1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EFI stub implementation that is shared by arm and arm64 architectures.
4  * This should be #included by the EFI stub implementation files.
5  *
6  * Copyright (C) 2013,2014 Linaro Limited
7  *     Roy Franz <[email protected]
8  * Copyright (C) 2013 Red Hat, Inc.
9  *     Mark Salter <[email protected]>
10  */
11 
12 #include <linux/efi.h>
13 #include <linux/screen_info.h>
14 #include <asm/efi.h>
15 
16 #include "efistub.h"
17 
18 /*
19  * This is the base address at which to start allocating virtual memory ranges
20  * for UEFI Runtime Services.
21  *
22  * For ARM/ARM64:
23  * This is in the low TTBR0 range so that we can use
24  * any allocation we choose, and eliminate the risk of a conflict after kexec.
25  * The value chosen is the largest non-zero power of 2 suitable for this purpose
26  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
27  * be mapped efficiently.
28  * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
29  * map everything below 1 GB. (512 MB is a reasonable upper bound for the
30  * entire footprint of the UEFI runtime services memory regions)
31  *
32  * For RISC-V:
33  * There is no specific reason for which, this address (512MB) can't be used
34  * EFI runtime virtual address for RISC-V. It also helps to use EFI runtime
35  * services on both RV32/RV64. Keep the same runtime virtual address for RISC-V
36  * as well to minimize the code churn.
37  */
38 #define EFI_RT_VIRTUAL_BASE	SZ_512M
39 
40 /*
41  * Some architectures map the EFI regions into the kernel's linear map using a
42  * fixed offset.
43  */
44 #ifndef EFI_RT_VIRTUAL_OFFSET
45 #define EFI_RT_VIRTUAL_OFFSET	0
46 #endif
47 
48 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
49 static bool flat_va_mapping = (EFI_RT_VIRTUAL_OFFSET != 0);
50 
free_screen_info(struct screen_info * si)51 void __weak free_screen_info(struct screen_info *si)
52 {
53 }
54 
setup_graphics(void)55 static struct screen_info *setup_graphics(void)
56 {
57 	struct screen_info *si, tmp = {};
58 
59 	if (efi_setup_gop(&tmp) != EFI_SUCCESS)
60 		return NULL;
61 
62 	si = alloc_screen_info();
63 	if (!si)
64 		return NULL;
65 
66 	*si = tmp;
67 	return si;
68 }
69 
install_memreserve_table(void)70 static void install_memreserve_table(void)
71 {
72 	struct linux_efi_memreserve *rsv;
73 	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
74 	efi_status_t status;
75 
76 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
77 			     (void **)&rsv);
78 	if (status != EFI_SUCCESS) {
79 		efi_err("Failed to allocate memreserve entry!\n");
80 		return;
81 	}
82 
83 	rsv->next = 0;
84 	rsv->size = 0;
85 	atomic_set(&rsv->count, 0);
86 
87 	status = efi_bs_call(install_configuration_table,
88 			     &memreserve_table_guid, rsv);
89 	if (status != EFI_SUCCESS)
90 		efi_err("Failed to install memreserve config table!\n");
91 }
92 
get_supported_rt_services(void)93 static u32 get_supported_rt_services(void)
94 {
95 	const efi_rt_properties_table_t *rt_prop_table;
96 	u32 supported = EFI_RT_SUPPORTED_ALL;
97 
98 	rt_prop_table = get_efi_config_table(EFI_RT_PROPERTIES_TABLE_GUID);
99 	if (rt_prop_table)
100 		supported &= rt_prop_table->runtime_services_supported;
101 
102 	return supported;
103 }
104 
efi_handle_cmdline(efi_loaded_image_t * image,char ** cmdline_ptr)105 efi_status_t efi_handle_cmdline(efi_loaded_image_t *image, char **cmdline_ptr)
106 {
107 	char *cmdline __free(efi_pool) = NULL;
108 	efi_status_t status;
109 
110 	/*
111 	 * Get the command line from EFI, using the LOADED_IMAGE
112 	 * protocol. We are going to copy the command line into the
113 	 * device tree, so this can be allocated anywhere.
114 	 */
115 	cmdline = efi_convert_cmdline(image);
116 	if (!cmdline) {
117 		efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
118 		return EFI_OUT_OF_RESOURCES;
119 	}
120 
121 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
122 		status = efi_parse_options(cmdline);
123 		if (status != EFI_SUCCESS) {
124 			efi_err("Failed to parse EFI load options\n");
125 			return status;
126 		}
127 	}
128 
129 	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
130 	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
131 	    cmdline[0] == 0) {
132 		status = efi_parse_options(CONFIG_CMDLINE);
133 		if (status != EFI_SUCCESS) {
134 			efi_err("Failed to parse built-in command line\n");
135 			return status;
136 		}
137 	}
138 
139 	*cmdline_ptr = no_free_ptr(cmdline);
140 	return EFI_SUCCESS;
141 }
142 
efi_stub_common(efi_handle_t handle,efi_loaded_image_t * image,unsigned long image_addr,char * cmdline_ptr)143 efi_status_t efi_stub_common(efi_handle_t handle,
144 			     efi_loaded_image_t *image,
145 			     unsigned long image_addr,
146 			     char *cmdline_ptr)
147 {
148 	struct screen_info *si;
149 	efi_status_t status;
150 
151 	status = check_platform_features();
152 	if (status != EFI_SUCCESS)
153 		return status;
154 
155 	si = setup_graphics();
156 
157 	efi_retrieve_eventlog();
158 
159 	/* Ask the firmware to clear memory on unclean shutdown */
160 	efi_enable_reset_attack_mitigation();
161 
162 	efi_load_initrd(image, ULONG_MAX, efi_get_max_initrd_addr(image_addr),
163 			NULL);
164 
165 	efi_random_get_seed();
166 
167 	/* force efi_novamap if SetVirtualAddressMap() is unsupported */
168 	efi_novamap |= !(get_supported_rt_services() &
169 			 EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP);
170 
171 	install_memreserve_table();
172 
173 	status = efi_boot_kernel(handle, image, image_addr, cmdline_ptr);
174 
175 	free_screen_info(si);
176 	return status;
177 }
178 
179 /*
180  * efi_allocate_virtmap() - create a pool allocation for the virtmap
181  *
182  * Create an allocation that is of sufficient size to hold all the memory
183  * descriptors that will be passed to SetVirtualAddressMap() to inform the
184  * firmware about the virtual mapping that will be used under the OS to call
185  * into the firmware.
186  */
efi_alloc_virtmap(efi_memory_desc_t ** virtmap,unsigned long * desc_size,u32 * desc_ver)187 efi_status_t efi_alloc_virtmap(efi_memory_desc_t **virtmap,
188 			       unsigned long *desc_size, u32 *desc_ver)
189 {
190 	unsigned long size, mmap_key;
191 	efi_status_t status;
192 
193 	/*
194 	 * Use the size of the current memory map as an upper bound for the
195 	 * size of the buffer we need to pass to SetVirtualAddressMap() to
196 	 * cover all EFI_MEMORY_RUNTIME regions.
197 	 */
198 	size = 0;
199 	status = efi_bs_call(get_memory_map, &size, NULL, &mmap_key, desc_size,
200 			     desc_ver);
201 	if (status != EFI_BUFFER_TOO_SMALL)
202 		return EFI_LOAD_ERROR;
203 
204 	return efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
205 			   (void **)virtmap);
206 }
207 
208 /*
209  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
210  *
211  * This function populates the virt_addr fields of all memory region descriptors
212  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
213  * are also copied to @runtime_map, and their total count is returned in @count.
214  */
efi_get_virtmap(efi_memory_desc_t * memory_map,unsigned long map_size,unsigned long desc_size,efi_memory_desc_t * runtime_map,int * count)215 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
216 		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
217 		     int *count)
218 {
219 	u64 efi_virt_base = virtmap_base;
220 	efi_memory_desc_t *in, *out = runtime_map;
221 	int l;
222 
223 	*count = 0;
224 
225 	for (l = 0; l < map_size; l += desc_size) {
226 		u64 paddr, size;
227 
228 		in = (void *)memory_map + l;
229 		if (!(in->attribute & EFI_MEMORY_RUNTIME))
230 			continue;
231 
232 		paddr = in->phys_addr;
233 		size = in->num_pages * EFI_PAGE_SIZE;
234 
235 		in->virt_addr = in->phys_addr + EFI_RT_VIRTUAL_OFFSET;
236 		if (efi_novamap) {
237 			continue;
238 		}
239 
240 		/*
241 		 * Make the mapping compatible with 64k pages: this allows
242 		 * a 4k page size kernel to kexec a 64k page size kernel and
243 		 * vice versa.
244 		 */
245 		if (!flat_va_mapping) {
246 
247 			paddr = round_down(in->phys_addr, SZ_64K);
248 			size += in->phys_addr - paddr;
249 
250 			/*
251 			 * Avoid wasting memory on PTEs by choosing a virtual
252 			 * base that is compatible with section mappings if this
253 			 * region has the appropriate size and physical
254 			 * alignment. (Sections are 2 MB on 4k granule kernels)
255 			 */
256 			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
257 				efi_virt_base = round_up(efi_virt_base, SZ_2M);
258 			else
259 				efi_virt_base = round_up(efi_virt_base, SZ_64K);
260 
261 			in->virt_addr += efi_virt_base - paddr;
262 			efi_virt_base += size;
263 		}
264 
265 		memcpy(out, in, desc_size);
266 		out = (void *)out + desc_size;
267 		++*count;
268 	}
269 }
270