pm_set_feature_config - PM call to request IOCTL for feature config
1600 * @id: The config ID of the feature to be configured
1601 * @value: The config value of the feature to be configured
1602 *
1603 * Return: Returns 0 on success or error value on failure.
1604 */
zynqmp_pm_set_feature_config(enum pm_feature_config_id id,u32 value)1605 int zynqmp_pm_set_feature_config(enum pm_feature_config_id id, u32 value)
1606 {
1607 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_FEATURE_CONFIG, id, value);
1608 }
1609
1610 /**
1611 * zynqmp_pm_get_feature_config - PM call to get value of configured feature
1612 * @id: The config id of the feature to be queried
1613 * @payload: Returned value array
1614 *
1615 * Return: Returns 0 on success or error value on failure.
1616 */
zynqmp_pm_get_feature_config(enum pm_feature_config_id id,u32 * payload)1617 int zynqmp_pm_get_feature_config(enum pm_feature_config_id id,
1618 u32 *payload)
1619 {
1620 return zynqmp_pm_invoke_fn(PM_IOCTL, payload, 3, 0, IOCTL_GET_FEATURE_CONFIG, id);
1621 }
1622
1623 /**
1624 * zynqmp_pm_set_sd_config - PM call to set value of SD config registers
1625 * @node: SD node ID
1626 * @config: The config type of SD registers
1627 * @value: Value to be set
1628 *
1629 * Return: Returns 0 on success or error value on failure.
1630 */
zynqmp_pm_set_sd_config(u32 node,enum pm_sd_config_type config,u32 value)1631 int zynqmp_pm_set_sd_config(u32 node, enum pm_sd_config_type config, u32 value)
1632 {
1633 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, node, IOCTL_SET_SD_CONFIG, config, value);
1634 }
1635 EXPORT_SYMBOL_GPL(zynqmp_pm_set_sd_config);
1636
1637 /**
1638 * zynqmp_pm_set_gem_config - PM call to set value of GEM config registers
1639 * @node: GEM node ID
1640 * @config: The config type of GEM registers
1641 * @value: Value to be set
1642 *
1643 * Return: Returns 0 on success or error value on failure.
1644 */
zynqmp_pm_set_gem_config(u32 node,enum pm_gem_config_type config,u32 value)1645 int zynqmp_pm_set_gem_config(u32 node, enum pm_gem_config_type config,
1646 u32 value)
1647 {
1648 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, node, IOCTL_SET_GEM_CONFIG, config, value);
1649 }
1650 EXPORT_SYMBOL_GPL(zynqmp_pm_set_gem_config);
1651
1652 /**
1653 * struct zynqmp_pm_shutdown_scope - Struct for shutdown scope
1654 * @subtype: Shutdown subtype
1655 * @name: Matching string for scope argument
1656 *
1657 * This struct encapsulates mapping between shutdown scope ID and string.
1658 */
1659 struct zynqmp_pm_shutdown_scope {
1660 const enum zynqmp_pm_shutdown_subtype subtype;
1661 const char *name;
1662 };
1663
1664 static struct zynqmp_pm_shutdown_scope shutdown_scopes[] = {
1665 [ZYNQMP_PM_SHUTDOWN_SUBTYPE_SUBSYSTEM] = {
1666 .subtype = ZYNQMP_PM_SHUTDOWN_SUBTYPE_SUBSYSTEM,
1667 .name = "subsystem",
1668 },
1669 [ZYNQMP_PM_SHUTDOWN_SUBTYPE_PS_ONLY] = {
1670 .subtype = ZYNQMP_PM_SHUTDOWN_SUBTYPE_PS_ONLY,
1671 .name = "ps_only",
1672 },
1673 [ZYNQMP_PM_SHUTDOWN_SUBTYPE_SYSTEM] = {
1674 .subtype = ZYNQMP_PM_SHUTDOWN_SUBTYPE_SYSTEM,
1675 .name = "system",
1676 },
1677 };
1678
1679 static struct zynqmp_pm_shutdown_scope *selected_scope =
1680 &shutdown_scopes[ZYNQMP_PM_SHUTDOWN_SUBTYPE_SYSTEM];
1681
1682 /**
1683 * zynqmp_pm_is_shutdown_scope_valid - Check if shutdown scope string is valid
1684 * @scope_string: Shutdown scope string
1685 *
1686 * Return: Return pointer to matching shutdown scope struct from
1687 * array of available options in system if string is valid,
1688 * otherwise returns NULL.
1689 */
1690 static struct zynqmp_pm_shutdown_scope*
zynqmp_pm_is_shutdown_scope_valid(const char * scope_string)1691 zynqmp_pm_is_shutdown_scope_valid(const char *scope_string)
1692 {
1693 int count;
1694
1695 for (count = 0; count < ARRAY_SIZE(shutdown_scopes); count++)
1696 if (sysfs_streq(scope_string, shutdown_scopes[count].name))
1697 return &shutdown_scopes[count];
1698
1699 return NULL;
1700 }
1701
shutdown_scope_show(struct device * device,struct device_attribute * attr,char * buf)1702 static ssize_t shutdown_scope_show(struct device *device,
1703 struct device_attribute *attr,
1704 char *buf)
1705 {
1706 int i;
1707
1708 for (i = 0; i < ARRAY_SIZE(shutdown_scopes); i++) {
1709 if (&shutdown_scopes[i] == selected_scope) {
1710 strcat(buf, "[");
1711 strcat(buf, shutdown_scopes[i].name);
1712 strcat(buf, "]");
1713 } else {
1714 strcat(buf, shutdown_scopes[i].name);
1715 }
1716 strcat(buf, " ");
1717 }
1718 strcat(buf, "\n");
1719
1720 return strlen(buf);
1721 }
1722
shutdown_scope_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count)1723 static ssize_t shutdown_scope_store(struct device *device,
1724 struct device_attribute *attr,
1725 const char *buf, size_t count)
1726 {
1727 int ret;
1728 struct zynqmp_pm_shutdown_scope *scope;
1729
1730 scope = zynqmp_pm_is_shutdown_scope_valid(buf);
1731 if (!scope)
1732 return -EINVAL;
1733
1734 ret = zynqmp_pm_system_shutdown(ZYNQMP_PM_SHUTDOWN_TYPE_SETSCOPE_ONLY,
1735 scope->subtype);
1736 if (ret) {
1737 pr_err("unable to set shutdown scope %s\n", buf);
1738 return ret;
1739 }
1740
1741 selected_scope = scope;
1742
1743 return count;
1744 }
1745
1746 static DEVICE_ATTR_RW(shutdown_scope);
1747
health_status_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count)1748 static ssize_t health_status_store(struct device *device,
1749 struct device_attribute *attr,
1750 const char *buf, size_t count)
1751 {
1752 int ret;
1753 unsigned int value;
1754
1755 ret = kstrtouint(buf, 10, &value);
1756 if (ret)
1757 return ret;
1758
1759 ret = zynqmp_pm_set_boot_health_status(value);
1760 if (ret) {
1761 dev_err(device, "unable to set healthy bit value to %u\n",
1762 value);
1763 return ret;
1764 }
1765
1766 return count;
1767 }
1768
1769 static DEVICE_ATTR_WO(health_status);
1770
ggs_show(struct device * device,struct device_attribute * attr,char * buf,u32 reg)1771 static ssize_t ggs_show(struct device *device,
1772 struct device_attribute *attr,
1773 char *buf,
1774 u32 reg)
1775 {
1776 int ret;
1777 u32 ret_payload[PAYLOAD_ARG_CNT];
1778
1779 ret = zynqmp_pm_read_ggs(reg, ret_payload);
1780 if (ret)
1781 return ret;
1782
1783 return sprintf(buf, "0x%x\n", ret_payload[1]);
1784 }
1785
ggs_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count,u32 reg)1786 static ssize_t ggs_store(struct device *device,
1787 struct device_attribute *attr,
1788 const char *buf, size_t count,
1789 u32 reg)
1790 {
1791 long value;
1792 int ret;
1793
1794 if (reg >= GSS_NUM_REGS)
1795 return -EINVAL;
1796
1797 ret = kstrtol(buf, 16, &value);
1798 if (ret) {
1799 count = -EFAULT;
1800 goto err;
1801 }
1802
1803 ret = zynqmp_pm_write_ggs(reg, value);
1804 if (ret)
1805 count = -EFAULT;
1806 err:
1807 return count;
1808 }
1809
1810 /* GGS register show functions */
1811 #define GGS0_SHOW(N) \
1812 ssize_t ggs##N##_show(struct device *device, \
1813 struct device_attribute *attr, \
1814 char *buf) \
1815 { \
1816 return ggs_show(device, attr, buf, N); \
1817 }
1818
1819 static GGS0_SHOW(0);
1820 static GGS0_SHOW(1);
1821 static GGS0_SHOW(2);
1822 static GGS0_SHOW(3);
1823
1824 /* GGS register store function */
1825 #define GGS0_STORE(N) \
1826 ssize_t ggs##N##_store(struct device *device, \
1827 struct device_attribute *attr, \
1828 const char *buf, \
1829 size_t count) \
1830 { \
1831 return ggs_store(device, attr, buf, count, N); \
1832 }
1833
1834 static GGS0_STORE(0);
1835 static GGS0_STORE(1);
1836 static GGS0_STORE(2);
1837 static GGS0_STORE(3);
1838
pggs_show(struct device * device,struct device_attribute * attr,char * buf,u32 reg)1839 static ssize_t pggs_show(struct device *device,
1840 struct device_attribute *attr,
1841 char *buf,
1842 u32 reg)
1843 {
1844 int ret;
1845 u32 ret_payload[PAYLOAD_ARG_CNT];
1846
1847 ret = zynqmp_pm_read_pggs(reg, ret_payload);
1848 if (ret)
1849 return ret;
1850
1851 return sprintf(buf, "0x%x\n", ret_payload[1]);
1852 }
1853
pggs_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count,u32 reg)1854 static ssize_t pggs_store(struct device *device,
1855 struct device_attribute *attr,
1856 const char *buf, size_t count,
1857 u32 reg)
1858 {
1859 long value;
1860 int ret;
1861
1862 if (reg >= GSS_NUM_REGS)
1863 return -EINVAL;
1864
1865 ret = kstrtol(buf, 16, &value);
1866 if (ret) {
1867 count = -EFAULT;
1868 goto err;
1869 }
1870
1871 ret = zynqmp_pm_write_pggs(reg, value);
1872 if (ret)
1873 count = -EFAULT;
1874
1875 err:
1876 return count;
1877 }
1878
1879 #define PGGS0_SHOW(N) \
1880 ssize_t pggs##N##_show(struct device *device, \
1881 struct device_attribute *attr, \
1882 char *buf) \
1883 { \
1884 return pggs_show(device, attr, buf, N); \
1885 }
1886
1887 #define PGGS0_STORE(N) \
1888 ssize_t pggs##N##_store(struct device *device, \
1889 struct device_attribute *attr, \
1890 const char *buf, \
1891 size_t count) \
1892 { \
1893 return pggs_store(device, attr, buf, count, N); \
1894 }
1895
1896 /* PGGS register show functions */
1897 static PGGS0_SHOW(0);
1898 static PGGS0_SHOW(1);
1899 static PGGS0_SHOW(2);
1900 static PGGS0_SHOW(3);
1901
1902 /* PGGS register store functions */
1903 static PGGS0_STORE(0);
1904 static PGGS0_STORE(1);
1905 static PGGS0_STORE(2);
1906 static PGGS0_STORE(3);
1907
1908 /* GGS register attributes */
1909 static DEVICE_ATTR_RW(ggs0);
1910 static DEVICE_ATTR_RW(ggs1);
1911 static DEVICE_ATTR_RW(ggs2);
1912 static DEVICE_ATTR_RW(ggs3);
1913
1914 /* PGGS register attributes */
1915 static DEVICE_ATTR_RW(pggs0);
1916 static DEVICE_ATTR_RW(pggs1);
1917 static DEVICE_ATTR_RW(pggs2);
1918 static DEVICE_ATTR_RW(pggs3);
1919
feature_config_id_show(struct device * device,struct device_attribute * attr,char * buf)1920 static ssize_t feature_config_id_show(struct device *device,
1921 struct device_attribute *attr,
1922 char *buf)
1923 {
1924 struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
1925
1926 return sysfs_emit(buf, "%d\n", devinfo->feature_conf_id);
1927 }
1928
feature_config_id_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count)1929 static ssize_t feature_config_id_store(struct device *device,
1930 struct device_attribute *attr,
1931 const char *buf, size_t count)
1932 {
1933 u32 config_id;
1934 int ret;
1935 struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
1936
1937 if (!buf)
1938 return -EINVAL;
1939
1940 ret = kstrtou32(buf, 10, &config_id);
1941 if (ret)
1942 return ret;
1943
1944 devinfo->feature_conf_id = config_id;
1945
1946 return count;
1947 }
1948
1949 static DEVICE_ATTR_RW(feature_config_id);
1950
feature_config_value_show(struct device * device,struct device_attribute * attr,char * buf)1951 static ssize_t feature_config_value_show(struct device *device,
1952 struct device_attribute *attr,
1953 char *buf)
1954 {
1955 int ret;
1956 u32 ret_payload[PAYLOAD_ARG_CNT];
1957 struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
1958
1959 ret = zynqmp_pm_get_feature_config(devinfo->feature_conf_id,
1960 ret_payload);
1961 if (ret)
1962 return ret;
1963
1964 return sysfs_emit(buf, "%d\n", ret_payload[1]);
1965 }
1966
feature_config_value_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count)1967 static ssize_t feature_config_value_store(struct device *device,
1968 struct device_attribute *attr,
1969 const char *buf, size_t count)
1970 {
1971 u32 value;
1972 int ret;
1973 struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
1974
1975 if (!buf)
1976 return -EINVAL;
1977
1978 ret = kstrtou32(buf, 10, &value);
1979 if (ret)
1980 return ret;
1981
1982 ret = zynqmp_pm_set_feature_config(devinfo->feature_conf_id,
1983 value);
1984 if (ret)
1985 return ret;
1986
1987 return count;
1988 }
1989
1990 static DEVICE_ATTR_RW(feature_config_value);
1991
1992 static struct attribute *zynqmp_firmware_attrs[] = {
1993 &dev_attr_ggs0.attr,
1994 &dev_attr_ggs1.attr,
1995 &dev_attr_ggs2.attr,
1996 &dev_attr_ggs3.attr,
1997 &dev_attr_pggs0.attr,
1998 &dev_attr_pggs1.attr,
1999 &dev_attr_pggs2.attr,
2000 &dev_attr_pggs3.attr,
2001 &dev_attr_shutdown_scope.attr,
2002 &dev_attr_health_status.attr,
2003 &dev_attr_feature_config_id.attr,
2004 &dev_attr_feature_config_value.attr,
2005 NULL,
2006 };
2007
2008 ATTRIBUTE_GROUPS(zynqmp_firmware);
2009
zynqmp_firmware_probe(struct platform_device * pdev)2010 static int zynqmp_firmware_probe(struct platform_device *pdev)
2011 {
2012 struct device *dev = &pdev->dev;
2013 struct zynqmp_devinfo *devinfo;
2014 int ret;
2015
2016 ret = get_set_conduit_method(dev->of_node);
2017 if (ret)
2018 return ret;
2019
2020 /* Get SiP SVC version number */
2021 ret = zynqmp_pm_get_sip_svc_version(&sip_svc_version);
2022 if (ret)
2023 return ret;
2024
2025 ret = do_feature_check_call(PM_FEATURE_CHECK);
2026 if (ret >= 0 && ((ret & FIRMWARE_VERSION_MASK) >= PM_API_VERSION_1))
2027 feature_check_enabled = true;
2028
2029 devinfo = devm_kzalloc(dev, sizeof(*devinfo), GFP_KERNEL);
2030 if (!devinfo)
2031 return -ENOMEM;
2032
2033 devinfo->dev = dev;
2034
2035 platform_set_drvdata(pdev, devinfo);
2036
2037 /* Check PM API version number */
2038 ret = zynqmp_pm_get_api_version(&pm_api_version);
2039 if (ret)
2040 return ret;
2041
2042 if (pm_api_version < ZYNQMP_PM_VERSION) {
2043 panic("%s Platform Management API version error. Expected: v%d.%d - Found: v%d.%d\n",
2044 __func__,
2045 ZYNQMP_PM_VERSION_MAJOR, ZYNQMP_PM_VERSION_MINOR,
2046 pm_api_version >> 16, pm_api_version & 0xFFFF);
2047 }
2048
2049 pr_info("%s Platform Management API v%d.%d\n", __func__,
2050 pm_api_version >> 16, pm_api_version & 0xFFFF);
2051
2052 /* Get the Family code and sub family code of platform */
2053 ret = zynqmp_pm_get_family_info(&pm_family_code, &pm_sub_family_code);
2054 if (ret < 0)
2055 return ret;
2056
2057 /* Check trustzone version number */
2058 ret = zynqmp_pm_get_trustzone_version(&pm_tz_version);
2059 if (ret)
2060 panic("Legacy trustzone found without version support\n");
2061
2062 if (pm_tz_version < ZYNQMP_TZ_VERSION)
2063 panic("%s Trustzone version error. Expected: v%d.%d - Found: v%d.%d\n",
2064 __func__,
2065 ZYNQMP_TZ_VERSION_MAJOR, ZYNQMP_TZ_VERSION_MINOR,
2066 pm_tz_version >> 16, pm_tz_version & 0xFFFF);
2067
2068 pr_info("%s Trustzone version v%d.%d\n", __func__,
2069 pm_tz_version >> 16, pm_tz_version & 0xFFFF);
2070
2071 ret = mfd_add_devices(&pdev->dev, PLATFORM_DEVID_NONE, firmware_devs,
2072 ARRAY_SIZE(firmware_devs), NULL, 0, NULL);
2073 if (ret) {
2074 dev_err(&pdev->dev, "failed to add MFD devices %d\n", ret);
2075 return ret;
2076 }
2077
2078 zynqmp_pm_api_debugfs_init();
2079
2080 if (pm_family_code == VERSAL_FAMILY_CODE) {
2081 em_dev = platform_device_register_data(&pdev->dev, "xlnx_event_manager",
2082 -1, NULL, 0);
2083 if (IS_ERR(em_dev))
2084 dev_err_probe(&pdev->dev, PTR_ERR(em_dev), "EM register fail with error\n");
2085 }
2086
2087 return of_platform_populate(dev->of_node, NULL, NULL, dev);
2088 }
2089
zynqmp_firmware_remove(struct platform_device * pdev)2090 static void zynqmp_firmware_remove(struct platform_device *pdev)
2091 {
2092 struct pm_api_feature_data *feature_data;
2093 struct hlist_node *tmp;
2094 int i;
2095
2096 mfd_remove_devices(&pdev->dev);
2097 zynqmp_pm_api_debugfs_exit();
2098
2099 hash_for_each_safe(pm_api_features_map, i, tmp, feature_data, hentry) {
2100 hash_del(&feature_data->hentry);
2101 kfree(feature_data);
2102 }
2103
2104 platform_device_unregister(em_dev);
2105 }
2106
2107 static const struct of_device_id zynqmp_firmware_of_match[] = {
2108 {.compatible = "xlnx,zynqmp-firmware"},
2109 {.compatible = "xlnx,versal-firmware"},
2110 {},
2111 };
2112 MODULE_DEVICE_TABLE(of, zynqmp_firmware_of_match);
2113
2114 static struct platform_driver zynqmp_firmware_driver = {
2115 .driver = {
2116 .name = "zynqmp_firmware",
2117 .of_match_table = zynqmp_firmware_of_match,
2118 .dev_groups = zynqmp_firmware_groups,
2119 },
2120 .probe = zynqmp_firmware_probe,
2121 .remove = zynqmp_firmware_remove,
2122 };
2123 module_platform_driver(zynqmp_firmware_driver);
2124