1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) Copyright 2009 Intel Corporation
4 * Author: Jacob Pan ([email protected])
5 *
6 * Shared with ARM platforms, Jamie Iles, Picochip 2011
7 *
8 * Support for the Synopsys DesignWare APB Timers.
9 */
10 #include <linux/dw_apb_timer.h>
11 #include <linux/delay.h>
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <linux/irq.h>
15 #include <linux/io.h>
16 #include <linux/slab.h>
17
18 #define APBT_MIN_PERIOD 4
19 #define APBT_MIN_DELTA_USEC 200
20
21 #define APBTMR_N_LOAD_COUNT 0x00
22 #define APBTMR_N_CURRENT_VALUE 0x04
23 #define APBTMR_N_CONTROL 0x08
24 #define APBTMR_N_EOI 0x0c
25 #define APBTMR_N_INT_STATUS 0x10
26
27 #define APBTMRS_INT_STATUS 0xa0
28 #define APBTMRS_EOI 0xa4
29 #define APBTMRS_RAW_INT_STATUS 0xa8
30 #define APBTMRS_COMP_VERSION 0xac
31
32 #define APBTMR_CONTROL_ENABLE (1 << 0)
33 /* 1: periodic, 0:free running. */
34 #define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
35 #define APBTMR_CONTROL_INT (1 << 2)
36
37 static inline struct dw_apb_clock_event_device *
ced_to_dw_apb_ced(struct clock_event_device * evt)38 ced_to_dw_apb_ced(struct clock_event_device *evt)
39 {
40 return container_of(evt, struct dw_apb_clock_event_device, ced);
41 }
42
43 static inline struct dw_apb_clocksource *
clocksource_to_dw_apb_clocksource(struct clocksource * cs)44 clocksource_to_dw_apb_clocksource(struct clocksource *cs)
45 {
46 return container_of(cs, struct dw_apb_clocksource, cs);
47 }
48
apbt_readl(struct dw_apb_timer * timer,unsigned long offs)49 static inline u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
50 {
51 return readl(timer->base + offs);
52 }
53
apbt_writel(struct dw_apb_timer * timer,u32 val,unsigned long offs)54 static inline void apbt_writel(struct dw_apb_timer *timer, u32 val,
55 unsigned long offs)
56 {
57 writel(val, timer->base + offs);
58 }
59
apbt_readl_relaxed(struct dw_apb_timer * timer,unsigned long offs)60 static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs)
61 {
62 return readl_relaxed(timer->base + offs);
63 }
64
apbt_writel_relaxed(struct dw_apb_timer * timer,u32 val,unsigned long offs)65 static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val,
66 unsigned long offs)
67 {
68 writel_relaxed(val, timer->base + offs);
69 }
70
apbt_eoi(struct dw_apb_timer * timer)71 static void apbt_eoi(struct dw_apb_timer *timer)
72 {
73 apbt_readl_relaxed(timer, APBTMR_N_EOI);
74 }
75
dw_apb_clockevent_irq(int irq,void * data)76 static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
77 {
78 struct clock_event_device *evt = data;
79 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
80
81 if (!evt->event_handler) {
82 pr_info("Spurious APBT timer interrupt %d\n", irq);
83 return IRQ_NONE;
84 }
85
86 if (dw_ced->eoi)
87 dw_ced->eoi(&dw_ced->timer);
88
89 evt->event_handler(evt);
90 return IRQ_HANDLED;
91 }
92
apbt_enable_int(struct dw_apb_timer * timer)93 static void apbt_enable_int(struct dw_apb_timer *timer)
94 {
95 u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
96 /* clear pending intr */
97 apbt_readl(timer, APBTMR_N_EOI);
98 ctrl &= ~APBTMR_CONTROL_INT;
99 apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
100 }
101
apbt_shutdown(struct clock_event_device * evt)102 static int apbt_shutdown(struct clock_event_device *evt)
103 {
104 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
105 u32 ctrl;
106
107 pr_debug("%s CPU %d state=shutdown\n", __func__,
108 cpumask_first(evt->cpumask));
109
110 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
111 ctrl &= ~APBTMR_CONTROL_ENABLE;
112 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
113 return 0;
114 }
115
apbt_set_oneshot(struct clock_event_device * evt)116 static int apbt_set_oneshot(struct clock_event_device *evt)
117 {
118 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
119 u32 ctrl;
120
121 pr_debug("%s CPU %d state=oneshot\n", __func__,
122 cpumask_first(evt->cpumask));
123
124 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
125 /*
126 * set free running mode, this mode will let timer reload max
127 * timeout which will give time (3min on 25MHz clock) to rearm
128 * the next event, therefore emulate the one-shot mode.
129 */
130 ctrl &= ~APBTMR_CONTROL_ENABLE;
131 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
132
133 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
134 /* write again to set free running mode */
135 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
136
137 /*
138 * DW APB p. 46, load counter with all 1s before starting free
139 * running mode.
140 */
141 apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
142 ctrl &= ~APBTMR_CONTROL_INT;
143 ctrl |= APBTMR_CONTROL_ENABLE;
144 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
145 return 0;
146 }
147
apbt_set_periodic(struct clock_event_device * evt)148 static int apbt_set_periodic(struct clock_event_device *evt)
149 {
150 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
151 unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
152 u32 ctrl;
153
154 pr_debug("%s CPU %d state=periodic\n", __func__,
155 cpumask_first(evt->cpumask));
156
157 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
158 ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
159 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
160 /*
161 * DW APB p. 46, have to disable timer before load counter,
162 * may cause sync problem.
163 */
164 ctrl &= ~APBTMR_CONTROL_ENABLE;
165 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
166 udelay(1);
167 pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
168 apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
169 ctrl |= APBTMR_CONTROL_ENABLE;
170 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
171 return 0;
172 }
173
apbt_resume(struct clock_event_device * evt)174 static int apbt_resume(struct clock_event_device *evt)
175 {
176 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
177
178 pr_debug("%s CPU %d state=resume\n", __func__,
179 cpumask_first(evt->cpumask));
180
181 apbt_enable_int(&dw_ced->timer);
182 return 0;
183 }
184
apbt_next_event(unsigned long delta,struct clock_event_device * evt)185 static int apbt_next_event(unsigned long delta,
186 struct clock_event_device *evt)
187 {
188 u32 ctrl;
189 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
190
191 /* Disable timer */
192 ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL);
193 ctrl &= ~APBTMR_CONTROL_ENABLE;
194 apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
195 /* write new count */
196 apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
197 ctrl |= APBTMR_CONTROL_ENABLE;
198 apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
199
200 return 0;
201 }
202
203 /**
204 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
205 *
206 * @cpu: The CPU the events will be targeted at or -1 if CPU affiliation
207 * isn't required.
208 * @name: The name used for the timer and the IRQ for it.
209 * @rating: The rating to give the timer.
210 * @base: I/O base for the timer registers.
211 * @irq: The interrupt number to use for the timer.
212 * @freq: The frequency that the timer counts at.
213 *
214 * This creates a clock_event_device for using with the generic clock layer
215 * but does not start and register it. This should be done with
216 * dw_apb_clockevent_register() as the next step. If this is the first time
217 * it has been called for a timer then the IRQ will be requested, if not it
218 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
219 * releasing the IRQ.
220 */
221 struct dw_apb_clock_event_device *
dw_apb_clockevent_init(int cpu,const char * name,unsigned rating,void __iomem * base,int irq,unsigned long freq)222 dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
223 void __iomem *base, int irq, unsigned long freq)
224 {
225 struct dw_apb_clock_event_device *dw_ced =
226 kzalloc(sizeof(*dw_ced), GFP_KERNEL);
227 int err;
228
229 if (!dw_ced)
230 return NULL;
231
232 dw_ced->timer.base = base;
233 dw_ced->timer.irq = irq;
234 dw_ced->timer.freq = freq;
235
236 clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
237 dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
238 &dw_ced->ced);
239 dw_ced->ced.max_delta_ticks = 0x7fffffff;
240 dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
241 dw_ced->ced.min_delta_ticks = 5000;
242 dw_ced->ced.cpumask = cpu < 0 ? cpu_possible_mask : cpumask_of(cpu);
243 dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC |
244 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ;
245 dw_ced->ced.set_state_shutdown = apbt_shutdown;
246 dw_ced->ced.set_state_periodic = apbt_set_periodic;
247 dw_ced->ced.set_state_oneshot = apbt_set_oneshot;
248 dw_ced->ced.set_state_oneshot_stopped = apbt_shutdown;
249 dw_ced->ced.tick_resume = apbt_resume;
250 dw_ced->ced.set_next_event = apbt_next_event;
251 dw_ced->ced.irq = dw_ced->timer.irq;
252 dw_ced->ced.rating = rating;
253 dw_ced->ced.name = name;
254
255 dw_ced->eoi = apbt_eoi;
256 err = request_irq(irq, dw_apb_clockevent_irq,
257 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
258 dw_ced->ced.name, &dw_ced->ced);
259 if (err) {
260 pr_err("failed to request timer irq\n");
261 kfree(dw_ced);
262 dw_ced = NULL;
263 }
264
265 return dw_ced;
266 }
267
268 /**
269 * dw_apb_clockevent_register() - register the clock with the generic layer
270 *
271 * @dw_ced: The APB clock to register as a clock_event_device.
272 */
dw_apb_clockevent_register(struct dw_apb_clock_event_device * dw_ced)273 void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
274 {
275 apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
276 clockevents_register_device(&dw_ced->ced);
277 apbt_enable_int(&dw_ced->timer);
278 }
279
280 /**
281 * dw_apb_clocksource_start() - start the clocksource counting.
282 *
283 * @dw_cs: The clocksource to start.
284 *
285 * This is used to start the clocksource before registration and can be used
286 * to enable calibration of timers.
287 */
dw_apb_clocksource_start(struct dw_apb_clocksource * dw_cs)288 void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
289 {
290 /*
291 * start count down from 0xffff_ffff. this is done by toggling the
292 * enable bit then load initial load count to ~0.
293 */
294 u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
295
296 ctrl &= ~APBTMR_CONTROL_ENABLE;
297 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
298 apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
299 /* enable, mask interrupt */
300 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
301 ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
302 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
303 /* read it once to get cached counter value initialized */
304 dw_apb_clocksource_read(dw_cs);
305 }
306
__apbt_read_clocksource(struct clocksource * cs)307 static u64 __apbt_read_clocksource(struct clocksource *cs)
308 {
309 u32 current_count;
310 struct dw_apb_clocksource *dw_cs =
311 clocksource_to_dw_apb_clocksource(cs);
312
313 current_count = apbt_readl_relaxed(&dw_cs->timer,
314 APBTMR_N_CURRENT_VALUE);
315
316 return (u64)~current_count;
317 }
318
apbt_restart_clocksource(struct clocksource * cs)319 static void apbt_restart_clocksource(struct clocksource *cs)
320 {
321 struct dw_apb_clocksource *dw_cs =
322 clocksource_to_dw_apb_clocksource(cs);
323
324 dw_apb_clocksource_start(dw_cs);
325 }
326
327 /**
328 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
329 *
330 * @rating: The rating to give the clocksource.
331 * @name: The name for the clocksource.
332 * @base: The I/O base for the timer registers.
333 * @freq: The frequency that the timer counts at.
334 *
335 * This creates a clocksource using an APB timer but does not yet register it
336 * with the clocksource system. This should be done with
337 * dw_apb_clocksource_register() as the next step.
338 */
339 struct dw_apb_clocksource *
dw_apb_clocksource_init(unsigned rating,const char * name,void __iomem * base,unsigned long freq)340 dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
341 unsigned long freq)
342 {
343 struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
344
345 if (!dw_cs)
346 return NULL;
347
348 dw_cs->timer.base = base;
349 dw_cs->timer.freq = freq;
350 dw_cs->cs.name = name;
351 dw_cs->cs.rating = rating;
352 dw_cs->cs.read = __apbt_read_clocksource;
353 dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
354 dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
355 dw_cs->cs.resume = apbt_restart_clocksource;
356
357 return dw_cs;
358 }
359
360 /**
361 * dw_apb_clocksource_register() - register the APB clocksource.
362 *
363 * @dw_cs: The clocksource to register.
364 */
dw_apb_clocksource_register(struct dw_apb_clocksource * dw_cs)365 void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
366 {
367 clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
368 }
369
370 /**
371 * dw_apb_clocksource_read() - read the current value of a clocksource.
372 *
373 * @dw_cs: The clocksource to read.
374 */
dw_apb_clocksource_read(struct dw_apb_clocksource * dw_cs)375 u64 dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
376 {
377 return (u64)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
378 }
379