1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
4 * Copyright (c) 2020, Linaro Limited
5 */
6
7 #include <dt-bindings/dma/qcom-gpi.h>
8 #include <linux/bitfield.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/module.h>
12 #include <linux/of_dma.h>
13 #include <linux/platform_device.h>
14 #include <linux/dma/qcom-gpi-dma.h>
15 #include <linux/scatterlist.h>
16 #include <linux/slab.h>
17 #include "../dmaengine.h"
18 #include "../virt-dma.h"
19
20 #define TRE_TYPE_DMA 0x10
21 #define TRE_TYPE_IMMEDIATE_DMA 0x11
22 #define TRE_TYPE_GO 0x20
23 #define TRE_TYPE_CONFIG0 0x22
24
25 /* TRE flags */
26 #define TRE_FLAGS_CHAIN BIT(0)
27 #define TRE_FLAGS_IEOB BIT(8)
28 #define TRE_FLAGS_IEOT BIT(9)
29 #define TRE_FLAGS_BEI BIT(10)
30 #define TRE_FLAGS_LINK BIT(11)
31 #define TRE_FLAGS_TYPE GENMASK(23, 16)
32
33 /* SPI CONFIG0 WD0 */
34 #define TRE_SPI_C0_WORD_SZ GENMASK(4, 0)
35 #define TRE_SPI_C0_LOOPBACK BIT(8)
36 #define TRE_SPI_C0_CS BIT(11)
37 #define TRE_SPI_C0_CPHA BIT(12)
38 #define TRE_SPI_C0_CPOL BIT(13)
39 #define TRE_SPI_C0_TX_PACK BIT(24)
40 #define TRE_SPI_C0_RX_PACK BIT(25)
41
42 /* CONFIG0 WD2 */
43 #define TRE_C0_CLK_DIV GENMASK(11, 0)
44 #define TRE_C0_CLK_SRC GENMASK(19, 16)
45
46 /* SPI GO WD0 */
47 #define TRE_SPI_GO_CMD GENMASK(4, 0)
48 #define TRE_SPI_GO_CS GENMASK(10, 8)
49 #define TRE_SPI_GO_FRAG BIT(26)
50
51 /* GO WD2 */
52 #define TRE_RX_LEN GENMASK(23, 0)
53
54 /* I2C Config0 WD0 */
55 #define TRE_I2C_C0_TLOW GENMASK(7, 0)
56 #define TRE_I2C_C0_THIGH GENMASK(15, 8)
57 #define TRE_I2C_C0_TCYL GENMASK(23, 16)
58 #define TRE_I2C_C0_TX_PACK BIT(24)
59 #define TRE_I2C_C0_RX_PACK BIT(25)
60
61 /* I2C GO WD0 */
62 #define TRE_I2C_GO_CMD GENMASK(4, 0)
63 #define TRE_I2C_GO_ADDR GENMASK(14, 8)
64 #define TRE_I2C_GO_STRETCH BIT(26)
65
66 /* DMA TRE */
67 #define TRE_DMA_LEN GENMASK(23, 0)
68 #define TRE_DMA_IMMEDIATE_LEN GENMASK(3, 0)
69
70 /* Register offsets from gpi-top */
71 #define GPII_n_CH_k_CNTXT_0_OFFS(n, k) (0x20000 + (0x4000 * (n)) + (0x80 * (k)))
72 #define GPII_n_CH_k_CNTXT_0_EL_SIZE GENMASK(31, 24)
73 #define GPII_n_CH_k_CNTXT_0_CHSTATE GENMASK(23, 20)
74 #define GPII_n_CH_k_CNTXT_0_ERIDX GENMASK(18, 14)
75 #define GPII_n_CH_k_CNTXT_0_DIR BIT(3)
76 #define GPII_n_CH_k_CNTXT_0_PROTO GENMASK(2, 0)
77
78 #define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto) \
79 (FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size) | \
80 FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex) | \
81 FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir) | \
82 FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto))
83
84 #define GPI_CHTYPE_DIR_IN (0)
85 #define GPI_CHTYPE_DIR_OUT (1)
86
87 #define GPI_CHTYPE_PROTO_GPI (0x2)
88
89 #define GPII_n_CH_k_DOORBELL_0_OFFS(n, k) (0x22000 + (0x4000 * (n)) + (0x8 * (k)))
90 #define GPII_n_CH_CMD_OFFS(n) (0x23008 + (0x4000 * (n)))
91 #define GPII_n_CH_CMD_OPCODE GENMASK(31, 24)
92 #define GPII_n_CH_CMD_CHID GENMASK(7, 0)
93 #define GPII_n_CH_CMD(opcode, chid) \
94 (FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \
95 FIELD_PREP(GPII_n_CH_CMD_CHID, chid))
96
97 #define GPII_n_CH_CMD_ALLOCATE (0)
98 #define GPII_n_CH_CMD_START (1)
99 #define GPII_n_CH_CMD_STOP (2)
100 #define GPII_n_CH_CMD_RESET (9)
101 #define GPII_n_CH_CMD_DE_ALLOC (10)
102 #define GPII_n_CH_CMD_UART_SW_STALE (32)
103 #define GPII_n_CH_CMD_UART_RFR_READY (33)
104 #define GPII_n_CH_CMD_UART_RFR_NOT_READY (34)
105
106 /* EV Context Array */
107 #define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k)))
108 #define GPII_n_EV_k_CNTXT_0_EL_SIZE GENMASK(31, 24)
109 #define GPII_n_EV_k_CNTXT_0_CHSTATE GENMASK(23, 20)
110 #define GPII_n_EV_k_CNTXT_0_INTYPE BIT(16)
111 #define GPII_n_EV_k_CNTXT_0_CHTYPE GENMASK(3, 0)
112
113 #define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype) \
114 (FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) | \
115 FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype) | \
116 FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype))
117
118 #define GPI_INTTYPE_IRQ (1)
119 #define GPI_CHTYPE_GPI_EV (0x2)
120
121 enum CNTXT_OFFS {
122 CNTXT_0_CONFIG = 0x0,
123 CNTXT_1_R_LENGTH = 0x4,
124 CNTXT_2_RING_BASE_LSB = 0x8,
125 CNTXT_3_RING_BASE_MSB = 0xC,
126 CNTXT_4_RING_RP_LSB = 0x10,
127 CNTXT_5_RING_RP_MSB = 0x14,
128 CNTXT_6_RING_WP_LSB = 0x18,
129 CNTXT_7_RING_WP_MSB = 0x1C,
130 CNTXT_8_RING_INT_MOD = 0x20,
131 CNTXT_9_RING_INTVEC = 0x24,
132 CNTXT_10_RING_MSI_LSB = 0x28,
133 CNTXT_11_RING_MSI_MSB = 0x2C,
134 CNTXT_12_RING_RP_UPDATE_LSB = 0x30,
135 CNTXT_13_RING_RP_UPDATE_MSB = 0x34,
136 };
137
138 #define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k) (0x22100 + (0x4000 * (n)) + (0x8 * (k)))
139 #define GPII_n_EV_CH_CMD_OFFS(n) (0x23010 + (0x4000 * (n)))
140 #define GPII_n_EV_CMD_OPCODE GENMASK(31, 24)
141 #define GPII_n_EV_CMD_CHID GENMASK(7, 0)
142 #define GPII_n_EV_CMD(opcode, chid) \
143 (FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \
144 FIELD_PREP(GPII_n_EV_CMD_CHID, chid))
145
146 #define GPII_n_EV_CH_CMD_ALLOCATE (0x00)
147 #define GPII_n_EV_CH_CMD_RESET (0x09)
148 #define GPII_n_EV_CH_CMD_DE_ALLOC (0x0A)
149
150 #define GPII_n_CNTXT_TYPE_IRQ_OFFS(n) (0x23080 + (0x4000 * (n)))
151
152 /* mask type register */
153 #define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n) (0x23088 + (0x4000 * (n)))
154 #define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK GENMASK(6, 0)
155 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL BIT(6)
156 #define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB BIT(3)
157 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB BIT(2)
158 #define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL BIT(1)
159 #define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL BIT(0)
160
161 #define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n) (0x23090 + (0x4000 * (n)))
162 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n) (0x23094 + (0x4000 * (n)))
163
164 /* Mask channel control interrupt register */
165 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n) (0x23098 + (0x4000 * (n)))
166 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK GENMASK(1, 0)
167
168 /* Mask event control interrupt register */
169 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n) (0x2309C + (0x4000 * (n)))
170 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK BIT(0)
171
172 #define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n) (0x230A0 + (0x4000 * (n)))
173 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n) (0x230A4 + (0x4000 * (n)))
174
175 /* Mask event interrupt register */
176 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n) (0x230B8 + (0x4000 * (n)))
177 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK BIT(0)
178
179 #define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n) (0x230C0 + (0x4000 * (n)))
180 #define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n) (0x23100 + (0x4000 * (n)))
181 #define GPI_GLOB_IRQ_ERROR_INT_MSK BIT(0)
182
183 /* GPII specific Global - Enable bit register */
184 #define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n) (0x23108 + (0x4000 * (n)))
185 #define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n) (0x23110 + (0x4000 * (n)))
186 #define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n) (0x23118 + (0x4000 * (n)))
187
188 /* GPII general interrupt - Enable bit register */
189 #define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n) (0x23120 + (0x4000 * (n)))
190 #define GPII_n_CNTXT_GPII_IRQ_EN_BMSK GENMASK(3, 0)
191
192 #define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n) (0x23128 + (0x4000 * (n)))
193
194 /* GPII Interrupt Type register */
195 #define GPII_n_CNTXT_INTSET_OFFS(n) (0x23180 + (0x4000 * (n)))
196 #define GPII_n_CNTXT_INTSET_BMSK BIT(0)
197
198 #define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n) (0x23188 + (0x4000 * (n)))
199 #define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n) (0x2318C + (0x4000 * (n)))
200 #define GPII_n_CNTXT_SCRATCH_0_OFFS(n) (0x23400 + (0x4000 * (n)))
201 #define GPII_n_CNTXT_SCRATCH_1_OFFS(n) (0x23404 + (0x4000 * (n)))
202
203 #define GPII_n_ERROR_LOG_OFFS(n) (0x23200 + (0x4000 * (n)))
204
205 /* QOS Registers */
206 #define GPII_n_CH_k_QOS_OFFS(n, k) (0x2005C + (0x4000 * (n)) + (0x80 * (k)))
207
208 /* Scratch registers */
209 #define GPII_n_CH_k_SCRATCH_0_OFFS(n, k) (0x20060 + (0x4000 * (n)) + (0x80 * (k)))
210 #define GPII_n_CH_k_SCRATCH_0_SEID GENMASK(2, 0)
211 #define GPII_n_CH_k_SCRATCH_0_PROTO GENMASK(7, 4)
212 #define GPII_n_CH_k_SCRATCH_0_PAIR GENMASK(20, 16)
213 #define GPII_n_CH_k_SCRATCH_0(pair, proto, seid) \
214 (FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair) | \
215 FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto) | \
216 FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid))
217 #define GPII_n_CH_k_SCRATCH_1_OFFS(n, k) (0x20064 + (0x4000 * (n)) + (0x80 * (k)))
218 #define GPII_n_CH_k_SCRATCH_2_OFFS(n, k) (0x20068 + (0x4000 * (n)) + (0x80 * (k)))
219 #define GPII_n_CH_k_SCRATCH_3_OFFS(n, k) (0x2006C + (0x4000 * (n)) + (0x80 * (k)))
220
221 struct __packed gpi_tre {
222 u32 dword[4];
223 };
224
225 enum msm_gpi_tce_code {
226 MSM_GPI_TCE_SUCCESS = 1,
227 MSM_GPI_TCE_EOT = 2,
228 MSM_GPI_TCE_EOB = 4,
229 MSM_GPI_TCE_UNEXP_ERR = 16,
230 };
231
232 #define CMD_TIMEOUT_MS (250)
233
234 #define MAX_CHANNELS_PER_GPII (2)
235 #define GPI_TX_CHAN (0)
236 #define GPI_RX_CHAN (1)
237 #define STATE_IGNORE (U32_MAX)
238 #define EV_FACTOR (2)
239 #define REQ_OF_DMA_ARGS (5) /* # of arguments required from client */
240 #define CHAN_TRES 64
241
242 struct __packed xfer_compl_event {
243 u64 ptr;
244 u32 length:24;
245 u8 code;
246 u16 status;
247 u8 type;
248 u8 chid;
249 };
250
251 struct __packed immediate_data_event {
252 u8 data_bytes[8];
253 u8 length:4;
254 u8 resvd:4;
255 u16 tre_index;
256 u8 code;
257 u16 status;
258 u8 type;
259 u8 chid;
260 };
261
262 struct __packed qup_notif_event {
263 u32 status;
264 u32 time;
265 u32 count:24;
266 u8 resvd;
267 u16 resvd1;
268 u8 type;
269 u8 chid;
270 };
271
272 struct __packed gpi_ere {
273 u32 dword[4];
274 };
275
276 enum GPI_EV_TYPE {
277 XFER_COMPLETE_EV_TYPE = 0x22,
278 IMMEDIATE_DATA_EV_TYPE = 0x30,
279 QUP_NOTIF_EV_TYPE = 0x31,
280 STALE_EV_TYPE = 0xFF,
281 };
282
283 union __packed gpi_event {
284 struct __packed xfer_compl_event xfer_compl_event;
285 struct __packed immediate_data_event immediate_data_event;
286 struct __packed qup_notif_event qup_notif_event;
287 struct __packed gpi_ere gpi_ere;
288 };
289
290 enum gpii_irq_settings {
291 DEFAULT_IRQ_SETTINGS,
292 MASK_IEOB_SETTINGS,
293 };
294
295 enum gpi_ev_state {
296 DEFAULT_EV_CH_STATE = 0,
297 EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE,
298 EV_STATE_ALLOCATED,
299 MAX_EV_STATES
300 };
301
302 static const char *const gpi_ev_state_str[MAX_EV_STATES] = {
303 [EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED",
304 [EV_STATE_ALLOCATED] = "ALLOCATED",
305 };
306
307 #define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \
308 "INVALID" : gpi_ev_state_str[(_state)])
309
310 enum gpi_ch_state {
311 DEFAULT_CH_STATE = 0x0,
312 CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE,
313 CH_STATE_ALLOCATED = 0x1,
314 CH_STATE_STARTED = 0x2,
315 CH_STATE_STOPPED = 0x3,
316 CH_STATE_STOP_IN_PROC = 0x4,
317 CH_STATE_ERROR = 0xf,
318 MAX_CH_STATES
319 };
320
321 enum gpi_cmd {
322 GPI_CH_CMD_BEGIN,
323 GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN,
324 GPI_CH_CMD_START,
325 GPI_CH_CMD_STOP,
326 GPI_CH_CMD_RESET,
327 GPI_CH_CMD_DE_ALLOC,
328 GPI_CH_CMD_UART_SW_STALE,
329 GPI_CH_CMD_UART_RFR_READY,
330 GPI_CH_CMD_UART_RFR_NOT_READY,
331 GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY,
332 GPI_EV_CMD_BEGIN,
333 GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN,
334 GPI_EV_CMD_RESET,
335 GPI_EV_CMD_DEALLOC,
336 GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC,
337 GPI_MAX_CMD,
338 };
339
340 #define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END)
341
342 static const char *const gpi_cmd_str[GPI_MAX_CMD] = {
343 [GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE",
344 [GPI_CH_CMD_START] = "CH START",
345 [GPI_CH_CMD_STOP] = "CH STOP",
346 [GPI_CH_CMD_RESET] = "CH_RESET",
347 [GPI_CH_CMD_DE_ALLOC] = "DE ALLOC",
348 [GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE",
349 [GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY",
350 [GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY",
351 [GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE",
352 [GPI_EV_CMD_RESET] = "EV RESET",
353 [GPI_EV_CMD_DEALLOC] = "EV DEALLOC",
354 };
355
356 #define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \
357 gpi_cmd_str[(_cmd)])
358
359 /*
360 * @DISABLE_STATE: no register access allowed
361 * @CONFIG_STATE: client has configured the channel
362 * @PREP_HARDWARE: register access is allowed
363 * however, no processing EVENTS
364 * @ACTIVE_STATE: channels are fully operational
365 * @PREPARE_TERMINATE: graceful termination of channels
366 * register access is allowed
367 * @PAUSE_STATE: channels are active, but not processing any events
368 */
369 enum gpi_pm_state {
370 DISABLE_STATE,
371 CONFIG_STATE,
372 PREPARE_HARDWARE,
373 ACTIVE_STATE,
374 PREPARE_TERMINATE,
375 PAUSE_STATE,
376 MAX_PM_STATE
377 };
378
379 #define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE)
380
381 static const char *const gpi_pm_state_str[MAX_PM_STATE] = {
382 [DISABLE_STATE] = "DISABLE",
383 [CONFIG_STATE] = "CONFIG",
384 [PREPARE_HARDWARE] = "PREPARE HARDWARE",
385 [ACTIVE_STATE] = "ACTIVE",
386 [PREPARE_TERMINATE] = "PREPARE TERMINATE",
387 [PAUSE_STATE] = "PAUSE",
388 };
389
390 #define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \
391 "INVALID" : gpi_pm_state_str[(_state)])
392
393 static const struct {
394 enum gpi_cmd gpi_cmd;
395 u32 opcode;
396 u32 state;
397 } gpi_cmd_info[GPI_MAX_CMD] = {
398 {
399 GPI_CH_CMD_ALLOCATE,
400 GPII_n_CH_CMD_ALLOCATE,
401 CH_STATE_ALLOCATED,
402 },
403 {
404 GPI_CH_CMD_START,
405 GPII_n_CH_CMD_START,
406 CH_STATE_STARTED,
407 },
408 {
409 GPI_CH_CMD_STOP,
410 GPII_n_CH_CMD_STOP,
411 CH_STATE_STOPPED,
412 },
413 {
414 GPI_CH_CMD_RESET,
415 GPII_n_CH_CMD_RESET,
416 CH_STATE_ALLOCATED,
417 },
418 {
419 GPI_CH_CMD_DE_ALLOC,
420 GPII_n_CH_CMD_DE_ALLOC,
421 CH_STATE_NOT_ALLOCATED,
422 },
423 {
424 GPI_CH_CMD_UART_SW_STALE,
425 GPII_n_CH_CMD_UART_SW_STALE,
426 STATE_IGNORE,
427 },
428 {
429 GPI_CH_CMD_UART_RFR_READY,
430 GPII_n_CH_CMD_UART_RFR_READY,
431 STATE_IGNORE,
432 },
433 {
434 GPI_CH_CMD_UART_RFR_NOT_READY,
435 GPII_n_CH_CMD_UART_RFR_NOT_READY,
436 STATE_IGNORE,
437 },
438 {
439 GPI_EV_CMD_ALLOCATE,
440 GPII_n_EV_CH_CMD_ALLOCATE,
441 EV_STATE_ALLOCATED,
442 },
443 {
444 GPI_EV_CMD_RESET,
445 GPII_n_EV_CH_CMD_RESET,
446 EV_STATE_ALLOCATED,
447 },
448 {
449 GPI_EV_CMD_DEALLOC,
450 GPII_n_EV_CH_CMD_DE_ALLOC,
451 EV_STATE_NOT_ALLOCATED,
452 },
453 };
454
455 struct gpi_ring {
456 void *pre_aligned;
457 size_t alloc_size;
458 phys_addr_t phys_addr;
459 dma_addr_t dma_handle;
460 void *base;
461 void *wp;
462 void *rp;
463 u32 len;
464 u32 el_size;
465 u32 elements;
466 bool configured;
467 };
468
469 struct gpi_dev {
470 struct dma_device dma_device;
471 struct device *dev;
472 struct resource *res;
473 void __iomem *regs;
474 void __iomem *ee_base; /*ee register base address*/
475 u32 max_gpii; /* maximum # of gpii instances available per gpi block */
476 u32 gpii_mask; /* gpii instances available for apps */
477 u32 ev_factor; /* ev ring length factor */
478 struct gpii *gpiis;
479 };
480
481 struct gchan {
482 struct virt_dma_chan vc;
483 u32 chid;
484 u32 seid;
485 u32 protocol;
486 struct gpii *gpii;
487 enum gpi_ch_state ch_state;
488 enum gpi_pm_state pm_state;
489 void __iomem *ch_cntxt_base_reg;
490 void __iomem *ch_cntxt_db_reg;
491 void __iomem *ch_cmd_reg;
492 u32 dir;
493 struct gpi_ring ch_ring;
494 void *config;
495 };
496
497 struct gpii {
498 u32 gpii_id;
499 struct gchan gchan[MAX_CHANNELS_PER_GPII];
500 struct gpi_dev *gpi_dev;
501 int irq;
502 void __iomem *regs; /* points to gpi top */
503 void __iomem *ev_cntxt_base_reg;
504 void __iomem *ev_cntxt_db_reg;
505 void __iomem *ev_ring_rp_lsb_reg;
506 void __iomem *ev_cmd_reg;
507 void __iomem *ieob_clr_reg;
508 struct mutex ctrl_lock;
509 enum gpi_ev_state ev_state;
510 bool configured_irq;
511 enum gpi_pm_state pm_state;
512 rwlock_t pm_lock;
513 struct gpi_ring ev_ring;
514 struct tasklet_struct ev_task; /* event processing tasklet */
515 struct completion cmd_completion;
516 enum gpi_cmd gpi_cmd;
517 u32 cntxt_type_irq_msk;
518 bool ieob_set;
519 };
520
521 #define MAX_TRE 3
522
523 struct gpi_desc {
524 struct virt_dma_desc vd;
525 size_t len;
526 void *db; /* DB register to program */
527 struct gchan *gchan;
528 struct gpi_tre tre[MAX_TRE];
529 u32 num_tre;
530 };
531
532 static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = {
533 GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN
534 };
535
536 static irqreturn_t gpi_handle_irq(int irq, void *data);
537 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring);
538 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp);
539 static void gpi_process_events(struct gpii *gpii);
540
to_gchan(struct dma_chan * dma_chan)541 static inline struct gchan *to_gchan(struct dma_chan *dma_chan)
542 {
543 return container_of(dma_chan, struct gchan, vc.chan);
544 }
545
to_gpi_desc(struct virt_dma_desc * vd)546 static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd)
547 {
548 return container_of(vd, struct gpi_desc, vd);
549 }
550
to_physical(const struct gpi_ring * const ring,void * addr)551 static inline phys_addr_t to_physical(const struct gpi_ring *const ring,
552 void *addr)
553 {
554 return ring->phys_addr + (addr - ring->base);
555 }
556
to_virtual(const struct gpi_ring * const ring,phys_addr_t addr)557 static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr)
558 {
559 return ring->base + (addr - ring->phys_addr);
560 }
561
gpi_read_reg(struct gpii * gpii,void __iomem * addr)562 static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr)
563 {
564 return readl_relaxed(addr);
565 }
566
gpi_write_reg(struct gpii * gpii,void __iomem * addr,u32 val)567 static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val)
568 {
569 writel_relaxed(val, addr);
570 }
571
572 /* gpi_write_reg_field - write to specific bit field */
gpi_write_reg_field(struct gpii * gpii,void __iomem * addr,u32 mask,u32 shift,u32 val)573 static inline void gpi_write_reg_field(struct gpii *gpii, void __iomem *addr,
574 u32 mask, u32 shift, u32 val)
575 {
576 u32 tmp = gpi_read_reg(gpii, addr);
577
578 tmp &= ~mask;
579 val = tmp | ((val << shift) & mask);
580 gpi_write_reg(gpii, addr, val);
581 }
582
583 static __always_inline void
gpi_update_reg(struct gpii * gpii,u32 offset,u32 mask,u32 val)584 gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val)
585 {
586 void __iomem *addr = gpii->regs + offset;
587 u32 tmp = gpi_read_reg(gpii, addr);
588
589 tmp &= ~mask;
590 tmp |= u32_encode_bits(val, mask);
591
592 gpi_write_reg(gpii, addr, tmp);
593 }
594
gpi_disable_interrupts(struct gpii * gpii)595 static void gpi_disable_interrupts(struct gpii *gpii)
596 {
597 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
598 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0);
599 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
600 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0);
601 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
602 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0);
603 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
604 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0);
605 gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
606 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
607 gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
608 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
609 gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
610 GPII_n_CNTXT_INTSET_BMSK, 0);
611
612 gpii->cntxt_type_irq_msk = 0;
613 devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii);
614 gpii->configured_irq = false;
615 }
616
617 /* configure and enable interrupts */
gpi_config_interrupts(struct gpii * gpii,enum gpii_irq_settings settings,bool mask)618 static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask)
619 {
620 const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL |
621 GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB |
622 GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB |
623 GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL |
624 GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
625 int ret;
626
627 if (!gpii->configured_irq) {
628 ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq,
629 gpi_handle_irq, IRQF_TRIGGER_HIGH,
630 "gpi-dma", gpii);
631 if (ret < 0) {
632 dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n",
633 gpii->irq, ret);
634 return ret;
635 }
636 }
637
638 if (settings == MASK_IEOB_SETTINGS) {
639 /*
640 * GPII only uses one EV ring per gpii so we can globally
641 * enable/disable IEOB interrupt
642 */
643 if (mask)
644 gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
645 else
646 gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB);
647 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
648 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk);
649 } else {
650 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
651 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable);
652 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
653 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK,
654 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK);
655 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
656 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK,
657 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK);
658 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
659 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK,
660 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK);
661 gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
662 GPII_n_CNTXT_GPII_IRQ_EN_BMSK,
663 GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
664 gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
665 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
666 gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0);
667 gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0);
668 gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0);
669 gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0);
670 gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
671 GPII_n_CNTXT_INTSET_BMSK, 1);
672 gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0);
673
674 gpii->cntxt_type_irq_msk = enable;
675 }
676
677 gpii->configured_irq = true;
678 return 0;
679 }
680
681 /* Sends gpii event or channel command */
gpi_send_cmd(struct gpii * gpii,struct gchan * gchan,enum gpi_cmd gpi_cmd)682 static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan,
683 enum gpi_cmd gpi_cmd)
684 {
685 u32 chid = MAX_CHANNELS_PER_GPII;
686 unsigned long timeout;
687 void __iomem *cmd_reg;
688 u32 cmd;
689
690 if (gpi_cmd >= GPI_MAX_CMD)
691 return -EINVAL;
692 if (IS_CHAN_CMD(gpi_cmd))
693 chid = gchan->chid;
694
695 dev_dbg(gpii->gpi_dev->dev,
696 "sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid);
697
698 /* send opcode and wait for completion */
699 reinit_completion(&gpii->cmd_completion);
700 gpii->gpi_cmd = gpi_cmd;
701
702 cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg;
703 cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) :
704 GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0);
705 gpi_write_reg(gpii, cmd_reg, cmd);
706 timeout = wait_for_completion_timeout(&gpii->cmd_completion,
707 msecs_to_jiffies(CMD_TIMEOUT_MS));
708 if (!timeout) {
709 dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n",
710 TO_GPI_CMD_STR(gpi_cmd), chid);
711 return -EIO;
712 }
713
714 /* confirm new ch state is correct , if the cmd is a state change cmd */
715 if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE)
716 return 0;
717
718 if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state)
719 return 0;
720
721 if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state)
722 return 0;
723
724 return -EIO;
725 }
726
727 /* program transfer ring DB register */
gpi_write_ch_db(struct gchan * gchan,struct gpi_ring * ring,void * wp)728 static inline void gpi_write_ch_db(struct gchan *gchan,
729 struct gpi_ring *ring, void *wp)
730 {
731 struct gpii *gpii = gchan->gpii;
732 phys_addr_t p_wp;
733
734 p_wp = to_physical(ring, wp);
735 gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp);
736 }
737
738 /* program event ring DB register */
gpi_write_ev_db(struct gpii * gpii,struct gpi_ring * ring,void * wp)739 static inline void gpi_write_ev_db(struct gpii *gpii,
740 struct gpi_ring *ring, void *wp)
741 {
742 phys_addr_t p_wp;
743
744 p_wp = ring->phys_addr + (wp - ring->base);
745 gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp);
746 }
747
748 /* process transfer completion interrupt */
gpi_process_ieob(struct gpii * gpii)749 static void gpi_process_ieob(struct gpii *gpii)
750 {
751 gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
752
753 gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0);
754 tasklet_hi_schedule(&gpii->ev_task);
755 }
756
757 /* process channel control interrupt */
gpi_process_ch_ctrl_irq(struct gpii * gpii)758 static void gpi_process_ch_ctrl_irq(struct gpii *gpii)
759 {
760 u32 gpii_id = gpii->gpii_id;
761 u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id);
762 u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
763 struct gchan *gchan;
764 u32 chid, state;
765
766 /* clear the status */
767 offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id);
768 gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq);
769
770 for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) {
771 if (!(BIT(chid) & ch_irq))
772 continue;
773
774 gchan = &gpii->gchan[chid];
775 state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg +
776 CNTXT_0_CONFIG);
777 state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state);
778
779 /*
780 * CH_CMD_DEALLOC cmd always successful. However cmd does
781 * not change hardware status. So overwriting software state
782 * to default state.
783 */
784 if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC)
785 state = DEFAULT_CH_STATE;
786 gchan->ch_state = state;
787
788 /*
789 * Triggering complete all if ch_state is not a stop in process.
790 * Stop in process is a transition state and we will wait for
791 * stop interrupt before notifying.
792 */
793 if (gchan->ch_state != CH_STATE_STOP_IN_PROC)
794 complete_all(&gpii->cmd_completion);
795 }
796 }
797
798 /* processing gpi general error interrupts */
gpi_process_gen_err_irq(struct gpii * gpii)799 static void gpi_process_gen_err_irq(struct gpii *gpii)
800 {
801 u32 gpii_id = gpii->gpii_id;
802 u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id);
803 u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
804
805 /* clear the status */
806 dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts);
807
808 /* Clear the register */
809 offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id);
810 gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
811 }
812
813 /* processing gpi level error interrupts */
gpi_process_glob_err_irq(struct gpii * gpii)814 static void gpi_process_glob_err_irq(struct gpii *gpii)
815 {
816 u32 gpii_id = gpii->gpii_id;
817 u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id);
818 u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
819
820 offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id);
821 gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
822
823 /* only error interrupt should be set */
824 if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) {
825 dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts);
826 return;
827 }
828
829 offset = GPII_n_ERROR_LOG_OFFS(gpii_id);
830 gpi_write_reg(gpii, gpii->regs + offset, 0);
831 }
832
833 /* gpii interrupt handler */
gpi_handle_irq(int irq,void * data)834 static irqreturn_t gpi_handle_irq(int irq, void *data)
835 {
836 struct gpii *gpii = data;
837 u32 gpii_id = gpii->gpii_id;
838 u32 type, offset;
839 unsigned long flags;
840
841 read_lock_irqsave(&gpii->pm_lock, flags);
842
843 /*
844 * States are out of sync to receive interrupt
845 * while software state is in DISABLE state, bailing out.
846 */
847 if (!REG_ACCESS_VALID(gpii->pm_state)) {
848 dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n",
849 TO_GPI_PM_STR(gpii->pm_state));
850 goto exit_irq;
851 }
852
853 offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
854 type = gpi_read_reg(gpii, gpii->regs + offset);
855
856 do {
857 /* global gpii error */
858 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) {
859 gpi_process_glob_err_irq(gpii);
860 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB);
861 }
862
863 /* transfer complete interrupt */
864 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) {
865 gpi_process_ieob(gpii);
866 type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
867 }
868
869 /* event control irq */
870 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) {
871 u32 ev_state;
872 u32 ev_ch_irq;
873
874 dev_dbg(gpii->gpi_dev->dev,
875 "processing EV CTRL interrupt\n");
876 offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id);
877 ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
878
879 offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS
880 (gpii_id);
881 gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq);
882 ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg +
883 CNTXT_0_CONFIG);
884 ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state);
885
886 /*
887 * CMD EV_CMD_DEALLOC is always successful. However
888 * cmd does not change hardware status. So overwriting
889 * software state to default state.
890 */
891 if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC)
892 ev_state = DEFAULT_EV_CH_STATE;
893
894 gpii->ev_state = ev_state;
895 dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n",
896 TO_GPI_EV_STATE_STR(gpii->ev_state));
897 complete_all(&gpii->cmd_completion);
898 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL);
899 }
900
901 /* channel control irq */
902 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) {
903 dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n");
904 gpi_process_ch_ctrl_irq(gpii);
905 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
906 }
907
908 if (type) {
909 dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type);
910 gpi_process_gen_err_irq(gpii);
911 goto exit_irq;
912 }
913
914 offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
915 type = gpi_read_reg(gpii, gpii->regs + offset);
916 } while (type);
917
918 exit_irq:
919 read_unlock_irqrestore(&gpii->pm_lock, flags);
920
921 return IRQ_HANDLED;
922 }
923
924 /* process DMA Immediate completion data events */
gpi_process_imed_data_event(struct gchan * gchan,struct immediate_data_event * imed_event)925 static void gpi_process_imed_data_event(struct gchan *gchan,
926 struct immediate_data_event *imed_event)
927 {
928 struct gpii *gpii = gchan->gpii;
929 struct gpi_ring *ch_ring = &gchan->ch_ring;
930 void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index);
931 struct dmaengine_result result;
932 struct gpi_desc *gpi_desc;
933 struct virt_dma_desc *vd;
934 unsigned long flags;
935 u32 chid;
936
937 /*
938 * If channel not active don't process event
939 */
940 if (gchan->pm_state != ACTIVE_STATE) {
941 dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
942 TO_GPI_PM_STR(gchan->pm_state));
943 return;
944 }
945
946 spin_lock_irqsave(&gchan->vc.lock, flags);
947 vd = vchan_next_desc(&gchan->vc);
948 if (!vd) {
949 struct gpi_ere *gpi_ere;
950 struct gpi_tre *gpi_tre;
951
952 spin_unlock_irqrestore(&gchan->vc.lock, flags);
953 dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n");
954 gpi_ere = (struct gpi_ere *)imed_event;
955 dev_dbg(gpii->gpi_dev->dev,
956 "Event: %08x %08x %08x %08x\n",
957 gpi_ere->dword[0], gpi_ere->dword[1],
958 gpi_ere->dword[2], gpi_ere->dword[3]);
959 gpi_tre = tre;
960 dev_dbg(gpii->gpi_dev->dev,
961 "Pending TRE: %08x %08x %08x %08x\n",
962 gpi_tre->dword[0], gpi_tre->dword[1],
963 gpi_tre->dword[2], gpi_tre->dword[3]);
964 return;
965 }
966 gpi_desc = to_gpi_desc(vd);
967 spin_unlock_irqrestore(&gchan->vc.lock, flags);
968
969 /*
970 * RP pointed by Event is to last TRE processed,
971 * we need to update ring rp to tre + 1
972 */
973 tre += ch_ring->el_size;
974 if (tre >= (ch_ring->base + ch_ring->len))
975 tre = ch_ring->base;
976 ch_ring->rp = tre;
977
978 /* make sure rp updates are immediately visible to all cores */
979 smp_wmb();
980
981 chid = imed_event->chid;
982 if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
983 if (chid == GPI_RX_CHAN)
984 goto gpi_free_desc;
985 else
986 return;
987 }
988
989 if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR)
990 result.result = DMA_TRANS_ABORTED;
991 else
992 result.result = DMA_TRANS_NOERROR;
993 result.residue = gpi_desc->len - imed_event->length;
994
995 dma_cookie_complete(&vd->tx);
996 dmaengine_desc_get_callback_invoke(&vd->tx, &result);
997
998 gpi_free_desc:
999 spin_lock_irqsave(&gchan->vc.lock, flags);
1000 list_del(&vd->node);
1001 spin_unlock_irqrestore(&gchan->vc.lock, flags);
1002 kfree(gpi_desc);
1003 gpi_desc = NULL;
1004 }
1005
1006 /* processing transfer completion events */
gpi_process_xfer_compl_event(struct gchan * gchan,struct xfer_compl_event * compl_event)1007 static void gpi_process_xfer_compl_event(struct gchan *gchan,
1008 struct xfer_compl_event *compl_event)
1009 {
1010 struct gpii *gpii = gchan->gpii;
1011 struct gpi_ring *ch_ring = &gchan->ch_ring;
1012 void *ev_rp = to_virtual(ch_ring, compl_event->ptr);
1013 struct virt_dma_desc *vd;
1014 struct gpi_desc *gpi_desc;
1015 struct dmaengine_result result;
1016 unsigned long flags;
1017 u32 chid;
1018
1019 /* only process events on active channel */
1020 if (unlikely(gchan->pm_state != ACTIVE_STATE)) {
1021 dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
1022 TO_GPI_PM_STR(gchan->pm_state));
1023 return;
1024 }
1025
1026 spin_lock_irqsave(&gchan->vc.lock, flags);
1027 vd = vchan_next_desc(&gchan->vc);
1028 if (!vd) {
1029 struct gpi_ere *gpi_ere;
1030
1031 spin_unlock_irqrestore(&gchan->vc.lock, flags);
1032 dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n");
1033 gpi_ere = (struct gpi_ere *)compl_event;
1034 dev_err(gpii->gpi_dev->dev,
1035 "Event: %08x %08x %08x %08x\n",
1036 gpi_ere->dword[0], gpi_ere->dword[1],
1037 gpi_ere->dword[2], gpi_ere->dword[3]);
1038 return;
1039 }
1040
1041 gpi_desc = to_gpi_desc(vd);
1042 spin_unlock_irqrestore(&gchan->vc.lock, flags);
1043
1044 /*
1045 * RP pointed by Event is to last TRE processed,
1046 * we need to update ring rp to ev_rp + 1
1047 */
1048 ev_rp += ch_ring->el_size;
1049 if (ev_rp >= (ch_ring->base + ch_ring->len))
1050 ev_rp = ch_ring->base;
1051 ch_ring->rp = ev_rp;
1052
1053 /* update must be visible to other cores */
1054 smp_wmb();
1055
1056 chid = compl_event->chid;
1057 if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
1058 if (chid == GPI_RX_CHAN)
1059 goto gpi_free_desc;
1060 else
1061 return;
1062 }
1063
1064 if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) {
1065 dev_err(gpii->gpi_dev->dev, "Error in Transaction\n");
1066 result.result = DMA_TRANS_ABORTED;
1067 } else {
1068 dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n");
1069 result.result = DMA_TRANS_NOERROR;
1070 }
1071 result.residue = gpi_desc->len - compl_event->length;
1072 dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue);
1073
1074 dma_cookie_complete(&vd->tx);
1075 dmaengine_desc_get_callback_invoke(&vd->tx, &result);
1076
1077 gpi_free_desc:
1078 spin_lock_irqsave(&gchan->vc.lock, flags);
1079 list_del(&vd->node);
1080 spin_unlock_irqrestore(&gchan->vc.lock, flags);
1081 kfree(gpi_desc);
1082 gpi_desc = NULL;
1083 }
1084
1085 /* process all events */
gpi_process_events(struct gpii * gpii)1086 static void gpi_process_events(struct gpii *gpii)
1087 {
1088 struct gpi_ring *ev_ring = &gpii->ev_ring;
1089 phys_addr_t cntxt_rp;
1090 void *rp;
1091 union gpi_event *gpi_event;
1092 struct gchan *gchan;
1093 u32 chid, type;
1094
1095 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1096 rp = to_virtual(ev_ring, cntxt_rp);
1097
1098 do {
1099 while (rp != ev_ring->rp) {
1100 gpi_event = ev_ring->rp;
1101 chid = gpi_event->xfer_compl_event.chid;
1102 type = gpi_event->xfer_compl_event.type;
1103
1104 dev_dbg(gpii->gpi_dev->dev,
1105 "Event: CHID:%u, type:%x %08x %08x %08x %08x\n",
1106 chid, type, gpi_event->gpi_ere.dword[0],
1107 gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2],
1108 gpi_event->gpi_ere.dword[3]);
1109
1110 switch (type) {
1111 case XFER_COMPLETE_EV_TYPE:
1112 gchan = &gpii->gchan[chid];
1113 gpi_process_xfer_compl_event(gchan,
1114 &gpi_event->xfer_compl_event);
1115 break;
1116 case STALE_EV_TYPE:
1117 dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n");
1118 break;
1119 case IMMEDIATE_DATA_EV_TYPE:
1120 gchan = &gpii->gchan[chid];
1121 gpi_process_imed_data_event(gchan,
1122 &gpi_event->immediate_data_event);
1123 break;
1124 case QUP_NOTIF_EV_TYPE:
1125 dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n");
1126 break;
1127 default:
1128 dev_dbg(gpii->gpi_dev->dev,
1129 "not supported event type:0x%x\n", type);
1130 }
1131 gpi_ring_recycle_ev_element(ev_ring);
1132 }
1133 gpi_write_ev_db(gpii, ev_ring, ev_ring->wp);
1134
1135 /* clear pending IEOB events */
1136 gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
1137
1138 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1139 rp = to_virtual(ev_ring, cntxt_rp);
1140
1141 } while (rp != ev_ring->rp);
1142 }
1143
1144 /* processing events using tasklet */
gpi_ev_tasklet(unsigned long data)1145 static void gpi_ev_tasklet(unsigned long data)
1146 {
1147 struct gpii *gpii = (struct gpii *)data;
1148
1149 read_lock(&gpii->pm_lock);
1150 if (!REG_ACCESS_VALID(gpii->pm_state)) {
1151 read_unlock(&gpii->pm_lock);
1152 dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n",
1153 TO_GPI_PM_STR(gpii->pm_state));
1154 return;
1155 }
1156
1157 /* process the events */
1158 gpi_process_events(gpii);
1159
1160 /* enable IEOB, switching back to interrupts */
1161 gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1);
1162 read_unlock(&gpii->pm_lock);
1163 }
1164
1165 /* marks all pending events for the channel as stale */
gpi_mark_stale_events(struct gchan * gchan)1166 static void gpi_mark_stale_events(struct gchan *gchan)
1167 {
1168 struct gpii *gpii = gchan->gpii;
1169 struct gpi_ring *ev_ring = &gpii->ev_ring;
1170 u32 cntxt_rp, local_rp;
1171 void *ev_rp;
1172
1173 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1174
1175 ev_rp = ev_ring->rp;
1176 local_rp = (u32)to_physical(ev_ring, ev_rp);
1177 while (local_rp != cntxt_rp) {
1178 union gpi_event *gpi_event = ev_rp;
1179 u32 chid = gpi_event->xfer_compl_event.chid;
1180
1181 if (chid == gchan->chid)
1182 gpi_event->xfer_compl_event.type = STALE_EV_TYPE;
1183 ev_rp += ev_ring->el_size;
1184 if (ev_rp >= (ev_ring->base + ev_ring->len))
1185 ev_rp = ev_ring->base;
1186 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1187 local_rp = (u32)to_physical(ev_ring, ev_rp);
1188 }
1189 }
1190
1191 /* reset sw state and issue channel reset or de-alloc */
gpi_reset_chan(struct gchan * gchan,enum gpi_cmd gpi_cmd)1192 static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd)
1193 {
1194 struct gpii *gpii = gchan->gpii;
1195 struct gpi_ring *ch_ring = &gchan->ch_ring;
1196 LIST_HEAD(list);
1197 int ret;
1198
1199 ret = gpi_send_cmd(gpii, gchan, gpi_cmd);
1200 if (ret) {
1201 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1202 TO_GPI_CMD_STR(gpi_cmd), ret);
1203 return ret;
1204 }
1205
1206 /* initialize the local ring ptrs */
1207 ch_ring->rp = ch_ring->base;
1208 ch_ring->wp = ch_ring->base;
1209
1210 /* visible to other cores */
1211 smp_wmb();
1212
1213 /* check event ring for any stale events */
1214 write_lock_irq(&gpii->pm_lock);
1215 gpi_mark_stale_events(gchan);
1216
1217 /* remove all async descriptors */
1218 spin_lock(&gchan->vc.lock);
1219 vchan_get_all_descriptors(&gchan->vc, &list);
1220 spin_unlock(&gchan->vc.lock);
1221 write_unlock_irq(&gpii->pm_lock);
1222 vchan_dma_desc_free_list(&gchan->vc, &list);
1223
1224 return 0;
1225 }
1226
gpi_start_chan(struct gchan * gchan)1227 static int gpi_start_chan(struct gchan *gchan)
1228 {
1229 struct gpii *gpii = gchan->gpii;
1230 int ret;
1231
1232 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START);
1233 if (ret) {
1234 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1235 TO_GPI_CMD_STR(GPI_CH_CMD_START), ret);
1236 return ret;
1237 }
1238
1239 /* gpii CH is active now */
1240 write_lock_irq(&gpii->pm_lock);
1241 gchan->pm_state = ACTIVE_STATE;
1242 write_unlock_irq(&gpii->pm_lock);
1243
1244 return 0;
1245 }
1246
gpi_stop_chan(struct gchan * gchan)1247 static int gpi_stop_chan(struct gchan *gchan)
1248 {
1249 struct gpii *gpii = gchan->gpii;
1250 int ret;
1251
1252 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP);
1253 if (ret) {
1254 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1255 TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret);
1256 return ret;
1257 }
1258
1259 return 0;
1260 }
1261
1262 /* allocate and configure the transfer channel */
gpi_alloc_chan(struct gchan * chan,bool send_alloc_cmd)1263 static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd)
1264 {
1265 struct gpii *gpii = chan->gpii;
1266 struct gpi_ring *ring = &chan->ch_ring;
1267 int ret;
1268 u32 id = gpii->gpii_id;
1269 u32 chid = chan->chid;
1270 u32 pair_chid = !chid;
1271
1272 if (send_alloc_cmd) {
1273 ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE);
1274 if (ret) {
1275 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1276 TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret);
1277 return ret;
1278 }
1279 }
1280
1281 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG,
1282 GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI));
1283 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len);
1284 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr);
1285 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB,
1286 upper_32_bits(ring->phys_addr));
1287 gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1288 upper_32_bits(ring->phys_addr));
1289 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid),
1290 GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid));
1291 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0);
1292 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0);
1293 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0);
1294 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1);
1295
1296 /* flush all the writes */
1297 wmb();
1298 return 0;
1299 }
1300
1301 /* allocate and configure event ring */
gpi_alloc_ev_chan(struct gpii * gpii)1302 static int gpi_alloc_ev_chan(struct gpii *gpii)
1303 {
1304 struct gpi_ring *ring = &gpii->ev_ring;
1305 void __iomem *base = gpii->ev_cntxt_base_reg;
1306 int ret;
1307
1308 ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE);
1309 if (ret) {
1310 dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n",
1311 TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret);
1312 return ret;
1313 }
1314
1315 /* program event context */
1316 gpi_write_reg(gpii, base + CNTXT_0_CONFIG,
1317 GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV));
1318 gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len);
1319 gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr));
1320 gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr));
1321 gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1322 upper_32_bits(ring->phys_addr));
1323 gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1324 gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0);
1325 gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0);
1326 gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1327 gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0);
1328 gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0);
1329
1330 /* add events to ring */
1331 ring->wp = (ring->base + ring->len - ring->el_size);
1332
1333 /* flush all the writes */
1334 wmb();
1335
1336 /* gpii is active now */
1337 write_lock_irq(&gpii->pm_lock);
1338 gpii->pm_state = ACTIVE_STATE;
1339 write_unlock_irq(&gpii->pm_lock);
1340 gpi_write_ev_db(gpii, ring, ring->wp);
1341
1342 return 0;
1343 }
1344
1345 /* calculate # of ERE/TRE available to queue */
gpi_ring_num_elements_avail(const struct gpi_ring * const ring)1346 static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring)
1347 {
1348 int elements = 0;
1349
1350 if (ring->wp < ring->rp) {
1351 elements = ((ring->rp - ring->wp) / ring->el_size) - 1;
1352 } else {
1353 elements = (ring->rp - ring->base) / ring->el_size;
1354 elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1;
1355 }
1356
1357 return elements;
1358 }
1359
gpi_ring_add_element(struct gpi_ring * ring,void ** wp)1360 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp)
1361 {
1362 if (gpi_ring_num_elements_avail(ring) <= 0)
1363 return -ENOMEM;
1364
1365 *wp = ring->wp;
1366 ring->wp += ring->el_size;
1367 if (ring->wp >= (ring->base + ring->len))
1368 ring->wp = ring->base;
1369
1370 /* visible to other cores */
1371 smp_wmb();
1372
1373 return 0;
1374 }
1375
gpi_ring_recycle_ev_element(struct gpi_ring * ring)1376 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring)
1377 {
1378 /* Update the WP */
1379 ring->wp += ring->el_size;
1380 if (ring->wp >= (ring->base + ring->len))
1381 ring->wp = ring->base;
1382
1383 /* Update the RP */
1384 ring->rp += ring->el_size;
1385 if (ring->rp >= (ring->base + ring->len))
1386 ring->rp = ring->base;
1387
1388 /* visible to other cores */
1389 smp_wmb();
1390 }
1391
gpi_free_ring(struct gpi_ring * ring,struct gpii * gpii)1392 static void gpi_free_ring(struct gpi_ring *ring,
1393 struct gpii *gpii)
1394 {
1395 dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size,
1396 ring->pre_aligned, ring->dma_handle);
1397 memset(ring, 0, sizeof(*ring));
1398 }
1399
1400 /* allocate memory for transfer and event rings */
gpi_alloc_ring(struct gpi_ring * ring,u32 elements,u32 el_size,struct gpii * gpii)1401 static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements,
1402 u32 el_size, struct gpii *gpii)
1403 {
1404 u64 len = elements * el_size;
1405 int bit;
1406
1407 /* ring len must be power of 2 */
1408 bit = find_last_bit((unsigned long *)&len, 32);
1409 if (((1 << bit) - 1) & len)
1410 bit++;
1411 len = 1 << bit;
1412 ring->alloc_size = (len + (len - 1));
1413 dev_dbg(gpii->gpi_dev->dev,
1414 "#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%zu\n",
1415 elements, el_size, (elements * el_size), len,
1416 ring->alloc_size);
1417
1418 ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev,
1419 ring->alloc_size,
1420 &ring->dma_handle, GFP_KERNEL);
1421 if (!ring->pre_aligned) {
1422 dev_err(gpii->gpi_dev->dev, "could not alloc size:%zu mem for ring\n",
1423 ring->alloc_size);
1424 return -ENOMEM;
1425 }
1426
1427 /* align the physical mem */
1428 ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1);
1429 ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle);
1430 ring->rp = ring->base;
1431 ring->wp = ring->base;
1432 ring->len = len;
1433 ring->el_size = el_size;
1434 ring->elements = ring->len / ring->el_size;
1435 memset(ring->base, 0, ring->len);
1436 ring->configured = true;
1437
1438 /* update to other cores */
1439 smp_wmb();
1440
1441 dev_dbg(gpii->gpi_dev->dev,
1442 "phy_pre:%pad phy_alig:%pa len:%u el_size:%u elements:%u\n",
1443 &ring->dma_handle, &ring->phys_addr, ring->len,
1444 ring->el_size, ring->elements);
1445
1446 return 0;
1447 }
1448
1449 /* copy tre into transfer ring */
gpi_queue_xfer(struct gpii * gpii,struct gchan * gchan,struct gpi_tre * gpi_tre,void ** wp)1450 static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan,
1451 struct gpi_tre *gpi_tre, void **wp)
1452 {
1453 struct gpi_tre *ch_tre;
1454 int ret;
1455
1456 /* get next tre location we can copy */
1457 ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre);
1458 if (unlikely(ret)) {
1459 dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n");
1460 return;
1461 }
1462
1463 /* copy the tre info */
1464 memcpy(ch_tre, gpi_tre, sizeof(*ch_tre));
1465 *wp = ch_tre;
1466 }
1467
1468 /* reset and restart transfer channel */
gpi_terminate_all(struct dma_chan * chan)1469 static int gpi_terminate_all(struct dma_chan *chan)
1470 {
1471 struct gchan *gchan = to_gchan(chan);
1472 struct gpii *gpii = gchan->gpii;
1473 int schid, echid, i;
1474 int ret = 0;
1475
1476 mutex_lock(&gpii->ctrl_lock);
1477
1478 /*
1479 * treat both channels as a group if its protocol is not UART
1480 * STOP, RESET, or START needs to be in lockstep
1481 */
1482 schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0;
1483 echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII;
1484
1485 /* stop the channel */
1486 for (i = schid; i < echid; i++) {
1487 gchan = &gpii->gchan[i];
1488
1489 /* disable ch state so no more TRE processing */
1490 write_lock_irq(&gpii->pm_lock);
1491 gchan->pm_state = PREPARE_TERMINATE;
1492 write_unlock_irq(&gpii->pm_lock);
1493
1494 /* send command to Stop the channel */
1495 ret = gpi_stop_chan(gchan);
1496 }
1497
1498 /* reset the channels (clears any pending tre) */
1499 for (i = schid; i < echid; i++) {
1500 gchan = &gpii->gchan[i];
1501
1502 ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET);
1503 if (ret) {
1504 dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret);
1505 goto terminate_exit;
1506 }
1507
1508 /* reprogram channel CNTXT */
1509 ret = gpi_alloc_chan(gchan, false);
1510 if (ret) {
1511 dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret);
1512 goto terminate_exit;
1513 }
1514 }
1515
1516 /* restart the channels */
1517 for (i = schid; i < echid; i++) {
1518 gchan = &gpii->gchan[i];
1519
1520 ret = gpi_start_chan(gchan);
1521 if (ret) {
1522 dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret);
1523 goto terminate_exit;
1524 }
1525 }
1526
1527 terminate_exit:
1528 mutex_unlock(&gpii->ctrl_lock);
1529 return ret;
1530 }
1531
1532 /* pause dma transfer for all channels */
gpi_pause(struct dma_chan * chan)1533 static int gpi_pause(struct dma_chan *chan)
1534 {
1535 struct gchan *gchan = to_gchan(chan);
1536 struct gpii *gpii = gchan->gpii;
1537 int i, ret;
1538
1539 mutex_lock(&gpii->ctrl_lock);
1540
1541 /*
1542 * pause/resume are per gpii not per channel, so
1543 * client needs to call pause only once
1544 */
1545 if (gpii->pm_state == PAUSE_STATE) {
1546 dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n");
1547 mutex_unlock(&gpii->ctrl_lock);
1548 return 0;
1549 }
1550
1551 /* send stop command to stop the channels */
1552 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1553 ret = gpi_stop_chan(&gpii->gchan[i]);
1554 if (ret) {
1555 mutex_unlock(&gpii->ctrl_lock);
1556 return ret;
1557 }
1558 }
1559
1560 disable_irq(gpii->irq);
1561
1562 /* Wait for threads to complete out */
1563 tasklet_kill(&gpii->ev_task);
1564
1565 write_lock_irq(&gpii->pm_lock);
1566 gpii->pm_state = PAUSE_STATE;
1567 write_unlock_irq(&gpii->pm_lock);
1568 mutex_unlock(&gpii->ctrl_lock);
1569
1570 return 0;
1571 }
1572
1573 /* resume dma transfer */
gpi_resume(struct dma_chan * chan)1574 static int gpi_resume(struct dma_chan *chan)
1575 {
1576 struct gchan *gchan = to_gchan(chan);
1577 struct gpii *gpii = gchan->gpii;
1578 int i, ret;
1579
1580 mutex_lock(&gpii->ctrl_lock);
1581 if (gpii->pm_state == ACTIVE_STATE) {
1582 dev_dbg(gpii->gpi_dev->dev, "channel is already active\n");
1583 mutex_unlock(&gpii->ctrl_lock);
1584 return 0;
1585 }
1586
1587 enable_irq(gpii->irq);
1588
1589 /* send start command to start the channels */
1590 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1591 ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START);
1592 if (ret) {
1593 dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret);
1594 mutex_unlock(&gpii->ctrl_lock);
1595 return ret;
1596 }
1597 }
1598
1599 write_lock_irq(&gpii->pm_lock);
1600 gpii->pm_state = ACTIVE_STATE;
1601 write_unlock_irq(&gpii->pm_lock);
1602 mutex_unlock(&gpii->ctrl_lock);
1603
1604 return 0;
1605 }
1606
gpi_desc_free(struct virt_dma_desc * vd)1607 static void gpi_desc_free(struct virt_dma_desc *vd)
1608 {
1609 struct gpi_desc *gpi_desc = to_gpi_desc(vd);
1610
1611 kfree(gpi_desc);
1612 gpi_desc = NULL;
1613 }
1614
1615 static int
gpi_peripheral_config(struct dma_chan * chan,struct dma_slave_config * config)1616 gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config)
1617 {
1618 struct gchan *gchan = to_gchan(chan);
1619
1620 if (!config->peripheral_config)
1621 return -EINVAL;
1622
1623 gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT);
1624 if (!gchan->config)
1625 return -ENOMEM;
1626
1627 memcpy(gchan->config, config->peripheral_config, config->peripheral_size);
1628
1629 return 0;
1630 }
1631
gpi_create_i2c_tre(struct gchan * chan,struct gpi_desc * desc,struct scatterlist * sgl,enum dma_transfer_direction direction)1632 static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc,
1633 struct scatterlist *sgl, enum dma_transfer_direction direction)
1634 {
1635 struct gpi_i2c_config *i2c = chan->config;
1636 struct device *dev = chan->gpii->gpi_dev->dev;
1637 unsigned int tre_idx = 0;
1638 dma_addr_t address;
1639 struct gpi_tre *tre;
1640 unsigned int i;
1641
1642 /* first create config tre if applicable */
1643 if (i2c->set_config) {
1644 tre = &desc->tre[tre_idx];
1645 tre_idx++;
1646
1647 tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW);
1648 tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH);
1649 tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL);
1650 tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK);
1651 tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK);
1652
1653 tre->dword[1] = 0;
1654
1655 tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV);
1656
1657 tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1658 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1659 }
1660
1661 /* create the GO tre for Tx */
1662 if (i2c->op == I2C_WRITE) {
1663 tre = &desc->tre[tre_idx];
1664 tre_idx++;
1665
1666 if (i2c->multi_msg)
1667 tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD);
1668 else
1669 tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD);
1670
1671 tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR);
1672 tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH);
1673
1674 tre->dword[1] = 0;
1675 tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN);
1676
1677 tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1678
1679 if (i2c->multi_msg)
1680 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1681 else
1682 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1683 }
1684
1685 if (i2c->op == I2C_READ || i2c->multi_msg == false) {
1686 /* create the DMA TRE */
1687 tre = &desc->tre[tre_idx];
1688 tre_idx++;
1689
1690 address = sg_dma_address(sgl);
1691 tre->dword[0] = lower_32_bits(address);
1692 tre->dword[1] = upper_32_bits(address);
1693
1694 tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
1695
1696 tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1697 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
1698 }
1699
1700 for (i = 0; i < tre_idx; i++)
1701 dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1702 desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1703
1704 return tre_idx;
1705 }
1706
gpi_create_spi_tre(struct gchan * chan,struct gpi_desc * desc,struct scatterlist * sgl,enum dma_transfer_direction direction)1707 static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc,
1708 struct scatterlist *sgl, enum dma_transfer_direction direction)
1709 {
1710 struct gpi_spi_config *spi = chan->config;
1711 struct device *dev = chan->gpii->gpi_dev->dev;
1712 unsigned int tre_idx = 0;
1713 dma_addr_t address;
1714 struct gpi_tre *tre;
1715 unsigned int i;
1716 int len;
1717
1718 /* first create config tre if applicable */
1719 if (direction == DMA_MEM_TO_DEV && spi->set_config) {
1720 tre = &desc->tre[tre_idx];
1721 tre_idx++;
1722
1723 tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ);
1724 tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK);
1725 tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL);
1726 tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA);
1727 tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK);
1728 tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK);
1729
1730 tre->dword[1] = 0;
1731
1732 tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV);
1733 tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC);
1734
1735 tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1736 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1737 }
1738
1739 /* create the GO tre for Tx */
1740 if (direction == DMA_MEM_TO_DEV) {
1741 tre = &desc->tre[tre_idx];
1742 tre_idx++;
1743
1744 tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG);
1745 tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS);
1746 tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD);
1747
1748 tre->dword[1] = 0;
1749
1750 tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN);
1751
1752 tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1753 if (spi->cmd == SPI_RX) {
1754 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB);
1755 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1756 } else if (spi->cmd == SPI_TX) {
1757 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1758 } else { /* SPI_DUPLEX */
1759 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1760 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1761 }
1762 }
1763
1764 /* create the dma tre */
1765 tre = &desc->tre[tre_idx];
1766 tre_idx++;
1767
1768 address = sg_dma_address(sgl);
1769 len = sg_dma_len(sgl);
1770
1771 /* Support Immediate dma for write transfers for data length up to 8 bytes */
1772 if (direction == DMA_MEM_TO_DEV && len <= 2 * sizeof(tre->dword[0])) {
1773 /*
1774 * For Immediate dma, data length may not always be length of 8 bytes,
1775 * it can be length less than 8, hence initialize both dword's with 0
1776 */
1777 tre->dword[0] = 0;
1778 tre->dword[1] = 0;
1779 memcpy(&tre->dword[0], sg_virt(sgl), len);
1780
1781 tre->dword[2] = u32_encode_bits(len, TRE_DMA_IMMEDIATE_LEN);
1782 tre->dword[3] = u32_encode_bits(TRE_TYPE_IMMEDIATE_DMA, TRE_FLAGS_TYPE);
1783 } else {
1784 tre->dword[0] = lower_32_bits(address);
1785 tre->dword[1] = upper_32_bits(address);
1786
1787 tre->dword[2] = u32_encode_bits(len, TRE_DMA_LEN);
1788 tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1789 }
1790
1791 tre->dword[3] |= u32_encode_bits(direction == DMA_MEM_TO_DEV,
1792 TRE_FLAGS_IEOT);
1793
1794 for (i = 0; i < tre_idx; i++)
1795 dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1796 desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1797
1798 return tre_idx;
1799 }
1800
1801 /* copy tre into transfer ring */
1802 static struct dma_async_tx_descriptor *
gpi_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1803 gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1804 unsigned int sg_len, enum dma_transfer_direction direction,
1805 unsigned long flags, void *context)
1806 {
1807 struct gchan *gchan = to_gchan(chan);
1808 struct gpii *gpii = gchan->gpii;
1809 struct device *dev = gpii->gpi_dev->dev;
1810 struct gpi_ring *ch_ring = &gchan->ch_ring;
1811 struct gpi_desc *gpi_desc;
1812 u32 nr, nr_tre = 0;
1813 u8 set_config;
1814 int i;
1815
1816 gpii->ieob_set = false;
1817 if (!is_slave_direction(direction)) {
1818 dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction);
1819 return NULL;
1820 }
1821
1822 if (sg_len > 1) {
1823 dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len);
1824 return NULL;
1825 }
1826
1827 nr_tre = 3;
1828 set_config = *(u32 *)gchan->config;
1829 if (!set_config)
1830 nr_tre = 2;
1831 if (direction == DMA_DEV_TO_MEM) /* rx */
1832 nr_tre = 1;
1833
1834 /* calculate # of elements required & available */
1835 nr = gpi_ring_num_elements_avail(ch_ring);
1836 if (nr < nr_tre) {
1837 dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre);
1838 return NULL;
1839 }
1840
1841 gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT);
1842 if (!gpi_desc)
1843 return NULL;
1844
1845 /* create TREs for xfer */
1846 if (gchan->protocol == QCOM_GPI_SPI) {
1847 i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction);
1848 } else if (gchan->protocol == QCOM_GPI_I2C) {
1849 i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction);
1850 } else {
1851 dev_err(dev, "invalid peripheral: %d\n", gchan->protocol);
1852 kfree(gpi_desc);
1853 return NULL;
1854 }
1855
1856 /* set up the descriptor */
1857 gpi_desc->gchan = gchan;
1858 gpi_desc->len = sg_dma_len(sgl);
1859 gpi_desc->num_tre = i;
1860
1861 return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags);
1862 }
1863
1864 /* rings transfer ring db to being transfer */
gpi_issue_pending(struct dma_chan * chan)1865 static void gpi_issue_pending(struct dma_chan *chan)
1866 {
1867 struct gchan *gchan = to_gchan(chan);
1868 struct gpii *gpii = gchan->gpii;
1869 unsigned long flags, pm_lock_flags;
1870 struct virt_dma_desc *vd = NULL;
1871 struct gpi_desc *gpi_desc;
1872 struct gpi_ring *ch_ring = &gchan->ch_ring;
1873 void *tre, *wp = NULL;
1874 int i;
1875
1876 read_lock_irqsave(&gpii->pm_lock, pm_lock_flags);
1877
1878 /* move all submitted descriptors to issued list */
1879 spin_lock_irqsave(&gchan->vc.lock, flags);
1880 if (vchan_issue_pending(&gchan->vc))
1881 vd = list_last_entry(&gchan->vc.desc_issued,
1882 struct virt_dma_desc, node);
1883 spin_unlock_irqrestore(&gchan->vc.lock, flags);
1884
1885 /* nothing to do list is empty */
1886 if (!vd) {
1887 read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1888 return;
1889 }
1890
1891 gpi_desc = to_gpi_desc(vd);
1892 for (i = 0; i < gpi_desc->num_tre; i++) {
1893 tre = &gpi_desc->tre[i];
1894 gpi_queue_xfer(gpii, gchan, tre, &wp);
1895 }
1896
1897 gpi_desc->db = ch_ring->wp;
1898 gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db);
1899 read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1900 }
1901
gpi_ch_init(struct gchan * gchan)1902 static int gpi_ch_init(struct gchan *gchan)
1903 {
1904 struct gpii *gpii = gchan->gpii;
1905 const int ev_factor = gpii->gpi_dev->ev_factor;
1906 u32 elements;
1907 int i = 0, ret = 0;
1908
1909 gchan->pm_state = CONFIG_STATE;
1910
1911 /* check if both channels are configured before continue */
1912 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
1913 if (gpii->gchan[i].pm_state != CONFIG_STATE)
1914 goto exit_gpi_init;
1915
1916 /* protocol must be same for both channels */
1917 if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) {
1918 dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n",
1919 gpii->gchan[0].protocol, gpii->gchan[1].protocol);
1920 ret = -EINVAL;
1921 goto exit_gpi_init;
1922 }
1923
1924 /* allocate memory for event ring */
1925 elements = CHAN_TRES << ev_factor;
1926 ret = gpi_alloc_ring(&gpii->ev_ring, elements,
1927 sizeof(union gpi_event), gpii);
1928 if (ret)
1929 goto exit_gpi_init;
1930
1931 /* configure interrupts */
1932 write_lock_irq(&gpii->pm_lock);
1933 gpii->pm_state = PREPARE_HARDWARE;
1934 write_unlock_irq(&gpii->pm_lock);
1935 ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0);
1936 if (ret) {
1937 dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret);
1938 goto error_config_int;
1939 }
1940
1941 /* allocate event rings */
1942 ret = gpi_alloc_ev_chan(gpii);
1943 if (ret) {
1944 dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret);
1945 goto error_alloc_ev_ring;
1946 }
1947
1948 /* Allocate all channels */
1949 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1950 ret = gpi_alloc_chan(&gpii->gchan[i], true);
1951 if (ret) {
1952 dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret);
1953 goto error_alloc_chan;
1954 }
1955 }
1956
1957 /* start channels */
1958 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1959 ret = gpi_start_chan(&gpii->gchan[i]);
1960 if (ret) {
1961 dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret);
1962 goto error_start_chan;
1963 }
1964 }
1965 return ret;
1966
1967 error_start_chan:
1968 for (i = i - 1; i >= 0; i--) {
1969 gpi_stop_chan(&gpii->gchan[i]);
1970 gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1971 }
1972 i = 2;
1973 error_alloc_chan:
1974 for (i = i - 1; i >= 0; i--)
1975 gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1976 error_alloc_ev_ring:
1977 gpi_disable_interrupts(gpii);
1978 error_config_int:
1979 gpi_free_ring(&gpii->ev_ring, gpii);
1980 exit_gpi_init:
1981 return ret;
1982 }
1983
1984 /* release all channel resources */
gpi_free_chan_resources(struct dma_chan * chan)1985 static void gpi_free_chan_resources(struct dma_chan *chan)
1986 {
1987 struct gchan *gchan = to_gchan(chan);
1988 struct gpii *gpii = gchan->gpii;
1989 enum gpi_pm_state cur_state;
1990 int ret, i;
1991
1992 mutex_lock(&gpii->ctrl_lock);
1993
1994 cur_state = gchan->pm_state;
1995
1996 /* disable ch state so no more TRE processing for this channel */
1997 write_lock_irq(&gpii->pm_lock);
1998 gchan->pm_state = PREPARE_TERMINATE;
1999 write_unlock_irq(&gpii->pm_lock);
2000
2001 /* attempt to do graceful hardware shutdown */
2002 if (cur_state == ACTIVE_STATE) {
2003 gpi_stop_chan(gchan);
2004
2005 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
2006 if (ret)
2007 dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret);
2008
2009 gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
2010 }
2011
2012 /* free all allocated memory */
2013 gpi_free_ring(&gchan->ch_ring, gpii);
2014 vchan_free_chan_resources(&gchan->vc);
2015 kfree(gchan->config);
2016
2017 write_lock_irq(&gpii->pm_lock);
2018 gchan->pm_state = DISABLE_STATE;
2019 write_unlock_irq(&gpii->pm_lock);
2020
2021 /* if other rings are still active exit */
2022 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
2023 if (gpii->gchan[i].ch_ring.configured)
2024 goto exit_free;
2025
2026 /* deallocate EV Ring */
2027 cur_state = gpii->pm_state;
2028 write_lock_irq(&gpii->pm_lock);
2029 gpii->pm_state = PREPARE_TERMINATE;
2030 write_unlock_irq(&gpii->pm_lock);
2031
2032 /* wait for threads to complete out */
2033 tasklet_kill(&gpii->ev_task);
2034
2035 /* send command to de allocate event ring */
2036 if (cur_state == ACTIVE_STATE)
2037 gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC);
2038
2039 gpi_free_ring(&gpii->ev_ring, gpii);
2040
2041 /* disable interrupts */
2042 if (cur_state == ACTIVE_STATE)
2043 gpi_disable_interrupts(gpii);
2044
2045 /* set final state to disable */
2046 write_lock_irq(&gpii->pm_lock);
2047 gpii->pm_state = DISABLE_STATE;
2048 write_unlock_irq(&gpii->pm_lock);
2049
2050 exit_free:
2051 mutex_unlock(&gpii->ctrl_lock);
2052 }
2053
2054 /* allocate channel resources */
gpi_alloc_chan_resources(struct dma_chan * chan)2055 static int gpi_alloc_chan_resources(struct dma_chan *chan)
2056 {
2057 struct gchan *gchan = to_gchan(chan);
2058 struct gpii *gpii = gchan->gpii;
2059 int ret;
2060
2061 mutex_lock(&gpii->ctrl_lock);
2062
2063 /* allocate memory for transfer ring */
2064 ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES,
2065 sizeof(struct gpi_tre), gpii);
2066 if (ret)
2067 goto xfer_alloc_err;
2068
2069 ret = gpi_ch_init(gchan);
2070
2071 mutex_unlock(&gpii->ctrl_lock);
2072
2073 return ret;
2074 xfer_alloc_err:
2075 mutex_unlock(&gpii->ctrl_lock);
2076
2077 return ret;
2078 }
2079
gpi_find_avail_gpii(struct gpi_dev * gpi_dev,u32 seid)2080 static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid)
2081 {
2082 struct gchan *tx_chan, *rx_chan;
2083 unsigned int gpii;
2084
2085 /* check if same seid is already configured for another chid */
2086 for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2087 if (!((1 << gpii) & gpi_dev->gpii_mask))
2088 continue;
2089
2090 tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2091 rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2092
2093 if (rx_chan->vc.chan.client_count && rx_chan->seid == seid)
2094 return gpii;
2095 if (tx_chan->vc.chan.client_count && tx_chan->seid == seid)
2096 return gpii;
2097 }
2098
2099 /* no channels configured with same seid, return next avail gpii */
2100 for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2101 if (!((1 << gpii) & gpi_dev->gpii_mask))
2102 continue;
2103
2104 tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2105 rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2106
2107 /* check if gpii is configured */
2108 if (tx_chan->vc.chan.client_count ||
2109 rx_chan->vc.chan.client_count)
2110 continue;
2111
2112 /* found a free gpii */
2113 return gpii;
2114 }
2115
2116 /* no gpii instance available to use */
2117 return -EIO;
2118 }
2119
2120 /* gpi_of_dma_xlate: open client requested channel */
gpi_of_dma_xlate(struct of_phandle_args * args,struct of_dma * of_dma)2121 static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args,
2122 struct of_dma *of_dma)
2123 {
2124 struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data;
2125 u32 seid, chid;
2126 int gpii;
2127 struct gchan *gchan;
2128
2129 if (args->args_count < 3) {
2130 dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n",
2131 args->args_count);
2132 return NULL;
2133 }
2134
2135 chid = args->args[0];
2136 if (chid >= MAX_CHANNELS_PER_GPII) {
2137 dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid);
2138 return NULL;
2139 }
2140
2141 seid = args->args[1];
2142
2143 /* find next available gpii to use */
2144 gpii = gpi_find_avail_gpii(gpi_dev, seid);
2145 if (gpii < 0) {
2146 dev_err(gpi_dev->dev, "no available gpii instances\n");
2147 return NULL;
2148 }
2149
2150 gchan = &gpi_dev->gpiis[gpii].gchan[chid];
2151 if (gchan->vc.chan.client_count) {
2152 dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n",
2153 gpii, chid, gchan->seid);
2154 return NULL;
2155 }
2156
2157 gchan->seid = seid;
2158 gchan->protocol = args->args[2];
2159
2160 return dma_get_slave_channel(&gchan->vc.chan);
2161 }
2162
gpi_probe(struct platform_device * pdev)2163 static int gpi_probe(struct platform_device *pdev)
2164 {
2165 struct gpi_dev *gpi_dev;
2166 unsigned int i;
2167 u32 ee_offset;
2168 int ret;
2169
2170 gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL);
2171 if (!gpi_dev)
2172 return -ENOMEM;
2173
2174 gpi_dev->dev = &pdev->dev;
2175 gpi_dev->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &gpi_dev->res);
2176 if (IS_ERR(gpi_dev->regs))
2177 return PTR_ERR(gpi_dev->regs);
2178 gpi_dev->ee_base = gpi_dev->regs;
2179
2180 ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels",
2181 &gpi_dev->max_gpii);
2182 if (ret) {
2183 dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n");
2184 return ret;
2185 }
2186
2187 ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask",
2188 &gpi_dev->gpii_mask);
2189 if (ret) {
2190 dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n");
2191 return ret;
2192 }
2193
2194 ee_offset = (uintptr_t)device_get_match_data(gpi_dev->dev);
2195 gpi_dev->ee_base = gpi_dev->ee_base - ee_offset;
2196
2197 gpi_dev->ev_factor = EV_FACTOR;
2198
2199 ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64));
2200 if (ret) {
2201 dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret);
2202 return ret;
2203 }
2204
2205 gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) *
2206 gpi_dev->max_gpii, GFP_KERNEL);
2207 if (!gpi_dev->gpiis)
2208 return -ENOMEM;
2209
2210 /* setup all the supported gpii */
2211 INIT_LIST_HEAD(&gpi_dev->dma_device.channels);
2212 for (i = 0; i < gpi_dev->max_gpii; i++) {
2213 struct gpii *gpii = &gpi_dev->gpiis[i];
2214 int chan;
2215
2216 if (!((1 << i) & gpi_dev->gpii_mask))
2217 continue;
2218
2219 /* set up ev cntxt register map */
2220 gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0);
2221 gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0);
2222 gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB;
2223 gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i);
2224 gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i);
2225
2226 /* set up irq */
2227 ret = platform_get_irq(pdev, i);
2228 if (ret < 0)
2229 return ret;
2230 gpii->irq = ret;
2231
2232 /* set up channel specific register info */
2233 for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) {
2234 struct gchan *gchan = &gpii->gchan[chan];
2235
2236 /* set up ch cntxt register map */
2237 gchan->ch_cntxt_base_reg = gpi_dev->ee_base +
2238 GPII_n_CH_k_CNTXT_0_OFFS(i, chan);
2239 gchan->ch_cntxt_db_reg = gpi_dev->ee_base +
2240 GPII_n_CH_k_DOORBELL_0_OFFS(i, chan);
2241 gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i);
2242
2243 /* vchan setup */
2244 vchan_init(&gchan->vc, &gpi_dev->dma_device);
2245 gchan->vc.desc_free = gpi_desc_free;
2246 gchan->chid = chan;
2247 gchan->gpii = gpii;
2248 gchan->dir = GPII_CHAN_DIR[chan];
2249 }
2250 mutex_init(&gpii->ctrl_lock);
2251 rwlock_init(&gpii->pm_lock);
2252 tasklet_init(&gpii->ev_task, gpi_ev_tasklet,
2253 (unsigned long)gpii);
2254 init_completion(&gpii->cmd_completion);
2255 gpii->gpii_id = i;
2256 gpii->regs = gpi_dev->ee_base;
2257 gpii->gpi_dev = gpi_dev;
2258 }
2259
2260 platform_set_drvdata(pdev, gpi_dev);
2261
2262 /* clear and Set capabilities */
2263 dma_cap_zero(gpi_dev->dma_device.cap_mask);
2264 dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask);
2265
2266 /* configure dmaengine apis */
2267 gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2268 gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
2269 gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2270 gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2271 gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources;
2272 gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources;
2273 gpi_dev->dma_device.device_tx_status = dma_cookie_status;
2274 gpi_dev->dma_device.device_issue_pending = gpi_issue_pending;
2275 gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg;
2276 gpi_dev->dma_device.device_config = gpi_peripheral_config;
2277 gpi_dev->dma_device.device_terminate_all = gpi_terminate_all;
2278 gpi_dev->dma_device.dev = gpi_dev->dev;
2279 gpi_dev->dma_device.device_pause = gpi_pause;
2280 gpi_dev->dma_device.device_resume = gpi_resume;
2281
2282 /* register with dmaengine framework */
2283 ret = dma_async_device_register(&gpi_dev->dma_device);
2284 if (ret) {
2285 dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret);
2286 return ret;
2287 }
2288
2289 ret = of_dma_controller_register(gpi_dev->dev->of_node,
2290 gpi_of_dma_xlate, gpi_dev);
2291 if (ret) {
2292 dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret);
2293 return ret;
2294 }
2295
2296 return ret;
2297 }
2298
2299 static const struct of_device_id gpi_of_match[] = {
2300 { .compatible = "qcom,sdm845-gpi-dma", .data = (void *)0x0 },
2301 { .compatible = "qcom,sm6350-gpi-dma", .data = (void *)0x10000 },
2302 /*
2303 * Do not grow the list for compatible devices. Instead use
2304 * qcom,sdm845-gpi-dma (for ee_offset = 0x0) or qcom,sm6350-gpi-dma
2305 * (for ee_offset = 0x10000).
2306 */
2307 { .compatible = "qcom,sc7280-gpi-dma", .data = (void *)0x10000 },
2308 { .compatible = "qcom,sm8150-gpi-dma", .data = (void *)0x0 },
2309 { .compatible = "qcom,sm8250-gpi-dma", .data = (void *)0x0 },
2310 { .compatible = "qcom,sm8350-gpi-dma", .data = (void *)0x10000 },
2311 { .compatible = "qcom,sm8450-gpi-dma", .data = (void *)0x10000 },
2312 { },
2313 };
2314 MODULE_DEVICE_TABLE(of, gpi_of_match);
2315
2316 static struct platform_driver gpi_driver = {
2317 .probe = gpi_probe,
2318 .driver = {
2319 .name = KBUILD_MODNAME,
2320 .of_match_table = gpi_of_match,
2321 },
2322 };
2323
gpi_init(void)2324 static int __init gpi_init(void)
2325 {
2326 return platform_driver_register(&gpi_driver);
2327 }
2328 subsys_initcall(gpi_init)
2329
2330 MODULE_DESCRIPTION("QCOM GPI DMA engine driver");
2331 MODULE_LICENSE("GPL v2");
2332