1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/devres.c - device resource management
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <[email protected]>
7 */
8
9 #include <linux/device.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/percpu.h>
13
14 #include <asm/sections.h>
15
16 #include "base.h"
17 #include "trace.h"
18
19 struct devres_node {
20 struct list_head entry;
21 dr_release_t release;
22 const char *name;
23 size_t size;
24 };
25
26 struct devres {
27 struct devres_node node;
28 /*
29 * Some archs want to perform DMA into kmalloc caches
30 * and need a guaranteed alignment larger than
31 * the alignment of a 64-bit integer.
32 * Thus we use ARCH_DMA_MINALIGN for data[] which will force the same
33 * alignment for struct devres when allocated by kmalloc().
34 */
35 u8 __aligned(ARCH_DMA_MINALIGN) data[];
36 };
37
38 struct devres_group {
39 struct devres_node node[2];
40 void *id;
41 int color;
42 /* -- 8 pointers */
43 };
44
set_node_dbginfo(struct devres_node * node,const char * name,size_t size)45 static void set_node_dbginfo(struct devres_node *node, const char *name,
46 size_t size)
47 {
48 node->name = name;
49 node->size = size;
50 }
51
52 #ifdef CONFIG_DEBUG_DEVRES
53 static int log_devres = 0;
54 module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR);
55
devres_dbg(struct device * dev,struct devres_node * node,const char * op)56 static void devres_dbg(struct device *dev, struct devres_node *node,
57 const char *op)
58 {
59 if (unlikely(log_devres))
60 dev_err(dev, "DEVRES %3s %p %s (%zu bytes)\n",
61 op, node, node->name, node->size);
62 }
63 #else /* CONFIG_DEBUG_DEVRES */
64 #define devres_dbg(dev, node, op) do {} while (0)
65 #endif /* CONFIG_DEBUG_DEVRES */
66
devres_log(struct device * dev,struct devres_node * node,const char * op)67 static void devres_log(struct device *dev, struct devres_node *node,
68 const char *op)
69 {
70 trace_devres_log(dev, op, node, node->name, node->size);
71 devres_dbg(dev, node, op);
72 }
73
74 /*
75 * Release functions for devres group. These callbacks are used only
76 * for identification.
77 */
group_open_release(struct device * dev,void * res)78 static void group_open_release(struct device *dev, void *res)
79 {
80 /* noop */
81 }
82
group_close_release(struct device * dev,void * res)83 static void group_close_release(struct device *dev, void *res)
84 {
85 /* noop */
86 }
87
node_to_group(struct devres_node * node)88 static struct devres_group *node_to_group(struct devres_node *node)
89 {
90 if (node->release == &group_open_release)
91 return container_of(node, struct devres_group, node[0]);
92 if (node->release == &group_close_release)
93 return container_of(node, struct devres_group, node[1]);
94 return NULL;
95 }
96
check_dr_size(size_t size,size_t * tot_size)97 static bool check_dr_size(size_t size, size_t *tot_size)
98 {
99 /* We must catch any near-SIZE_MAX cases that could overflow. */
100 if (unlikely(check_add_overflow(sizeof(struct devres),
101 size, tot_size)))
102 return false;
103
104 /* Actually allocate the full kmalloc bucket size. */
105 *tot_size = kmalloc_size_roundup(*tot_size);
106
107 return true;
108 }
109
alloc_dr(dr_release_t release,size_t size,gfp_t gfp,int nid)110 static __always_inline struct devres *alloc_dr(dr_release_t release,
111 size_t size, gfp_t gfp, int nid)
112 {
113 size_t tot_size;
114 struct devres *dr;
115
116 if (!check_dr_size(size, &tot_size))
117 return NULL;
118
119 dr = kmalloc_node_track_caller(tot_size, gfp, nid);
120 if (unlikely(!dr))
121 return NULL;
122
123 /* No need to clear memory twice */
124 if (!(gfp & __GFP_ZERO))
125 memset(dr, 0, offsetof(struct devres, data));
126
127 INIT_LIST_HEAD(&dr->node.entry);
128 dr->node.release = release;
129 return dr;
130 }
131
add_dr(struct device * dev,struct devres_node * node)132 static void add_dr(struct device *dev, struct devres_node *node)
133 {
134 devres_log(dev, node, "ADD");
135 BUG_ON(!list_empty(&node->entry));
136 list_add_tail(&node->entry, &dev->devres_head);
137 }
138
replace_dr(struct device * dev,struct devres_node * old,struct devres_node * new)139 static void replace_dr(struct device *dev,
140 struct devres_node *old, struct devres_node *new)
141 {
142 devres_log(dev, old, "REPLACE");
143 BUG_ON(!list_empty(&new->entry));
144 list_replace(&old->entry, &new->entry);
145 }
146
147 /**
148 * __devres_alloc_node - Allocate device resource data
149 * @release: Release function devres will be associated with
150 * @size: Allocation size
151 * @gfp: Allocation flags
152 * @nid: NUMA node
153 * @name: Name of the resource
154 *
155 * Allocate devres of @size bytes. The allocated area is zeroed, then
156 * associated with @release. The returned pointer can be passed to
157 * other devres_*() functions.
158 *
159 * RETURNS:
160 * Pointer to allocated devres on success, NULL on failure.
161 */
__devres_alloc_node(dr_release_t release,size_t size,gfp_t gfp,int nid,const char * name)162 void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid,
163 const char *name)
164 {
165 struct devres *dr;
166
167 dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
168 if (unlikely(!dr))
169 return NULL;
170 set_node_dbginfo(&dr->node, name, size);
171 return dr->data;
172 }
173 EXPORT_SYMBOL_GPL(__devres_alloc_node);
174
175 /**
176 * devres_for_each_res - Resource iterator
177 * @dev: Device to iterate resource from
178 * @release: Look for resources associated with this release function
179 * @match: Match function (optional)
180 * @match_data: Data for the match function
181 * @fn: Function to be called for each matched resource.
182 * @data: Data for @fn, the 3rd parameter of @fn
183 *
184 * Call @fn for each devres of @dev which is associated with @release
185 * and for which @match returns 1.
186 *
187 * RETURNS:
188 * void
189 */
devres_for_each_res(struct device * dev,dr_release_t release,dr_match_t match,void * match_data,void (* fn)(struct device *,void *,void *),void * data)190 void devres_for_each_res(struct device *dev, dr_release_t release,
191 dr_match_t match, void *match_data,
192 void (*fn)(struct device *, void *, void *),
193 void *data)
194 {
195 struct devres_node *node;
196 struct devres_node *tmp;
197 unsigned long flags;
198
199 if (!fn)
200 return;
201
202 spin_lock_irqsave(&dev->devres_lock, flags);
203 list_for_each_entry_safe_reverse(node, tmp,
204 &dev->devres_head, entry) {
205 struct devres *dr = container_of(node, struct devres, node);
206
207 if (node->release != release)
208 continue;
209 if (match && !match(dev, dr->data, match_data))
210 continue;
211 fn(dev, dr->data, data);
212 }
213 spin_unlock_irqrestore(&dev->devres_lock, flags);
214 }
215 EXPORT_SYMBOL_GPL(devres_for_each_res);
216
217 /**
218 * devres_free - Free device resource data
219 * @res: Pointer to devres data to free
220 *
221 * Free devres created with devres_alloc().
222 */
devres_free(void * res)223 void devres_free(void *res)
224 {
225 if (res) {
226 struct devres *dr = container_of(res, struct devres, data);
227
228 BUG_ON(!list_empty(&dr->node.entry));
229 kfree(dr);
230 }
231 }
232 EXPORT_SYMBOL_GPL(devres_free);
233
234 /**
235 * devres_add - Register device resource
236 * @dev: Device to add resource to
237 * @res: Resource to register
238 *
239 * Register devres @res to @dev. @res should have been allocated
240 * using devres_alloc(). On driver detach, the associated release
241 * function will be invoked and devres will be freed automatically.
242 */
devres_add(struct device * dev,void * res)243 void devres_add(struct device *dev, void *res)
244 {
245 struct devres *dr = container_of(res, struct devres, data);
246 unsigned long flags;
247
248 spin_lock_irqsave(&dev->devres_lock, flags);
249 add_dr(dev, &dr->node);
250 spin_unlock_irqrestore(&dev->devres_lock, flags);
251 }
252 EXPORT_SYMBOL_GPL(devres_add);
253
find_dr(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)254 static struct devres *find_dr(struct device *dev, dr_release_t release,
255 dr_match_t match, void *match_data)
256 {
257 struct devres_node *node;
258
259 list_for_each_entry_reverse(node, &dev->devres_head, entry) {
260 struct devres *dr = container_of(node, struct devres, node);
261
262 if (node->release != release)
263 continue;
264 if (match && !match(dev, dr->data, match_data))
265 continue;
266 return dr;
267 }
268
269 return NULL;
270 }
271
272 /**
273 * devres_find - Find device resource
274 * @dev: Device to lookup resource from
275 * @release: Look for resources associated with this release function
276 * @match: Match function (optional)
277 * @match_data: Data for the match function
278 *
279 * Find the latest devres of @dev which is associated with @release
280 * and for which @match returns 1. If @match is NULL, it's considered
281 * to match all.
282 *
283 * RETURNS:
284 * Pointer to found devres, NULL if not found.
285 */
devres_find(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)286 void *devres_find(struct device *dev, dr_release_t release,
287 dr_match_t match, void *match_data)
288 {
289 struct devres *dr;
290 unsigned long flags;
291
292 spin_lock_irqsave(&dev->devres_lock, flags);
293 dr = find_dr(dev, release, match, match_data);
294 spin_unlock_irqrestore(&dev->devres_lock, flags);
295
296 if (dr)
297 return dr->data;
298 return NULL;
299 }
300 EXPORT_SYMBOL_GPL(devres_find);
301
302 /**
303 * devres_get - Find devres, if non-existent, add one atomically
304 * @dev: Device to lookup or add devres for
305 * @new_res: Pointer to new initialized devres to add if not found
306 * @match: Match function (optional)
307 * @match_data: Data for the match function
308 *
309 * Find the latest devres of @dev which has the same release function
310 * as @new_res and for which @match return 1. If found, @new_res is
311 * freed; otherwise, @new_res is added atomically.
312 *
313 * RETURNS:
314 * Pointer to found or added devres.
315 */
devres_get(struct device * dev,void * new_res,dr_match_t match,void * match_data)316 void *devres_get(struct device *dev, void *new_res,
317 dr_match_t match, void *match_data)
318 {
319 struct devres *new_dr = container_of(new_res, struct devres, data);
320 struct devres *dr;
321 unsigned long flags;
322
323 spin_lock_irqsave(&dev->devres_lock, flags);
324 dr = find_dr(dev, new_dr->node.release, match, match_data);
325 if (!dr) {
326 add_dr(dev, &new_dr->node);
327 dr = new_dr;
328 new_res = NULL;
329 }
330 spin_unlock_irqrestore(&dev->devres_lock, flags);
331 devres_free(new_res);
332
333 return dr->data;
334 }
335 EXPORT_SYMBOL_GPL(devres_get);
336
337 /**
338 * devres_remove - Find a device resource and remove it
339 * @dev: Device to find resource from
340 * @release: Look for resources associated with this release function
341 * @match: Match function (optional)
342 * @match_data: Data for the match function
343 *
344 * Find the latest devres of @dev associated with @release and for
345 * which @match returns 1. If @match is NULL, it's considered to
346 * match all. If found, the resource is removed atomically and
347 * returned.
348 *
349 * RETURNS:
350 * Pointer to removed devres on success, NULL if not found.
351 */
devres_remove(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)352 void *devres_remove(struct device *dev, dr_release_t release,
353 dr_match_t match, void *match_data)
354 {
355 struct devres *dr;
356 unsigned long flags;
357
358 spin_lock_irqsave(&dev->devres_lock, flags);
359 dr = find_dr(dev, release, match, match_data);
360 if (dr) {
361 list_del_init(&dr->node.entry);
362 devres_log(dev, &dr->node, "REM");
363 }
364 spin_unlock_irqrestore(&dev->devres_lock, flags);
365
366 if (dr)
367 return dr->data;
368 return NULL;
369 }
370 EXPORT_SYMBOL_GPL(devres_remove);
371
372 /**
373 * devres_destroy - Find a device resource and destroy it
374 * @dev: Device to find resource from
375 * @release: Look for resources associated with this release function
376 * @match: Match function (optional)
377 * @match_data: Data for the match function
378 *
379 * Find the latest devres of @dev associated with @release and for
380 * which @match returns 1. If @match is NULL, it's considered to
381 * match all. If found, the resource is removed atomically and freed.
382 *
383 * Note that the release function for the resource will not be called,
384 * only the devres-allocated data will be freed. The caller becomes
385 * responsible for freeing any other data.
386 *
387 * RETURNS:
388 * 0 if devres is found and freed, -ENOENT if not found.
389 */
devres_destroy(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)390 int devres_destroy(struct device *dev, dr_release_t release,
391 dr_match_t match, void *match_data)
392 {
393 void *res;
394
395 res = devres_remove(dev, release, match, match_data);
396 if (unlikely(!res))
397 return -ENOENT;
398
399 devres_free(res);
400 return 0;
401 }
402 EXPORT_SYMBOL_GPL(devres_destroy);
403
404
405 /**
406 * devres_release - Find a device resource and destroy it, calling release
407 * @dev: Device to find resource from
408 * @release: Look for resources associated with this release function
409 * @match: Match function (optional)
410 * @match_data: Data for the match function
411 *
412 * Find the latest devres of @dev associated with @release and for
413 * which @match returns 1. If @match is NULL, it's considered to
414 * match all. If found, the resource is removed atomically, the
415 * release function called and the resource freed.
416 *
417 * RETURNS:
418 * 0 if devres is found and freed, -ENOENT if not found.
419 */
devres_release(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)420 int devres_release(struct device *dev, dr_release_t release,
421 dr_match_t match, void *match_data)
422 {
423 void *res;
424
425 res = devres_remove(dev, release, match, match_data);
426 if (unlikely(!res))
427 return -ENOENT;
428
429 (*release)(dev, res);
430 devres_free(res);
431 return 0;
432 }
433 EXPORT_SYMBOL_GPL(devres_release);
434
remove_nodes(struct device * dev,struct list_head * first,struct list_head * end,struct list_head * todo)435 static int remove_nodes(struct device *dev,
436 struct list_head *first, struct list_head *end,
437 struct list_head *todo)
438 {
439 struct devres_node *node, *n;
440 int cnt = 0, nr_groups = 0;
441
442 /* First pass - move normal devres entries to @todo and clear
443 * devres_group colors.
444 */
445 node = list_entry(first, struct devres_node, entry);
446 list_for_each_entry_safe_from(node, n, end, entry) {
447 struct devres_group *grp;
448
449 grp = node_to_group(node);
450 if (grp) {
451 /* clear color of group markers in the first pass */
452 grp->color = 0;
453 nr_groups++;
454 } else {
455 /* regular devres entry */
456 if (&node->entry == first)
457 first = first->next;
458 list_move_tail(&node->entry, todo);
459 cnt++;
460 }
461 }
462
463 if (!nr_groups)
464 return cnt;
465
466 /* Second pass - Scan groups and color them. A group gets
467 * color value of two iff the group is wholly contained in
468 * [current node, end). That is, for a closed group, both opening
469 * and closing markers should be in the range, while just the
470 * opening marker is enough for an open group.
471 */
472 node = list_entry(first, struct devres_node, entry);
473 list_for_each_entry_safe_from(node, n, end, entry) {
474 struct devres_group *grp;
475
476 grp = node_to_group(node);
477 BUG_ON(!grp || list_empty(&grp->node[0].entry));
478
479 grp->color++;
480 if (list_empty(&grp->node[1].entry))
481 grp->color++;
482
483 BUG_ON(grp->color <= 0 || grp->color > 2);
484 if (grp->color == 2) {
485 /* No need to update current node or end. The removed
486 * nodes are always before both.
487 */
488 list_move_tail(&grp->node[0].entry, todo);
489 list_del_init(&grp->node[1].entry);
490 }
491 }
492
493 return cnt;
494 }
495
release_nodes(struct device * dev,struct list_head * todo)496 static void release_nodes(struct device *dev, struct list_head *todo)
497 {
498 struct devres *dr, *tmp;
499
500 /* Release. Note that both devres and devres_group are
501 * handled as devres in the following loop. This is safe.
502 */
503 list_for_each_entry_safe_reverse(dr, tmp, todo, node.entry) {
504 devres_log(dev, &dr->node, "REL");
505 dr->node.release(dev, dr->data);
506 kfree(dr);
507 }
508 }
509
510 /**
511 * devres_release_all - Release all managed resources
512 * @dev: Device to release resources for
513 *
514 * Release all resources associated with @dev. This function is
515 * called on driver detach.
516 */
devres_release_all(struct device * dev)517 int devres_release_all(struct device *dev)
518 {
519 unsigned long flags;
520 LIST_HEAD(todo);
521 int cnt;
522
523 /* Looks like an uninitialized device structure */
524 if (WARN_ON(dev->devres_head.next == NULL))
525 return -ENODEV;
526
527 /* Nothing to release if list is empty */
528 if (list_empty(&dev->devres_head))
529 return 0;
530
531 spin_lock_irqsave(&dev->devres_lock, flags);
532 cnt = remove_nodes(dev, dev->devres_head.next, &dev->devres_head, &todo);
533 spin_unlock_irqrestore(&dev->devres_lock, flags);
534
535 release_nodes(dev, &todo);
536 return cnt;
537 }
538
539 /**
540 * devres_open_group - Open a new devres group
541 * @dev: Device to open devres group for
542 * @id: Separator ID
543 * @gfp: Allocation flags
544 *
545 * Open a new devres group for @dev with @id. For @id, using a
546 * pointer to an object which won't be used for another group is
547 * recommended. If @id is NULL, address-wise unique ID is created.
548 *
549 * RETURNS:
550 * ID of the new group, NULL on failure.
551 */
devres_open_group(struct device * dev,void * id,gfp_t gfp)552 void *devres_open_group(struct device *dev, void *id, gfp_t gfp)
553 {
554 struct devres_group *grp;
555 unsigned long flags;
556
557 grp = kmalloc(sizeof(*grp), gfp);
558 if (unlikely(!grp))
559 return NULL;
560
561 grp->node[0].release = &group_open_release;
562 grp->node[1].release = &group_close_release;
563 INIT_LIST_HEAD(&grp->node[0].entry);
564 INIT_LIST_HEAD(&grp->node[1].entry);
565 set_node_dbginfo(&grp->node[0], "grp<", 0);
566 set_node_dbginfo(&grp->node[1], "grp>", 0);
567 grp->id = grp;
568 if (id)
569 grp->id = id;
570 grp->color = 0;
571
572 spin_lock_irqsave(&dev->devres_lock, flags);
573 add_dr(dev, &grp->node[0]);
574 spin_unlock_irqrestore(&dev->devres_lock, flags);
575 return grp->id;
576 }
577 EXPORT_SYMBOL_GPL(devres_open_group);
578
579 /* Find devres group with ID @id. If @id is NULL, look for the latest. */
find_group(struct device * dev,void * id)580 static struct devres_group *find_group(struct device *dev, void *id)
581 {
582 struct devres_node *node;
583
584 list_for_each_entry_reverse(node, &dev->devres_head, entry) {
585 struct devres_group *grp;
586
587 if (node->release != &group_open_release)
588 continue;
589
590 grp = container_of(node, struct devres_group, node[0]);
591
592 if (id) {
593 if (grp->id == id)
594 return grp;
595 } else if (list_empty(&grp->node[1].entry))
596 return grp;
597 }
598
599 return NULL;
600 }
601
602 /**
603 * devres_close_group - Close a devres group
604 * @dev: Device to close devres group for
605 * @id: ID of target group, can be NULL
606 *
607 * Close the group identified by @id. If @id is NULL, the latest open
608 * group is selected.
609 */
devres_close_group(struct device * dev,void * id)610 void devres_close_group(struct device *dev, void *id)
611 {
612 struct devres_group *grp;
613 unsigned long flags;
614
615 spin_lock_irqsave(&dev->devres_lock, flags);
616
617 grp = find_group(dev, id);
618 if (grp)
619 add_dr(dev, &grp->node[1]);
620 else
621 WARN_ON(1);
622
623 spin_unlock_irqrestore(&dev->devres_lock, flags);
624 }
625 EXPORT_SYMBOL_GPL(devres_close_group);
626
627 /**
628 * devres_remove_group - Remove a devres group
629 * @dev: Device to remove group for
630 * @id: ID of target group, can be NULL
631 *
632 * Remove the group identified by @id. If @id is NULL, the latest
633 * open group is selected. Note that removing a group doesn't affect
634 * any other resources.
635 */
devres_remove_group(struct device * dev,void * id)636 void devres_remove_group(struct device *dev, void *id)
637 {
638 struct devres_group *grp;
639 unsigned long flags;
640
641 spin_lock_irqsave(&dev->devres_lock, flags);
642
643 grp = find_group(dev, id);
644 if (grp) {
645 list_del_init(&grp->node[0].entry);
646 list_del_init(&grp->node[1].entry);
647 devres_log(dev, &grp->node[0], "REM");
648 } else
649 WARN_ON(1);
650
651 spin_unlock_irqrestore(&dev->devres_lock, flags);
652
653 kfree(grp);
654 }
655 EXPORT_SYMBOL_GPL(devres_remove_group);
656
657 /**
658 * devres_release_group - Release resources in a devres group
659 * @dev: Device to release group for
660 * @id: ID of target group, can be NULL
661 *
662 * Release all resources in the group identified by @id. If @id is
663 * NULL, the latest open group is selected. The selected group and
664 * groups properly nested inside the selected group are removed.
665 *
666 * RETURNS:
667 * The number of released non-group resources.
668 */
devres_release_group(struct device * dev,void * id)669 int devres_release_group(struct device *dev, void *id)
670 {
671 struct devres_group *grp;
672 unsigned long flags;
673 LIST_HEAD(todo);
674 int cnt = 0;
675
676 spin_lock_irqsave(&dev->devres_lock, flags);
677
678 grp = find_group(dev, id);
679 if (grp) {
680 struct list_head *first = &grp->node[0].entry;
681 struct list_head *end = &dev->devres_head;
682
683 if (!list_empty(&grp->node[1].entry))
684 end = grp->node[1].entry.next;
685
686 cnt = remove_nodes(dev, first, end, &todo);
687 spin_unlock_irqrestore(&dev->devres_lock, flags);
688
689 release_nodes(dev, &todo);
690 } else if (list_empty(&dev->devres_head)) {
691 /*
692 * dev is probably dying via devres_release_all(): groups
693 * have already been removed and are on the process of
694 * being released - don't touch and don't warn.
695 */
696 spin_unlock_irqrestore(&dev->devres_lock, flags);
697 } else {
698 WARN_ON(1);
699 spin_unlock_irqrestore(&dev->devres_lock, flags);
700 }
701
702 return cnt;
703 }
704 EXPORT_SYMBOL_GPL(devres_release_group);
705
706 /*
707 * Custom devres actions allow inserting a simple function call
708 * into the teardown sequence.
709 */
710
711 struct action_devres {
712 void *data;
713 void (*action)(void *);
714 };
715
devm_action_match(struct device * dev,void * res,void * p)716 static int devm_action_match(struct device *dev, void *res, void *p)
717 {
718 struct action_devres *devres = res;
719 struct action_devres *target = p;
720
721 return devres->action == target->action &&
722 devres->data == target->data;
723 }
724
devm_action_release(struct device * dev,void * res)725 static void devm_action_release(struct device *dev, void *res)
726 {
727 struct action_devres *devres = res;
728
729 devres->action(devres->data);
730 }
731
732 /**
733 * __devm_add_action() - add a custom action to list of managed resources
734 * @dev: Device that owns the action
735 * @action: Function that should be called
736 * @data: Pointer to data passed to @action implementation
737 * @name: Name of the resource (for debugging purposes)
738 *
739 * This adds a custom action to the list of managed resources so that
740 * it gets executed as part of standard resource unwinding.
741 */
__devm_add_action(struct device * dev,void (* action)(void *),void * data,const char * name)742 int __devm_add_action(struct device *dev, void (*action)(void *), void *data, const char *name)
743 {
744 struct action_devres *devres;
745
746 devres = __devres_alloc_node(devm_action_release, sizeof(struct action_devres),
747 GFP_KERNEL, NUMA_NO_NODE, name);
748 if (!devres)
749 return -ENOMEM;
750
751 devres->data = data;
752 devres->action = action;
753
754 devres_add(dev, devres);
755 return 0;
756 }
757 EXPORT_SYMBOL_GPL(__devm_add_action);
758
759 /**
760 * devm_remove_action_nowarn() - removes previously added custom action
761 * @dev: Device that owns the action
762 * @action: Function implementing the action
763 * @data: Pointer to data passed to @action implementation
764 *
765 * Removes instance of @action previously added by devm_add_action().
766 * Both action and data should match one of the existing entries.
767 *
768 * In contrast to devm_remove_action(), this function does not WARN() if no
769 * entry could have been found.
770 *
771 * This should only be used if the action is contained in an object with
772 * independent lifetime management, e.g. the Devres rust abstraction.
773 *
774 * Causing the warning from regular driver code most likely indicates an abuse
775 * of the devres API.
776 *
777 * Returns: 0 on success, -ENOENT if no entry could have been found.
778 */
devm_remove_action_nowarn(struct device * dev,void (* action)(void *),void * data)779 int devm_remove_action_nowarn(struct device *dev,
780 void (*action)(void *),
781 void *data)
782 {
783 struct action_devres devres = {
784 .data = data,
785 .action = action,
786 };
787
788 return devres_destroy(dev, devm_action_release, devm_action_match,
789 &devres);
790 }
791 EXPORT_SYMBOL_GPL(devm_remove_action_nowarn);
792
793 /**
794 * devm_release_action() - release previously added custom action
795 * @dev: Device that owns the action
796 * @action: Function implementing the action
797 * @data: Pointer to data passed to @action implementation
798 *
799 * Releases and removes instance of @action previously added by
800 * devm_add_action(). Both action and data should match one of the
801 * existing entries.
802 */
devm_release_action(struct device * dev,void (* action)(void *),void * data)803 void devm_release_action(struct device *dev, void (*action)(void *), void *data)
804 {
805 struct action_devres devres = {
806 .data = data,
807 .action = action,
808 };
809
810 WARN_ON(devres_release(dev, devm_action_release, devm_action_match,
811 &devres));
812
813 }
814 EXPORT_SYMBOL_GPL(devm_release_action);
815
816 /*
817 * Managed kmalloc/kfree
818 */
devm_kmalloc_release(struct device * dev,void * res)819 static void devm_kmalloc_release(struct device *dev, void *res)
820 {
821 /* noop */
822 }
823
devm_kmalloc_match(struct device * dev,void * res,void * data)824 static int devm_kmalloc_match(struct device *dev, void *res, void *data)
825 {
826 return res == data;
827 }
828
829 /**
830 * devm_kmalloc - Resource-managed kmalloc
831 * @dev: Device to allocate memory for
832 * @size: Allocation size
833 * @gfp: Allocation gfp flags
834 *
835 * Managed kmalloc. Memory allocated with this function is
836 * automatically freed on driver detach. Like all other devres
837 * resources, guaranteed alignment is unsigned long long.
838 *
839 * RETURNS:
840 * Pointer to allocated memory on success, NULL on failure.
841 */
devm_kmalloc(struct device * dev,size_t size,gfp_t gfp)842 void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp)
843 {
844 struct devres *dr;
845
846 if (unlikely(!size))
847 return ZERO_SIZE_PTR;
848
849 /* use raw alloc_dr for kmalloc caller tracing */
850 dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev));
851 if (unlikely(!dr))
852 return NULL;
853
854 /*
855 * This is named devm_kzalloc_release for historical reasons
856 * The initial implementation did not support kmalloc, only kzalloc
857 */
858 set_node_dbginfo(&dr->node, "devm_kzalloc_release", size);
859 devres_add(dev, dr->data);
860 return dr->data;
861 }
862 EXPORT_SYMBOL_GPL(devm_kmalloc);
863
864 /**
865 * devm_krealloc - Resource-managed krealloc()
866 * @dev: Device to re-allocate memory for
867 * @ptr: Pointer to the memory chunk to re-allocate
868 * @new_size: New allocation size
869 * @gfp: Allocation gfp flags
870 *
871 * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc().
872 * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR,
873 * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the
874 * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't
875 * change the order in which the release callback for the re-alloc'ed devres
876 * will be called (except when falling back to devm_kmalloc() or when freeing
877 * resources when new_size is zero). The contents of the memory are preserved
878 * up to the lesser of new and old sizes.
879 */
devm_krealloc(struct device * dev,void * ptr,size_t new_size,gfp_t gfp)880 void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp)
881 {
882 size_t total_new_size, total_old_size;
883 struct devres *old_dr, *new_dr;
884 unsigned long flags;
885
886 if (unlikely(!new_size)) {
887 devm_kfree(dev, ptr);
888 return ZERO_SIZE_PTR;
889 }
890
891 if (unlikely(ZERO_OR_NULL_PTR(ptr)))
892 return devm_kmalloc(dev, new_size, gfp);
893
894 if (WARN_ON(is_kernel_rodata((unsigned long)ptr)))
895 /*
896 * We cannot reliably realloc a const string returned by
897 * devm_kstrdup_const().
898 */
899 return NULL;
900
901 if (!check_dr_size(new_size, &total_new_size))
902 return NULL;
903
904 total_old_size = ksize(container_of(ptr, struct devres, data));
905 if (total_old_size == 0) {
906 WARN(1, "Pointer doesn't point to dynamically allocated memory.");
907 return NULL;
908 }
909
910 /*
911 * If new size is smaller or equal to the actual number of bytes
912 * allocated previously - just return the same pointer.
913 */
914 if (total_new_size <= total_old_size)
915 return ptr;
916
917 /*
918 * Otherwise: allocate new, larger chunk. We need to allocate before
919 * taking the lock as most probably the caller uses GFP_KERNEL.
920 * alloc_dr() will call check_dr_size() to reserve extra memory
921 * for struct devres automatically, so size @new_size user request
922 * is delivered to it directly as devm_kmalloc() does.
923 */
924 new_dr = alloc_dr(devm_kmalloc_release,
925 new_size, gfp, dev_to_node(dev));
926 if (!new_dr)
927 return NULL;
928
929 /*
930 * The spinlock protects the linked list against concurrent
931 * modifications but not the resource itself.
932 */
933 spin_lock_irqsave(&dev->devres_lock, flags);
934
935 old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr);
936 if (!old_dr) {
937 spin_unlock_irqrestore(&dev->devres_lock, flags);
938 kfree(new_dr);
939 WARN(1, "Memory chunk not managed or managed by a different device.");
940 return NULL;
941 }
942
943 replace_dr(dev, &old_dr->node, &new_dr->node);
944
945 spin_unlock_irqrestore(&dev->devres_lock, flags);
946
947 /*
948 * We can copy the memory contents after releasing the lock as we're
949 * no longer modifying the list links.
950 */
951 memcpy(new_dr->data, old_dr->data,
952 total_old_size - offsetof(struct devres, data));
953 /*
954 * Same for releasing the old devres - it's now been removed from the
955 * list. This is also the reason why we must not use devm_kfree() - the
956 * links are no longer valid.
957 */
958 kfree(old_dr);
959
960 return new_dr->data;
961 }
962 EXPORT_SYMBOL_GPL(devm_krealloc);
963
964 /**
965 * devm_kstrdup - Allocate resource managed space and
966 * copy an existing string into that.
967 * @dev: Device to allocate memory for
968 * @s: the string to duplicate
969 * @gfp: the GFP mask used in the devm_kmalloc() call when
970 * allocating memory
971 * RETURNS:
972 * Pointer to allocated string on success, NULL on failure.
973 */
devm_kstrdup(struct device * dev,const char * s,gfp_t gfp)974 char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp)
975 {
976 size_t size;
977 char *buf;
978
979 if (!s)
980 return NULL;
981
982 size = strlen(s) + 1;
983 buf = devm_kmalloc(dev, size, gfp);
984 if (buf)
985 memcpy(buf, s, size);
986 return buf;
987 }
988 EXPORT_SYMBOL_GPL(devm_kstrdup);
989
990 /**
991 * devm_kstrdup_const - resource managed conditional string duplication
992 * @dev: device for which to duplicate the string
993 * @s: the string to duplicate
994 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
995 *
996 * Strings allocated by devm_kstrdup_const will be automatically freed when
997 * the associated device is detached.
998 *
999 * RETURNS:
1000 * Source string if it is in .rodata section otherwise it falls back to
1001 * devm_kstrdup.
1002 */
devm_kstrdup_const(struct device * dev,const char * s,gfp_t gfp)1003 const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp)
1004 {
1005 if (is_kernel_rodata((unsigned long)s))
1006 return s;
1007
1008 return devm_kstrdup(dev, s, gfp);
1009 }
1010 EXPORT_SYMBOL_GPL(devm_kstrdup_const);
1011
1012 /**
1013 * devm_kvasprintf - Allocate resource managed space and format a string
1014 * into that.
1015 * @dev: Device to allocate memory for
1016 * @gfp: the GFP mask used in the devm_kmalloc() call when
1017 * allocating memory
1018 * @fmt: The printf()-style format string
1019 * @ap: Arguments for the format string
1020 * RETURNS:
1021 * Pointer to allocated string on success, NULL on failure.
1022 */
devm_kvasprintf(struct device * dev,gfp_t gfp,const char * fmt,va_list ap)1023 char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
1024 va_list ap)
1025 {
1026 unsigned int len;
1027 char *p;
1028 va_list aq;
1029
1030 va_copy(aq, ap);
1031 len = vsnprintf(NULL, 0, fmt, aq);
1032 va_end(aq);
1033
1034 p = devm_kmalloc(dev, len+1, gfp);
1035 if (!p)
1036 return NULL;
1037
1038 vsnprintf(p, len+1, fmt, ap);
1039
1040 return p;
1041 }
1042 EXPORT_SYMBOL(devm_kvasprintf);
1043
1044 /**
1045 * devm_kasprintf - Allocate resource managed space and format a string
1046 * into that.
1047 * @dev: Device to allocate memory for
1048 * @gfp: the GFP mask used in the devm_kmalloc() call when
1049 * allocating memory
1050 * @fmt: The printf()-style format string
1051 * @...: Arguments for the format string
1052 * RETURNS:
1053 * Pointer to allocated string on success, NULL on failure.
1054 */
devm_kasprintf(struct device * dev,gfp_t gfp,const char * fmt,...)1055 char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1056 {
1057 va_list ap;
1058 char *p;
1059
1060 va_start(ap, fmt);
1061 p = devm_kvasprintf(dev, gfp, fmt, ap);
1062 va_end(ap);
1063
1064 return p;
1065 }
1066 EXPORT_SYMBOL_GPL(devm_kasprintf);
1067
1068 /**
1069 * devm_kfree - Resource-managed kfree
1070 * @dev: Device this memory belongs to
1071 * @p: Memory to free
1072 *
1073 * Free memory allocated with devm_kmalloc().
1074 */
devm_kfree(struct device * dev,const void * p)1075 void devm_kfree(struct device *dev, const void *p)
1076 {
1077 int rc;
1078
1079 /*
1080 * Special cases: pointer to a string in .rodata returned by
1081 * devm_kstrdup_const() or NULL/ZERO ptr.
1082 */
1083 if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p)))
1084 return;
1085
1086 rc = devres_destroy(dev, devm_kmalloc_release,
1087 devm_kmalloc_match, (void *)p);
1088 WARN_ON(rc);
1089 }
1090 EXPORT_SYMBOL_GPL(devm_kfree);
1091
1092 /**
1093 * devm_kmemdup - Resource-managed kmemdup
1094 * @dev: Device this memory belongs to
1095 * @src: Memory region to duplicate
1096 * @len: Memory region length
1097 * @gfp: GFP mask to use
1098 *
1099 * Duplicate region of a memory using resource managed kmalloc
1100 */
devm_kmemdup(struct device * dev,const void * src,size_t len,gfp_t gfp)1101 void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp)
1102 {
1103 void *p;
1104
1105 p = devm_kmalloc(dev, len, gfp);
1106 if (p)
1107 memcpy(p, src, len);
1108
1109 return p;
1110 }
1111 EXPORT_SYMBOL_GPL(devm_kmemdup);
1112
1113 struct pages_devres {
1114 unsigned long addr;
1115 unsigned int order;
1116 };
1117
devm_pages_match(struct device * dev,void * res,void * p)1118 static int devm_pages_match(struct device *dev, void *res, void *p)
1119 {
1120 struct pages_devres *devres = res;
1121 struct pages_devres *target = p;
1122
1123 return devres->addr == target->addr;
1124 }
1125
devm_pages_release(struct device * dev,void * res)1126 static void devm_pages_release(struct device *dev, void *res)
1127 {
1128 struct pages_devres *devres = res;
1129
1130 free_pages(devres->addr, devres->order);
1131 }
1132
1133 /**
1134 * devm_get_free_pages - Resource-managed __get_free_pages
1135 * @dev: Device to allocate memory for
1136 * @gfp_mask: Allocation gfp flags
1137 * @order: Allocation size is (1 << order) pages
1138 *
1139 * Managed get_free_pages. Memory allocated with this function is
1140 * automatically freed on driver detach.
1141 *
1142 * RETURNS:
1143 * Address of allocated memory on success, 0 on failure.
1144 */
1145
devm_get_free_pages(struct device * dev,gfp_t gfp_mask,unsigned int order)1146 unsigned long devm_get_free_pages(struct device *dev,
1147 gfp_t gfp_mask, unsigned int order)
1148 {
1149 struct pages_devres *devres;
1150 unsigned long addr;
1151
1152 addr = __get_free_pages(gfp_mask, order);
1153
1154 if (unlikely(!addr))
1155 return 0;
1156
1157 devres = devres_alloc(devm_pages_release,
1158 sizeof(struct pages_devres), GFP_KERNEL);
1159 if (unlikely(!devres)) {
1160 free_pages(addr, order);
1161 return 0;
1162 }
1163
1164 devres->addr = addr;
1165 devres->order = order;
1166
1167 devres_add(dev, devres);
1168 return addr;
1169 }
1170 EXPORT_SYMBOL_GPL(devm_get_free_pages);
1171
1172 /**
1173 * devm_free_pages - Resource-managed free_pages
1174 * @dev: Device this memory belongs to
1175 * @addr: Memory to free
1176 *
1177 * Free memory allocated with devm_get_free_pages(). Unlike free_pages,
1178 * there is no need to supply the @order.
1179 */
devm_free_pages(struct device * dev,unsigned long addr)1180 void devm_free_pages(struct device *dev, unsigned long addr)
1181 {
1182 struct pages_devres devres = { .addr = addr };
1183
1184 WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match,
1185 &devres));
1186 }
1187 EXPORT_SYMBOL_GPL(devm_free_pages);
1188
devm_percpu_release(struct device * dev,void * pdata)1189 static void devm_percpu_release(struct device *dev, void *pdata)
1190 {
1191 void __percpu *p;
1192
1193 p = *(void __percpu **)pdata;
1194 free_percpu(p);
1195 }
1196
devm_percpu_match(struct device * dev,void * data,void * p)1197 static int devm_percpu_match(struct device *dev, void *data, void *p)
1198 {
1199 struct devres *devr = container_of(data, struct devres, data);
1200
1201 return *(void **)devr->data == p;
1202 }
1203
1204 /**
1205 * __devm_alloc_percpu - Resource-managed alloc_percpu
1206 * @dev: Device to allocate per-cpu memory for
1207 * @size: Size of per-cpu memory to allocate
1208 * @align: Alignment of per-cpu memory to allocate
1209 *
1210 * Managed alloc_percpu. Per-cpu memory allocated with this function is
1211 * automatically freed on driver detach.
1212 *
1213 * RETURNS:
1214 * Pointer to allocated memory on success, NULL on failure.
1215 */
__devm_alloc_percpu(struct device * dev,size_t size,size_t align)1216 void __percpu *__devm_alloc_percpu(struct device *dev, size_t size,
1217 size_t align)
1218 {
1219 void *p;
1220 void __percpu *pcpu;
1221
1222 pcpu = __alloc_percpu(size, align);
1223 if (!pcpu)
1224 return NULL;
1225
1226 p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL);
1227 if (!p) {
1228 free_percpu(pcpu);
1229 return NULL;
1230 }
1231
1232 *(void __percpu **)p = pcpu;
1233
1234 devres_add(dev, p);
1235
1236 return pcpu;
1237 }
1238 EXPORT_SYMBOL_GPL(__devm_alloc_percpu);
1239
1240 /**
1241 * devm_free_percpu - Resource-managed free_percpu
1242 * @dev: Device this memory belongs to
1243 * @pdata: Per-cpu memory to free
1244 *
1245 * Free memory allocated with devm_alloc_percpu().
1246 */
devm_free_percpu(struct device * dev,void __percpu * pdata)1247 void devm_free_percpu(struct device *dev, void __percpu *pdata)
1248 {
1249 /*
1250 * Use devres_release() to prevent memory leakage as
1251 * devm_free_pages() does.
1252 */
1253 WARN_ON(devres_release(dev, devm_percpu_release, devm_percpu_match,
1254 (void *)(__force unsigned long)pdata));
1255 }
1256 EXPORT_SYMBOL_GPL(devm_free_percpu);
1257