1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * DMA driver for Xilinx DMA/Bridge Subsystem
4 *
5 * Copyright (C) 2017-2020 Xilinx, Inc. All rights reserved.
6 * Copyright (C) 2022, Advanced Micro Devices, Inc.
7 */
8
9 /*
10 * The DMA/Bridge Subsystem for PCI Express allows for the movement of data
11 * between Host memory and the DMA subsystem. It does this by operating on
12 * 'descriptors' that contain information about the source, destination and
13 * amount of data to transfer. These direct memory transfers can be both in
14 * the Host to Card (H2C) and Card to Host (C2H) transfers. The DMA can be
15 * configured to have a single AXI4 Master interface shared by all channels
16 * or one AXI4-Stream interface for each channel enabled. Memory transfers are
17 * specified on a per-channel basis in descriptor linked lists, which the DMA
18 * fetches from host memory and processes. Events such as descriptor completion
19 * and errors are signaled using interrupts. The core also provides up to 16
20 * user interrupt wires that generate interrupts to the host.
21 */
22
23 #include <linux/mod_devicetable.h>
24 #include <linux/bitfield.h>
25 #include <linux/dmapool.h>
26 #include <linux/regmap.h>
27 #include <linux/dmaengine.h>
28 #include <linux/dma/amd_xdma.h>
29 #include <linux/platform_device.h>
30 #include <linux/platform_data/amd_xdma.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/pci.h>
33 #include "../virt-dma.h"
34 #include "xdma-regs.h"
35
36 /* mmio regmap config for all XDMA registers */
37 static const struct regmap_config xdma_regmap_config = {
38 .reg_bits = 32,
39 .val_bits = 32,
40 .reg_stride = 4,
41 .max_register = XDMA_REG_SPACE_LEN,
42 };
43
44 /**
45 * struct xdma_desc_block - Descriptor block
46 * @virt_addr: Virtual address of block start
47 * @dma_addr: DMA address of block start
48 */
49 struct xdma_desc_block {
50 void *virt_addr;
51 dma_addr_t dma_addr;
52 };
53
54 /**
55 * struct xdma_chan - Driver specific DMA channel structure
56 * @vchan: Virtual channel
57 * @xdev_hdl: Pointer to DMA device structure
58 * @base: Offset of channel registers
59 * @desc_pool: Descriptor pool
60 * @busy: Busy flag of the channel
61 * @dir: Transferring direction of the channel
62 * @cfg: Transferring config of the channel
63 * @irq: IRQ assigned to the channel
64 */
65 struct xdma_chan {
66 struct virt_dma_chan vchan;
67 void *xdev_hdl;
68 u32 base;
69 struct dma_pool *desc_pool;
70 bool busy;
71 enum dma_transfer_direction dir;
72 struct dma_slave_config cfg;
73 u32 irq;
74 struct completion last_interrupt;
75 bool stop_requested;
76 };
77
78 /**
79 * struct xdma_desc - DMA desc structure
80 * @vdesc: Virtual DMA descriptor
81 * @chan: DMA channel pointer
82 * @dir: Transferring direction of the request
83 * @desc_blocks: Hardware descriptor blocks
84 * @dblk_num: Number of hardware descriptor blocks
85 * @desc_num: Number of hardware descriptors
86 * @completed_desc_num: Completed hardware descriptors
87 * @cyclic: Cyclic transfer vs. scatter-gather
88 * @interleaved_dma: Interleaved DMA transfer
89 * @periods: Number of periods in the cyclic transfer
90 * @period_size: Size of a period in bytes in cyclic transfers
91 * @frames_left: Number of frames left in interleaved DMA transfer
92 * @error: tx error flag
93 */
94 struct xdma_desc {
95 struct virt_dma_desc vdesc;
96 struct xdma_chan *chan;
97 enum dma_transfer_direction dir;
98 struct xdma_desc_block *desc_blocks;
99 u32 dblk_num;
100 u32 desc_num;
101 u32 completed_desc_num;
102 bool cyclic;
103 bool interleaved_dma;
104 u32 periods;
105 u32 period_size;
106 u32 frames_left;
107 bool error;
108 };
109
110 #define XDMA_DEV_STATUS_REG_DMA BIT(0)
111 #define XDMA_DEV_STATUS_INIT_MSIX BIT(1)
112
113 /**
114 * struct xdma_device - DMA device structure
115 * @pdev: Platform device pointer
116 * @dma_dev: DMA device structure
117 * @rmap: MMIO regmap for DMA registers
118 * @h2c_chans: Host to Card channels
119 * @c2h_chans: Card to Host channels
120 * @h2c_chan_num: Number of H2C channels
121 * @c2h_chan_num: Number of C2H channels
122 * @irq_start: Start IRQ assigned to device
123 * @irq_num: Number of IRQ assigned to device
124 * @status: Initialization status
125 */
126 struct xdma_device {
127 struct platform_device *pdev;
128 struct dma_device dma_dev;
129 struct regmap *rmap;
130 struct xdma_chan *h2c_chans;
131 struct xdma_chan *c2h_chans;
132 u32 h2c_chan_num;
133 u32 c2h_chan_num;
134 u32 irq_start;
135 u32 irq_num;
136 u32 status;
137 };
138
139 #define xdma_err(xdev, fmt, args...) \
140 dev_err(&(xdev)->pdev->dev, fmt, ##args)
141 #define XDMA_CHAN_NUM(_xd) ({ \
142 typeof(_xd) (xd) = (_xd); \
143 ((xd)->h2c_chan_num + (xd)->c2h_chan_num); })
144
145 /* Get the last desc in a desc block */
xdma_blk_last_desc(struct xdma_desc_block * block)146 static inline void *xdma_blk_last_desc(struct xdma_desc_block *block)
147 {
148 return block->virt_addr + (XDMA_DESC_ADJACENT - 1) * XDMA_DESC_SIZE;
149 }
150
151 /**
152 * xdma_link_sg_desc_blocks - Link SG descriptor blocks for DMA transfer
153 * @sw_desc: Tx descriptor pointer
154 */
xdma_link_sg_desc_blocks(struct xdma_desc * sw_desc)155 static void xdma_link_sg_desc_blocks(struct xdma_desc *sw_desc)
156 {
157 struct xdma_desc_block *block;
158 u32 last_blk_desc, desc_control;
159 struct xdma_hw_desc *desc;
160 int i;
161
162 desc_control = XDMA_DESC_CONTROL(XDMA_DESC_ADJACENT, 0);
163 for (i = 1; i < sw_desc->dblk_num; i++) {
164 block = &sw_desc->desc_blocks[i - 1];
165 desc = xdma_blk_last_desc(block);
166
167 if (!(i & XDMA_DESC_BLOCK_MASK)) {
168 desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
169 continue;
170 }
171 desc->control = cpu_to_le32(desc_control);
172 desc->next_desc = cpu_to_le64(block[1].dma_addr);
173 }
174
175 /* update the last block */
176 last_blk_desc = (sw_desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
177 if (((sw_desc->dblk_num - 1) & XDMA_DESC_BLOCK_MASK) > 0) {
178 block = &sw_desc->desc_blocks[sw_desc->dblk_num - 2];
179 desc = xdma_blk_last_desc(block);
180 desc_control = XDMA_DESC_CONTROL(last_blk_desc + 1, 0);
181 desc->control = cpu_to_le32(desc_control);
182 }
183
184 block = &sw_desc->desc_blocks[sw_desc->dblk_num - 1];
185 desc = block->virt_addr + last_blk_desc * XDMA_DESC_SIZE;
186 desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
187 }
188
189 /**
190 * xdma_link_cyclic_desc_blocks - Link cyclic descriptor blocks for DMA transfer
191 * @sw_desc: Tx descriptor pointer
192 */
xdma_link_cyclic_desc_blocks(struct xdma_desc * sw_desc)193 static void xdma_link_cyclic_desc_blocks(struct xdma_desc *sw_desc)
194 {
195 struct xdma_desc_block *block;
196 struct xdma_hw_desc *desc;
197 int i;
198
199 block = sw_desc->desc_blocks;
200 for (i = 0; i < sw_desc->desc_num - 1; i++) {
201 desc = block->virt_addr + i * XDMA_DESC_SIZE;
202 desc->next_desc = cpu_to_le64(block->dma_addr + ((i + 1) * XDMA_DESC_SIZE));
203 }
204 desc = block->virt_addr + i * XDMA_DESC_SIZE;
205 desc->next_desc = cpu_to_le64(block->dma_addr);
206 }
207
to_xdma_chan(struct dma_chan * chan)208 static inline struct xdma_chan *to_xdma_chan(struct dma_chan *chan)
209 {
210 return container_of(chan, struct xdma_chan, vchan.chan);
211 }
212
to_xdma_desc(struct virt_dma_desc * vdesc)213 static inline struct xdma_desc *to_xdma_desc(struct virt_dma_desc *vdesc)
214 {
215 return container_of(vdesc, struct xdma_desc, vdesc);
216 }
217
218 /**
219 * xdma_channel_init - Initialize DMA channel registers
220 * @chan: DMA channel pointer
221 */
xdma_channel_init(struct xdma_chan * chan)222 static int xdma_channel_init(struct xdma_chan *chan)
223 {
224 struct xdma_device *xdev = chan->xdev_hdl;
225 int ret;
226
227 ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_CONTROL_W1C,
228 CHAN_CTRL_NON_INCR_ADDR);
229 if (ret)
230 return ret;
231
232 ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_INTR_ENABLE,
233 CHAN_IM_ALL);
234 if (ret)
235 return ret;
236
237 return 0;
238 }
239
240 /**
241 * xdma_free_desc - Free descriptor
242 * @vdesc: Virtual DMA descriptor
243 */
xdma_free_desc(struct virt_dma_desc * vdesc)244 static void xdma_free_desc(struct virt_dma_desc *vdesc)
245 {
246 struct xdma_desc *sw_desc;
247 int i;
248
249 sw_desc = to_xdma_desc(vdesc);
250 for (i = 0; i < sw_desc->dblk_num; i++) {
251 if (!sw_desc->desc_blocks[i].virt_addr)
252 break;
253 dma_pool_free(sw_desc->chan->desc_pool,
254 sw_desc->desc_blocks[i].virt_addr,
255 sw_desc->desc_blocks[i].dma_addr);
256 }
257 kfree(sw_desc->desc_blocks);
258 kfree(sw_desc);
259 }
260
261 /**
262 * xdma_alloc_desc - Allocate descriptor
263 * @chan: DMA channel pointer
264 * @desc_num: Number of hardware descriptors
265 * @cyclic: Whether this is a cyclic transfer
266 */
267 static struct xdma_desc *
xdma_alloc_desc(struct xdma_chan * chan,u32 desc_num,bool cyclic)268 xdma_alloc_desc(struct xdma_chan *chan, u32 desc_num, bool cyclic)
269 {
270 struct xdma_desc *sw_desc;
271 struct xdma_hw_desc *desc;
272 dma_addr_t dma_addr;
273 u32 dblk_num;
274 u32 control;
275 void *addr;
276 int i, j;
277
278 sw_desc = kzalloc(sizeof(*sw_desc), GFP_NOWAIT);
279 if (!sw_desc)
280 return NULL;
281
282 sw_desc->chan = chan;
283 sw_desc->desc_num = desc_num;
284 sw_desc->cyclic = cyclic;
285 sw_desc->error = false;
286 dblk_num = DIV_ROUND_UP(desc_num, XDMA_DESC_ADJACENT);
287 sw_desc->desc_blocks = kcalloc(dblk_num, sizeof(*sw_desc->desc_blocks),
288 GFP_NOWAIT);
289 if (!sw_desc->desc_blocks)
290 goto failed;
291
292 if (cyclic)
293 control = XDMA_DESC_CONTROL_CYCLIC;
294 else
295 control = XDMA_DESC_CONTROL(1, 0);
296
297 sw_desc->dblk_num = dblk_num;
298 for (i = 0; i < sw_desc->dblk_num; i++) {
299 addr = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &dma_addr);
300 if (!addr)
301 goto failed;
302
303 sw_desc->desc_blocks[i].virt_addr = addr;
304 sw_desc->desc_blocks[i].dma_addr = dma_addr;
305 for (j = 0, desc = addr; j < XDMA_DESC_ADJACENT; j++)
306 desc[j].control = cpu_to_le32(control);
307 }
308
309 if (cyclic)
310 xdma_link_cyclic_desc_blocks(sw_desc);
311 else
312 xdma_link_sg_desc_blocks(sw_desc);
313
314 return sw_desc;
315
316 failed:
317 xdma_free_desc(&sw_desc->vdesc);
318 return NULL;
319 }
320
321 /**
322 * xdma_xfer_start - Start DMA transfer
323 * @xchan: DMA channel pointer
324 */
xdma_xfer_start(struct xdma_chan * xchan)325 static int xdma_xfer_start(struct xdma_chan *xchan)
326 {
327 struct virt_dma_desc *vd = vchan_next_desc(&xchan->vchan);
328 struct xdma_device *xdev = xchan->xdev_hdl;
329 struct xdma_desc_block *block;
330 u32 val, completed_blocks;
331 struct xdma_desc *desc;
332 int ret;
333
334 /*
335 * check if there is not any submitted descriptor or channel is busy.
336 * vchan lock should be held where this function is called.
337 */
338 if (!vd || xchan->busy)
339 return -EINVAL;
340
341 /* clear run stop bit to get ready for transfer */
342 ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
343 CHAN_CTRL_RUN_STOP);
344 if (ret)
345 return ret;
346
347 desc = to_xdma_desc(vd);
348 if (desc->dir != xchan->dir) {
349 xdma_err(xdev, "incorrect request direction");
350 return -EINVAL;
351 }
352
353 /* set DMA engine to the first descriptor block */
354 completed_blocks = desc->completed_desc_num / XDMA_DESC_ADJACENT;
355 block = &desc->desc_blocks[completed_blocks];
356 val = lower_32_bits(block->dma_addr);
357 ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_LO, val);
358 if (ret)
359 return ret;
360
361 val = upper_32_bits(block->dma_addr);
362 ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_HI, val);
363 if (ret)
364 return ret;
365
366 if (completed_blocks + 1 == desc->dblk_num)
367 val = (desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
368 else
369 val = XDMA_DESC_ADJACENT - 1;
370 ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_ADJ, val);
371 if (ret)
372 return ret;
373
374 /* kick off DMA transfer */
375 ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL,
376 CHAN_CTRL_START);
377 if (ret)
378 return ret;
379
380 xchan->busy = true;
381 xchan->stop_requested = false;
382 reinit_completion(&xchan->last_interrupt);
383
384 return 0;
385 }
386
387 /**
388 * xdma_xfer_stop - Stop DMA transfer
389 * @xchan: DMA channel pointer
390 */
xdma_xfer_stop(struct xdma_chan * xchan)391 static int xdma_xfer_stop(struct xdma_chan *xchan)
392 {
393 struct xdma_device *xdev = xchan->xdev_hdl;
394
395 /* clear run stop bit to prevent any further auto-triggering */
396 return regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
397 CHAN_CTRL_RUN_STOP);
398 }
399
400 /**
401 * xdma_alloc_channels - Detect and allocate DMA channels
402 * @xdev: DMA device pointer
403 * @dir: Channel direction
404 */
xdma_alloc_channels(struct xdma_device * xdev,enum dma_transfer_direction dir)405 static int xdma_alloc_channels(struct xdma_device *xdev,
406 enum dma_transfer_direction dir)
407 {
408 struct xdma_platdata *pdata = dev_get_platdata(&xdev->pdev->dev);
409 struct xdma_chan **chans, *xchan;
410 u32 base, identifier, target;
411 u32 *chan_num;
412 int i, j, ret;
413
414 if (dir == DMA_MEM_TO_DEV) {
415 base = XDMA_CHAN_H2C_OFFSET;
416 target = XDMA_CHAN_H2C_TARGET;
417 chans = &xdev->h2c_chans;
418 chan_num = &xdev->h2c_chan_num;
419 } else if (dir == DMA_DEV_TO_MEM) {
420 base = XDMA_CHAN_C2H_OFFSET;
421 target = XDMA_CHAN_C2H_TARGET;
422 chans = &xdev->c2h_chans;
423 chan_num = &xdev->c2h_chan_num;
424 } else {
425 xdma_err(xdev, "invalid direction specified");
426 return -EINVAL;
427 }
428
429 /* detect number of available DMA channels */
430 for (i = 0, *chan_num = 0; i < pdata->max_dma_channels; i++) {
431 ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
432 &identifier);
433 if (ret)
434 return ret;
435
436 /* check if it is available DMA channel */
437 if (XDMA_CHAN_CHECK_TARGET(identifier, target))
438 (*chan_num)++;
439 }
440
441 if (!*chan_num) {
442 xdma_err(xdev, "does not probe any channel");
443 return -EINVAL;
444 }
445
446 *chans = devm_kcalloc(&xdev->pdev->dev, *chan_num, sizeof(**chans),
447 GFP_KERNEL);
448 if (!*chans)
449 return -ENOMEM;
450
451 for (i = 0, j = 0; i < pdata->max_dma_channels; i++) {
452 ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
453 &identifier);
454 if (ret)
455 return ret;
456
457 if (!XDMA_CHAN_CHECK_TARGET(identifier, target))
458 continue;
459
460 if (j == *chan_num) {
461 xdma_err(xdev, "invalid channel number");
462 return -EIO;
463 }
464
465 /* init channel structure and hardware */
466 xchan = &(*chans)[j];
467 xchan->xdev_hdl = xdev;
468 xchan->base = base + i * XDMA_CHAN_STRIDE;
469 xchan->dir = dir;
470 xchan->stop_requested = false;
471 init_completion(&xchan->last_interrupt);
472
473 ret = xdma_channel_init(xchan);
474 if (ret)
475 return ret;
476 xchan->vchan.desc_free = xdma_free_desc;
477 vchan_init(&xchan->vchan, &xdev->dma_dev);
478
479 j++;
480 }
481
482 dev_info(&xdev->pdev->dev, "configured %d %s channels", j,
483 (dir == DMA_MEM_TO_DEV) ? "H2C" : "C2H");
484
485 return 0;
486 }
487
488 /**
489 * xdma_issue_pending - Issue pending transactions
490 * @chan: DMA channel pointer
491 */
xdma_issue_pending(struct dma_chan * chan)492 static void xdma_issue_pending(struct dma_chan *chan)
493 {
494 struct xdma_chan *xdma_chan = to_xdma_chan(chan);
495 unsigned long flags;
496
497 spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
498 if (vchan_issue_pending(&xdma_chan->vchan))
499 xdma_xfer_start(xdma_chan);
500 spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
501 }
502
503 /**
504 * xdma_terminate_all - Terminate all transactions
505 * @chan: DMA channel pointer
506 */
xdma_terminate_all(struct dma_chan * chan)507 static int xdma_terminate_all(struct dma_chan *chan)
508 {
509 struct xdma_chan *xdma_chan = to_xdma_chan(chan);
510 struct virt_dma_desc *vd;
511 unsigned long flags;
512 LIST_HEAD(head);
513
514 xdma_xfer_stop(xdma_chan);
515
516 spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
517
518 xdma_chan->busy = false;
519 xdma_chan->stop_requested = true;
520 vd = vchan_next_desc(&xdma_chan->vchan);
521 if (vd) {
522 list_del(&vd->node);
523 dma_cookie_complete(&vd->tx);
524 vchan_terminate_vdesc(vd);
525 }
526 vchan_get_all_descriptors(&xdma_chan->vchan, &head);
527 list_splice_tail(&head, &xdma_chan->vchan.desc_terminated);
528
529 spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
530
531 return 0;
532 }
533
534 /**
535 * xdma_synchronize - Synchronize terminated transactions
536 * @chan: DMA channel pointer
537 */
xdma_synchronize(struct dma_chan * chan)538 static void xdma_synchronize(struct dma_chan *chan)
539 {
540 struct xdma_chan *xdma_chan = to_xdma_chan(chan);
541 struct xdma_device *xdev = xdma_chan->xdev_hdl;
542 int st = 0;
543
544 /* If the engine continues running, wait for the last interrupt */
545 regmap_read(xdev->rmap, xdma_chan->base + XDMA_CHAN_STATUS, &st);
546 if (st & XDMA_CHAN_STATUS_BUSY)
547 wait_for_completion_timeout(&xdma_chan->last_interrupt, msecs_to_jiffies(1000));
548
549 vchan_synchronize(&xdma_chan->vchan);
550 }
551
552 /**
553 * xdma_fill_descs() - Fill hardware descriptors for one contiguous memory chunk.
554 * More than one descriptor will be used if the size is bigger
555 * than XDMA_DESC_BLEN_MAX.
556 * @sw_desc: Descriptor container
557 * @src_addr: First value for the ->src_addr field
558 * @dst_addr: First value for the ->dst_addr field
559 * @size: Size of the contiguous memory block
560 * @filled_descs_num: Index of the first descriptor to take care of in @sw_desc
561 */
xdma_fill_descs(struct xdma_desc * sw_desc,u64 src_addr,u64 dst_addr,u32 size,u32 filled_descs_num)562 static inline u32 xdma_fill_descs(struct xdma_desc *sw_desc, u64 src_addr,
563 u64 dst_addr, u32 size, u32 filled_descs_num)
564 {
565 u32 left = size, len, desc_num = filled_descs_num;
566 struct xdma_desc_block *dblk;
567 struct xdma_hw_desc *desc;
568
569 dblk = sw_desc->desc_blocks + (desc_num / XDMA_DESC_ADJACENT);
570 desc = dblk->virt_addr;
571 desc += desc_num & XDMA_DESC_ADJACENT_MASK;
572 do {
573 len = min_t(u32, left, XDMA_DESC_BLEN_MAX);
574 /* set hardware descriptor */
575 desc->bytes = cpu_to_le32(len);
576 desc->src_addr = cpu_to_le64(src_addr);
577 desc->dst_addr = cpu_to_le64(dst_addr);
578 if (!(++desc_num & XDMA_DESC_ADJACENT_MASK))
579 desc = (++dblk)->virt_addr;
580 else
581 desc++;
582
583 src_addr += len;
584 dst_addr += len;
585 left -= len;
586 } while (left);
587
588 return desc_num - filled_descs_num;
589 }
590
591 /**
592 * xdma_prep_device_sg - prepare a descriptor for a DMA transaction
593 * @chan: DMA channel pointer
594 * @sgl: Transfer scatter gather list
595 * @sg_len: Length of scatter gather list
596 * @dir: Transfer direction
597 * @flags: transfer ack flags
598 * @context: APP words of the descriptor
599 */
600 static struct dma_async_tx_descriptor *
xdma_prep_device_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,void * context)601 xdma_prep_device_sg(struct dma_chan *chan, struct scatterlist *sgl,
602 unsigned int sg_len, enum dma_transfer_direction dir,
603 unsigned long flags, void *context)
604 {
605 struct xdma_chan *xdma_chan = to_xdma_chan(chan);
606 struct dma_async_tx_descriptor *tx_desc;
607 struct xdma_desc *sw_desc;
608 u32 desc_num = 0, i;
609 u64 addr, dev_addr, *src, *dst;
610 struct scatterlist *sg;
611
612 for_each_sg(sgl, sg, sg_len, i)
613 desc_num += DIV_ROUND_UP(sg_dma_len(sg), XDMA_DESC_BLEN_MAX);
614
615 sw_desc = xdma_alloc_desc(xdma_chan, desc_num, false);
616 if (!sw_desc)
617 return NULL;
618 sw_desc->dir = dir;
619 sw_desc->cyclic = false;
620 sw_desc->interleaved_dma = false;
621
622 if (dir == DMA_MEM_TO_DEV) {
623 dev_addr = xdma_chan->cfg.dst_addr;
624 src = &addr;
625 dst = &dev_addr;
626 } else {
627 dev_addr = xdma_chan->cfg.src_addr;
628 src = &dev_addr;
629 dst = &addr;
630 }
631
632 desc_num = 0;
633 for_each_sg(sgl, sg, sg_len, i) {
634 addr = sg_dma_address(sg);
635 desc_num += xdma_fill_descs(sw_desc, *src, *dst, sg_dma_len(sg), desc_num);
636 dev_addr += sg_dma_len(sg);
637 }
638
639 tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
640 if (!tx_desc)
641 goto failed;
642
643 return tx_desc;
644
645 failed:
646 xdma_free_desc(&sw_desc->vdesc);
647
648 return NULL;
649 }
650
651 /**
652 * xdma_prep_dma_cyclic - prepare for cyclic DMA transactions
653 * @chan: DMA channel pointer
654 * @address: Device DMA address to access
655 * @size: Total length to transfer
656 * @period_size: Period size to use for each transfer
657 * @dir: Transfer direction
658 * @flags: Transfer ack flags
659 */
660 static struct dma_async_tx_descriptor *
xdma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t address,size_t size,size_t period_size,enum dma_transfer_direction dir,unsigned long flags)661 xdma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t address,
662 size_t size, size_t period_size,
663 enum dma_transfer_direction dir,
664 unsigned long flags)
665 {
666 struct xdma_chan *xdma_chan = to_xdma_chan(chan);
667 struct xdma_device *xdev = xdma_chan->xdev_hdl;
668 unsigned int periods = size / period_size;
669 struct dma_async_tx_descriptor *tx_desc;
670 struct xdma_desc *sw_desc;
671 u64 addr, dev_addr, *src, *dst;
672 u32 desc_num;
673 unsigned int i;
674
675 /*
676 * Simplify the whole logic by preventing an abnormally high number of
677 * periods and periods size.
678 */
679 if (period_size > XDMA_DESC_BLEN_MAX) {
680 xdma_err(xdev, "period size limited to %lu bytes\n", XDMA_DESC_BLEN_MAX);
681 return NULL;
682 }
683
684 if (periods > XDMA_DESC_ADJACENT) {
685 xdma_err(xdev, "number of periods limited to %u\n", XDMA_DESC_ADJACENT);
686 return NULL;
687 }
688
689 sw_desc = xdma_alloc_desc(xdma_chan, periods, true);
690 if (!sw_desc)
691 return NULL;
692
693 sw_desc->periods = periods;
694 sw_desc->period_size = period_size;
695 sw_desc->dir = dir;
696 sw_desc->interleaved_dma = false;
697
698 addr = address;
699 if (dir == DMA_MEM_TO_DEV) {
700 dev_addr = xdma_chan->cfg.dst_addr;
701 src = &addr;
702 dst = &dev_addr;
703 } else {
704 dev_addr = xdma_chan->cfg.src_addr;
705 src = &dev_addr;
706 dst = &addr;
707 }
708
709 desc_num = 0;
710 for (i = 0; i < periods; i++) {
711 desc_num += xdma_fill_descs(sw_desc, *src, *dst, period_size, desc_num);
712 addr += period_size;
713 }
714
715 tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
716 if (!tx_desc)
717 goto failed;
718
719 return tx_desc;
720
721 failed:
722 xdma_free_desc(&sw_desc->vdesc);
723
724 return NULL;
725 }
726
727 /**
728 * xdma_prep_interleaved_dma - Prepare virtual descriptor for interleaved DMA transfers
729 * @chan: DMA channel
730 * @xt: DMA transfer template
731 * @flags: tx flags
732 */
733 static struct dma_async_tx_descriptor *
xdma_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)734 xdma_prep_interleaved_dma(struct dma_chan *chan,
735 struct dma_interleaved_template *xt,
736 unsigned long flags)
737 {
738 int i;
739 u32 desc_num = 0, period_size = 0;
740 struct dma_async_tx_descriptor *tx_desc;
741 struct xdma_chan *xchan = to_xdma_chan(chan);
742 struct xdma_desc *sw_desc;
743 u64 src_addr, dst_addr;
744
745 for (i = 0; i < xt->frame_size; ++i)
746 desc_num += DIV_ROUND_UP(xt->sgl[i].size, XDMA_DESC_BLEN_MAX);
747
748 sw_desc = xdma_alloc_desc(xchan, desc_num, false);
749 if (!sw_desc)
750 return NULL;
751 sw_desc->dir = xt->dir;
752 sw_desc->interleaved_dma = true;
753 sw_desc->cyclic = flags & DMA_PREP_REPEAT;
754 sw_desc->frames_left = xt->numf;
755 sw_desc->periods = xt->numf;
756
757 desc_num = 0;
758 src_addr = xt->src_start;
759 dst_addr = xt->dst_start;
760 for (i = 0; i < xt->frame_size; ++i) {
761 desc_num += xdma_fill_descs(sw_desc, src_addr, dst_addr, xt->sgl[i].size, desc_num);
762 src_addr += dmaengine_get_src_icg(xt, &xt->sgl[i]) + (xt->src_inc ?
763 xt->sgl[i].size : 0);
764 dst_addr += dmaengine_get_dst_icg(xt, &xt->sgl[i]) + (xt->dst_inc ?
765 xt->sgl[i].size : 0);
766 period_size += xt->sgl[i].size;
767 }
768 sw_desc->period_size = period_size;
769
770 tx_desc = vchan_tx_prep(&xchan->vchan, &sw_desc->vdesc, flags);
771 if (tx_desc)
772 return tx_desc;
773
774 xdma_free_desc(&sw_desc->vdesc);
775 return NULL;
776 }
777
778 /**
779 * xdma_device_config - Configure the DMA channel
780 * @chan: DMA channel
781 * @cfg: channel configuration
782 */
xdma_device_config(struct dma_chan * chan,struct dma_slave_config * cfg)783 static int xdma_device_config(struct dma_chan *chan,
784 struct dma_slave_config *cfg)
785 {
786 struct xdma_chan *xdma_chan = to_xdma_chan(chan);
787
788 memcpy(&xdma_chan->cfg, cfg, sizeof(*cfg));
789
790 return 0;
791 }
792
793 /**
794 * xdma_free_chan_resources - Free channel resources
795 * @chan: DMA channel
796 */
xdma_free_chan_resources(struct dma_chan * chan)797 static void xdma_free_chan_resources(struct dma_chan *chan)
798 {
799 struct xdma_chan *xdma_chan = to_xdma_chan(chan);
800
801 vchan_free_chan_resources(&xdma_chan->vchan);
802 dma_pool_destroy(xdma_chan->desc_pool);
803 xdma_chan->desc_pool = NULL;
804 }
805
806 /**
807 * xdma_alloc_chan_resources - Allocate channel resources
808 * @chan: DMA channel
809 */
xdma_alloc_chan_resources(struct dma_chan * chan)810 static int xdma_alloc_chan_resources(struct dma_chan *chan)
811 {
812 struct xdma_chan *xdma_chan = to_xdma_chan(chan);
813 struct xdma_device *xdev = xdma_chan->xdev_hdl;
814 struct device *dev = xdev->dma_dev.dev;
815
816 while (dev && !dev_is_pci(dev))
817 dev = dev->parent;
818 if (!dev) {
819 xdma_err(xdev, "unable to find pci device");
820 return -EINVAL;
821 }
822
823 xdma_chan->desc_pool = dma_pool_create(dma_chan_name(chan), dev, XDMA_DESC_BLOCK_SIZE,
824 XDMA_DESC_BLOCK_ALIGN, XDMA_DESC_BLOCK_BOUNDARY);
825 if (!xdma_chan->desc_pool) {
826 xdma_err(xdev, "unable to allocate descriptor pool");
827 return -ENOMEM;
828 }
829
830 return 0;
831 }
832
xdma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)833 static enum dma_status xdma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
834 struct dma_tx_state *state)
835 {
836 struct xdma_chan *xdma_chan = to_xdma_chan(chan);
837 struct xdma_desc *desc = NULL;
838 struct virt_dma_desc *vd;
839 enum dma_status ret;
840 unsigned long flags;
841 unsigned int period_idx;
842 u32 residue = 0;
843
844 ret = dma_cookie_status(chan, cookie, state);
845 if (ret == DMA_COMPLETE)
846 return ret;
847
848 spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
849
850 vd = vchan_find_desc(&xdma_chan->vchan, cookie);
851 if (!vd)
852 goto out;
853
854 desc = to_xdma_desc(vd);
855 if (desc->error) {
856 ret = DMA_ERROR;
857 } else if (desc->cyclic) {
858 period_idx = desc->completed_desc_num % desc->periods;
859 residue = (desc->periods - period_idx) * desc->period_size;
860 dma_set_residue(state, residue);
861 }
862 out:
863 spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
864
865 return ret;
866 }
867
868 /**
869 * xdma_channel_isr - XDMA channel interrupt handler
870 * @irq: IRQ number
871 * @dev_id: Pointer to the DMA channel structure
872 */
xdma_channel_isr(int irq,void * dev_id)873 static irqreturn_t xdma_channel_isr(int irq, void *dev_id)
874 {
875 struct xdma_chan *xchan = dev_id;
876 u32 complete_desc_num = 0;
877 struct xdma_device *xdev = xchan->xdev_hdl;
878 struct virt_dma_desc *vd, *next_vd;
879 struct xdma_desc *desc;
880 int ret;
881 u32 st;
882 bool repeat_tx;
883
884 spin_lock(&xchan->vchan.lock);
885
886 if (xchan->stop_requested)
887 complete(&xchan->last_interrupt);
888
889 /* get submitted request */
890 vd = vchan_next_desc(&xchan->vchan);
891 if (!vd)
892 goto out;
893
894 /* Clear-on-read the status register */
895 ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_STATUS_RC, &st);
896 if (ret)
897 goto out;
898
899 desc = to_xdma_desc(vd);
900
901 st &= XDMA_CHAN_STATUS_MASK;
902 if ((st & XDMA_CHAN_ERROR_MASK) ||
903 !(st & (CHAN_CTRL_IE_DESC_COMPLETED | CHAN_CTRL_IE_DESC_STOPPED))) {
904 desc->error = true;
905 xdma_err(xdev, "channel error, status register value: 0x%x", st);
906 goto out;
907 }
908
909 ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_COMPLETED_DESC,
910 &complete_desc_num);
911 if (ret)
912 goto out;
913
914 if (desc->interleaved_dma) {
915 xchan->busy = false;
916 desc->completed_desc_num += complete_desc_num;
917 if (complete_desc_num == XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT) {
918 xdma_xfer_start(xchan);
919 goto out;
920 }
921
922 /* last desc of any frame */
923 desc->frames_left--;
924 if (desc->frames_left)
925 goto out;
926
927 /* last desc of the last frame */
928 repeat_tx = vd->tx.flags & DMA_PREP_REPEAT;
929 next_vd = list_first_entry_or_null(&vd->node, struct virt_dma_desc, node);
930 if (next_vd)
931 repeat_tx = repeat_tx && !(next_vd->tx.flags & DMA_PREP_LOAD_EOT);
932 if (repeat_tx) {
933 desc->frames_left = desc->periods;
934 desc->completed_desc_num = 0;
935 vchan_cyclic_callback(vd);
936 } else {
937 list_del(&vd->node);
938 vchan_cookie_complete(vd);
939 }
940 /* start (or continue) the tx of a first desc on the vc.desc_issued list, if any */
941 xdma_xfer_start(xchan);
942 } else if (!desc->cyclic) {
943 xchan->busy = false;
944 desc->completed_desc_num += complete_desc_num;
945
946 /* if all data blocks are transferred, remove and complete the request */
947 if (desc->completed_desc_num == desc->desc_num) {
948 list_del(&vd->node);
949 vchan_cookie_complete(vd);
950 goto out;
951 }
952
953 if (desc->completed_desc_num > desc->desc_num ||
954 complete_desc_num != XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT)
955 goto out;
956
957 /* transfer the rest of data */
958 xdma_xfer_start(xchan);
959 } else {
960 desc->completed_desc_num = complete_desc_num;
961 vchan_cyclic_callback(vd);
962 }
963
964 out:
965 spin_unlock(&xchan->vchan.lock);
966 return IRQ_HANDLED;
967 }
968
969 /**
970 * xdma_irq_fini - Uninitialize IRQ
971 * @xdev: DMA device pointer
972 */
xdma_irq_fini(struct xdma_device * xdev)973 static void xdma_irq_fini(struct xdma_device *xdev)
974 {
975 int i;
976
977 /* disable interrupt */
978 regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1C, ~0);
979
980 /* free irq handler */
981 for (i = 0; i < xdev->h2c_chan_num; i++)
982 free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);
983
984 for (i = 0; i < xdev->c2h_chan_num; i++)
985 free_irq(xdev->c2h_chans[i].irq, &xdev->c2h_chans[i]);
986 }
987
988 /**
989 * xdma_set_vector_reg - configure hardware IRQ registers
990 * @xdev: DMA device pointer
991 * @vec_tbl_start: Start of IRQ registers
992 * @irq_start: Start of IRQ
993 * @irq_num: Number of IRQ
994 */
xdma_set_vector_reg(struct xdma_device * xdev,u32 vec_tbl_start,u32 irq_start,u32 irq_num)995 static int xdma_set_vector_reg(struct xdma_device *xdev, u32 vec_tbl_start,
996 u32 irq_start, u32 irq_num)
997 {
998 u32 shift, i, val = 0;
999 int ret;
1000
1001 /* Each IRQ register is 32 bit and contains 4 IRQs */
1002 while (irq_num > 0) {
1003 for (i = 0; i < 4; i++) {
1004 shift = XDMA_IRQ_VEC_SHIFT * i;
1005 val |= irq_start << shift;
1006 irq_start++;
1007 irq_num--;
1008 if (!irq_num)
1009 break;
1010 }
1011
1012 /* write IRQ register */
1013 ret = regmap_write(xdev->rmap, vec_tbl_start, val);
1014 if (ret)
1015 return ret;
1016 vec_tbl_start += sizeof(u32);
1017 val = 0;
1018 }
1019
1020 return 0;
1021 }
1022
1023 /**
1024 * xdma_irq_init - initialize IRQs
1025 * @xdev: DMA device pointer
1026 */
xdma_irq_init(struct xdma_device * xdev)1027 static int xdma_irq_init(struct xdma_device *xdev)
1028 {
1029 u32 irq = xdev->irq_start;
1030 u32 user_irq_start;
1031 int i, j, ret;
1032
1033 /* return failure if there are not enough IRQs */
1034 if (xdev->irq_num < XDMA_CHAN_NUM(xdev)) {
1035 xdma_err(xdev, "not enough irq");
1036 return -EINVAL;
1037 }
1038
1039 /* setup H2C interrupt handler */
1040 for (i = 0; i < xdev->h2c_chan_num; i++) {
1041 ret = request_irq(irq, xdma_channel_isr, 0,
1042 "xdma-h2c-channel", &xdev->h2c_chans[i]);
1043 if (ret) {
1044 xdma_err(xdev, "H2C channel%d request irq%d failed: %d",
1045 i, irq, ret);
1046 goto failed_init_h2c;
1047 }
1048 xdev->h2c_chans[i].irq = irq;
1049 irq++;
1050 }
1051
1052 /* setup C2H interrupt handler */
1053 for (j = 0; j < xdev->c2h_chan_num; j++) {
1054 ret = request_irq(irq, xdma_channel_isr, 0,
1055 "xdma-c2h-channel", &xdev->c2h_chans[j]);
1056 if (ret) {
1057 xdma_err(xdev, "C2H channel%d request irq%d failed: %d",
1058 j, irq, ret);
1059 goto failed_init_c2h;
1060 }
1061 xdev->c2h_chans[j].irq = irq;
1062 irq++;
1063 }
1064
1065 /* config hardware IRQ registers */
1066 ret = xdma_set_vector_reg(xdev, XDMA_IRQ_CHAN_VEC_NUM, 0,
1067 XDMA_CHAN_NUM(xdev));
1068 if (ret) {
1069 xdma_err(xdev, "failed to set channel vectors: %d", ret);
1070 goto failed_init_c2h;
1071 }
1072
1073 /* config user IRQ registers if needed */
1074 user_irq_start = XDMA_CHAN_NUM(xdev);
1075 if (xdev->irq_num > user_irq_start) {
1076 ret = xdma_set_vector_reg(xdev, XDMA_IRQ_USER_VEC_NUM,
1077 user_irq_start,
1078 xdev->irq_num - user_irq_start);
1079 if (ret) {
1080 xdma_err(xdev, "failed to set user vectors: %d", ret);
1081 goto failed_init_c2h;
1082 }
1083 }
1084
1085 /* enable interrupt */
1086 ret = regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1S, ~0);
1087 if (ret)
1088 goto failed_init_c2h;
1089
1090 return 0;
1091
1092 failed_init_c2h:
1093 while (j--)
1094 free_irq(xdev->c2h_chans[j].irq, &xdev->c2h_chans[j]);
1095 failed_init_h2c:
1096 while (i--)
1097 free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);
1098
1099 return ret;
1100 }
1101
xdma_filter_fn(struct dma_chan * chan,void * param)1102 static bool xdma_filter_fn(struct dma_chan *chan, void *param)
1103 {
1104 struct xdma_chan *xdma_chan = to_xdma_chan(chan);
1105 struct xdma_chan_info *chan_info = param;
1106
1107 return chan_info->dir == xdma_chan->dir;
1108 }
1109
1110 /**
1111 * xdma_disable_user_irq - Disable user interrupt
1112 * @pdev: Pointer to the platform_device structure
1113 * @irq_num: System IRQ number
1114 */
xdma_disable_user_irq(struct platform_device * pdev,u32 irq_num)1115 void xdma_disable_user_irq(struct platform_device *pdev, u32 irq_num)
1116 {
1117 struct xdma_device *xdev = platform_get_drvdata(pdev);
1118 u32 index;
1119
1120 index = irq_num - xdev->irq_start;
1121 if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
1122 xdma_err(xdev, "invalid user irq number");
1123 return;
1124 }
1125 index -= XDMA_CHAN_NUM(xdev);
1126
1127 regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1C, 1 << index);
1128 }
1129 EXPORT_SYMBOL(xdma_disable_user_irq);
1130
1131 /**
1132 * xdma_enable_user_irq - Enable user logic interrupt
1133 * @pdev: Pointer to the platform_device structure
1134 * @irq_num: System IRQ number
1135 */
xdma_enable_user_irq(struct platform_device * pdev,u32 irq_num)1136 int xdma_enable_user_irq(struct platform_device *pdev, u32 irq_num)
1137 {
1138 struct xdma_device *xdev = platform_get_drvdata(pdev);
1139 u32 index;
1140 int ret;
1141
1142 index = irq_num - xdev->irq_start;
1143 if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
1144 xdma_err(xdev, "invalid user irq number");
1145 return -EINVAL;
1146 }
1147 index -= XDMA_CHAN_NUM(xdev);
1148
1149 ret = regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1S, 1 << index);
1150 if (ret)
1151 return ret;
1152
1153 return 0;
1154 }
1155 EXPORT_SYMBOL(xdma_enable_user_irq);
1156
1157 /**
1158 * xdma_get_user_irq - Get system IRQ number
1159 * @pdev: Pointer to the platform_device structure
1160 * @user_irq_index: User logic IRQ wire index
1161 *
1162 * Return: The system IRQ number allocated for the given wire index.
1163 */
xdma_get_user_irq(struct platform_device * pdev,u32 user_irq_index)1164 int xdma_get_user_irq(struct platform_device *pdev, u32 user_irq_index)
1165 {
1166 struct xdma_device *xdev = platform_get_drvdata(pdev);
1167
1168 if (XDMA_CHAN_NUM(xdev) + user_irq_index >= xdev->irq_num) {
1169 xdma_err(xdev, "invalid user irq index");
1170 return -EINVAL;
1171 }
1172
1173 return xdev->irq_start + XDMA_CHAN_NUM(xdev) + user_irq_index;
1174 }
1175 EXPORT_SYMBOL(xdma_get_user_irq);
1176
1177 /**
1178 * xdma_remove - Driver remove function
1179 * @pdev: Pointer to the platform_device structure
1180 */
xdma_remove(struct platform_device * pdev)1181 static void xdma_remove(struct platform_device *pdev)
1182 {
1183 struct xdma_device *xdev = platform_get_drvdata(pdev);
1184
1185 if (xdev->status & XDMA_DEV_STATUS_INIT_MSIX)
1186 xdma_irq_fini(xdev);
1187
1188 if (xdev->status & XDMA_DEV_STATUS_REG_DMA)
1189 dma_async_device_unregister(&xdev->dma_dev);
1190 }
1191
1192 /**
1193 * xdma_probe - Driver probe function
1194 * @pdev: Pointer to the platform_device structure
1195 */
xdma_probe(struct platform_device * pdev)1196 static int xdma_probe(struct platform_device *pdev)
1197 {
1198 struct xdma_platdata *pdata = dev_get_platdata(&pdev->dev);
1199 struct xdma_device *xdev;
1200 void __iomem *reg_base;
1201 struct resource *res;
1202 int ret = -ENODEV;
1203
1204 if (pdata->max_dma_channels > XDMA_MAX_CHANNELS) {
1205 dev_err(&pdev->dev, "invalid max dma channels %d",
1206 pdata->max_dma_channels);
1207 return -EINVAL;
1208 }
1209
1210 xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL);
1211 if (!xdev)
1212 return -ENOMEM;
1213
1214 platform_set_drvdata(pdev, xdev);
1215 xdev->pdev = pdev;
1216
1217 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1218 if (!res) {
1219 xdma_err(xdev, "failed to get irq resource");
1220 goto failed;
1221 }
1222 xdev->irq_start = res->start;
1223 xdev->irq_num = resource_size(res);
1224
1225 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1226 if (!res) {
1227 xdma_err(xdev, "failed to get io resource");
1228 goto failed;
1229 }
1230
1231 reg_base = devm_ioremap_resource(&pdev->dev, res);
1232 if (IS_ERR(reg_base)) {
1233 xdma_err(xdev, "ioremap failed");
1234 goto failed;
1235 }
1236
1237 xdev->rmap = devm_regmap_init_mmio(&pdev->dev, reg_base,
1238 &xdma_regmap_config);
1239 if (!xdev->rmap) {
1240 xdma_err(xdev, "config regmap failed: %d", ret);
1241 goto failed;
1242 }
1243 INIT_LIST_HEAD(&xdev->dma_dev.channels);
1244
1245 ret = xdma_alloc_channels(xdev, DMA_MEM_TO_DEV);
1246 if (ret) {
1247 xdma_err(xdev, "config H2C channels failed: %d", ret);
1248 goto failed;
1249 }
1250
1251 ret = xdma_alloc_channels(xdev, DMA_DEV_TO_MEM);
1252 if (ret) {
1253 xdma_err(xdev, "config C2H channels failed: %d", ret);
1254 goto failed;
1255 }
1256
1257 dma_cap_set(DMA_SLAVE, xdev->dma_dev.cap_mask);
1258 dma_cap_set(DMA_PRIVATE, xdev->dma_dev.cap_mask);
1259 dma_cap_set(DMA_CYCLIC, xdev->dma_dev.cap_mask);
1260 dma_cap_set(DMA_INTERLEAVE, xdev->dma_dev.cap_mask);
1261 dma_cap_set(DMA_REPEAT, xdev->dma_dev.cap_mask);
1262 dma_cap_set(DMA_LOAD_EOT, xdev->dma_dev.cap_mask);
1263
1264 xdev->dma_dev.dev = &pdev->dev;
1265 xdev->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1266 xdev->dma_dev.device_free_chan_resources = xdma_free_chan_resources;
1267 xdev->dma_dev.device_alloc_chan_resources = xdma_alloc_chan_resources;
1268 xdev->dma_dev.device_tx_status = xdma_tx_status;
1269 xdev->dma_dev.device_prep_slave_sg = xdma_prep_device_sg;
1270 xdev->dma_dev.device_config = xdma_device_config;
1271 xdev->dma_dev.device_issue_pending = xdma_issue_pending;
1272 xdev->dma_dev.device_terminate_all = xdma_terminate_all;
1273 xdev->dma_dev.device_synchronize = xdma_synchronize;
1274 xdev->dma_dev.filter.map = pdata->device_map;
1275 xdev->dma_dev.filter.mapcnt = pdata->device_map_cnt;
1276 xdev->dma_dev.filter.fn = xdma_filter_fn;
1277 xdev->dma_dev.device_prep_dma_cyclic = xdma_prep_dma_cyclic;
1278 xdev->dma_dev.device_prep_interleaved_dma = xdma_prep_interleaved_dma;
1279
1280 ret = dma_async_device_register(&xdev->dma_dev);
1281 if (ret) {
1282 xdma_err(xdev, "failed to register Xilinx XDMA: %d", ret);
1283 goto failed;
1284 }
1285 xdev->status |= XDMA_DEV_STATUS_REG_DMA;
1286
1287 ret = xdma_irq_init(xdev);
1288 if (ret) {
1289 xdma_err(xdev, "failed to init msix: %d", ret);
1290 goto failed;
1291 }
1292 xdev->status |= XDMA_DEV_STATUS_INIT_MSIX;
1293
1294 return 0;
1295
1296 failed:
1297 xdma_remove(pdev);
1298
1299 return ret;
1300 }
1301
1302 static const struct platform_device_id xdma_id_table[] = {
1303 { "xdma", 0},
1304 { },
1305 };
1306 MODULE_DEVICE_TABLE(platform, xdma_id_table);
1307
1308 static struct platform_driver xdma_driver = {
1309 .driver = {
1310 .name = "xdma",
1311 },
1312 .id_table = xdma_id_table,
1313 .probe = xdma_probe,
1314 .remove = xdma_remove,
1315 };
1316
1317 module_platform_driver(xdma_driver);
1318
1319 MODULE_DESCRIPTION("AMD XDMA driver");
1320 MODULE_AUTHOR("XRT Team <[email protected]>");
1321 MODULE_LICENSE("GPL");
1322