1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <[email protected]>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <[email protected]>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <[email protected]>
10 */
11
12 #define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/mm.h>
18 #include <linux/highmem.h>
19 #include <linux/lockdep.h>
20 #include <linux/pci.h>
21 #include <linux/interrupt.h>
22 #include <linux/kmod.h>
23 #include <linux/delay.h>
24 #include <linux/workqueue.h>
25 #include <linux/nmi.h>
26 #include <linux/acpi.h>
27 #include <linux/efi.h>
28 #include <linux/ioport.h>
29 #include <linux/list.h>
30 #include <linux/jiffies.h>
31 #include <linux/semaphore.h>
32 #include <linux/security.h>
33
34 #include <asm/io.h>
35 #include <linux/uaccess.h>
36 #include <linux/io-64-nonatomic-lo-hi.h>
37
38 #include "acpica/accommon.h"
39 #include "internal.h"
40
41 /* Definitions for ACPI_DEBUG_PRINT() */
42 #define _COMPONENT ACPI_OS_SERVICES
43 ACPI_MODULE_NAME("osl");
44
45 struct acpi_os_dpc {
46 acpi_osd_exec_callback function;
47 void *context;
48 struct work_struct work;
49 };
50
51 #ifdef ENABLE_DEBUGGER
52 #include <linux/kdb.h>
53
54 /* stuff for debugger support */
55 int acpi_in_debugger;
56 EXPORT_SYMBOL(acpi_in_debugger);
57 #endif /*ENABLE_DEBUGGER */
58
59 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60 u32 pm1b_ctrl);
61 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62 u32 val_b);
63
64 static acpi_osd_handler acpi_irq_handler;
65 static void *acpi_irq_context;
66 static struct workqueue_struct *kacpid_wq;
67 static struct workqueue_struct *kacpi_notify_wq;
68 static struct workqueue_struct *kacpi_hotplug_wq;
69 static bool acpi_os_initialized;
70 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71 bool acpi_permanent_mmap = false;
72
73 /*
74 * This list of permanent mappings is for memory that may be accessed from
75 * interrupt context, where we can't do the ioremap().
76 */
77 struct acpi_ioremap {
78 struct list_head list;
79 void __iomem *virt;
80 acpi_physical_address phys;
81 acpi_size size;
82 union {
83 unsigned long refcount;
84 struct rcu_work rwork;
85 } track;
86 };
87
88 static LIST_HEAD(acpi_ioremaps);
89 static DEFINE_MUTEX(acpi_ioremap_lock);
90 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91
acpi_request_region(struct acpi_generic_address * gas,unsigned int length,char * desc)92 static void __init acpi_request_region (struct acpi_generic_address *gas,
93 unsigned int length, char *desc)
94 {
95 u64 addr;
96
97 /* Handle possible alignment issues */
98 memcpy(&addr, &gas->address, sizeof(addr));
99 if (!addr || !length)
100 return;
101
102 /* Resources are never freed */
103 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104 request_region(addr, length, desc);
105 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106 request_mem_region(addr, length, desc);
107 }
108
acpi_reserve_resources(void)109 static int __init acpi_reserve_resources(void)
110 {
111 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112 "ACPI PM1a_EVT_BLK");
113
114 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115 "ACPI PM1b_EVT_BLK");
116
117 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118 "ACPI PM1a_CNT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121 "ACPI PM1b_CNT_BLK");
122
123 if (acpi_gbl_FADT.pm_timer_length == 4)
124 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125
126 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127 "ACPI PM2_CNT_BLK");
128
129 /* Length of GPE blocks must be a non-negative multiple of 2 */
130
131 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134
135 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138
139 return 0;
140 }
141 fs_initcall_sync(acpi_reserve_resources);
142
acpi_os_printf(const char * fmt,...)143 void acpi_os_printf(const char *fmt, ...)
144 {
145 va_list args;
146 va_start(args, fmt);
147 acpi_os_vprintf(fmt, args);
148 va_end(args);
149 }
150 EXPORT_SYMBOL(acpi_os_printf);
151
acpi_os_vprintf(const char * fmt,va_list args)152 void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
153 {
154 static char buffer[512];
155
156 vsprintf(buffer, fmt, args);
157
158 #ifdef ENABLE_DEBUGGER
159 if (acpi_in_debugger) {
160 kdb_printf("%s", buffer);
161 } else {
162 if (printk_get_level(buffer))
163 printk("%s", buffer);
164 else
165 printk(KERN_CONT "%s", buffer);
166 }
167 #else
168 if (acpi_debugger_write_log(buffer) < 0) {
169 if (printk_get_level(buffer))
170 printk("%s", buffer);
171 else
172 printk(KERN_CONT "%s", buffer);
173 }
174 #endif
175 }
176
177 #ifdef CONFIG_KEXEC
178 static unsigned long acpi_rsdp;
setup_acpi_rsdp(char * arg)179 static int __init setup_acpi_rsdp(char *arg)
180 {
181 return kstrtoul(arg, 16, &acpi_rsdp);
182 }
183 early_param("acpi_rsdp", setup_acpi_rsdp);
184 #endif
185
acpi_os_get_root_pointer(void)186 acpi_physical_address __init acpi_os_get_root_pointer(void)
187 {
188 acpi_physical_address pa;
189
190 #ifdef CONFIG_KEXEC
191 /*
192 * We may have been provided with an RSDP on the command line,
193 * but if a malicious user has done so they may be pointing us
194 * at modified ACPI tables that could alter kernel behaviour -
195 * so, we check the lockdown status before making use of
196 * it. If we trust it then also stash it in an architecture
197 * specific location (if appropriate) so it can be carried
198 * over further kexec()s.
199 */
200 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201 acpi_arch_set_root_pointer(acpi_rsdp);
202 return acpi_rsdp;
203 }
204 #endif
205 pa = acpi_arch_get_root_pointer();
206 if (pa)
207 return pa;
208
209 if (efi_enabled(EFI_CONFIG_TABLES)) {
210 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi20;
212 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213 return efi.acpi;
214 pr_err("System description tables not found\n");
215 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216 acpi_find_root_pointer(&pa);
217 }
218
219 return pa;
220 }
221
222 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223 static struct acpi_ioremap *
acpi_map_lookup(acpi_physical_address phys,acpi_size size)224 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225 {
226 struct acpi_ioremap *map;
227
228 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229 if (map->phys <= phys &&
230 phys + size <= map->phys + map->size)
231 return map;
232
233 return NULL;
234 }
235
236 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237 static void __iomem *
acpi_map_vaddr_lookup(acpi_physical_address phys,unsigned int size)238 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239 {
240 struct acpi_ioremap *map;
241
242 map = acpi_map_lookup(phys, size);
243 if (map)
244 return map->virt + (phys - map->phys);
245
246 return NULL;
247 }
248
acpi_os_get_iomem(acpi_physical_address phys,unsigned int size)249 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250 {
251 struct acpi_ioremap *map;
252 void __iomem *virt = NULL;
253
254 mutex_lock(&acpi_ioremap_lock);
255 map = acpi_map_lookup(phys, size);
256 if (map) {
257 virt = map->virt + (phys - map->phys);
258 map->track.refcount++;
259 }
260 mutex_unlock(&acpi_ioremap_lock);
261 return virt;
262 }
263 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264
265 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266 static struct acpi_ioremap *
acpi_map_lookup_virt(void __iomem * virt,acpi_size size)267 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268 {
269 struct acpi_ioremap *map;
270
271 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272 if (map->virt <= virt &&
273 virt + size <= map->virt + map->size)
274 return map;
275
276 return NULL;
277 }
278
279 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280 /* ioremap will take care of cache attributes */
281 #define should_use_kmap(pfn) 0
282 #else
283 #define should_use_kmap(pfn) page_is_ram(pfn)
284 #endif
285
acpi_map(acpi_physical_address pg_off,unsigned long pg_sz)286 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287 {
288 unsigned long pfn;
289
290 pfn = pg_off >> PAGE_SHIFT;
291 if (should_use_kmap(pfn)) {
292 if (pg_sz > PAGE_SIZE)
293 return NULL;
294 return (void __iomem __force *)kmap(pfn_to_page(pfn));
295 } else
296 return acpi_os_ioremap(pg_off, pg_sz);
297 }
298
acpi_unmap(acpi_physical_address pg_off,void __iomem * vaddr)299 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300 {
301 unsigned long pfn;
302
303 pfn = pg_off >> PAGE_SHIFT;
304 if (should_use_kmap(pfn))
305 kunmap(pfn_to_page(pfn));
306 else
307 iounmap(vaddr);
308 }
309
310 /**
311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312 * @phys: Start of the physical address range to map.
313 * @size: Size of the physical address range to map.
314 *
315 * Look up the given physical address range in the list of existing ACPI memory
316 * mappings. If found, get a reference to it and return a pointer to it (its
317 * virtual address). If not found, map it, add it to that list and return a
318 * pointer to it.
319 *
320 * During early init (when acpi_permanent_mmap has not been set yet) this
321 * routine simply calls __acpi_map_table() to get the job done.
322 */
323 void __iomem __ref
acpi_os_map_iomem(acpi_physical_address phys,acpi_size size)324 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325 {
326 struct acpi_ioremap *map;
327 void __iomem *virt;
328 acpi_physical_address pg_off;
329 acpi_size pg_sz;
330
331 if (phys > ULONG_MAX) {
332 pr_err("Cannot map memory that high: 0x%llx\n", phys);
333 return NULL;
334 }
335
336 if (!acpi_permanent_mmap)
337 return __acpi_map_table((unsigned long)phys, size);
338
339 mutex_lock(&acpi_ioremap_lock);
340 /* Check if there's a suitable mapping already. */
341 map = acpi_map_lookup(phys, size);
342 if (map) {
343 map->track.refcount++;
344 goto out;
345 }
346
347 map = kzalloc(sizeof(*map), GFP_KERNEL);
348 if (!map) {
349 mutex_unlock(&acpi_ioremap_lock);
350 return NULL;
351 }
352
353 pg_off = round_down(phys, PAGE_SIZE);
354 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355 virt = acpi_map(phys, size);
356 if (!virt) {
357 mutex_unlock(&acpi_ioremap_lock);
358 kfree(map);
359 return NULL;
360 }
361
362 INIT_LIST_HEAD(&map->list);
363 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364 map->phys = pg_off;
365 map->size = pg_sz;
366 map->track.refcount = 1;
367
368 list_add_tail_rcu(&map->list, &acpi_ioremaps);
369
370 out:
371 mutex_unlock(&acpi_ioremap_lock);
372 return map->virt + (phys - map->phys);
373 }
374 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375
acpi_os_map_memory(acpi_physical_address phys,acpi_size size)376 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377 {
378 return (void *)acpi_os_map_iomem(phys, size);
379 }
380 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381
acpi_os_map_remove(struct work_struct * work)382 static void acpi_os_map_remove(struct work_struct *work)
383 {
384 struct acpi_ioremap *map = container_of(to_rcu_work(work),
385 struct acpi_ioremap,
386 track.rwork);
387
388 acpi_unmap(map->phys, map->virt);
389 kfree(map);
390 }
391
392 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
acpi_os_drop_map_ref(struct acpi_ioremap * map)393 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394 {
395 if (--map->track.refcount)
396 return;
397
398 list_del_rcu(&map->list);
399
400 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401 queue_rcu_work(system_wq, &map->track.rwork);
402 }
403
404 /**
405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
406 * @virt: Start of the address range to drop a reference to.
407 * @size: Size of the address range to drop a reference to.
408 *
409 * Look up the given virtual address range in the list of existing ACPI memory
410 * mappings, drop a reference to it and if there are no more active references
411 * to it, queue it up for later removal.
412 *
413 * During early init (when acpi_permanent_mmap has not been set yet) this
414 * routine simply calls __acpi_unmap_table() to get the job done. Since
415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416 * here.
417 */
acpi_os_unmap_iomem(void __iomem * virt,acpi_size size)418 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419 {
420 struct acpi_ioremap *map;
421
422 if (!acpi_permanent_mmap) {
423 __acpi_unmap_table(virt, size);
424 return;
425 }
426
427 mutex_lock(&acpi_ioremap_lock);
428
429 map = acpi_map_lookup_virt(virt, size);
430 if (!map) {
431 mutex_unlock(&acpi_ioremap_lock);
432 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433 return;
434 }
435 acpi_os_drop_map_ref(map);
436
437 mutex_unlock(&acpi_ioremap_lock);
438 }
439 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440
441 /**
442 * acpi_os_unmap_memory - Drop a memory mapping reference.
443 * @virt: Start of the address range to drop a reference to.
444 * @size: Size of the address range to drop a reference to.
445 */
acpi_os_unmap_memory(void * virt,acpi_size size)446 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447 {
448 acpi_os_unmap_iomem((void __iomem *)virt, size);
449 }
450 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451
acpi_os_map_generic_address(struct acpi_generic_address * gas)452 void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453 {
454 u64 addr;
455
456 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 return NULL;
458
459 /* Handle possible alignment issues */
460 memcpy(&addr, &gas->address, sizeof(addr));
461 if (!addr || !gas->bit_width)
462 return NULL;
463
464 return acpi_os_map_iomem(addr, gas->bit_width / 8);
465 }
466 EXPORT_SYMBOL(acpi_os_map_generic_address);
467
acpi_os_unmap_generic_address(struct acpi_generic_address * gas)468 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469 {
470 u64 addr;
471 struct acpi_ioremap *map;
472
473 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474 return;
475
476 /* Handle possible alignment issues */
477 memcpy(&addr, &gas->address, sizeof(addr));
478 if (!addr || !gas->bit_width)
479 return;
480
481 mutex_lock(&acpi_ioremap_lock);
482
483 map = acpi_map_lookup(addr, gas->bit_width / 8);
484 if (!map) {
485 mutex_unlock(&acpi_ioremap_lock);
486 return;
487 }
488 acpi_os_drop_map_ref(map);
489
490 mutex_unlock(&acpi_ioremap_lock);
491 }
492 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493
494 #ifdef ACPI_FUTURE_USAGE
495 acpi_status
acpi_os_get_physical_address(void * virt,acpi_physical_address * phys)496 acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
497 {
498 if (!phys || !virt)
499 return AE_BAD_PARAMETER;
500
501 *phys = virt_to_phys(virt);
502
503 return AE_OK;
504 }
505 #endif
506
507 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508 static bool acpi_rev_override;
509
acpi_rev_override_setup(char * str)510 int __init acpi_rev_override_setup(char *str)
511 {
512 acpi_rev_override = true;
513 return 1;
514 }
515 __setup("acpi_rev_override", acpi_rev_override_setup);
516 #else
517 #define acpi_rev_override false
518 #endif
519
520 #define ACPI_MAX_OVERRIDE_LEN 100
521
522 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523
524 acpi_status
acpi_os_predefined_override(const struct acpi_predefined_names * init_val,acpi_string * new_val)525 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526 acpi_string *new_val)
527 {
528 if (!init_val || !new_val)
529 return AE_BAD_PARAMETER;
530
531 *new_val = NULL;
532 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534 *new_val = acpi_os_name;
535 }
536
537 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538 pr_info("Overriding _REV return value to 5\n");
539 *new_val = (char *)5;
540 }
541
542 return AE_OK;
543 }
544
acpi_irq(int irq,void * dev_id)545 static irqreturn_t acpi_irq(int irq, void *dev_id)
546 {
547 if ((*acpi_irq_handler)(acpi_irq_context)) {
548 acpi_irq_handled++;
549 return IRQ_HANDLED;
550 } else {
551 acpi_irq_not_handled++;
552 return IRQ_NONE;
553 }
554 }
555
556 acpi_status
acpi_os_install_interrupt_handler(u32 gsi,acpi_osd_handler handler,void * context)557 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558 void *context)
559 {
560 unsigned int irq;
561
562 acpi_irq_stats_init();
563
564 /*
565 * ACPI interrupts different from the SCI in our copy of the FADT are
566 * not supported.
567 */
568 if (gsi != acpi_gbl_FADT.sci_interrupt)
569 return AE_BAD_PARAMETER;
570
571 if (acpi_irq_handler)
572 return AE_ALREADY_ACQUIRED;
573
574 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
576 return AE_OK;
577 }
578
579 acpi_irq_handler = handler;
580 acpi_irq_context = context;
581 if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
582 "acpi", acpi_irq)) {
583 pr_err("SCI (IRQ%d) allocation failed\n", irq);
584 acpi_irq_handler = NULL;
585 return AE_NOT_ACQUIRED;
586 }
587 acpi_sci_irq = irq;
588
589 return AE_OK;
590 }
591
acpi_os_remove_interrupt_handler(u32 gsi,acpi_osd_handler handler)592 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593 {
594 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595 return AE_BAD_PARAMETER;
596
597 free_irq(acpi_sci_irq, acpi_irq);
598 acpi_irq_handler = NULL;
599 acpi_sci_irq = INVALID_ACPI_IRQ;
600
601 return AE_OK;
602 }
603
604 /*
605 * Running in interpreter thread context, safe to sleep
606 */
607
acpi_os_sleep(u64 ms)608 void acpi_os_sleep(u64 ms)
609 {
610 u64 usec = ms * USEC_PER_MSEC, delta_us = 50;
611
612 /*
613 * Use a hrtimer because the timer wheel timers are optimized for
614 * cancelation before they expire and this timer is not going to be
615 * canceled.
616 *
617 * Set the delta between the requested sleep time and the effective
618 * deadline to at least 50 us in case there is an opportunity for timer
619 * coalescing.
620 *
621 * Moreover, longer sleeps can be assumed to need somewhat less timer
622 * precision, so sacrifice some of it for making the timer a more likely
623 * candidate for coalescing by setting the delta to 1% of the sleep time
624 * if it is above 5 ms (this value is chosen so that the delta is a
625 * continuous function of the sleep time).
626 */
627 if (ms > 5)
628 delta_us = (USEC_PER_MSEC / 100) * ms;
629
630 usleep_range(usec, usec + delta_us);
631 }
632
acpi_os_stall(u32 us)633 void acpi_os_stall(u32 us)
634 {
635 while (us) {
636 u32 delay = 1000;
637
638 if (delay > us)
639 delay = us;
640 udelay(delay);
641 touch_nmi_watchdog();
642 us -= delay;
643 }
644 }
645
646 /*
647 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
648 * monotonically increasing timer with 100ns granularity. Do not use
649 * ktime_get() to implement this function because this function may get
650 * called after timekeeping has been suspended. Note: calling this function
651 * after timekeeping has been suspended may lead to unexpected results
652 * because when timekeeping is suspended the jiffies counter is not
653 * incremented. See also timekeeping_suspend().
654 */
acpi_os_get_timer(void)655 u64 acpi_os_get_timer(void)
656 {
657 return (get_jiffies_64() - INITIAL_JIFFIES) *
658 (ACPI_100NSEC_PER_SEC / HZ);
659 }
660
acpi_os_read_port(acpi_io_address port,u32 * value,u32 width)661 acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
662 {
663 u32 dummy;
664
665 if (!IS_ENABLED(CONFIG_HAS_IOPORT)) {
666 /*
667 * set all-1 result as if reading from non-existing
668 * I/O port
669 */
670 *value = GENMASK(width, 0);
671 return AE_NOT_IMPLEMENTED;
672 }
673
674 if (value)
675 *value = 0;
676 else
677 value = &dummy;
678
679 if (width <= 8) {
680 *value = inb(port);
681 } else if (width <= 16) {
682 *value = inw(port);
683 } else if (width <= 32) {
684 *value = inl(port);
685 } else {
686 pr_debug("%s: Access width %d not supported\n", __func__, width);
687 return AE_BAD_PARAMETER;
688 }
689
690 return AE_OK;
691 }
692
693 EXPORT_SYMBOL(acpi_os_read_port);
694
acpi_os_write_port(acpi_io_address port,u32 value,u32 width)695 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
696 {
697 if (!IS_ENABLED(CONFIG_HAS_IOPORT))
698 return AE_NOT_IMPLEMENTED;
699
700 if (width <= 8) {
701 outb(value, port);
702 } else if (width <= 16) {
703 outw(value, port);
704 } else if (width <= 32) {
705 outl(value, port);
706 } else {
707 pr_debug("%s: Access width %d not supported\n", __func__, width);
708 return AE_BAD_PARAMETER;
709 }
710
711 return AE_OK;
712 }
713
714 EXPORT_SYMBOL(acpi_os_write_port);
715
acpi_os_read_iomem(void __iomem * virt_addr,u64 * value,u32 width)716 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
717 {
718
719 switch (width) {
720 case 8:
721 *(u8 *) value = readb(virt_addr);
722 break;
723 case 16:
724 *(u16 *) value = readw(virt_addr);
725 break;
726 case 32:
727 *(u32 *) value = readl(virt_addr);
728 break;
729 case 64:
730 *(u64 *) value = readq(virt_addr);
731 break;
732 default:
733 return -EINVAL;
734 }
735
736 return 0;
737 }
738
739 acpi_status
acpi_os_read_memory(acpi_physical_address phys_addr,u64 * value,u32 width)740 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
741 {
742 void __iomem *virt_addr;
743 unsigned int size = width / 8;
744 bool unmap = false;
745 u64 dummy;
746 int error;
747
748 rcu_read_lock();
749 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
750 if (!virt_addr) {
751 rcu_read_unlock();
752 virt_addr = acpi_os_ioremap(phys_addr, size);
753 if (!virt_addr)
754 return AE_BAD_ADDRESS;
755 unmap = true;
756 }
757
758 if (!value)
759 value = &dummy;
760
761 error = acpi_os_read_iomem(virt_addr, value, width);
762 BUG_ON(error);
763
764 if (unmap)
765 iounmap(virt_addr);
766 else
767 rcu_read_unlock();
768
769 return AE_OK;
770 }
771
772 acpi_status
acpi_os_write_memory(acpi_physical_address phys_addr,u64 value,u32 width)773 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
774 {
775 void __iomem *virt_addr;
776 unsigned int size = width / 8;
777 bool unmap = false;
778
779 rcu_read_lock();
780 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
781 if (!virt_addr) {
782 rcu_read_unlock();
783 virt_addr = acpi_os_ioremap(phys_addr, size);
784 if (!virt_addr)
785 return AE_BAD_ADDRESS;
786 unmap = true;
787 }
788
789 switch (width) {
790 case 8:
791 writeb(value, virt_addr);
792 break;
793 case 16:
794 writew(value, virt_addr);
795 break;
796 case 32:
797 writel(value, virt_addr);
798 break;
799 case 64:
800 writeq(value, virt_addr);
801 break;
802 default:
803 BUG();
804 }
805
806 if (unmap)
807 iounmap(virt_addr);
808 else
809 rcu_read_unlock();
810
811 return AE_OK;
812 }
813
814 #ifdef CONFIG_PCI
815 acpi_status
acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 * value,u32 width)816 acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
817 u64 *value, u32 width)
818 {
819 int result, size;
820 u32 value32;
821
822 if (!value)
823 return AE_BAD_PARAMETER;
824
825 switch (width) {
826 case 8:
827 size = 1;
828 break;
829 case 16:
830 size = 2;
831 break;
832 case 32:
833 size = 4;
834 break;
835 default:
836 return AE_ERROR;
837 }
838
839 result = raw_pci_read(pci_id->segment, pci_id->bus,
840 PCI_DEVFN(pci_id->device, pci_id->function),
841 reg, size, &value32);
842 *value = value32;
843
844 return (result ? AE_ERROR : AE_OK);
845 }
846
847 acpi_status
acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 value,u32 width)848 acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
849 u64 value, u32 width)
850 {
851 int result, size;
852
853 switch (width) {
854 case 8:
855 size = 1;
856 break;
857 case 16:
858 size = 2;
859 break;
860 case 32:
861 size = 4;
862 break;
863 default:
864 return AE_ERROR;
865 }
866
867 result = raw_pci_write(pci_id->segment, pci_id->bus,
868 PCI_DEVFN(pci_id->device, pci_id->function),
869 reg, size, value);
870
871 return (result ? AE_ERROR : AE_OK);
872 }
873 #endif
874
acpi_os_execute_deferred(struct work_struct * work)875 static void acpi_os_execute_deferred(struct work_struct *work)
876 {
877 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
878
879 dpc->function(dpc->context);
880 kfree(dpc);
881 }
882
883 #ifdef CONFIG_ACPI_DEBUGGER
884 static struct acpi_debugger acpi_debugger;
885 static bool acpi_debugger_initialized;
886
acpi_register_debugger(struct module * owner,const struct acpi_debugger_ops * ops)887 int acpi_register_debugger(struct module *owner,
888 const struct acpi_debugger_ops *ops)
889 {
890 int ret = 0;
891
892 mutex_lock(&acpi_debugger.lock);
893 if (acpi_debugger.ops) {
894 ret = -EBUSY;
895 goto err_lock;
896 }
897
898 acpi_debugger.owner = owner;
899 acpi_debugger.ops = ops;
900
901 err_lock:
902 mutex_unlock(&acpi_debugger.lock);
903 return ret;
904 }
905 EXPORT_SYMBOL(acpi_register_debugger);
906
acpi_unregister_debugger(const struct acpi_debugger_ops * ops)907 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
908 {
909 mutex_lock(&acpi_debugger.lock);
910 if (ops == acpi_debugger.ops) {
911 acpi_debugger.ops = NULL;
912 acpi_debugger.owner = NULL;
913 }
914 mutex_unlock(&acpi_debugger.lock);
915 }
916 EXPORT_SYMBOL(acpi_unregister_debugger);
917
acpi_debugger_create_thread(acpi_osd_exec_callback function,void * context)918 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
919 {
920 int ret;
921 int (*func)(acpi_osd_exec_callback, void *);
922 struct module *owner;
923
924 if (!acpi_debugger_initialized)
925 return -ENODEV;
926 mutex_lock(&acpi_debugger.lock);
927 if (!acpi_debugger.ops) {
928 ret = -ENODEV;
929 goto err_lock;
930 }
931 if (!try_module_get(acpi_debugger.owner)) {
932 ret = -ENODEV;
933 goto err_lock;
934 }
935 func = acpi_debugger.ops->create_thread;
936 owner = acpi_debugger.owner;
937 mutex_unlock(&acpi_debugger.lock);
938
939 ret = func(function, context);
940
941 mutex_lock(&acpi_debugger.lock);
942 module_put(owner);
943 err_lock:
944 mutex_unlock(&acpi_debugger.lock);
945 return ret;
946 }
947
acpi_debugger_write_log(const char * msg)948 ssize_t acpi_debugger_write_log(const char *msg)
949 {
950 ssize_t ret;
951 ssize_t (*func)(const char *);
952 struct module *owner;
953
954 if (!acpi_debugger_initialized)
955 return -ENODEV;
956 mutex_lock(&acpi_debugger.lock);
957 if (!acpi_debugger.ops) {
958 ret = -ENODEV;
959 goto err_lock;
960 }
961 if (!try_module_get(acpi_debugger.owner)) {
962 ret = -ENODEV;
963 goto err_lock;
964 }
965 func = acpi_debugger.ops->write_log;
966 owner = acpi_debugger.owner;
967 mutex_unlock(&acpi_debugger.lock);
968
969 ret = func(msg);
970
971 mutex_lock(&acpi_debugger.lock);
972 module_put(owner);
973 err_lock:
974 mutex_unlock(&acpi_debugger.lock);
975 return ret;
976 }
977
acpi_debugger_read_cmd(char * buffer,size_t buffer_length)978 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
979 {
980 ssize_t ret;
981 ssize_t (*func)(char *, size_t);
982 struct module *owner;
983
984 if (!acpi_debugger_initialized)
985 return -ENODEV;
986 mutex_lock(&acpi_debugger.lock);
987 if (!acpi_debugger.ops) {
988 ret = -ENODEV;
989 goto err_lock;
990 }
991 if (!try_module_get(acpi_debugger.owner)) {
992 ret = -ENODEV;
993 goto err_lock;
994 }
995 func = acpi_debugger.ops->read_cmd;
996 owner = acpi_debugger.owner;
997 mutex_unlock(&acpi_debugger.lock);
998
999 ret = func(buffer, buffer_length);
1000
1001 mutex_lock(&acpi_debugger.lock);
1002 module_put(owner);
1003 err_lock:
1004 mutex_unlock(&acpi_debugger.lock);
1005 return ret;
1006 }
1007
acpi_debugger_wait_command_ready(void)1008 int acpi_debugger_wait_command_ready(void)
1009 {
1010 int ret;
1011 int (*func)(bool, char *, size_t);
1012 struct module *owner;
1013
1014 if (!acpi_debugger_initialized)
1015 return -ENODEV;
1016 mutex_lock(&acpi_debugger.lock);
1017 if (!acpi_debugger.ops) {
1018 ret = -ENODEV;
1019 goto err_lock;
1020 }
1021 if (!try_module_get(acpi_debugger.owner)) {
1022 ret = -ENODEV;
1023 goto err_lock;
1024 }
1025 func = acpi_debugger.ops->wait_command_ready;
1026 owner = acpi_debugger.owner;
1027 mutex_unlock(&acpi_debugger.lock);
1028
1029 ret = func(acpi_gbl_method_executing,
1030 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1031
1032 mutex_lock(&acpi_debugger.lock);
1033 module_put(owner);
1034 err_lock:
1035 mutex_unlock(&acpi_debugger.lock);
1036 return ret;
1037 }
1038
acpi_debugger_notify_command_complete(void)1039 int acpi_debugger_notify_command_complete(void)
1040 {
1041 int ret;
1042 int (*func)(void);
1043 struct module *owner;
1044
1045 if (!acpi_debugger_initialized)
1046 return -ENODEV;
1047 mutex_lock(&acpi_debugger.lock);
1048 if (!acpi_debugger.ops) {
1049 ret = -ENODEV;
1050 goto err_lock;
1051 }
1052 if (!try_module_get(acpi_debugger.owner)) {
1053 ret = -ENODEV;
1054 goto err_lock;
1055 }
1056 func = acpi_debugger.ops->notify_command_complete;
1057 owner = acpi_debugger.owner;
1058 mutex_unlock(&acpi_debugger.lock);
1059
1060 ret = func();
1061
1062 mutex_lock(&acpi_debugger.lock);
1063 module_put(owner);
1064 err_lock:
1065 mutex_unlock(&acpi_debugger.lock);
1066 return ret;
1067 }
1068
acpi_debugger_init(void)1069 int __init acpi_debugger_init(void)
1070 {
1071 mutex_init(&acpi_debugger.lock);
1072 acpi_debugger_initialized = true;
1073 return 0;
1074 }
1075 #endif
1076
1077 /*******************************************************************************
1078 *
1079 * FUNCTION: acpi_os_execute
1080 *
1081 * PARAMETERS: Type - Type of the callback
1082 * Function - Function to be executed
1083 * Context - Function parameters
1084 *
1085 * RETURN: Status
1086 *
1087 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1088 * immediately executes function on a separate thread.
1089 *
1090 ******************************************************************************/
1091
acpi_os_execute(acpi_execute_type type,acpi_osd_exec_callback function,void * context)1092 acpi_status acpi_os_execute(acpi_execute_type type,
1093 acpi_osd_exec_callback function, void *context)
1094 {
1095 struct acpi_os_dpc *dpc;
1096 int ret;
1097
1098 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1099 "Scheduling function [%p(%p)] for deferred execution.\n",
1100 function, context));
1101
1102 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1103 ret = acpi_debugger_create_thread(function, context);
1104 if (ret) {
1105 pr_err("Kernel thread creation failed\n");
1106 return AE_ERROR;
1107 }
1108 return AE_OK;
1109 }
1110
1111 /*
1112 * Allocate/initialize DPC structure. Note that this memory will be
1113 * freed by the callee. The kernel handles the work_struct list in a
1114 * way that allows us to also free its memory inside the callee.
1115 * Because we may want to schedule several tasks with different
1116 * parameters we can't use the approach some kernel code uses of
1117 * having a static work_struct.
1118 */
1119
1120 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1121 if (!dpc)
1122 return AE_NO_MEMORY;
1123
1124 dpc->function = function;
1125 dpc->context = context;
1126 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1127
1128 /*
1129 * To prevent lockdep from complaining unnecessarily, make sure that
1130 * there is a different static lockdep key for each workqueue by using
1131 * INIT_WORK() for each of them separately.
1132 */
1133 switch (type) {
1134 case OSL_NOTIFY_HANDLER:
1135 ret = queue_work(kacpi_notify_wq, &dpc->work);
1136 break;
1137 case OSL_GPE_HANDLER:
1138 /*
1139 * On some machines, a software-initiated SMI causes corruption
1140 * unless the SMI runs on CPU 0. An SMI can be initiated by
1141 * any AML, but typically it's done in GPE-related methods that
1142 * are run via workqueues, so we can avoid the known corruption
1143 * cases by always queueing on CPU 0.
1144 */
1145 ret = queue_work_on(0, kacpid_wq, &dpc->work);
1146 break;
1147 default:
1148 pr_err("Unsupported os_execute type %d.\n", type);
1149 goto err;
1150 }
1151 if (!ret) {
1152 pr_err("Unable to queue work\n");
1153 goto err;
1154 }
1155
1156 return AE_OK;
1157
1158 err:
1159 kfree(dpc);
1160 return AE_ERROR;
1161 }
1162 EXPORT_SYMBOL(acpi_os_execute);
1163
acpi_os_wait_events_complete(void)1164 void acpi_os_wait_events_complete(void)
1165 {
1166 /*
1167 * Make sure the GPE handler or the fixed event handler is not used
1168 * on another CPU after removal.
1169 */
1170 if (acpi_sci_irq_valid())
1171 synchronize_hardirq(acpi_sci_irq);
1172 flush_workqueue(kacpid_wq);
1173 flush_workqueue(kacpi_notify_wq);
1174 }
1175 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1176
1177 struct acpi_hp_work {
1178 struct work_struct work;
1179 struct acpi_device *adev;
1180 u32 src;
1181 };
1182
acpi_hotplug_work_fn(struct work_struct * work)1183 static void acpi_hotplug_work_fn(struct work_struct *work)
1184 {
1185 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1186
1187 acpi_os_wait_events_complete();
1188 acpi_device_hotplug(hpw->adev, hpw->src);
1189 kfree(hpw);
1190 }
1191
acpi_hotplug_schedule(struct acpi_device * adev,u32 src)1192 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1193 {
1194 struct acpi_hp_work *hpw;
1195
1196 acpi_handle_debug(adev->handle,
1197 "Scheduling hotplug event %u for deferred handling\n",
1198 src);
1199
1200 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1201 if (!hpw)
1202 return AE_NO_MEMORY;
1203
1204 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1205 hpw->adev = adev;
1206 hpw->src = src;
1207 /*
1208 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1209 * the hotplug code may call driver .remove() functions, which may
1210 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1211 * these workqueues.
1212 */
1213 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1214 kfree(hpw);
1215 return AE_ERROR;
1216 }
1217 return AE_OK;
1218 }
1219
acpi_queue_hotplug_work(struct work_struct * work)1220 bool acpi_queue_hotplug_work(struct work_struct *work)
1221 {
1222 return queue_work(kacpi_hotplug_wq, work);
1223 }
1224
1225 acpi_status
acpi_os_create_semaphore(u32 max_units,u32 initial_units,acpi_handle * handle)1226 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1227 {
1228 struct semaphore *sem = NULL;
1229
1230 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1231 if (!sem)
1232 return AE_NO_MEMORY;
1233
1234 sema_init(sem, initial_units);
1235
1236 *handle = (acpi_handle *) sem;
1237
1238 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1239 *handle, initial_units));
1240
1241 return AE_OK;
1242 }
1243
1244 /*
1245 * TODO: A better way to delete semaphores? Linux doesn't have a
1246 * 'delete_semaphore()' function -- may result in an invalid
1247 * pointer dereference for non-synchronized consumers. Should
1248 * we at least check for blocked threads and signal/cancel them?
1249 */
1250
acpi_os_delete_semaphore(acpi_handle handle)1251 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1252 {
1253 struct semaphore *sem = (struct semaphore *)handle;
1254
1255 if (!sem)
1256 return AE_BAD_PARAMETER;
1257
1258 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1259
1260 BUG_ON(!list_empty(&sem->wait_list));
1261 kfree(sem);
1262 sem = NULL;
1263
1264 return AE_OK;
1265 }
1266
1267 /*
1268 * TODO: Support for units > 1?
1269 */
acpi_os_wait_semaphore(acpi_handle handle,u32 units,u16 timeout)1270 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1271 {
1272 acpi_status status = AE_OK;
1273 struct semaphore *sem = (struct semaphore *)handle;
1274 long jiffies;
1275 int ret = 0;
1276
1277 if (!acpi_os_initialized)
1278 return AE_OK;
1279
1280 if (!sem || (units < 1))
1281 return AE_BAD_PARAMETER;
1282
1283 if (units > 1)
1284 return AE_SUPPORT;
1285
1286 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1287 handle, units, timeout));
1288
1289 if (timeout == ACPI_WAIT_FOREVER)
1290 jiffies = MAX_SCHEDULE_TIMEOUT;
1291 else
1292 jiffies = msecs_to_jiffies(timeout);
1293
1294 ret = down_timeout(sem, jiffies);
1295 if (ret)
1296 status = AE_TIME;
1297
1298 if (ACPI_FAILURE(status)) {
1299 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1300 "Failed to acquire semaphore[%p|%d|%d], %s",
1301 handle, units, timeout,
1302 acpi_format_exception(status)));
1303 } else {
1304 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1305 "Acquired semaphore[%p|%d|%d]", handle,
1306 units, timeout));
1307 }
1308
1309 return status;
1310 }
1311
1312 /*
1313 * TODO: Support for units > 1?
1314 */
acpi_os_signal_semaphore(acpi_handle handle,u32 units)1315 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1316 {
1317 struct semaphore *sem = (struct semaphore *)handle;
1318
1319 if (!acpi_os_initialized)
1320 return AE_OK;
1321
1322 if (!sem || (units < 1))
1323 return AE_BAD_PARAMETER;
1324
1325 if (units > 1)
1326 return AE_SUPPORT;
1327
1328 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1329 units));
1330
1331 up(sem);
1332
1333 return AE_OK;
1334 }
1335
acpi_os_get_line(char * buffer,u32 buffer_length,u32 * bytes_read)1336 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1337 {
1338 #ifdef ENABLE_DEBUGGER
1339 if (acpi_in_debugger) {
1340 u32 chars;
1341
1342 kdb_read(buffer, buffer_length);
1343
1344 /* remove the CR kdb includes */
1345 chars = strlen(buffer) - 1;
1346 buffer[chars] = '\0';
1347 }
1348 #else
1349 int ret;
1350
1351 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1352 if (ret < 0)
1353 return AE_ERROR;
1354 if (bytes_read)
1355 *bytes_read = ret;
1356 #endif
1357
1358 return AE_OK;
1359 }
1360 EXPORT_SYMBOL(acpi_os_get_line);
1361
acpi_os_wait_command_ready(void)1362 acpi_status acpi_os_wait_command_ready(void)
1363 {
1364 int ret;
1365
1366 ret = acpi_debugger_wait_command_ready();
1367 if (ret < 0)
1368 return AE_ERROR;
1369 return AE_OK;
1370 }
1371
acpi_os_notify_command_complete(void)1372 acpi_status acpi_os_notify_command_complete(void)
1373 {
1374 int ret;
1375
1376 ret = acpi_debugger_notify_command_complete();
1377 if (ret < 0)
1378 return AE_ERROR;
1379 return AE_OK;
1380 }
1381
acpi_os_signal(u32 function,void * info)1382 acpi_status acpi_os_signal(u32 function, void *info)
1383 {
1384 switch (function) {
1385 case ACPI_SIGNAL_FATAL:
1386 pr_err("Fatal opcode executed\n");
1387 break;
1388 case ACPI_SIGNAL_BREAKPOINT:
1389 /*
1390 * AML Breakpoint
1391 * ACPI spec. says to treat it as a NOP unless
1392 * you are debugging. So if/when we integrate
1393 * AML debugger into the kernel debugger its
1394 * hook will go here. But until then it is
1395 * not useful to print anything on breakpoints.
1396 */
1397 break;
1398 default:
1399 break;
1400 }
1401
1402 return AE_OK;
1403 }
1404
acpi_os_name_setup(char * str)1405 static int __init acpi_os_name_setup(char *str)
1406 {
1407 char *p = acpi_os_name;
1408 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1409
1410 if (!str || !*str)
1411 return 0;
1412
1413 for (; count-- && *str; str++) {
1414 if (isalnum(*str) || *str == ' ' || *str == ':')
1415 *p++ = *str;
1416 else if (*str == '\'' || *str == '"')
1417 continue;
1418 else
1419 break;
1420 }
1421 *p = 0;
1422
1423 return 1;
1424
1425 }
1426
1427 __setup("acpi_os_name=", acpi_os_name_setup);
1428
1429 /*
1430 * Disable the auto-serialization of named objects creation methods.
1431 *
1432 * This feature is enabled by default. It marks the AML control methods
1433 * that contain the opcodes to create named objects as "Serialized".
1434 */
acpi_no_auto_serialize_setup(char * str)1435 static int __init acpi_no_auto_serialize_setup(char *str)
1436 {
1437 acpi_gbl_auto_serialize_methods = FALSE;
1438 pr_info("Auto-serialization disabled\n");
1439
1440 return 1;
1441 }
1442
1443 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1444
1445 /* Check of resource interference between native drivers and ACPI
1446 * OperationRegions (SystemIO and System Memory only).
1447 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1448 * in arbitrary AML code and can interfere with legacy drivers.
1449 * acpi_enforce_resources= can be set to:
1450 *
1451 * - strict (default) (2)
1452 * -> further driver trying to access the resources will not load
1453 * - lax (1)
1454 * -> further driver trying to access the resources will load, but you
1455 * get a system message that something might go wrong...
1456 *
1457 * - no (0)
1458 * -> ACPI Operation Region resources will not be registered
1459 *
1460 */
1461 #define ENFORCE_RESOURCES_STRICT 2
1462 #define ENFORCE_RESOURCES_LAX 1
1463 #define ENFORCE_RESOURCES_NO 0
1464
1465 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1466
acpi_enforce_resources_setup(char * str)1467 static int __init acpi_enforce_resources_setup(char *str)
1468 {
1469 if (str == NULL || *str == '\0')
1470 return 0;
1471
1472 if (!strcmp("strict", str))
1473 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1474 else if (!strcmp("lax", str))
1475 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1476 else if (!strcmp("no", str))
1477 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1478
1479 return 1;
1480 }
1481
1482 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1483
1484 /* Check for resource conflicts between ACPI OperationRegions and native
1485 * drivers */
acpi_check_resource_conflict(const struct resource * res)1486 int acpi_check_resource_conflict(const struct resource *res)
1487 {
1488 acpi_adr_space_type space_id;
1489
1490 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1491 return 0;
1492
1493 if (res->flags & IORESOURCE_IO)
1494 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1495 else if (res->flags & IORESOURCE_MEM)
1496 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1497 else
1498 return 0;
1499
1500 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1501 return 0;
1502
1503 pr_info("Resource conflict; ACPI support missing from driver?\n");
1504
1505 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1506 return -EBUSY;
1507
1508 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1509 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1510
1511 return 0;
1512 }
1513 EXPORT_SYMBOL(acpi_check_resource_conflict);
1514
acpi_check_region(resource_size_t start,resource_size_t n,const char * name)1515 int acpi_check_region(resource_size_t start, resource_size_t n,
1516 const char *name)
1517 {
1518 struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1519
1520 return acpi_check_resource_conflict(&res);
1521 }
1522 EXPORT_SYMBOL(acpi_check_region);
1523
1524 /*
1525 * Let drivers know whether the resource checks are effective
1526 */
acpi_resources_are_enforced(void)1527 int acpi_resources_are_enforced(void)
1528 {
1529 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1530 }
1531 EXPORT_SYMBOL(acpi_resources_are_enforced);
1532
1533 /*
1534 * Deallocate the memory for a spinlock.
1535 */
acpi_os_delete_lock(acpi_spinlock handle)1536 void acpi_os_delete_lock(acpi_spinlock handle)
1537 {
1538 ACPI_FREE(handle);
1539 }
1540
1541 /*
1542 * Acquire a spinlock.
1543 *
1544 * handle is a pointer to the spinlock_t.
1545 */
1546
acpi_os_acquire_lock(acpi_spinlock lockp)1547 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1548 __acquires(lockp)
1549 {
1550 spin_lock(lockp);
1551 return 0;
1552 }
1553
1554 /*
1555 * Release a spinlock. See above.
1556 */
1557
acpi_os_release_lock(acpi_spinlock lockp,acpi_cpu_flags not_used)1558 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1559 __releases(lockp)
1560 {
1561 spin_unlock(lockp);
1562 }
1563
1564 #ifndef ACPI_USE_LOCAL_CACHE
1565
1566 /*******************************************************************************
1567 *
1568 * FUNCTION: acpi_os_create_cache
1569 *
1570 * PARAMETERS: name - Ascii name for the cache
1571 * size - Size of each cached object
1572 * depth - Maximum depth of the cache (in objects) <ignored>
1573 * cache - Where the new cache object is returned
1574 *
1575 * RETURN: status
1576 *
1577 * DESCRIPTION: Create a cache object
1578 *
1579 ******************************************************************************/
1580
1581 acpi_status
acpi_os_create_cache(char * name,u16 size,u16 depth,acpi_cache_t ** cache)1582 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1583 {
1584 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1585 if (*cache == NULL)
1586 return AE_ERROR;
1587 else
1588 return AE_OK;
1589 }
1590
1591 /*******************************************************************************
1592 *
1593 * FUNCTION: acpi_os_purge_cache
1594 *
1595 * PARAMETERS: Cache - Handle to cache object
1596 *
1597 * RETURN: Status
1598 *
1599 * DESCRIPTION: Free all objects within the requested cache.
1600 *
1601 ******************************************************************************/
1602
acpi_os_purge_cache(acpi_cache_t * cache)1603 acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1604 {
1605 kmem_cache_shrink(cache);
1606 return AE_OK;
1607 }
1608
1609 /*******************************************************************************
1610 *
1611 * FUNCTION: acpi_os_delete_cache
1612 *
1613 * PARAMETERS: Cache - Handle to cache object
1614 *
1615 * RETURN: Status
1616 *
1617 * DESCRIPTION: Free all objects within the requested cache and delete the
1618 * cache object.
1619 *
1620 ******************************************************************************/
1621
acpi_os_delete_cache(acpi_cache_t * cache)1622 acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1623 {
1624 kmem_cache_destroy(cache);
1625 return AE_OK;
1626 }
1627
1628 /*******************************************************************************
1629 *
1630 * FUNCTION: acpi_os_release_object
1631 *
1632 * PARAMETERS: Cache - Handle to cache object
1633 * Object - The object to be released
1634 *
1635 * RETURN: None
1636 *
1637 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1638 * the object is deleted.
1639 *
1640 ******************************************************************************/
1641
acpi_os_release_object(acpi_cache_t * cache,void * object)1642 acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1643 {
1644 kmem_cache_free(cache, object);
1645 return AE_OK;
1646 }
1647 #endif
1648
acpi_no_static_ssdt_setup(char * s)1649 static int __init acpi_no_static_ssdt_setup(char *s)
1650 {
1651 acpi_gbl_disable_ssdt_table_install = TRUE;
1652 pr_info("Static SSDT installation disabled\n");
1653
1654 return 0;
1655 }
1656
1657 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1658
acpi_disable_return_repair(char * s)1659 static int __init acpi_disable_return_repair(char *s)
1660 {
1661 pr_notice("Predefined validation mechanism disabled\n");
1662 acpi_gbl_disable_auto_repair = TRUE;
1663
1664 return 1;
1665 }
1666
1667 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1668
acpi_os_initialize(void)1669 acpi_status __init acpi_os_initialize(void)
1670 {
1671 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1672 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1673
1674 acpi_gbl_xgpe0_block_logical_address =
1675 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1676 acpi_gbl_xgpe1_block_logical_address =
1677 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1678
1679 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1680 /*
1681 * Use acpi_os_map_generic_address to pre-map the reset
1682 * register if it's in system memory.
1683 */
1684 void *rv;
1685
1686 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1687 pr_debug("%s: Reset register mapping %s\n", __func__,
1688 rv ? "successful" : "failed");
1689 }
1690 acpi_os_initialized = true;
1691
1692 return AE_OK;
1693 }
1694
acpi_os_initialize1(void)1695 acpi_status __init acpi_os_initialize1(void)
1696 {
1697 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1698 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1699 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1700 BUG_ON(!kacpid_wq);
1701 BUG_ON(!kacpi_notify_wq);
1702 BUG_ON(!kacpi_hotplug_wq);
1703 acpi_osi_init();
1704 return AE_OK;
1705 }
1706
acpi_os_terminate(void)1707 acpi_status acpi_os_terminate(void)
1708 {
1709 if (acpi_irq_handler) {
1710 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1711 acpi_irq_handler);
1712 }
1713
1714 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1715 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1716 acpi_gbl_xgpe0_block_logical_address = 0UL;
1717 acpi_gbl_xgpe1_block_logical_address = 0UL;
1718
1719 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1720 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1721
1722 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1723 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1724
1725 destroy_workqueue(kacpid_wq);
1726 destroy_workqueue(kacpi_notify_wq);
1727 destroy_workqueue(kacpi_hotplug_wq);
1728
1729 return AE_OK;
1730 }
1731
acpi_os_prepare_sleep(u8 sleep_state,u32 pm1a_control,u32 pm1b_control)1732 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1733 u32 pm1b_control)
1734 {
1735 int rc = 0;
1736
1737 if (__acpi_os_prepare_sleep)
1738 rc = __acpi_os_prepare_sleep(sleep_state,
1739 pm1a_control, pm1b_control);
1740 if (rc < 0)
1741 return AE_ERROR;
1742 else if (rc > 0)
1743 return AE_CTRL_TERMINATE;
1744
1745 return AE_OK;
1746 }
1747
acpi_os_set_prepare_sleep(int (* func)(u8 sleep_state,u32 pm1a_ctrl,u32 pm1b_ctrl))1748 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1749 u32 pm1a_ctrl, u32 pm1b_ctrl))
1750 {
1751 __acpi_os_prepare_sleep = func;
1752 }
1753
1754 #if (ACPI_REDUCED_HARDWARE)
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1755 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1756 u32 val_b)
1757 {
1758 int rc = 0;
1759
1760 if (__acpi_os_prepare_extended_sleep)
1761 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1762 val_a, val_b);
1763 if (rc < 0)
1764 return AE_ERROR;
1765 else if (rc > 0)
1766 return AE_CTRL_TERMINATE;
1767
1768 return AE_OK;
1769 }
1770 #else
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1771 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1772 u32 val_b)
1773 {
1774 return AE_OK;
1775 }
1776 #endif
1777
acpi_os_set_prepare_extended_sleep(int (* func)(u8 sleep_state,u32 val_a,u32 val_b))1778 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1779 u32 val_a, u32 val_b))
1780 {
1781 __acpi_os_prepare_extended_sleep = func;
1782 }
1783
acpi_os_enter_sleep(u8 sleep_state,u32 reg_a_value,u32 reg_b_value)1784 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1785 u32 reg_a_value, u32 reg_b_value)
1786 {
1787 acpi_status status;
1788
1789 if (acpi_gbl_reduced_hardware)
1790 status = acpi_os_prepare_extended_sleep(sleep_state,
1791 reg_a_value,
1792 reg_b_value);
1793 else
1794 status = acpi_os_prepare_sleep(sleep_state,
1795 reg_a_value, reg_b_value);
1796 return status;
1797 }
1798