1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * acpi_pad.c ACPI Processor Aggregator Driver
4 *
5 * Copyright (c) 2009, Intel Corporation.
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/cpumask.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/kthread.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/freezer.h>
16 #include <linux/cpu.h>
17 #include <linux/tick.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/perf_event.h>
21 #include <linux/platform_device.h>
22 #include <asm/cpuid.h>
23 #include <asm/mwait.h>
24 #include <xen/xen.h>
25
26 #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
27 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
28 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
29
30 #define ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS 0
31 #define ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION 1
32
33 static DEFINE_MUTEX(isolated_cpus_lock);
34 static DEFINE_MUTEX(round_robin_lock);
35
36 static unsigned long power_saving_mwait_eax;
37
38 static unsigned char tsc_detected_unstable;
39 static unsigned char tsc_marked_unstable;
40
power_saving_mwait_init(void)41 static void power_saving_mwait_init(void)
42 {
43 unsigned int eax, ebx, ecx, edx;
44 unsigned int highest_cstate = 0;
45 unsigned int highest_subcstate = 0;
46 int i;
47
48 if (!boot_cpu_has(X86_FEATURE_MWAIT))
49 return;
50
51 cpuid(CPUID_LEAF_MWAIT, &eax, &ebx, &ecx, &edx);
52
53 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
54 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
55 return;
56
57 edx >>= MWAIT_SUBSTATE_SIZE;
58 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
59 if (edx & MWAIT_SUBSTATE_MASK) {
60 highest_cstate = i;
61 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
62 }
63 }
64 power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
65 (highest_subcstate - 1);
66
67 #if defined(CONFIG_X86)
68 switch (boot_cpu_data.x86_vendor) {
69 case X86_VENDOR_HYGON:
70 case X86_VENDOR_AMD:
71 case X86_VENDOR_INTEL:
72 case X86_VENDOR_ZHAOXIN:
73 case X86_VENDOR_CENTAUR:
74 /*
75 * AMD Fam10h TSC will tick in all
76 * C/P/S0/S1 states when this bit is set.
77 */
78 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
79 tsc_detected_unstable = 1;
80 break;
81 default:
82 /* TSC could halt in idle */
83 tsc_detected_unstable = 1;
84 }
85 #endif
86 }
87
88 static unsigned long cpu_weight[NR_CPUS];
89 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
90 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
round_robin_cpu(unsigned int tsk_index)91 static void round_robin_cpu(unsigned int tsk_index)
92 {
93 struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
94 cpumask_var_t tmp;
95 int cpu;
96 unsigned long min_weight = -1;
97 unsigned long preferred_cpu;
98
99 if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
100 return;
101
102 mutex_lock(&round_robin_lock);
103 cpumask_clear(tmp);
104 for_each_cpu(cpu, pad_busy_cpus)
105 cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
106 cpumask_andnot(tmp, cpu_online_mask, tmp);
107 /* avoid HT siblings if possible */
108 if (cpumask_empty(tmp))
109 cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
110 if (cpumask_empty(tmp)) {
111 mutex_unlock(&round_robin_lock);
112 free_cpumask_var(tmp);
113 return;
114 }
115 for_each_cpu(cpu, tmp) {
116 if (cpu_weight[cpu] < min_weight) {
117 min_weight = cpu_weight[cpu];
118 preferred_cpu = cpu;
119 }
120 }
121
122 if (tsk_in_cpu[tsk_index] != -1)
123 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
124 tsk_in_cpu[tsk_index] = preferred_cpu;
125 cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
126 cpu_weight[preferred_cpu]++;
127 mutex_unlock(&round_robin_lock);
128
129 set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
130
131 free_cpumask_var(tmp);
132 }
133
exit_round_robin(unsigned int tsk_index)134 static void exit_round_robin(unsigned int tsk_index)
135 {
136 struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
137
138 if (tsk_in_cpu[tsk_index] != -1) {
139 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
140 tsk_in_cpu[tsk_index] = -1;
141 }
142 }
143
144 static unsigned int idle_pct = 5; /* percentage */
145 static unsigned int round_robin_time = 1; /* second */
power_saving_thread(void * data)146 static int power_saving_thread(void *data)
147 {
148 int do_sleep;
149 unsigned int tsk_index = (unsigned long)data;
150 u64 last_jiffies = 0;
151
152 sched_set_fifo_low(current);
153
154 while (!kthread_should_stop()) {
155 unsigned long expire_time;
156
157 /* round robin to cpus */
158 expire_time = last_jiffies + round_robin_time * HZ;
159 if (time_before(expire_time, jiffies)) {
160 last_jiffies = jiffies;
161 round_robin_cpu(tsk_index);
162 }
163
164 do_sleep = 0;
165
166 expire_time = jiffies + HZ * (100 - idle_pct) / 100;
167
168 while (!need_resched()) {
169 if (tsc_detected_unstable && !tsc_marked_unstable) {
170 /* TSC could halt in idle, so notify users */
171 mark_tsc_unstable("TSC halts in idle");
172 tsc_marked_unstable = 1;
173 }
174 local_irq_disable();
175
176 perf_lopwr_cb(true);
177
178 tick_broadcast_enable();
179 tick_broadcast_enter();
180 stop_critical_timings();
181
182 mwait_idle_with_hints(power_saving_mwait_eax, 1);
183
184 start_critical_timings();
185 tick_broadcast_exit();
186
187 perf_lopwr_cb(false);
188
189 local_irq_enable();
190
191 if (time_before(expire_time, jiffies)) {
192 do_sleep = 1;
193 break;
194 }
195 }
196
197 /*
198 * current sched_rt has threshold for rt task running time.
199 * When a rt task uses 95% CPU time, the rt thread will be
200 * scheduled out for 5% CPU time to not starve other tasks. But
201 * the mechanism only works when all CPUs have RT task running,
202 * as if one CPU hasn't RT task, RT task from other CPUs will
203 * borrow CPU time from this CPU and cause RT task use > 95%
204 * CPU time. To make 'avoid starvation' work, takes a nap here.
205 */
206 if (unlikely(do_sleep))
207 schedule_timeout_killable(HZ * idle_pct / 100);
208
209 /* If an external event has set the need_resched flag, then
210 * we need to deal with it, or this loop will continue to
211 * spin without calling __mwait().
212 */
213 if (unlikely(need_resched()))
214 schedule();
215 }
216
217 exit_round_robin(tsk_index);
218 return 0;
219 }
220
221 static struct task_struct *ps_tsks[NR_CPUS];
222 static unsigned int ps_tsk_num;
create_power_saving_task(void)223 static int create_power_saving_task(void)
224 {
225 int rc;
226
227 ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
228 (void *)(unsigned long)ps_tsk_num,
229 "acpi_pad/%d", ps_tsk_num);
230
231 if (IS_ERR(ps_tsks[ps_tsk_num])) {
232 rc = PTR_ERR(ps_tsks[ps_tsk_num]);
233 ps_tsks[ps_tsk_num] = NULL;
234 } else {
235 rc = 0;
236 ps_tsk_num++;
237 }
238
239 return rc;
240 }
241
destroy_power_saving_task(void)242 static void destroy_power_saving_task(void)
243 {
244 if (ps_tsk_num > 0) {
245 ps_tsk_num--;
246 kthread_stop(ps_tsks[ps_tsk_num]);
247 ps_tsks[ps_tsk_num] = NULL;
248 }
249 }
250
set_power_saving_task_num(unsigned int num)251 static void set_power_saving_task_num(unsigned int num)
252 {
253 if (num > ps_tsk_num) {
254 while (ps_tsk_num < num) {
255 if (create_power_saving_task())
256 return;
257 }
258 } else if (num < ps_tsk_num) {
259 while (ps_tsk_num > num)
260 destroy_power_saving_task();
261 }
262 }
263
acpi_pad_idle_cpus(unsigned int num_cpus)264 static void acpi_pad_idle_cpus(unsigned int num_cpus)
265 {
266 cpus_read_lock();
267
268 num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
269 set_power_saving_task_num(num_cpus);
270
271 cpus_read_unlock();
272 }
273
acpi_pad_idle_cpus_num(void)274 static uint32_t acpi_pad_idle_cpus_num(void)
275 {
276 return ps_tsk_num;
277 }
278
rrtime_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)279 static ssize_t rrtime_store(struct device *dev,
280 struct device_attribute *attr, const char *buf, size_t count)
281 {
282 unsigned long num;
283
284 if (kstrtoul(buf, 0, &num))
285 return -EINVAL;
286 if (num < 1 || num >= 100)
287 return -EINVAL;
288 mutex_lock(&isolated_cpus_lock);
289 round_robin_time = num;
290 mutex_unlock(&isolated_cpus_lock);
291 return count;
292 }
293
rrtime_show(struct device * dev,struct device_attribute * attr,char * buf)294 static ssize_t rrtime_show(struct device *dev,
295 struct device_attribute *attr, char *buf)
296 {
297 return sysfs_emit(buf, "%d\n", round_robin_time);
298 }
299 static DEVICE_ATTR_RW(rrtime);
300
idlepct_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)301 static ssize_t idlepct_store(struct device *dev,
302 struct device_attribute *attr, const char *buf, size_t count)
303 {
304 unsigned long num;
305
306 if (kstrtoul(buf, 0, &num))
307 return -EINVAL;
308 if (num < 1 || num >= 100)
309 return -EINVAL;
310 mutex_lock(&isolated_cpus_lock);
311 idle_pct = num;
312 mutex_unlock(&isolated_cpus_lock);
313 return count;
314 }
315
idlepct_show(struct device * dev,struct device_attribute * attr,char * buf)316 static ssize_t idlepct_show(struct device *dev,
317 struct device_attribute *attr, char *buf)
318 {
319 return sysfs_emit(buf, "%d\n", idle_pct);
320 }
321 static DEVICE_ATTR_RW(idlepct);
322
idlecpus_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)323 static ssize_t idlecpus_store(struct device *dev,
324 struct device_attribute *attr, const char *buf, size_t count)
325 {
326 unsigned long num;
327
328 if (kstrtoul(buf, 0, &num))
329 return -EINVAL;
330 mutex_lock(&isolated_cpus_lock);
331 acpi_pad_idle_cpus(num);
332 mutex_unlock(&isolated_cpus_lock);
333 return count;
334 }
335
idlecpus_show(struct device * dev,struct device_attribute * attr,char * buf)336 static ssize_t idlecpus_show(struct device *dev,
337 struct device_attribute *attr, char *buf)
338 {
339 return cpumap_print_to_pagebuf(false, buf,
340 to_cpumask(pad_busy_cpus_bits));
341 }
342
343 static DEVICE_ATTR_RW(idlecpus);
344
345 static struct attribute *acpi_pad_attrs[] = {
346 &dev_attr_idlecpus.attr,
347 &dev_attr_idlepct.attr,
348 &dev_attr_rrtime.attr,
349 NULL
350 };
351
352 ATTRIBUTE_GROUPS(acpi_pad);
353
354 /*
355 * Query firmware how many CPUs should be idle
356 * return -1 on failure
357 */
acpi_pad_pur(acpi_handle handle)358 static int acpi_pad_pur(acpi_handle handle)
359 {
360 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
361 union acpi_object *package;
362 int num = -1;
363
364 if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
365 return num;
366
367 if (!buffer.length || !buffer.pointer)
368 return num;
369
370 package = buffer.pointer;
371
372 if (package->type == ACPI_TYPE_PACKAGE &&
373 package->package.count == 2 &&
374 package->package.elements[0].integer.value == 1) /* rev 1 */
375
376 num = package->package.elements[1].integer.value;
377
378 kfree(buffer.pointer);
379 return num;
380 }
381
acpi_pad_handle_notify(acpi_handle handle)382 static void acpi_pad_handle_notify(acpi_handle handle)
383 {
384 int num_cpus;
385 uint32_t idle_cpus;
386 struct acpi_buffer param = {
387 .length = 4,
388 .pointer = (void *)&idle_cpus,
389 };
390 u32 status;
391
392 mutex_lock(&isolated_cpus_lock);
393 num_cpus = acpi_pad_pur(handle);
394 if (num_cpus < 0) {
395 /* The ACPI specification says that if no action was performed when
396 * processing the _PUR object, _OST should still be evaluated, albeit
397 * with a different status code.
398 */
399 status = ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION;
400 } else {
401 status = ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS;
402 acpi_pad_idle_cpus(num_cpus);
403 }
404
405 idle_cpus = acpi_pad_idle_cpus_num();
406 acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, status, ¶m);
407 mutex_unlock(&isolated_cpus_lock);
408 }
409
acpi_pad_notify(acpi_handle handle,u32 event,void * data)410 static void acpi_pad_notify(acpi_handle handle, u32 event,
411 void *data)
412 {
413 struct acpi_device *adev = data;
414
415 switch (event) {
416 case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
417 acpi_pad_handle_notify(handle);
418 acpi_bus_generate_netlink_event(adev->pnp.device_class,
419 dev_name(&adev->dev), event, 0);
420 break;
421 default:
422 pr_warn("Unsupported event [0x%x]\n", event);
423 break;
424 }
425 }
426
acpi_pad_probe(struct platform_device * pdev)427 static int acpi_pad_probe(struct platform_device *pdev)
428 {
429 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
430 acpi_status status;
431
432 strscpy(acpi_device_name(adev), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
433 strscpy(acpi_device_class(adev), ACPI_PROCESSOR_AGGREGATOR_CLASS);
434
435 status = acpi_install_notify_handler(adev->handle,
436 ACPI_DEVICE_NOTIFY, acpi_pad_notify, adev);
437
438 if (ACPI_FAILURE(status))
439 return -ENODEV;
440
441 return 0;
442 }
443
acpi_pad_remove(struct platform_device * pdev)444 static void acpi_pad_remove(struct platform_device *pdev)
445 {
446 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
447
448 mutex_lock(&isolated_cpus_lock);
449 acpi_pad_idle_cpus(0);
450 mutex_unlock(&isolated_cpus_lock);
451
452 acpi_remove_notify_handler(adev->handle,
453 ACPI_DEVICE_NOTIFY, acpi_pad_notify);
454 }
455
456 static const struct acpi_device_id pad_device_ids[] = {
457 {"ACPI000C", 0},
458 {"", 0},
459 };
460 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
461
462 static struct platform_driver acpi_pad_driver = {
463 .probe = acpi_pad_probe,
464 .remove = acpi_pad_remove,
465 .driver = {
466 .dev_groups = acpi_pad_groups,
467 .name = "processor_aggregator",
468 .acpi_match_table = pad_device_ids,
469 },
470 };
471
acpi_pad_init(void)472 static int __init acpi_pad_init(void)
473 {
474 /* Xen ACPI PAD is used when running as Xen Dom0. */
475 if (xen_initial_domain())
476 return -ENODEV;
477
478 power_saving_mwait_init();
479 if (power_saving_mwait_eax == 0)
480 return -EINVAL;
481
482 return platform_driver_register(&acpi_pad_driver);
483 }
484
acpi_pad_exit(void)485 static void __exit acpi_pad_exit(void)
486 {
487 platform_driver_unregister(&acpi_pad_driver);
488 }
489
490 module_init(acpi_pad_init);
491 module_exit(acpi_pad_exit);
492 MODULE_AUTHOR("Shaohua Li<[email protected]>");
493 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
494 MODULE_LICENSE("GPL");
495