1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Helper functions used by the EFI stub on multiple
4  * architectures. This should be #included by the EFI stub
5  * implementation files.
6  *
7  * Copyright 2011 Intel Corporation; author Matt Fleming
8  */
9 
10 #include <linux/stdarg.h>
11 
12 #include <linux/efi.h>
13 #include <linux/kernel.h>
14 #include <linux/overflow.h>
15 #include <asm/efi.h>
16 #include <asm/setup.h>
17 
18 #include "efistub.h"
19 
20 bool efi_nochunk;
21 bool efi_nokaslr = !IS_ENABLED(CONFIG_RANDOMIZE_BASE);
22 bool efi_novamap;
23 
24 static bool efi_noinitrd;
25 static bool efi_nosoftreserve;
26 static bool efi_disable_pci_dma = IS_ENABLED(CONFIG_EFI_DISABLE_PCI_DMA);
27 
28 int efi_mem_encrypt;
29 
__efi_soft_reserve_enabled(void)30 bool __pure __efi_soft_reserve_enabled(void)
31 {
32 	return !efi_nosoftreserve;
33 }
34 
35 /**
36  * efi_parse_options() - Parse EFI command line options
37  * @cmdline:	kernel command line
38  *
39  * Parse the ASCII string @cmdline for EFI options, denoted by the efi=
40  * option, e.g. efi=nochunk.
41  *
42  * It should be noted that efi= is parsed in two very different
43  * environments, first in the early boot environment of the EFI boot
44  * stub, and subsequently during the kernel boot.
45  *
46  * Return:	status code
47  */
efi_parse_options(char const * cmdline)48 efi_status_t efi_parse_options(char const *cmdline)
49 {
50 	char *buf __free(efi_pool) = NULL;
51 	efi_status_t status;
52 	size_t len;
53 	char *str;
54 
55 	if (!cmdline)
56 		return EFI_SUCCESS;
57 
58 	len = strnlen(cmdline, COMMAND_LINE_SIZE - 1) + 1;
59 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, len, (void **)&buf);
60 	if (status != EFI_SUCCESS)
61 		return status;
62 
63 	memcpy(buf, cmdline, len - 1);
64 	buf[len - 1] = '\0';
65 	str = skip_spaces(buf);
66 
67 	while (*str) {
68 		char *param, *val;
69 
70 		str = next_arg(str, &param, &val);
71 		if (!val && !strcmp(param, "--"))
72 			break;
73 
74 		if (!strcmp(param, "nokaslr")) {
75 			efi_nokaslr = true;
76 		} else if (!strcmp(param, "quiet")) {
77 			efi_loglevel = CONSOLE_LOGLEVEL_QUIET;
78 		} else if (!strcmp(param, "noinitrd")) {
79 			efi_noinitrd = true;
80 		} else if (IS_ENABLED(CONFIG_X86_64) && !strcmp(param, "no5lvl")) {
81 			efi_no5lvl = true;
82 		} else if (IS_ENABLED(CONFIG_ARCH_HAS_MEM_ENCRYPT) &&
83 			   !strcmp(param, "mem_encrypt") && val) {
84 			if (parse_option_str(val, "on"))
85 				efi_mem_encrypt = 1;
86 			else if (parse_option_str(val, "off"))
87 				efi_mem_encrypt = -1;
88 		} else if (!strcmp(param, "efi") && val) {
89 			efi_nochunk = parse_option_str(val, "nochunk");
90 			efi_novamap |= parse_option_str(val, "novamap");
91 
92 			efi_nosoftreserve = IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) &&
93 					    parse_option_str(val, "nosoftreserve");
94 
95 			if (parse_option_str(val, "disable_early_pci_dma"))
96 				efi_disable_pci_dma = true;
97 			if (parse_option_str(val, "no_disable_early_pci_dma"))
98 				efi_disable_pci_dma = false;
99 			if (parse_option_str(val, "debug"))
100 				efi_loglevel = CONSOLE_LOGLEVEL_DEBUG;
101 		} else if (!strcmp(param, "video") &&
102 			   val && strstarts(val, "efifb:")) {
103 			efi_parse_option_graphics(val + strlen("efifb:"));
104 		}
105 	}
106 	return EFI_SUCCESS;
107 }
108 
109 /*
110  * The EFI_LOAD_OPTION descriptor has the following layout:
111  *	u32 Attributes;
112  *	u16 FilePathListLength;
113  *	u16 Description[];
114  *	efi_device_path_protocol_t FilePathList[];
115  *	u8 OptionalData[];
116  *
117  * This function validates and unpacks the variable-size data fields.
118  */
119 static
efi_load_option_unpack(efi_load_option_unpacked_t * dest,const efi_load_option_t * src,size_t size)120 bool efi_load_option_unpack(efi_load_option_unpacked_t *dest,
121 			    const efi_load_option_t *src, size_t size)
122 {
123 	const void *pos;
124 	u16 c;
125 	efi_device_path_protocol_t header;
126 	const efi_char16_t *description;
127 	const efi_device_path_protocol_t *file_path_list;
128 
129 	if (size < offsetof(efi_load_option_t, variable_data))
130 		return false;
131 	pos = src->variable_data;
132 	size -= offsetof(efi_load_option_t, variable_data);
133 
134 	if ((src->attributes & ~EFI_LOAD_OPTION_MASK) != 0)
135 		return false;
136 
137 	/* Scan description. */
138 	description = pos;
139 	do {
140 		if (size < sizeof(c))
141 			return false;
142 		c = *(const u16 *)pos;
143 		pos += sizeof(c);
144 		size -= sizeof(c);
145 	} while (c != L'\0');
146 
147 	/* Scan file_path_list. */
148 	file_path_list = pos;
149 	do {
150 		if (size < sizeof(header))
151 			return false;
152 		header = *(const efi_device_path_protocol_t *)pos;
153 		if (header.length < sizeof(header))
154 			return false;
155 		if (size < header.length)
156 			return false;
157 		pos += header.length;
158 		size -= header.length;
159 	} while ((header.type != EFI_DEV_END_PATH && header.type != EFI_DEV_END_PATH2) ||
160 		 (header.sub_type != EFI_DEV_END_ENTIRE));
161 	if (pos != (const void *)file_path_list + src->file_path_list_length)
162 		return false;
163 
164 	dest->attributes = src->attributes;
165 	dest->file_path_list_length = src->file_path_list_length;
166 	dest->description = description;
167 	dest->file_path_list = file_path_list;
168 	dest->optional_data_size = size;
169 	dest->optional_data = size ? pos : NULL;
170 
171 	return true;
172 }
173 
174 /*
175  * At least some versions of Dell firmware pass the entire contents of the
176  * Boot#### variable, i.e. the EFI_LOAD_OPTION descriptor, rather than just the
177  * OptionalData field.
178  *
179  * Detect this case and extract OptionalData.
180  */
efi_apply_loadoptions_quirk(const void ** load_options,u32 * load_options_size)181 void efi_apply_loadoptions_quirk(const void **load_options, u32 *load_options_size)
182 {
183 	const efi_load_option_t *load_option = *load_options;
184 	efi_load_option_unpacked_t load_option_unpacked;
185 
186 	if (!IS_ENABLED(CONFIG_X86))
187 		return;
188 	if (!load_option)
189 		return;
190 	if (*load_options_size < sizeof(*load_option))
191 		return;
192 	if ((load_option->attributes & ~EFI_LOAD_OPTION_BOOT_MASK) != 0)
193 		return;
194 
195 	if (!efi_load_option_unpack(&load_option_unpacked, load_option, *load_options_size))
196 		return;
197 
198 	efi_warn_once(FW_BUG "LoadOptions is an EFI_LOAD_OPTION descriptor\n");
199 	efi_warn_once(FW_BUG "Using OptionalData as a workaround\n");
200 
201 	*load_options = load_option_unpacked.optional_data;
202 	*load_options_size = load_option_unpacked.optional_data_size;
203 }
204 
205 enum efistub_event_type {
206 	EFISTUB_EVT_INITRD,
207 	EFISTUB_EVT_LOAD_OPTIONS,
208 	EFISTUB_EVT_COUNT,
209 };
210 
211 #define STR_WITH_SIZE(s)	sizeof(s), s
212 
213 static const struct {
214 	u32		pcr_index;
215 	u32		event_id;
216 	u32		event_data_len;
217 	u8		event_data[52];
218 } events[] = {
219 	[EFISTUB_EVT_INITRD] = {
220 		9,
221 		INITRD_EVENT_TAG_ID,
222 		STR_WITH_SIZE("Linux initrd")
223 	},
224 	[EFISTUB_EVT_LOAD_OPTIONS] = {
225 		9,
226 		LOAD_OPTIONS_EVENT_TAG_ID,
227 		STR_WITH_SIZE("LOADED_IMAGE::LoadOptions")
228 	},
229 };
230 
231 static_assert(sizeof(efi_tcg2_event_t) == sizeof(efi_cc_event_t));
232 
233 union efistub_event {
234 	efi_tcg2_event_t	tcg2_data;
235 	efi_cc_event_t		cc_data;
236 };
237 
238 struct efistub_measured_event {
239 	union efistub_event	event_data;
240 	TCG_PCClientTaggedEvent tagged_event __packed;
241 };
242 
efi_measure_tagged_event(unsigned long load_addr,unsigned long load_size,enum efistub_event_type event)243 static efi_status_t efi_measure_tagged_event(unsigned long load_addr,
244 					     unsigned long load_size,
245 					     enum efistub_event_type event)
246 {
247 	union {
248 		efi_status_t
249 		(__efiapi *hash_log_extend_event)(void *, u64, efi_physical_addr_t,
250 						  u64, const union efistub_event *);
251 		struct { u32 hash_log_extend_event; } mixed_mode;
252 	} method;
253 	struct efistub_measured_event *evt __free(efi_pool) = NULL;
254 	int size = struct_size(evt, tagged_event.tagged_event_data,
255 			       events[event].event_data_len);
256 	efi_guid_t tcg2_guid = EFI_TCG2_PROTOCOL_GUID;
257 	efi_tcg2_protocol_t *tcg2 = NULL;
258 	union efistub_event ev;
259 	efi_status_t status;
260 	void *protocol;
261 
262 	efi_bs_call(locate_protocol, &tcg2_guid, NULL, (void **)&tcg2);
263 	if (tcg2) {
264 		ev.tcg2_data = (struct efi_tcg2_event){
265 			.event_size			= size,
266 			.event_header.header_size	= sizeof(ev.tcg2_data.event_header),
267 			.event_header.header_version	= EFI_TCG2_EVENT_HEADER_VERSION,
268 			.event_header.pcr_index		= events[event].pcr_index,
269 			.event_header.event_type	= EV_EVENT_TAG,
270 		};
271 		protocol = tcg2;
272 		method.hash_log_extend_event =
273 			(void *)efi_table_attr(tcg2, hash_log_extend_event);
274 	} else {
275 		efi_guid_t cc_guid = EFI_CC_MEASUREMENT_PROTOCOL_GUID;
276 		efi_cc_protocol_t *cc = NULL;
277 
278 		efi_bs_call(locate_protocol, &cc_guid, NULL, (void **)&cc);
279 		if (!cc)
280 			return EFI_UNSUPPORTED;
281 
282 		ev.cc_data = (struct efi_cc_event){
283 			.event_size			= size,
284 			.event_header.header_size	= sizeof(ev.cc_data.event_header),
285 			.event_header.header_version	= EFI_CC_EVENT_HEADER_VERSION,
286 			.event_header.event_type	= EV_EVENT_TAG,
287 		};
288 
289 		status = efi_call_proto(cc, map_pcr_to_mr_index,
290 					events[event].pcr_index,
291 					&ev.cc_data.event_header.mr_index);
292 		if (status != EFI_SUCCESS)
293 			goto fail;
294 
295 		protocol = cc;
296 		method.hash_log_extend_event =
297 			(void *)efi_table_attr(cc, hash_log_extend_event);
298 	}
299 
300 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, (void **)&evt);
301 	if (status != EFI_SUCCESS)
302 		goto fail;
303 
304 	*evt = (struct efistub_measured_event) {
305 		.event_data			     = ev,
306 		.tagged_event.tagged_event_id	     = events[event].event_id,
307 		.tagged_event.tagged_event_data_size = events[event].event_data_len,
308 	};
309 
310 	memcpy(evt->tagged_event.tagged_event_data, events[event].event_data,
311 	       events[event].event_data_len);
312 
313 	status = efi_fn_call(&method, hash_log_extend_event, protocol, 0,
314 			     load_addr, load_size, &evt->event_data);
315 
316 	if (status == EFI_SUCCESS)
317 		return EFI_SUCCESS;
318 
319 fail:
320 	efi_warn("Failed to measure data for event %d: 0x%lx\n", event, status);
321 	return status;
322 }
323 
324 /*
325  * Convert the unicode UEFI command line to ASCII to pass to kernel.
326  * Size of memory allocated return in *cmd_line_len.
327  * Returns NULL on error.
328  */
efi_convert_cmdline(efi_loaded_image_t * image)329 char *efi_convert_cmdline(efi_loaded_image_t *image)
330 {
331 	const efi_char16_t *options = efi_table_attr(image, load_options);
332 	u32 options_size = efi_table_attr(image, load_options_size);
333 	int options_bytes = 0, safe_options_bytes = 0;  /* UTF-8 bytes */
334 	unsigned long cmdline_addr = 0;
335 	const efi_char16_t *s2;
336 	bool in_quote = false;
337 	efi_status_t status;
338 	u32 options_chars;
339 
340 	if (options_size > 0)
341 		efi_measure_tagged_event((unsigned long)options, options_size,
342 					 EFISTUB_EVT_LOAD_OPTIONS);
343 
344 	efi_apply_loadoptions_quirk((const void **)&options, &options_size);
345 	options_chars = options_size / sizeof(efi_char16_t);
346 
347 	if (options) {
348 		s2 = options;
349 		while (options_bytes < COMMAND_LINE_SIZE && options_chars--) {
350 			efi_char16_t c = *s2++;
351 
352 			if (c < 0x80) {
353 				if (c == L'\0' || c == L'\n')
354 					break;
355 				if (c == L'"')
356 					in_quote = !in_quote;
357 				else if (!in_quote && isspace((char)c))
358 					safe_options_bytes = options_bytes;
359 
360 				options_bytes++;
361 				continue;
362 			}
363 
364 			/*
365 			 * Get the number of UTF-8 bytes corresponding to a
366 			 * UTF-16 character.
367 			 * The first part handles everything in the BMP.
368 			 */
369 			options_bytes += 2 + (c >= 0x800);
370 			/*
371 			 * Add one more byte for valid surrogate pairs. Invalid
372 			 * surrogates will be replaced with 0xfffd and take up
373 			 * only 3 bytes.
374 			 */
375 			if ((c & 0xfc00) == 0xd800) {
376 				/*
377 				 * If the very last word is a high surrogate,
378 				 * we must ignore it since we can't access the
379 				 * low surrogate.
380 				 */
381 				if (!options_chars) {
382 					options_bytes -= 3;
383 				} else if ((*s2 & 0xfc00) == 0xdc00) {
384 					options_bytes++;
385 					options_chars--;
386 					s2++;
387 				}
388 			}
389 		}
390 		if (options_bytes >= COMMAND_LINE_SIZE) {
391 			options_bytes = safe_options_bytes;
392 			efi_err("Command line is too long: truncated to %d bytes\n",
393 				options_bytes);
394 		}
395 	}
396 
397 	options_bytes++;	/* NUL termination */
398 
399 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, options_bytes,
400 			     (void **)&cmdline_addr);
401 	if (status != EFI_SUCCESS)
402 		return NULL;
403 
404 	snprintf((char *)cmdline_addr, options_bytes, "%.*ls",
405 		 options_bytes - 1, options);
406 
407 	return (char *)cmdline_addr;
408 }
409 
410 /**
411  * efi_exit_boot_services() - Exit boot services
412  * @handle:	handle of the exiting image
413  * @priv:	argument to be passed to @priv_func
414  * @priv_func:	function to process the memory map before exiting boot services
415  *
416  * Handle calling ExitBootServices according to the requirements set out by the
417  * spec.  Obtains the current memory map, and returns that info after calling
418  * ExitBootServices.  The client must specify a function to perform any
419  * processing of the memory map data prior to ExitBootServices.  A client
420  * specific structure may be passed to the function via priv.  The client
421  * function may be called multiple times.
422  *
423  * Return:	status code
424  */
efi_exit_boot_services(void * handle,void * priv,efi_exit_boot_map_processing priv_func)425 efi_status_t efi_exit_boot_services(void *handle, void *priv,
426 				    efi_exit_boot_map_processing priv_func)
427 {
428 	struct efi_boot_memmap *map;
429 	efi_status_t status;
430 
431 	if (efi_disable_pci_dma)
432 		efi_pci_disable_bridge_busmaster();
433 
434 	status = efi_get_memory_map(&map, true);
435 	if (status != EFI_SUCCESS)
436 		return status;
437 
438 	status = priv_func(map, priv);
439 	if (status != EFI_SUCCESS) {
440 		efi_bs_call(free_pool, map);
441 		return status;
442 	}
443 
444 	status = efi_bs_call(exit_boot_services, handle, map->map_key);
445 
446 	if (status == EFI_INVALID_PARAMETER) {
447 		/*
448 		 * The memory map changed between efi_get_memory_map() and
449 		 * exit_boot_services().  Per the UEFI Spec v2.6, Section 6.4:
450 		 * EFI_BOOT_SERVICES.ExitBootServices we need to get the
451 		 * updated map, and try again.  The spec implies one retry
452 		 * should be sufficent, which is confirmed against the EDK2
453 		 * implementation.  Per the spec, we can only invoke
454 		 * get_memory_map() and exit_boot_services() - we cannot alloc
455 		 * so efi_get_memory_map() cannot be used, and we must reuse
456 		 * the buffer.  For all practical purposes, the headroom in the
457 		 * buffer should account for any changes in the map so the call
458 		 * to get_memory_map() is expected to succeed here.
459 		 */
460 		map->map_size = map->buff_size;
461 		status = efi_bs_call(get_memory_map,
462 				     &map->map_size,
463 				     &map->map,
464 				     &map->map_key,
465 				     &map->desc_size,
466 				     &map->desc_ver);
467 
468 		/* exit_boot_services() was called, thus cannot free */
469 		if (status != EFI_SUCCESS)
470 			return status;
471 
472 		status = priv_func(map, priv);
473 		/* exit_boot_services() was called, thus cannot free */
474 		if (status != EFI_SUCCESS)
475 			return status;
476 
477 		status = efi_bs_call(exit_boot_services, handle, map->map_key);
478 	}
479 
480 	return status;
481 }
482 
483 /**
484  * get_efi_config_table() - retrieve UEFI configuration table
485  * @guid:	GUID of the configuration table to be retrieved
486  * Return:	pointer to the configuration table or NULL
487  */
get_efi_config_table(efi_guid_t guid)488 void *get_efi_config_table(efi_guid_t guid)
489 {
490 	unsigned long tables = efi_table_attr(efi_system_table, tables);
491 	int nr_tables = efi_table_attr(efi_system_table, nr_tables);
492 	int i;
493 
494 	for (i = 0; i < nr_tables; i++) {
495 		efi_config_table_t *t = (void *)tables;
496 
497 		if (efi_guidcmp(t->guid, guid) == 0)
498 			return efi_table_attr(t, table);
499 
500 		tables += efi_is_native() ? sizeof(efi_config_table_t)
501 					  : sizeof(efi_config_table_32_t);
502 	}
503 	return NULL;
504 }
505 
506 /*
507  * The LINUX_EFI_INITRD_MEDIA_GUID vendor media device path below provides a way
508  * for the firmware or bootloader to expose the initrd data directly to the stub
509  * via the trivial LoadFile2 protocol, which is defined in the UEFI spec, and is
510  * very easy to implement. It is a simple Linux initrd specific conduit between
511  * kernel and firmware, allowing us to put the EFI stub (being part of the
512  * kernel) in charge of where and when to load the initrd, while leaving it up
513  * to the firmware to decide whether it needs to expose its filesystem hierarchy
514  * via EFI protocols.
515  */
516 static const struct {
517 	struct efi_vendor_dev_path	vendor;
518 	struct efi_generic_dev_path	end;
519 } __packed initrd_dev_path = {
520 	{
521 		{
522 			EFI_DEV_MEDIA,
523 			EFI_DEV_MEDIA_VENDOR,
524 			sizeof(struct efi_vendor_dev_path),
525 		},
526 		LINUX_EFI_INITRD_MEDIA_GUID
527 	}, {
528 		EFI_DEV_END_PATH,
529 		EFI_DEV_END_ENTIRE,
530 		sizeof(struct efi_generic_dev_path)
531 	}
532 };
533 
534 /**
535  * efi_load_initrd_dev_path() - load the initrd from the Linux initrd device path
536  * @initrd:	pointer of struct to store the address where the initrd was loaded
537  *		and the size of the loaded initrd
538  * @max:	upper limit for the initrd memory allocation
539  *
540  * Return:
541  * * %EFI_SUCCESS if the initrd was loaded successfully, in which
542  *   case @load_addr and @load_size are assigned accordingly
543  * * %EFI_NOT_FOUND if no LoadFile2 protocol exists on the initrd device path
544  * * %EFI_OUT_OF_RESOURCES if memory allocation failed
545  * * %EFI_LOAD_ERROR in all other cases
546  */
547 static
efi_load_initrd_dev_path(struct linux_efi_initrd * initrd,unsigned long max)548 efi_status_t efi_load_initrd_dev_path(struct linux_efi_initrd *initrd,
549 				      unsigned long max)
550 {
551 	efi_guid_t lf2_proto_guid = EFI_LOAD_FILE2_PROTOCOL_GUID;
552 	efi_device_path_protocol_t *dp;
553 	efi_load_file2_protocol_t *lf2;
554 	efi_handle_t handle;
555 	efi_status_t status;
556 
557 	dp = (efi_device_path_protocol_t *)&initrd_dev_path;
558 	status = efi_bs_call(locate_device_path, &lf2_proto_guid, &dp, &handle);
559 	if (status != EFI_SUCCESS)
560 		return status;
561 
562 	status = efi_bs_call(handle_protocol, handle, &lf2_proto_guid,
563 			     (void **)&lf2);
564 	if (status != EFI_SUCCESS)
565 		return status;
566 
567 	initrd->size = 0;
568 	status = efi_call_proto(lf2, load_file, dp, false, &initrd->size, NULL);
569 	if (status != EFI_BUFFER_TOO_SMALL)
570 		return EFI_LOAD_ERROR;
571 
572 	status = efi_allocate_pages(initrd->size, &initrd->base, max);
573 	if (status != EFI_SUCCESS)
574 		return status;
575 
576 	status = efi_call_proto(lf2, load_file, dp, false, &initrd->size,
577 				(void *)initrd->base);
578 	if (status != EFI_SUCCESS) {
579 		efi_free(initrd->size, initrd->base);
580 		return EFI_LOAD_ERROR;
581 	}
582 	return EFI_SUCCESS;
583 }
584 
585 static
efi_load_initrd_cmdline(efi_loaded_image_t * image,struct linux_efi_initrd * initrd,unsigned long soft_limit,unsigned long hard_limit)586 efi_status_t efi_load_initrd_cmdline(efi_loaded_image_t *image,
587 				     struct linux_efi_initrd *initrd,
588 				     unsigned long soft_limit,
589 				     unsigned long hard_limit)
590 {
591 	if (image == NULL)
592 		return EFI_UNSUPPORTED;
593 
594 	return handle_cmdline_files(image, L"initrd=", sizeof(L"initrd=") - 2,
595 				    soft_limit, hard_limit,
596 				    &initrd->base, &initrd->size);
597 }
598 
599 /**
600  * efi_load_initrd() - Load initial RAM disk
601  * @image:	EFI loaded image protocol
602  * @soft_limit:	preferred address for loading the initrd
603  * @hard_limit:	upper limit address for loading the initrd
604  *
605  * Return:	status code
606  */
efi_load_initrd(efi_loaded_image_t * image,unsigned long soft_limit,unsigned long hard_limit,const struct linux_efi_initrd ** out)607 efi_status_t efi_load_initrd(efi_loaded_image_t *image,
608 			     unsigned long soft_limit,
609 			     unsigned long hard_limit,
610 			     const struct linux_efi_initrd **out)
611 {
612 	efi_guid_t tbl_guid = LINUX_EFI_INITRD_MEDIA_GUID;
613 	efi_status_t status = EFI_SUCCESS;
614 	struct linux_efi_initrd initrd, *tbl;
615 
616 	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD) || efi_noinitrd)
617 		return EFI_SUCCESS;
618 
619 	status = efi_load_initrd_dev_path(&initrd, hard_limit);
620 	if (status == EFI_SUCCESS) {
621 		efi_info("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n");
622 	} else if (status == EFI_NOT_FOUND) {
623 		status = efi_load_initrd_cmdline(image, &initrd, soft_limit,
624 						 hard_limit);
625 		/* command line loader disabled or no initrd= passed? */
626 		if (status == EFI_UNSUPPORTED || status == EFI_NOT_READY)
627 			return EFI_SUCCESS;
628 		if (status == EFI_SUCCESS)
629 			efi_info("Loaded initrd from command line option\n");
630 	}
631 	if (status != EFI_SUCCESS)
632 		goto failed;
633 
634 	if (initrd.size > 0 &&
635 	    efi_measure_tagged_event(initrd.base, initrd.size,
636 				     EFISTUB_EVT_INITRD) == EFI_SUCCESS)
637 		efi_info("Measured initrd data into PCR 9\n");
638 
639 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(initrd),
640 			     (void **)&tbl);
641 	if (status != EFI_SUCCESS)
642 		goto free_initrd;
643 
644 	*tbl = initrd;
645 	status = efi_bs_call(install_configuration_table, &tbl_guid, tbl);
646 	if (status != EFI_SUCCESS)
647 		goto free_tbl;
648 
649 	if (out)
650 		*out = tbl;
651 	return EFI_SUCCESS;
652 
653 free_tbl:
654 	efi_bs_call(free_pool, tbl);
655 free_initrd:
656 	efi_free(initrd.size, initrd.base);
657 failed:
658 	efi_err("Failed to load initrd: 0x%lx\n", status);
659 	return status;
660 }
661 
662 /**
663  * efi_wait_for_key() - Wait for key stroke
664  * @usec:	number of microseconds to wait for key stroke
665  * @key:	key entered
666  *
667  * Wait for up to @usec microseconds for a key stroke.
668  *
669  * Return:	status code, EFI_SUCCESS if key received
670  */
efi_wait_for_key(unsigned long usec,efi_input_key_t * key)671 efi_status_t efi_wait_for_key(unsigned long usec, efi_input_key_t *key)
672 {
673 	efi_event_t events[2], timer;
674 	unsigned long index;
675 	efi_simple_text_input_protocol_t *con_in;
676 	efi_status_t status;
677 
678 	con_in = efi_table_attr(efi_system_table, con_in);
679 	if (!con_in)
680 		return EFI_UNSUPPORTED;
681 	efi_set_event_at(events, 0, efi_table_attr(con_in, wait_for_key));
682 
683 	status = efi_bs_call(create_event, EFI_EVT_TIMER, 0, NULL, NULL, &timer);
684 	if (status != EFI_SUCCESS)
685 		return status;
686 
687 	status = efi_bs_call(set_timer, timer, EfiTimerRelative,
688 			     EFI_100NSEC_PER_USEC * usec);
689 	if (status != EFI_SUCCESS)
690 		return status;
691 	efi_set_event_at(events, 1, timer);
692 
693 	status = efi_bs_call(wait_for_event, 2, events, &index);
694 	if (status == EFI_SUCCESS) {
695 		if (index == 0)
696 			status = efi_call_proto(con_in, read_keystroke, key);
697 		else
698 			status = EFI_TIMEOUT;
699 	}
700 
701 	efi_bs_call(close_event, timer);
702 
703 	return status;
704 }
705 
706 /**
707  * efi_remap_image - Remap a loaded image with the appropriate permissions
708  *                   for code and data
709  *
710  * @image_base:	the base of the image in memory
711  * @alloc_size:	the size of the area in memory occupied by the image
712  * @code_size:	the size of the leading part of the image containing code
713  * 		and read-only data
714  *
715  * efi_remap_image() uses the EFI memory attribute protocol to remap the code
716  * region of the loaded image read-only/executable, and the remainder
717  * read-write/non-executable. The code region is assumed to start at the base
718  * of the image, and will therefore cover the PE/COFF header as well.
719  */
efi_remap_image(unsigned long image_base,unsigned alloc_size,unsigned long code_size)720 void efi_remap_image(unsigned long image_base, unsigned alloc_size,
721 		     unsigned long code_size)
722 {
723 	efi_guid_t guid = EFI_MEMORY_ATTRIBUTE_PROTOCOL_GUID;
724 	efi_memory_attribute_protocol_t *memattr;
725 	efi_status_t status;
726 	u64 attr;
727 
728 	/*
729 	 * If the firmware implements the EFI_MEMORY_ATTRIBUTE_PROTOCOL, let's
730 	 * invoke it to remap the text/rodata region of the decompressed image
731 	 * as read-only and the data/bss region as non-executable.
732 	 */
733 	status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&memattr);
734 	if (status != EFI_SUCCESS)
735 		return;
736 
737 	// Get the current attributes for the entire region
738 	status = memattr->get_memory_attributes(memattr, image_base,
739 						alloc_size, &attr);
740 	if (status != EFI_SUCCESS) {
741 		efi_warn("Failed to retrieve memory attributes for image region: 0x%lx\n",
742 			 status);
743 		return;
744 	}
745 
746 	// Mark the code region as read-only
747 	status = memattr->set_memory_attributes(memattr, image_base, code_size,
748 						EFI_MEMORY_RO);
749 	if (status != EFI_SUCCESS) {
750 		efi_warn("Failed to remap code region read-only\n");
751 		return;
752 	}
753 
754 	// If the entire region was already mapped as non-exec, clear the
755 	// attribute from the code region. Otherwise, set it on the data
756 	// region.
757 	if (attr & EFI_MEMORY_XP) {
758 		status = memattr->clear_memory_attributes(memattr, image_base,
759 							  code_size,
760 							  EFI_MEMORY_XP);
761 		if (status != EFI_SUCCESS)
762 			efi_warn("Failed to remap code region executable\n");
763 	} else {
764 		status = memattr->set_memory_attributes(memattr,
765 							image_base + code_size,
766 							alloc_size - code_size,
767 							EFI_MEMORY_XP);
768 		if (status != EFI_SUCCESS)
769 			efi_warn("Failed to remap data region non-executable\n");
770 	}
771 }
772