1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * DMA driver for Xilinx DMA/Bridge Subsystem
4  *
5  * Copyright (C) 2017-2020 Xilinx, Inc. All rights reserved.
6  * Copyright (C) 2022, Advanced Micro Devices, Inc.
7  */
8 
9 /*
10  * The DMA/Bridge Subsystem for PCI Express allows for the movement of data
11  * between Host memory and the DMA subsystem. It does this by operating on
12  * 'descriptors' that contain information about the source, destination and
13  * amount of data to transfer. These direct memory transfers can be both in
14  * the Host to Card (H2C) and Card to Host (C2H) transfers. The DMA can be
15  * configured to have a single AXI4 Master interface shared by all channels
16  * or one AXI4-Stream interface for each channel enabled. Memory transfers are
17  * specified on a per-channel basis in descriptor linked lists, which the DMA
18  * fetches from host memory and processes. Events such as descriptor completion
19  * and errors are signaled using interrupts. The core also provides up to 16
20  * user interrupt wires that generate interrupts to the host.
21  */
22 
23 #include <linux/mod_devicetable.h>
24 #include <linux/bitfield.h>
25 #include <linux/dmapool.h>
26 #include <linux/regmap.h>
27 #include <linux/dmaengine.h>
28 #include <linux/dma/amd_xdma.h>
29 #include <linux/platform_device.h>
30 #include <linux/platform_data/amd_xdma.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/pci.h>
33 #include "../virt-dma.h"
34 #include "xdma-regs.h"
35 
36 /* mmio regmap config for all XDMA registers */
37 static const struct regmap_config xdma_regmap_config = {
38 	.reg_bits = 32,
39 	.val_bits = 32,
40 	.reg_stride = 4,
41 	.max_register = XDMA_REG_SPACE_LEN,
42 };
43 
44 /**
45  * struct xdma_desc_block - Descriptor block
46  * @virt_addr: Virtual address of block start
47  * @dma_addr: DMA address of block start
48  */
49 struct xdma_desc_block {
50 	void		*virt_addr;
51 	dma_addr_t	dma_addr;
52 };
53 
54 /**
55  * struct xdma_chan - Driver specific DMA channel structure
56  * @vchan: Virtual channel
57  * @xdev_hdl: Pointer to DMA device structure
58  * @base: Offset of channel registers
59  * @desc_pool: Descriptor pool
60  * @busy: Busy flag of the channel
61  * @dir: Transferring direction of the channel
62  * @cfg: Transferring config of the channel
63  * @irq: IRQ assigned to the channel
64  */
65 struct xdma_chan {
66 	struct virt_dma_chan		vchan;
67 	void				*xdev_hdl;
68 	u32				base;
69 	struct dma_pool			*desc_pool;
70 	bool				busy;
71 	enum dma_transfer_direction	dir;
72 	struct dma_slave_config		cfg;
73 	u32				irq;
74 	struct completion		last_interrupt;
75 	bool				stop_requested;
76 };
77 
78 /**
79  * struct xdma_desc - DMA desc structure
80  * @vdesc: Virtual DMA descriptor
81  * @chan: DMA channel pointer
82  * @dir: Transferring direction of the request
83  * @desc_blocks: Hardware descriptor blocks
84  * @dblk_num: Number of hardware descriptor blocks
85  * @desc_num: Number of hardware descriptors
86  * @completed_desc_num: Completed hardware descriptors
87  * @cyclic: Cyclic transfer vs. scatter-gather
88  * @interleaved_dma: Interleaved DMA transfer
89  * @periods: Number of periods in the cyclic transfer
90  * @period_size: Size of a period in bytes in cyclic transfers
91  * @frames_left: Number of frames left in interleaved DMA transfer
92  * @error: tx error flag
93  */
94 struct xdma_desc {
95 	struct virt_dma_desc		vdesc;
96 	struct xdma_chan		*chan;
97 	enum dma_transfer_direction	dir;
98 	struct xdma_desc_block		*desc_blocks;
99 	u32				dblk_num;
100 	u32				desc_num;
101 	u32				completed_desc_num;
102 	bool				cyclic;
103 	bool				interleaved_dma;
104 	u32				periods;
105 	u32				period_size;
106 	u32				frames_left;
107 	bool				error;
108 };
109 
110 #define XDMA_DEV_STATUS_REG_DMA		BIT(0)
111 #define XDMA_DEV_STATUS_INIT_MSIX	BIT(1)
112 
113 /**
114  * struct xdma_device - DMA device structure
115  * @pdev: Platform device pointer
116  * @dma_dev: DMA device structure
117  * @rmap: MMIO regmap for DMA registers
118  * @h2c_chans: Host to Card channels
119  * @c2h_chans: Card to Host channels
120  * @h2c_chan_num: Number of H2C channels
121  * @c2h_chan_num: Number of C2H channels
122  * @irq_start: Start IRQ assigned to device
123  * @irq_num: Number of IRQ assigned to device
124  * @status: Initialization status
125  */
126 struct xdma_device {
127 	struct platform_device	*pdev;
128 	struct dma_device	dma_dev;
129 	struct regmap		*rmap;
130 	struct xdma_chan	*h2c_chans;
131 	struct xdma_chan	*c2h_chans;
132 	u32			h2c_chan_num;
133 	u32			c2h_chan_num;
134 	u32			irq_start;
135 	u32			irq_num;
136 	u32			status;
137 };
138 
139 #define xdma_err(xdev, fmt, args...)					\
140 	dev_err(&(xdev)->pdev->dev, fmt, ##args)
141 #define XDMA_CHAN_NUM(_xd) ({						\
142 	typeof(_xd) (xd) = (_xd);					\
143 	((xd)->h2c_chan_num + (xd)->c2h_chan_num); })
144 
145 /* Get the last desc in a desc block */
xdma_blk_last_desc(struct xdma_desc_block * block)146 static inline void *xdma_blk_last_desc(struct xdma_desc_block *block)
147 {
148 	return block->virt_addr + (XDMA_DESC_ADJACENT - 1) * XDMA_DESC_SIZE;
149 }
150 
151 /**
152  * xdma_link_sg_desc_blocks - Link SG descriptor blocks for DMA transfer
153  * @sw_desc: Tx descriptor pointer
154  */
xdma_link_sg_desc_blocks(struct xdma_desc * sw_desc)155 static void xdma_link_sg_desc_blocks(struct xdma_desc *sw_desc)
156 {
157 	struct xdma_desc_block *block;
158 	u32 last_blk_desc, desc_control;
159 	struct xdma_hw_desc *desc;
160 	int i;
161 
162 	desc_control = XDMA_DESC_CONTROL(XDMA_DESC_ADJACENT, 0);
163 	for (i = 1; i < sw_desc->dblk_num; i++) {
164 		block = &sw_desc->desc_blocks[i - 1];
165 		desc = xdma_blk_last_desc(block);
166 
167 		if (!(i & XDMA_DESC_BLOCK_MASK)) {
168 			desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
169 			continue;
170 		}
171 		desc->control = cpu_to_le32(desc_control);
172 		desc->next_desc = cpu_to_le64(block[1].dma_addr);
173 	}
174 
175 	/* update the last block */
176 	last_blk_desc = (sw_desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
177 	if (((sw_desc->dblk_num - 1) & XDMA_DESC_BLOCK_MASK) > 0) {
178 		block = &sw_desc->desc_blocks[sw_desc->dblk_num - 2];
179 		desc = xdma_blk_last_desc(block);
180 		desc_control = XDMA_DESC_CONTROL(last_blk_desc + 1, 0);
181 		desc->control = cpu_to_le32(desc_control);
182 	}
183 
184 	block = &sw_desc->desc_blocks[sw_desc->dblk_num - 1];
185 	desc = block->virt_addr + last_blk_desc * XDMA_DESC_SIZE;
186 	desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
187 }
188 
189 /**
190  * xdma_link_cyclic_desc_blocks - Link cyclic descriptor blocks for DMA transfer
191  * @sw_desc: Tx descriptor pointer
192  */
xdma_link_cyclic_desc_blocks(struct xdma_desc * sw_desc)193 static void xdma_link_cyclic_desc_blocks(struct xdma_desc *sw_desc)
194 {
195 	struct xdma_desc_block *block;
196 	struct xdma_hw_desc *desc;
197 	int i;
198 
199 	block = sw_desc->desc_blocks;
200 	for (i = 0; i < sw_desc->desc_num - 1; i++) {
201 		desc = block->virt_addr + i * XDMA_DESC_SIZE;
202 		desc->next_desc = cpu_to_le64(block->dma_addr + ((i + 1) * XDMA_DESC_SIZE));
203 	}
204 	desc = block->virt_addr + i * XDMA_DESC_SIZE;
205 	desc->next_desc = cpu_to_le64(block->dma_addr);
206 }
207 
to_xdma_chan(struct dma_chan * chan)208 static inline struct xdma_chan *to_xdma_chan(struct dma_chan *chan)
209 {
210 	return container_of(chan, struct xdma_chan, vchan.chan);
211 }
212 
to_xdma_desc(struct virt_dma_desc * vdesc)213 static inline struct xdma_desc *to_xdma_desc(struct virt_dma_desc *vdesc)
214 {
215 	return container_of(vdesc, struct xdma_desc, vdesc);
216 }
217 
218 /**
219  * xdma_channel_init - Initialize DMA channel registers
220  * @chan: DMA channel pointer
221  */
xdma_channel_init(struct xdma_chan * chan)222 static int xdma_channel_init(struct xdma_chan *chan)
223 {
224 	struct xdma_device *xdev = chan->xdev_hdl;
225 	int ret;
226 
227 	ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_CONTROL_W1C,
228 			   CHAN_CTRL_NON_INCR_ADDR);
229 	if (ret)
230 		return ret;
231 
232 	ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_INTR_ENABLE,
233 			   CHAN_IM_ALL);
234 	if (ret)
235 		return ret;
236 
237 	return 0;
238 }
239 
240 /**
241  * xdma_free_desc - Free descriptor
242  * @vdesc: Virtual DMA descriptor
243  */
xdma_free_desc(struct virt_dma_desc * vdesc)244 static void xdma_free_desc(struct virt_dma_desc *vdesc)
245 {
246 	struct xdma_desc *sw_desc;
247 	int i;
248 
249 	sw_desc = to_xdma_desc(vdesc);
250 	for (i = 0; i < sw_desc->dblk_num; i++) {
251 		if (!sw_desc->desc_blocks[i].virt_addr)
252 			break;
253 		dma_pool_free(sw_desc->chan->desc_pool,
254 			      sw_desc->desc_blocks[i].virt_addr,
255 			      sw_desc->desc_blocks[i].dma_addr);
256 	}
257 	kfree(sw_desc->desc_blocks);
258 	kfree(sw_desc);
259 }
260 
261 /**
262  * xdma_alloc_desc - Allocate descriptor
263  * @chan: DMA channel pointer
264  * @desc_num: Number of hardware descriptors
265  * @cyclic: Whether this is a cyclic transfer
266  */
267 static struct xdma_desc *
xdma_alloc_desc(struct xdma_chan * chan,u32 desc_num,bool cyclic)268 xdma_alloc_desc(struct xdma_chan *chan, u32 desc_num, bool cyclic)
269 {
270 	struct xdma_desc *sw_desc;
271 	struct xdma_hw_desc *desc;
272 	dma_addr_t dma_addr;
273 	u32 dblk_num;
274 	u32 control;
275 	void *addr;
276 	int i, j;
277 
278 	sw_desc = kzalloc(sizeof(*sw_desc), GFP_NOWAIT);
279 	if (!sw_desc)
280 		return NULL;
281 
282 	sw_desc->chan = chan;
283 	sw_desc->desc_num = desc_num;
284 	sw_desc->cyclic = cyclic;
285 	sw_desc->error = false;
286 	dblk_num = DIV_ROUND_UP(desc_num, XDMA_DESC_ADJACENT);
287 	sw_desc->desc_blocks = kcalloc(dblk_num, sizeof(*sw_desc->desc_blocks),
288 				       GFP_NOWAIT);
289 	if (!sw_desc->desc_blocks)
290 		goto failed;
291 
292 	if (cyclic)
293 		control = XDMA_DESC_CONTROL_CYCLIC;
294 	else
295 		control = XDMA_DESC_CONTROL(1, 0);
296 
297 	sw_desc->dblk_num = dblk_num;
298 	for (i = 0; i < sw_desc->dblk_num; i++) {
299 		addr = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &dma_addr);
300 		if (!addr)
301 			goto failed;
302 
303 		sw_desc->desc_blocks[i].virt_addr = addr;
304 		sw_desc->desc_blocks[i].dma_addr = dma_addr;
305 		for (j = 0, desc = addr; j < XDMA_DESC_ADJACENT; j++)
306 			desc[j].control = cpu_to_le32(control);
307 	}
308 
309 	if (cyclic)
310 		xdma_link_cyclic_desc_blocks(sw_desc);
311 	else
312 		xdma_link_sg_desc_blocks(sw_desc);
313 
314 	return sw_desc;
315 
316 failed:
317 	xdma_free_desc(&sw_desc->vdesc);
318 	return NULL;
319 }
320 
321 /**
322  * xdma_xfer_start - Start DMA transfer
323  * @xchan: DMA channel pointer
324  */
xdma_xfer_start(struct xdma_chan * xchan)325 static int xdma_xfer_start(struct xdma_chan *xchan)
326 {
327 	struct virt_dma_desc *vd = vchan_next_desc(&xchan->vchan);
328 	struct xdma_device *xdev = xchan->xdev_hdl;
329 	struct xdma_desc_block *block;
330 	u32 val, completed_blocks;
331 	struct xdma_desc *desc;
332 	int ret;
333 
334 	/*
335 	 * check if there is not any submitted descriptor or channel is busy.
336 	 * vchan lock should be held where this function is called.
337 	 */
338 	if (!vd || xchan->busy)
339 		return -EINVAL;
340 
341 	/* clear run stop bit to get ready for transfer */
342 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
343 			   CHAN_CTRL_RUN_STOP);
344 	if (ret)
345 		return ret;
346 
347 	desc = to_xdma_desc(vd);
348 	if (desc->dir != xchan->dir) {
349 		xdma_err(xdev, "incorrect request direction");
350 		return -EINVAL;
351 	}
352 
353 	/* set DMA engine to the first descriptor block */
354 	completed_blocks = desc->completed_desc_num / XDMA_DESC_ADJACENT;
355 	block = &desc->desc_blocks[completed_blocks];
356 	val = lower_32_bits(block->dma_addr);
357 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_LO, val);
358 	if (ret)
359 		return ret;
360 
361 	val = upper_32_bits(block->dma_addr);
362 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_HI, val);
363 	if (ret)
364 		return ret;
365 
366 	if (completed_blocks + 1 == desc->dblk_num)
367 		val = (desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
368 	else
369 		val = XDMA_DESC_ADJACENT - 1;
370 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_ADJ, val);
371 	if (ret)
372 		return ret;
373 
374 	/* kick off DMA transfer */
375 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL,
376 			   CHAN_CTRL_START);
377 	if (ret)
378 		return ret;
379 
380 	xchan->busy = true;
381 	xchan->stop_requested = false;
382 	reinit_completion(&xchan->last_interrupt);
383 
384 	return 0;
385 }
386 
387 /**
388  * xdma_xfer_stop - Stop DMA transfer
389  * @xchan: DMA channel pointer
390  */
xdma_xfer_stop(struct xdma_chan * xchan)391 static int xdma_xfer_stop(struct xdma_chan *xchan)
392 {
393 	struct xdma_device *xdev = xchan->xdev_hdl;
394 
395 	/* clear run stop bit to prevent any further auto-triggering */
396 	return regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
397 			    CHAN_CTRL_RUN_STOP);
398 }
399 
400 /**
401  * xdma_alloc_channels - Detect and allocate DMA channels
402  * @xdev: DMA device pointer
403  * @dir: Channel direction
404  */
xdma_alloc_channels(struct xdma_device * xdev,enum dma_transfer_direction dir)405 static int xdma_alloc_channels(struct xdma_device *xdev,
406 			       enum dma_transfer_direction dir)
407 {
408 	struct xdma_platdata *pdata = dev_get_platdata(&xdev->pdev->dev);
409 	struct xdma_chan **chans, *xchan;
410 	u32 base, identifier, target;
411 	u32 *chan_num;
412 	int i, j, ret;
413 
414 	if (dir == DMA_MEM_TO_DEV) {
415 		base = XDMA_CHAN_H2C_OFFSET;
416 		target = XDMA_CHAN_H2C_TARGET;
417 		chans = &xdev->h2c_chans;
418 		chan_num = &xdev->h2c_chan_num;
419 	} else if (dir == DMA_DEV_TO_MEM) {
420 		base = XDMA_CHAN_C2H_OFFSET;
421 		target = XDMA_CHAN_C2H_TARGET;
422 		chans = &xdev->c2h_chans;
423 		chan_num = &xdev->c2h_chan_num;
424 	} else {
425 		xdma_err(xdev, "invalid direction specified");
426 		return -EINVAL;
427 	}
428 
429 	/* detect number of available DMA channels */
430 	for (i = 0, *chan_num = 0; i < pdata->max_dma_channels; i++) {
431 		ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
432 				  &identifier);
433 		if (ret)
434 			return ret;
435 
436 		/* check if it is available DMA channel */
437 		if (XDMA_CHAN_CHECK_TARGET(identifier, target))
438 			(*chan_num)++;
439 	}
440 
441 	if (!*chan_num) {
442 		xdma_err(xdev, "does not probe any channel");
443 		return -EINVAL;
444 	}
445 
446 	*chans = devm_kcalloc(&xdev->pdev->dev, *chan_num, sizeof(**chans),
447 			      GFP_KERNEL);
448 	if (!*chans)
449 		return -ENOMEM;
450 
451 	for (i = 0, j = 0; i < pdata->max_dma_channels; i++) {
452 		ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
453 				  &identifier);
454 		if (ret)
455 			return ret;
456 
457 		if (!XDMA_CHAN_CHECK_TARGET(identifier, target))
458 			continue;
459 
460 		if (j == *chan_num) {
461 			xdma_err(xdev, "invalid channel number");
462 			return -EIO;
463 		}
464 
465 		/* init channel structure and hardware */
466 		xchan = &(*chans)[j];
467 		xchan->xdev_hdl = xdev;
468 		xchan->base = base + i * XDMA_CHAN_STRIDE;
469 		xchan->dir = dir;
470 		xchan->stop_requested = false;
471 		init_completion(&xchan->last_interrupt);
472 
473 		ret = xdma_channel_init(xchan);
474 		if (ret)
475 			return ret;
476 		xchan->vchan.desc_free = xdma_free_desc;
477 		vchan_init(&xchan->vchan, &xdev->dma_dev);
478 
479 		j++;
480 	}
481 
482 	dev_info(&xdev->pdev->dev, "configured %d %s channels", j,
483 		 (dir == DMA_MEM_TO_DEV) ? "H2C" : "C2H");
484 
485 	return 0;
486 }
487 
488 /**
489  * xdma_issue_pending - Issue pending transactions
490  * @chan: DMA channel pointer
491  */
xdma_issue_pending(struct dma_chan * chan)492 static void xdma_issue_pending(struct dma_chan *chan)
493 {
494 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
495 	unsigned long flags;
496 
497 	spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
498 	if (vchan_issue_pending(&xdma_chan->vchan))
499 		xdma_xfer_start(xdma_chan);
500 	spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
501 }
502 
503 /**
504  * xdma_terminate_all - Terminate all transactions
505  * @chan: DMA channel pointer
506  */
xdma_terminate_all(struct dma_chan * chan)507 static int xdma_terminate_all(struct dma_chan *chan)
508 {
509 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
510 	struct virt_dma_desc *vd;
511 	unsigned long flags;
512 	LIST_HEAD(head);
513 
514 	xdma_xfer_stop(xdma_chan);
515 
516 	spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
517 
518 	xdma_chan->busy = false;
519 	xdma_chan->stop_requested = true;
520 	vd = vchan_next_desc(&xdma_chan->vchan);
521 	if (vd) {
522 		list_del(&vd->node);
523 		dma_cookie_complete(&vd->tx);
524 		vchan_terminate_vdesc(vd);
525 	}
526 	vchan_get_all_descriptors(&xdma_chan->vchan, &head);
527 	list_splice_tail(&head, &xdma_chan->vchan.desc_terminated);
528 
529 	spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
530 
531 	return 0;
532 }
533 
534 /**
535  * xdma_synchronize - Synchronize terminated transactions
536  * @chan: DMA channel pointer
537  */
xdma_synchronize(struct dma_chan * chan)538 static void xdma_synchronize(struct dma_chan *chan)
539 {
540 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
541 	struct xdma_device *xdev = xdma_chan->xdev_hdl;
542 	int st = 0;
543 
544 	/* If the engine continues running, wait for the last interrupt */
545 	regmap_read(xdev->rmap, xdma_chan->base + XDMA_CHAN_STATUS, &st);
546 	if (st & XDMA_CHAN_STATUS_BUSY)
547 		wait_for_completion_timeout(&xdma_chan->last_interrupt, msecs_to_jiffies(1000));
548 
549 	vchan_synchronize(&xdma_chan->vchan);
550 }
551 
552 /**
553  * xdma_fill_descs() - Fill hardware descriptors for one contiguous memory chunk.
554  *		       More than one descriptor will be used if the size is bigger
555  *		       than XDMA_DESC_BLEN_MAX.
556  * @sw_desc: Descriptor container
557  * @src_addr: First value for the ->src_addr field
558  * @dst_addr: First value for the ->dst_addr field
559  * @size: Size of the contiguous memory block
560  * @filled_descs_num: Index of the first descriptor to take care of in @sw_desc
561  */
xdma_fill_descs(struct xdma_desc * sw_desc,u64 src_addr,u64 dst_addr,u32 size,u32 filled_descs_num)562 static inline u32 xdma_fill_descs(struct xdma_desc *sw_desc, u64 src_addr,
563 				  u64 dst_addr, u32 size, u32 filled_descs_num)
564 {
565 	u32 left = size, len, desc_num = filled_descs_num;
566 	struct xdma_desc_block *dblk;
567 	struct xdma_hw_desc *desc;
568 
569 	dblk = sw_desc->desc_blocks + (desc_num / XDMA_DESC_ADJACENT);
570 	desc = dblk->virt_addr;
571 	desc += desc_num & XDMA_DESC_ADJACENT_MASK;
572 	do {
573 		len = min_t(u32, left, XDMA_DESC_BLEN_MAX);
574 		/* set hardware descriptor */
575 		desc->bytes = cpu_to_le32(len);
576 		desc->src_addr = cpu_to_le64(src_addr);
577 		desc->dst_addr = cpu_to_le64(dst_addr);
578 		if (!(++desc_num & XDMA_DESC_ADJACENT_MASK))
579 			desc = (++dblk)->virt_addr;
580 		else
581 			desc++;
582 
583 		src_addr += len;
584 		dst_addr += len;
585 		left -= len;
586 	} while (left);
587 
588 	return desc_num - filled_descs_num;
589 }
590 
591 /**
592  * xdma_prep_device_sg - prepare a descriptor for a DMA transaction
593  * @chan: DMA channel pointer
594  * @sgl: Transfer scatter gather list
595  * @sg_len: Length of scatter gather list
596  * @dir: Transfer direction
597  * @flags: transfer ack flags
598  * @context: APP words of the descriptor
599  */
600 static struct dma_async_tx_descriptor *
xdma_prep_device_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,void * context)601 xdma_prep_device_sg(struct dma_chan *chan, struct scatterlist *sgl,
602 		    unsigned int sg_len, enum dma_transfer_direction dir,
603 		    unsigned long flags, void *context)
604 {
605 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
606 	struct dma_async_tx_descriptor *tx_desc;
607 	struct xdma_desc *sw_desc;
608 	u32 desc_num = 0, i;
609 	u64 addr, dev_addr, *src, *dst;
610 	struct scatterlist *sg;
611 
612 	for_each_sg(sgl, sg, sg_len, i)
613 		desc_num += DIV_ROUND_UP(sg_dma_len(sg), XDMA_DESC_BLEN_MAX);
614 
615 	sw_desc = xdma_alloc_desc(xdma_chan, desc_num, false);
616 	if (!sw_desc)
617 		return NULL;
618 	sw_desc->dir = dir;
619 	sw_desc->cyclic = false;
620 	sw_desc->interleaved_dma = false;
621 
622 	if (dir == DMA_MEM_TO_DEV) {
623 		dev_addr = xdma_chan->cfg.dst_addr;
624 		src = &addr;
625 		dst = &dev_addr;
626 	} else {
627 		dev_addr = xdma_chan->cfg.src_addr;
628 		src = &dev_addr;
629 		dst = &addr;
630 	}
631 
632 	desc_num = 0;
633 	for_each_sg(sgl, sg, sg_len, i) {
634 		addr = sg_dma_address(sg);
635 		desc_num += xdma_fill_descs(sw_desc, *src, *dst, sg_dma_len(sg), desc_num);
636 		dev_addr += sg_dma_len(sg);
637 	}
638 
639 	tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
640 	if (!tx_desc)
641 		goto failed;
642 
643 	return tx_desc;
644 
645 failed:
646 	xdma_free_desc(&sw_desc->vdesc);
647 
648 	return NULL;
649 }
650 
651 /**
652  * xdma_prep_dma_cyclic - prepare for cyclic DMA transactions
653  * @chan: DMA channel pointer
654  * @address: Device DMA address to access
655  * @size: Total length to transfer
656  * @period_size: Period size to use for each transfer
657  * @dir: Transfer direction
658  * @flags: Transfer ack flags
659  */
660 static struct dma_async_tx_descriptor *
xdma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t address,size_t size,size_t period_size,enum dma_transfer_direction dir,unsigned long flags)661 xdma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t address,
662 		     size_t size, size_t period_size,
663 		     enum dma_transfer_direction dir,
664 		     unsigned long flags)
665 {
666 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
667 	struct xdma_device *xdev = xdma_chan->xdev_hdl;
668 	unsigned int periods = size / period_size;
669 	struct dma_async_tx_descriptor *tx_desc;
670 	struct xdma_desc *sw_desc;
671 	u64 addr, dev_addr, *src, *dst;
672 	u32 desc_num;
673 	unsigned int i;
674 
675 	/*
676 	 * Simplify the whole logic by preventing an abnormally high number of
677 	 * periods and periods size.
678 	 */
679 	if (period_size > XDMA_DESC_BLEN_MAX) {
680 		xdma_err(xdev, "period size limited to %lu bytes\n", XDMA_DESC_BLEN_MAX);
681 		return NULL;
682 	}
683 
684 	if (periods > XDMA_DESC_ADJACENT) {
685 		xdma_err(xdev, "number of periods limited to %u\n", XDMA_DESC_ADJACENT);
686 		return NULL;
687 	}
688 
689 	sw_desc = xdma_alloc_desc(xdma_chan, periods, true);
690 	if (!sw_desc)
691 		return NULL;
692 
693 	sw_desc->periods = periods;
694 	sw_desc->period_size = period_size;
695 	sw_desc->dir = dir;
696 	sw_desc->interleaved_dma = false;
697 
698 	addr = address;
699 	if (dir == DMA_MEM_TO_DEV) {
700 		dev_addr = xdma_chan->cfg.dst_addr;
701 		src = &addr;
702 		dst = &dev_addr;
703 	} else {
704 		dev_addr = xdma_chan->cfg.src_addr;
705 		src = &dev_addr;
706 		dst = &addr;
707 	}
708 
709 	desc_num = 0;
710 	for (i = 0; i < periods; i++) {
711 		desc_num += xdma_fill_descs(sw_desc, *src, *dst, period_size, desc_num);
712 		addr += period_size;
713 	}
714 
715 	tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
716 	if (!tx_desc)
717 		goto failed;
718 
719 	return tx_desc;
720 
721 failed:
722 	xdma_free_desc(&sw_desc->vdesc);
723 
724 	return NULL;
725 }
726 
727 /**
728  * xdma_prep_interleaved_dma - Prepare virtual descriptor for interleaved DMA transfers
729  * @chan: DMA channel
730  * @xt: DMA transfer template
731  * @flags: tx flags
732  */
733 static struct dma_async_tx_descriptor *
xdma_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)734 xdma_prep_interleaved_dma(struct dma_chan *chan,
735 			  struct dma_interleaved_template *xt,
736 			  unsigned long flags)
737 {
738 	int i;
739 	u32 desc_num = 0, period_size = 0;
740 	struct dma_async_tx_descriptor *tx_desc;
741 	struct xdma_chan *xchan = to_xdma_chan(chan);
742 	struct xdma_desc *sw_desc;
743 	u64 src_addr, dst_addr;
744 
745 	for (i = 0; i < xt->frame_size; ++i)
746 		desc_num += DIV_ROUND_UP(xt->sgl[i].size, XDMA_DESC_BLEN_MAX);
747 
748 	sw_desc = xdma_alloc_desc(xchan, desc_num, false);
749 	if (!sw_desc)
750 		return NULL;
751 	sw_desc->dir = xt->dir;
752 	sw_desc->interleaved_dma = true;
753 	sw_desc->cyclic = flags & DMA_PREP_REPEAT;
754 	sw_desc->frames_left = xt->numf;
755 	sw_desc->periods = xt->numf;
756 
757 	desc_num = 0;
758 	src_addr = xt->src_start;
759 	dst_addr = xt->dst_start;
760 	for (i = 0; i < xt->frame_size; ++i) {
761 		desc_num += xdma_fill_descs(sw_desc, src_addr, dst_addr, xt->sgl[i].size, desc_num);
762 		src_addr += dmaengine_get_src_icg(xt, &xt->sgl[i]) + (xt->src_inc ?
763 							      xt->sgl[i].size : 0);
764 		dst_addr += dmaengine_get_dst_icg(xt, &xt->sgl[i]) + (xt->dst_inc ?
765 							      xt->sgl[i].size : 0);
766 		period_size += xt->sgl[i].size;
767 	}
768 	sw_desc->period_size = period_size;
769 
770 	tx_desc = vchan_tx_prep(&xchan->vchan, &sw_desc->vdesc, flags);
771 	if (tx_desc)
772 		return tx_desc;
773 
774 	xdma_free_desc(&sw_desc->vdesc);
775 	return NULL;
776 }
777 
778 /**
779  * xdma_device_config - Configure the DMA channel
780  * @chan: DMA channel
781  * @cfg: channel configuration
782  */
xdma_device_config(struct dma_chan * chan,struct dma_slave_config * cfg)783 static int xdma_device_config(struct dma_chan *chan,
784 			      struct dma_slave_config *cfg)
785 {
786 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
787 
788 	memcpy(&xdma_chan->cfg, cfg, sizeof(*cfg));
789 
790 	return 0;
791 }
792 
793 /**
794  * xdma_free_chan_resources - Free channel resources
795  * @chan: DMA channel
796  */
xdma_free_chan_resources(struct dma_chan * chan)797 static void xdma_free_chan_resources(struct dma_chan *chan)
798 {
799 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
800 
801 	vchan_free_chan_resources(&xdma_chan->vchan);
802 	dma_pool_destroy(xdma_chan->desc_pool);
803 	xdma_chan->desc_pool = NULL;
804 }
805 
806 /**
807  * xdma_alloc_chan_resources - Allocate channel resources
808  * @chan: DMA channel
809  */
xdma_alloc_chan_resources(struct dma_chan * chan)810 static int xdma_alloc_chan_resources(struct dma_chan *chan)
811 {
812 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
813 	struct xdma_device *xdev = xdma_chan->xdev_hdl;
814 	struct device *dev = xdev->dma_dev.dev;
815 
816 	while (dev && !dev_is_pci(dev))
817 		dev = dev->parent;
818 	if (!dev) {
819 		xdma_err(xdev, "unable to find pci device");
820 		return -EINVAL;
821 	}
822 
823 	xdma_chan->desc_pool = dma_pool_create(dma_chan_name(chan), dev, XDMA_DESC_BLOCK_SIZE,
824 					       XDMA_DESC_BLOCK_ALIGN, XDMA_DESC_BLOCK_BOUNDARY);
825 	if (!xdma_chan->desc_pool) {
826 		xdma_err(xdev, "unable to allocate descriptor pool");
827 		return -ENOMEM;
828 	}
829 
830 	return 0;
831 }
832 
xdma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)833 static enum dma_status xdma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
834 				      struct dma_tx_state *state)
835 {
836 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
837 	struct xdma_desc *desc = NULL;
838 	struct virt_dma_desc *vd;
839 	enum dma_status ret;
840 	unsigned long flags;
841 	unsigned int period_idx;
842 	u32 residue = 0;
843 
844 	ret = dma_cookie_status(chan, cookie, state);
845 	if (ret == DMA_COMPLETE)
846 		return ret;
847 
848 	spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
849 
850 	vd = vchan_find_desc(&xdma_chan->vchan, cookie);
851 	if (!vd)
852 		goto out;
853 
854 	desc = to_xdma_desc(vd);
855 	if (desc->error) {
856 		ret = DMA_ERROR;
857 	} else if (desc->cyclic) {
858 		period_idx = desc->completed_desc_num % desc->periods;
859 		residue = (desc->periods - period_idx) * desc->period_size;
860 		dma_set_residue(state, residue);
861 	}
862 out:
863 	spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
864 
865 	return ret;
866 }
867 
868 /**
869  * xdma_channel_isr - XDMA channel interrupt handler
870  * @irq: IRQ number
871  * @dev_id: Pointer to the DMA channel structure
872  */
xdma_channel_isr(int irq,void * dev_id)873 static irqreturn_t xdma_channel_isr(int irq, void *dev_id)
874 {
875 	struct xdma_chan *xchan = dev_id;
876 	u32 complete_desc_num = 0;
877 	struct xdma_device *xdev = xchan->xdev_hdl;
878 	struct virt_dma_desc *vd, *next_vd;
879 	struct xdma_desc *desc;
880 	int ret;
881 	u32 st;
882 	bool repeat_tx;
883 
884 	spin_lock(&xchan->vchan.lock);
885 
886 	if (xchan->stop_requested)
887 		complete(&xchan->last_interrupt);
888 
889 	/* get submitted request */
890 	vd = vchan_next_desc(&xchan->vchan);
891 	if (!vd)
892 		goto out;
893 
894 	/* Clear-on-read the status register */
895 	ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_STATUS_RC, &st);
896 	if (ret)
897 		goto out;
898 
899 	desc = to_xdma_desc(vd);
900 
901 	st &= XDMA_CHAN_STATUS_MASK;
902 	if ((st & XDMA_CHAN_ERROR_MASK) ||
903 	    !(st & (CHAN_CTRL_IE_DESC_COMPLETED | CHAN_CTRL_IE_DESC_STOPPED))) {
904 		desc->error = true;
905 		xdma_err(xdev, "channel error, status register value: 0x%x", st);
906 		goto out;
907 	}
908 
909 	ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_COMPLETED_DESC,
910 			  &complete_desc_num);
911 	if (ret)
912 		goto out;
913 
914 	if (desc->interleaved_dma) {
915 		xchan->busy = false;
916 		desc->completed_desc_num += complete_desc_num;
917 		if (complete_desc_num == XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT) {
918 			xdma_xfer_start(xchan);
919 			goto out;
920 		}
921 
922 		/* last desc of any frame */
923 		desc->frames_left--;
924 		if (desc->frames_left)
925 			goto out;
926 
927 		/* last desc of the last frame  */
928 		repeat_tx = vd->tx.flags & DMA_PREP_REPEAT;
929 		next_vd = list_first_entry_or_null(&vd->node, struct virt_dma_desc, node);
930 		if (next_vd)
931 			repeat_tx = repeat_tx && !(next_vd->tx.flags & DMA_PREP_LOAD_EOT);
932 		if (repeat_tx) {
933 			desc->frames_left = desc->periods;
934 			desc->completed_desc_num = 0;
935 			vchan_cyclic_callback(vd);
936 		} else {
937 			list_del(&vd->node);
938 			vchan_cookie_complete(vd);
939 		}
940 		/* start (or continue) the tx of a first desc on the vc.desc_issued list, if any */
941 		xdma_xfer_start(xchan);
942 	} else if (!desc->cyclic) {
943 		xchan->busy = false;
944 		desc->completed_desc_num += complete_desc_num;
945 
946 		/* if all data blocks are transferred, remove and complete the request */
947 		if (desc->completed_desc_num == desc->desc_num) {
948 			list_del(&vd->node);
949 			vchan_cookie_complete(vd);
950 			goto out;
951 		}
952 
953 		if (desc->completed_desc_num > desc->desc_num ||
954 		    complete_desc_num != XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT)
955 			goto out;
956 
957 		/* transfer the rest of data */
958 		xdma_xfer_start(xchan);
959 	} else {
960 		desc->completed_desc_num = complete_desc_num;
961 		vchan_cyclic_callback(vd);
962 	}
963 
964 out:
965 	spin_unlock(&xchan->vchan.lock);
966 	return IRQ_HANDLED;
967 }
968 
969 /**
970  * xdma_irq_fini - Uninitialize IRQ
971  * @xdev: DMA device pointer
972  */
xdma_irq_fini(struct xdma_device * xdev)973 static void xdma_irq_fini(struct xdma_device *xdev)
974 {
975 	int i;
976 
977 	/* disable interrupt */
978 	regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1C, ~0);
979 
980 	/* free irq handler */
981 	for (i = 0; i < xdev->h2c_chan_num; i++)
982 		free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);
983 
984 	for (i = 0; i < xdev->c2h_chan_num; i++)
985 		free_irq(xdev->c2h_chans[i].irq, &xdev->c2h_chans[i]);
986 }
987 
988 /**
989  * xdma_set_vector_reg - configure hardware IRQ registers
990  * @xdev: DMA device pointer
991  * @vec_tbl_start: Start of IRQ registers
992  * @irq_start: Start of IRQ
993  * @irq_num: Number of IRQ
994  */
xdma_set_vector_reg(struct xdma_device * xdev,u32 vec_tbl_start,u32 irq_start,u32 irq_num)995 static int xdma_set_vector_reg(struct xdma_device *xdev, u32 vec_tbl_start,
996 			       u32 irq_start, u32 irq_num)
997 {
998 	u32 shift, i, val = 0;
999 	int ret;
1000 
1001 	/* Each IRQ register is 32 bit and contains 4 IRQs */
1002 	while (irq_num > 0) {
1003 		for (i = 0; i < 4; i++) {
1004 			shift = XDMA_IRQ_VEC_SHIFT * i;
1005 			val |= irq_start << shift;
1006 			irq_start++;
1007 			irq_num--;
1008 			if (!irq_num)
1009 				break;
1010 		}
1011 
1012 		/* write IRQ register */
1013 		ret = regmap_write(xdev->rmap, vec_tbl_start, val);
1014 		if (ret)
1015 			return ret;
1016 		vec_tbl_start += sizeof(u32);
1017 		val = 0;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 /**
1024  * xdma_irq_init - initialize IRQs
1025  * @xdev: DMA device pointer
1026  */
xdma_irq_init(struct xdma_device * xdev)1027 static int xdma_irq_init(struct xdma_device *xdev)
1028 {
1029 	u32 irq = xdev->irq_start;
1030 	u32 user_irq_start;
1031 	int i, j, ret;
1032 
1033 	/* return failure if there are not enough IRQs */
1034 	if (xdev->irq_num < XDMA_CHAN_NUM(xdev)) {
1035 		xdma_err(xdev, "not enough irq");
1036 		return -EINVAL;
1037 	}
1038 
1039 	/* setup H2C interrupt handler */
1040 	for (i = 0; i < xdev->h2c_chan_num; i++) {
1041 		ret = request_irq(irq, xdma_channel_isr, 0,
1042 				  "xdma-h2c-channel", &xdev->h2c_chans[i]);
1043 		if (ret) {
1044 			xdma_err(xdev, "H2C channel%d request irq%d failed: %d",
1045 				 i, irq, ret);
1046 			goto failed_init_h2c;
1047 		}
1048 		xdev->h2c_chans[i].irq = irq;
1049 		irq++;
1050 	}
1051 
1052 	/* setup C2H interrupt handler */
1053 	for (j = 0; j < xdev->c2h_chan_num; j++) {
1054 		ret = request_irq(irq, xdma_channel_isr, 0,
1055 				  "xdma-c2h-channel", &xdev->c2h_chans[j]);
1056 		if (ret) {
1057 			xdma_err(xdev, "C2H channel%d request irq%d failed: %d",
1058 				 j, irq, ret);
1059 			goto failed_init_c2h;
1060 		}
1061 		xdev->c2h_chans[j].irq = irq;
1062 		irq++;
1063 	}
1064 
1065 	/* config hardware IRQ registers */
1066 	ret = xdma_set_vector_reg(xdev, XDMA_IRQ_CHAN_VEC_NUM, 0,
1067 				  XDMA_CHAN_NUM(xdev));
1068 	if (ret) {
1069 		xdma_err(xdev, "failed to set channel vectors: %d", ret);
1070 		goto failed_init_c2h;
1071 	}
1072 
1073 	/* config user IRQ registers if needed */
1074 	user_irq_start = XDMA_CHAN_NUM(xdev);
1075 	if (xdev->irq_num > user_irq_start) {
1076 		ret = xdma_set_vector_reg(xdev, XDMA_IRQ_USER_VEC_NUM,
1077 					  user_irq_start,
1078 					  xdev->irq_num - user_irq_start);
1079 		if (ret) {
1080 			xdma_err(xdev, "failed to set user vectors: %d", ret);
1081 			goto failed_init_c2h;
1082 		}
1083 	}
1084 
1085 	/* enable interrupt */
1086 	ret = regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1S, ~0);
1087 	if (ret)
1088 		goto failed_init_c2h;
1089 
1090 	return 0;
1091 
1092 failed_init_c2h:
1093 	while (j--)
1094 		free_irq(xdev->c2h_chans[j].irq, &xdev->c2h_chans[j]);
1095 failed_init_h2c:
1096 	while (i--)
1097 		free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);
1098 
1099 	return ret;
1100 }
1101 
xdma_filter_fn(struct dma_chan * chan,void * param)1102 static bool xdma_filter_fn(struct dma_chan *chan, void *param)
1103 {
1104 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
1105 	struct xdma_chan_info *chan_info = param;
1106 
1107 	return chan_info->dir == xdma_chan->dir;
1108 }
1109 
1110 /**
1111  * xdma_disable_user_irq - Disable user interrupt
1112  * @pdev: Pointer to the platform_device structure
1113  * @irq_num: System IRQ number
1114  */
xdma_disable_user_irq(struct platform_device * pdev,u32 irq_num)1115 void xdma_disable_user_irq(struct platform_device *pdev, u32 irq_num)
1116 {
1117 	struct xdma_device *xdev = platform_get_drvdata(pdev);
1118 	u32 index;
1119 
1120 	index = irq_num - xdev->irq_start;
1121 	if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
1122 		xdma_err(xdev, "invalid user irq number");
1123 		return;
1124 	}
1125 	index -= XDMA_CHAN_NUM(xdev);
1126 
1127 	regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1C, 1 << index);
1128 }
1129 EXPORT_SYMBOL(xdma_disable_user_irq);
1130 
1131 /**
1132  * xdma_enable_user_irq - Enable user logic interrupt
1133  * @pdev: Pointer to the platform_device structure
1134  * @irq_num: System IRQ number
1135  */
xdma_enable_user_irq(struct platform_device * pdev,u32 irq_num)1136 int xdma_enable_user_irq(struct platform_device *pdev, u32 irq_num)
1137 {
1138 	struct xdma_device *xdev = platform_get_drvdata(pdev);
1139 	u32 index;
1140 	int ret;
1141 
1142 	index = irq_num - xdev->irq_start;
1143 	if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
1144 		xdma_err(xdev, "invalid user irq number");
1145 		return -EINVAL;
1146 	}
1147 	index -= XDMA_CHAN_NUM(xdev);
1148 
1149 	ret = regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1S, 1 << index);
1150 	if (ret)
1151 		return ret;
1152 
1153 	return 0;
1154 }
1155 EXPORT_SYMBOL(xdma_enable_user_irq);
1156 
1157 /**
1158  * xdma_get_user_irq - Get system IRQ number
1159  * @pdev: Pointer to the platform_device structure
1160  * @user_irq_index: User logic IRQ wire index
1161  *
1162  * Return: The system IRQ number allocated for the given wire index.
1163  */
xdma_get_user_irq(struct platform_device * pdev,u32 user_irq_index)1164 int xdma_get_user_irq(struct platform_device *pdev, u32 user_irq_index)
1165 {
1166 	struct xdma_device *xdev = platform_get_drvdata(pdev);
1167 
1168 	if (XDMA_CHAN_NUM(xdev) + user_irq_index >= xdev->irq_num) {
1169 		xdma_err(xdev, "invalid user irq index");
1170 		return -EINVAL;
1171 	}
1172 
1173 	return xdev->irq_start + XDMA_CHAN_NUM(xdev) + user_irq_index;
1174 }
1175 EXPORT_SYMBOL(xdma_get_user_irq);
1176 
1177 /**
1178  * xdma_remove - Driver remove function
1179  * @pdev: Pointer to the platform_device structure
1180  */
xdma_remove(struct platform_device * pdev)1181 static void xdma_remove(struct platform_device *pdev)
1182 {
1183 	struct xdma_device *xdev = platform_get_drvdata(pdev);
1184 
1185 	if (xdev->status & XDMA_DEV_STATUS_INIT_MSIX)
1186 		xdma_irq_fini(xdev);
1187 
1188 	if (xdev->status & XDMA_DEV_STATUS_REG_DMA)
1189 		dma_async_device_unregister(&xdev->dma_dev);
1190 }
1191 
1192 /**
1193  * xdma_probe - Driver probe function
1194  * @pdev: Pointer to the platform_device structure
1195  */
xdma_probe(struct platform_device * pdev)1196 static int xdma_probe(struct platform_device *pdev)
1197 {
1198 	struct xdma_platdata *pdata = dev_get_platdata(&pdev->dev);
1199 	struct xdma_device *xdev;
1200 	void __iomem *reg_base;
1201 	struct resource *res;
1202 	int ret = -ENODEV;
1203 
1204 	if (pdata->max_dma_channels > XDMA_MAX_CHANNELS) {
1205 		dev_err(&pdev->dev, "invalid max dma channels %d",
1206 			pdata->max_dma_channels);
1207 		return -EINVAL;
1208 	}
1209 
1210 	xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL);
1211 	if (!xdev)
1212 		return -ENOMEM;
1213 
1214 	platform_set_drvdata(pdev, xdev);
1215 	xdev->pdev = pdev;
1216 
1217 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1218 	if (!res) {
1219 		xdma_err(xdev, "failed to get irq resource");
1220 		goto failed;
1221 	}
1222 	xdev->irq_start = res->start;
1223 	xdev->irq_num = resource_size(res);
1224 
1225 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1226 	if (!res) {
1227 		xdma_err(xdev, "failed to get io resource");
1228 		goto failed;
1229 	}
1230 
1231 	reg_base = devm_ioremap_resource(&pdev->dev, res);
1232 	if (IS_ERR(reg_base)) {
1233 		xdma_err(xdev, "ioremap failed");
1234 		goto failed;
1235 	}
1236 
1237 	xdev->rmap = devm_regmap_init_mmio(&pdev->dev, reg_base,
1238 					   &xdma_regmap_config);
1239 	if (!xdev->rmap) {
1240 		xdma_err(xdev, "config regmap failed: %d", ret);
1241 		goto failed;
1242 	}
1243 	INIT_LIST_HEAD(&xdev->dma_dev.channels);
1244 
1245 	ret = xdma_alloc_channels(xdev, DMA_MEM_TO_DEV);
1246 	if (ret) {
1247 		xdma_err(xdev, "config H2C channels failed: %d", ret);
1248 		goto failed;
1249 	}
1250 
1251 	ret = xdma_alloc_channels(xdev, DMA_DEV_TO_MEM);
1252 	if (ret) {
1253 		xdma_err(xdev, "config C2H channels failed: %d", ret);
1254 		goto failed;
1255 	}
1256 
1257 	dma_cap_set(DMA_SLAVE, xdev->dma_dev.cap_mask);
1258 	dma_cap_set(DMA_PRIVATE, xdev->dma_dev.cap_mask);
1259 	dma_cap_set(DMA_CYCLIC, xdev->dma_dev.cap_mask);
1260 	dma_cap_set(DMA_INTERLEAVE, xdev->dma_dev.cap_mask);
1261 	dma_cap_set(DMA_REPEAT, xdev->dma_dev.cap_mask);
1262 	dma_cap_set(DMA_LOAD_EOT, xdev->dma_dev.cap_mask);
1263 
1264 	xdev->dma_dev.dev = &pdev->dev;
1265 	xdev->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1266 	xdev->dma_dev.device_free_chan_resources = xdma_free_chan_resources;
1267 	xdev->dma_dev.device_alloc_chan_resources = xdma_alloc_chan_resources;
1268 	xdev->dma_dev.device_tx_status = xdma_tx_status;
1269 	xdev->dma_dev.device_prep_slave_sg = xdma_prep_device_sg;
1270 	xdev->dma_dev.device_config = xdma_device_config;
1271 	xdev->dma_dev.device_issue_pending = xdma_issue_pending;
1272 	xdev->dma_dev.device_terminate_all = xdma_terminate_all;
1273 	xdev->dma_dev.device_synchronize = xdma_synchronize;
1274 	xdev->dma_dev.filter.map = pdata->device_map;
1275 	xdev->dma_dev.filter.mapcnt = pdata->device_map_cnt;
1276 	xdev->dma_dev.filter.fn = xdma_filter_fn;
1277 	xdev->dma_dev.device_prep_dma_cyclic = xdma_prep_dma_cyclic;
1278 	xdev->dma_dev.device_prep_interleaved_dma = xdma_prep_interleaved_dma;
1279 
1280 	ret = dma_async_device_register(&xdev->dma_dev);
1281 	if (ret) {
1282 		xdma_err(xdev, "failed to register Xilinx XDMA: %d", ret);
1283 		goto failed;
1284 	}
1285 	xdev->status |= XDMA_DEV_STATUS_REG_DMA;
1286 
1287 	ret = xdma_irq_init(xdev);
1288 	if (ret) {
1289 		xdma_err(xdev, "failed to init msix: %d", ret);
1290 		goto failed;
1291 	}
1292 	xdev->status |= XDMA_DEV_STATUS_INIT_MSIX;
1293 
1294 	return 0;
1295 
1296 failed:
1297 	xdma_remove(pdev);
1298 
1299 	return ret;
1300 }
1301 
1302 static const struct platform_device_id xdma_id_table[] = {
1303 	{ "xdma", 0},
1304 	{ },
1305 };
1306 MODULE_DEVICE_TABLE(platform, xdma_id_table);
1307 
1308 static struct platform_driver xdma_driver = {
1309 	.driver		= {
1310 		.name = "xdma",
1311 	},
1312 	.id_table	= xdma_id_table,
1313 	.probe		= xdma_probe,
1314 	.remove		= xdma_remove,
1315 };
1316 
1317 module_platform_driver(xdma_driver);
1318 
1319 MODULE_DESCRIPTION("AMD XDMA driver");
1320 MODULE_AUTHOR("XRT Team <[email protected]>");
1321 MODULE_LICENSE("GPL");
1322