1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <[email protected]>
6 */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include "blk.h"
14 #include "blk-cgroup-rwstat.h"
15 #include "blk-stat.h"
16 #include "blk-throttle.h"
17
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28
29 /* A workqueue to queue throttle related work */
30 static struct workqueue_struct *kthrotld_workqueue;
31
32 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
33
34 struct throtl_data
35 {
36 /* service tree for active throtl groups */
37 struct throtl_service_queue service_queue;
38
39 struct request_queue *queue;
40
41 /* Total Number of queued bios on READ and WRITE lists */
42 unsigned int nr_queued[2];
43
44 unsigned int throtl_slice;
45
46 /* Work for dispatching throttled bios */
47 struct work_struct dispatch_work;
48
49 bool track_bio_latency;
50 };
51
52 static void throtl_pending_timer_fn(struct timer_list *t);
53
tg_to_blkg(struct throtl_grp * tg)54 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
55 {
56 return pd_to_blkg(&tg->pd);
57 }
58
59 /**
60 * sq_to_tg - return the throl_grp the specified service queue belongs to
61 * @sq: the throtl_service_queue of interest
62 *
63 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
64 * embedded in throtl_data, %NULL is returned.
65 */
sq_to_tg(struct throtl_service_queue * sq)66 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
67 {
68 if (sq && sq->parent_sq)
69 return container_of(sq, struct throtl_grp, service_queue);
70 else
71 return NULL;
72 }
73
74 /**
75 * sq_to_td - return throtl_data the specified service queue belongs to
76 * @sq: the throtl_service_queue of interest
77 *
78 * A service_queue can be embedded in either a throtl_grp or throtl_data.
79 * Determine the associated throtl_data accordingly and return it.
80 */
sq_to_td(struct throtl_service_queue * sq)81 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
82 {
83 struct throtl_grp *tg = sq_to_tg(sq);
84
85 if (tg)
86 return tg->td;
87 else
88 return container_of(sq, struct throtl_data, service_queue);
89 }
90
tg_bps_limit(struct throtl_grp * tg,int rw)91 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
92 {
93 struct blkcg_gq *blkg = tg_to_blkg(tg);
94
95 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
96 return U64_MAX;
97
98 return tg->bps[rw];
99 }
100
tg_iops_limit(struct throtl_grp * tg,int rw)101 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
102 {
103 struct blkcg_gq *blkg = tg_to_blkg(tg);
104
105 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
106 return UINT_MAX;
107
108 return tg->iops[rw];
109 }
110
111 /**
112 * throtl_log - log debug message via blktrace
113 * @sq: the service_queue being reported
114 * @fmt: printf format string
115 * @args: printf args
116 *
117 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
118 * throtl_grp; otherwise, just "throtl".
119 */
120 #define throtl_log(sq, fmt, args...) do { \
121 struct throtl_grp *__tg = sq_to_tg((sq)); \
122 struct throtl_data *__td = sq_to_td((sq)); \
123 \
124 (void)__td; \
125 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
126 break; \
127 if ((__tg)) { \
128 blk_add_cgroup_trace_msg(__td->queue, \
129 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
130 } else { \
131 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
132 } \
133 } while (0)
134
throtl_bio_data_size(struct bio * bio)135 static inline unsigned int throtl_bio_data_size(struct bio *bio)
136 {
137 /* assume it's one sector */
138 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
139 return 512;
140 return bio->bi_iter.bi_size;
141 }
142
throtl_qnode_init(struct throtl_qnode * qn,struct throtl_grp * tg)143 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
144 {
145 INIT_LIST_HEAD(&qn->node);
146 bio_list_init(&qn->bios);
147 qn->tg = tg;
148 }
149
150 /**
151 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
152 * @bio: bio being added
153 * @qn: qnode to add bio to
154 * @queued: the service_queue->queued[] list @qn belongs to
155 *
156 * Add @bio to @qn and put @qn on @queued if it's not already on.
157 * @qn->tg's reference count is bumped when @qn is activated. See the
158 * comment on top of throtl_qnode definition for details.
159 */
throtl_qnode_add_bio(struct bio * bio,struct throtl_qnode * qn,struct list_head * queued)160 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
161 struct list_head *queued)
162 {
163 bio_list_add(&qn->bios, bio);
164 if (list_empty(&qn->node)) {
165 list_add_tail(&qn->node, queued);
166 blkg_get(tg_to_blkg(qn->tg));
167 }
168 }
169
170 /**
171 * throtl_peek_queued - peek the first bio on a qnode list
172 * @queued: the qnode list to peek
173 */
throtl_peek_queued(struct list_head * queued)174 static struct bio *throtl_peek_queued(struct list_head *queued)
175 {
176 struct throtl_qnode *qn;
177 struct bio *bio;
178
179 if (list_empty(queued))
180 return NULL;
181
182 qn = list_first_entry(queued, struct throtl_qnode, node);
183 bio = bio_list_peek(&qn->bios);
184 WARN_ON_ONCE(!bio);
185 return bio;
186 }
187
188 /**
189 * throtl_pop_queued - pop the first bio form a qnode list
190 * @queued: the qnode list to pop a bio from
191 * @tg_to_put: optional out argument for throtl_grp to put
192 *
193 * Pop the first bio from the qnode list @queued. After popping, the first
194 * qnode is removed from @queued if empty or moved to the end of @queued so
195 * that the popping order is round-robin.
196 *
197 * When the first qnode is removed, its associated throtl_grp should be put
198 * too. If @tg_to_put is NULL, this function automatically puts it;
199 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
200 * responsible for putting it.
201 */
throtl_pop_queued(struct list_head * queued,struct throtl_grp ** tg_to_put)202 static struct bio *throtl_pop_queued(struct list_head *queued,
203 struct throtl_grp **tg_to_put)
204 {
205 struct throtl_qnode *qn;
206 struct bio *bio;
207
208 if (list_empty(queued))
209 return NULL;
210
211 qn = list_first_entry(queued, struct throtl_qnode, node);
212 bio = bio_list_pop(&qn->bios);
213 WARN_ON_ONCE(!bio);
214
215 if (bio_list_empty(&qn->bios)) {
216 list_del_init(&qn->node);
217 if (tg_to_put)
218 *tg_to_put = qn->tg;
219 else
220 blkg_put(tg_to_blkg(qn->tg));
221 } else {
222 list_move_tail(&qn->node, queued);
223 }
224
225 return bio;
226 }
227
228 /* init a service_queue, assumes the caller zeroed it */
throtl_service_queue_init(struct throtl_service_queue * sq)229 static void throtl_service_queue_init(struct throtl_service_queue *sq)
230 {
231 INIT_LIST_HEAD(&sq->queued[READ]);
232 INIT_LIST_HEAD(&sq->queued[WRITE]);
233 sq->pending_tree = RB_ROOT_CACHED;
234 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
235 }
236
throtl_pd_alloc(struct gendisk * disk,struct blkcg * blkcg,gfp_t gfp)237 static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk,
238 struct blkcg *blkcg, gfp_t gfp)
239 {
240 struct throtl_grp *tg;
241 int rw;
242
243 tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id);
244 if (!tg)
245 return NULL;
246
247 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
248 goto err_free_tg;
249
250 if (blkg_rwstat_init(&tg->stat_ios, gfp))
251 goto err_exit_stat_bytes;
252
253 throtl_service_queue_init(&tg->service_queue);
254
255 for (rw = READ; rw <= WRITE; rw++) {
256 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
257 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
258 }
259
260 RB_CLEAR_NODE(&tg->rb_node);
261 tg->bps[READ] = U64_MAX;
262 tg->bps[WRITE] = U64_MAX;
263 tg->iops[READ] = UINT_MAX;
264 tg->iops[WRITE] = UINT_MAX;
265
266 return &tg->pd;
267
268 err_exit_stat_bytes:
269 blkg_rwstat_exit(&tg->stat_bytes);
270 err_free_tg:
271 kfree(tg);
272 return NULL;
273 }
274
throtl_pd_init(struct blkg_policy_data * pd)275 static void throtl_pd_init(struct blkg_policy_data *pd)
276 {
277 struct throtl_grp *tg = pd_to_tg(pd);
278 struct blkcg_gq *blkg = tg_to_blkg(tg);
279 struct throtl_data *td = blkg->q->td;
280 struct throtl_service_queue *sq = &tg->service_queue;
281
282 /*
283 * If on the default hierarchy, we switch to properly hierarchical
284 * behavior where limits on a given throtl_grp are applied to the
285 * whole subtree rather than just the group itself. e.g. If 16M
286 * read_bps limit is set on a parent group, summary bps of
287 * parent group and its subtree groups can't exceed 16M for the
288 * device.
289 *
290 * If not on the default hierarchy, the broken flat hierarchy
291 * behavior is retained where all throtl_grps are treated as if
292 * they're all separate root groups right below throtl_data.
293 * Limits of a group don't interact with limits of other groups
294 * regardless of the position of the group in the hierarchy.
295 */
296 sq->parent_sq = &td->service_queue;
297 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
298 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
299 tg->td = td;
300 }
301
302 /*
303 * Set has_rules[] if @tg or any of its parents have limits configured.
304 * This doesn't require walking up to the top of the hierarchy as the
305 * parent's has_rules[] is guaranteed to be correct.
306 */
tg_update_has_rules(struct throtl_grp * tg)307 static void tg_update_has_rules(struct throtl_grp *tg)
308 {
309 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
310 int rw;
311
312 for (rw = READ; rw <= WRITE; rw++) {
313 tg->has_rules_iops[rw] =
314 (parent_tg && parent_tg->has_rules_iops[rw]) ||
315 tg_iops_limit(tg, rw) != UINT_MAX;
316 tg->has_rules_bps[rw] =
317 (parent_tg && parent_tg->has_rules_bps[rw]) ||
318 tg_bps_limit(tg, rw) != U64_MAX;
319 }
320 }
321
throtl_pd_online(struct blkg_policy_data * pd)322 static void throtl_pd_online(struct blkg_policy_data *pd)
323 {
324 struct throtl_grp *tg = pd_to_tg(pd);
325 /*
326 * We don't want new groups to escape the limits of its ancestors.
327 * Update has_rules[] after a new group is brought online.
328 */
329 tg_update_has_rules(tg);
330 }
331
throtl_pd_free(struct blkg_policy_data * pd)332 static void throtl_pd_free(struct blkg_policy_data *pd)
333 {
334 struct throtl_grp *tg = pd_to_tg(pd);
335
336 del_timer_sync(&tg->service_queue.pending_timer);
337 blkg_rwstat_exit(&tg->stat_bytes);
338 blkg_rwstat_exit(&tg->stat_ios);
339 kfree(tg);
340 }
341
342 static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue * parent_sq)343 throtl_rb_first(struct throtl_service_queue *parent_sq)
344 {
345 struct rb_node *n;
346
347 n = rb_first_cached(&parent_sq->pending_tree);
348 WARN_ON_ONCE(!n);
349 if (!n)
350 return NULL;
351 return rb_entry_tg(n);
352 }
353
throtl_rb_erase(struct rb_node * n,struct throtl_service_queue * parent_sq)354 static void throtl_rb_erase(struct rb_node *n,
355 struct throtl_service_queue *parent_sq)
356 {
357 rb_erase_cached(n, &parent_sq->pending_tree);
358 RB_CLEAR_NODE(n);
359 }
360
update_min_dispatch_time(struct throtl_service_queue * parent_sq)361 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
362 {
363 struct throtl_grp *tg;
364
365 tg = throtl_rb_first(parent_sq);
366 if (!tg)
367 return;
368
369 parent_sq->first_pending_disptime = tg->disptime;
370 }
371
tg_service_queue_add(struct throtl_grp * tg)372 static void tg_service_queue_add(struct throtl_grp *tg)
373 {
374 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
375 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
376 struct rb_node *parent = NULL;
377 struct throtl_grp *__tg;
378 unsigned long key = tg->disptime;
379 bool leftmost = true;
380
381 while (*node != NULL) {
382 parent = *node;
383 __tg = rb_entry_tg(parent);
384
385 if (time_before(key, __tg->disptime))
386 node = &parent->rb_left;
387 else {
388 node = &parent->rb_right;
389 leftmost = false;
390 }
391 }
392
393 rb_link_node(&tg->rb_node, parent, node);
394 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
395 leftmost);
396 }
397
throtl_enqueue_tg(struct throtl_grp * tg)398 static void throtl_enqueue_tg(struct throtl_grp *tg)
399 {
400 if (!(tg->flags & THROTL_TG_PENDING)) {
401 tg_service_queue_add(tg);
402 tg->flags |= THROTL_TG_PENDING;
403 tg->service_queue.parent_sq->nr_pending++;
404 }
405 }
406
throtl_dequeue_tg(struct throtl_grp * tg)407 static void throtl_dequeue_tg(struct throtl_grp *tg)
408 {
409 if (tg->flags & THROTL_TG_PENDING) {
410 struct throtl_service_queue *parent_sq =
411 tg->service_queue.parent_sq;
412
413 throtl_rb_erase(&tg->rb_node, parent_sq);
414 --parent_sq->nr_pending;
415 tg->flags &= ~THROTL_TG_PENDING;
416 }
417 }
418
419 /* Call with queue lock held */
throtl_schedule_pending_timer(struct throtl_service_queue * sq,unsigned long expires)420 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
421 unsigned long expires)
422 {
423 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
424
425 /*
426 * Since we are adjusting the throttle limit dynamically, the sleep
427 * time calculated according to previous limit might be invalid. It's
428 * possible the cgroup sleep time is very long and no other cgroups
429 * have IO running so notify the limit changes. Make sure the cgroup
430 * doesn't sleep too long to avoid the missed notification.
431 */
432 if (time_after(expires, max_expire))
433 expires = max_expire;
434 mod_timer(&sq->pending_timer, expires);
435 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
436 expires - jiffies, jiffies);
437 }
438
439 /**
440 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
441 * @sq: the service_queue to schedule dispatch for
442 * @force: force scheduling
443 *
444 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
445 * dispatch time of the first pending child. Returns %true if either timer
446 * is armed or there's no pending child left. %false if the current
447 * dispatch window is still open and the caller should continue
448 * dispatching.
449 *
450 * If @force is %true, the dispatch timer is always scheduled and this
451 * function is guaranteed to return %true. This is to be used when the
452 * caller can't dispatch itself and needs to invoke pending_timer
453 * unconditionally. Note that forced scheduling is likely to induce short
454 * delay before dispatch starts even if @sq->first_pending_disptime is not
455 * in the future and thus shouldn't be used in hot paths.
456 */
throtl_schedule_next_dispatch(struct throtl_service_queue * sq,bool force)457 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
458 bool force)
459 {
460 /* any pending children left? */
461 if (!sq->nr_pending)
462 return true;
463
464 update_min_dispatch_time(sq);
465
466 /* is the next dispatch time in the future? */
467 if (force || time_after(sq->first_pending_disptime, jiffies)) {
468 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
469 return true;
470 }
471
472 /* tell the caller to continue dispatching */
473 return false;
474 }
475
throtl_start_new_slice_with_credit(struct throtl_grp * tg,bool rw,unsigned long start)476 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
477 bool rw, unsigned long start)
478 {
479 tg->bytes_disp[rw] = 0;
480 tg->io_disp[rw] = 0;
481 tg->carryover_bytes[rw] = 0;
482 tg->carryover_ios[rw] = 0;
483
484 /*
485 * Previous slice has expired. We must have trimmed it after last
486 * bio dispatch. That means since start of last slice, we never used
487 * that bandwidth. Do try to make use of that bandwidth while giving
488 * credit.
489 */
490 if (time_after(start, tg->slice_start[rw]))
491 tg->slice_start[rw] = start;
492
493 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
494 throtl_log(&tg->service_queue,
495 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
496 rw == READ ? 'R' : 'W', tg->slice_start[rw],
497 tg->slice_end[rw], jiffies);
498 }
499
throtl_start_new_slice(struct throtl_grp * tg,bool rw,bool clear_carryover)500 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
501 bool clear_carryover)
502 {
503 tg->bytes_disp[rw] = 0;
504 tg->io_disp[rw] = 0;
505 tg->slice_start[rw] = jiffies;
506 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
507 if (clear_carryover) {
508 tg->carryover_bytes[rw] = 0;
509 tg->carryover_ios[rw] = 0;
510 }
511
512 throtl_log(&tg->service_queue,
513 "[%c] new slice start=%lu end=%lu jiffies=%lu",
514 rw == READ ? 'R' : 'W', tg->slice_start[rw],
515 tg->slice_end[rw], jiffies);
516 }
517
throtl_set_slice_end(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)518 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
519 unsigned long jiffy_end)
520 {
521 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
522 }
523
throtl_extend_slice(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)524 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
525 unsigned long jiffy_end)
526 {
527 throtl_set_slice_end(tg, rw, jiffy_end);
528 throtl_log(&tg->service_queue,
529 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
530 rw == READ ? 'R' : 'W', tg->slice_start[rw],
531 tg->slice_end[rw], jiffies);
532 }
533
534 /* Determine if previously allocated or extended slice is complete or not */
throtl_slice_used(struct throtl_grp * tg,bool rw)535 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
536 {
537 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
538 return false;
539
540 return true;
541 }
542
calculate_io_allowed(u32 iops_limit,unsigned long jiffy_elapsed)543 static unsigned int calculate_io_allowed(u32 iops_limit,
544 unsigned long jiffy_elapsed)
545 {
546 unsigned int io_allowed;
547 u64 tmp;
548
549 /*
550 * jiffy_elapsed should not be a big value as minimum iops can be
551 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
552 * will allow dispatch after 1 second and after that slice should
553 * have been trimmed.
554 */
555
556 tmp = (u64)iops_limit * jiffy_elapsed;
557 do_div(tmp, HZ);
558
559 if (tmp > UINT_MAX)
560 io_allowed = UINT_MAX;
561 else
562 io_allowed = tmp;
563
564 return io_allowed;
565 }
566
calculate_bytes_allowed(u64 bps_limit,unsigned long jiffy_elapsed)567 static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
568 {
569 /*
570 * Can result be wider than 64 bits?
571 * We check against 62, not 64, due to ilog2 truncation.
572 */
573 if (ilog2(bps_limit) + ilog2(jiffy_elapsed) - ilog2(HZ) > 62)
574 return U64_MAX;
575 return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
576 }
577
578 /* Trim the used slices and adjust slice start accordingly */
throtl_trim_slice(struct throtl_grp * tg,bool rw)579 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
580 {
581 unsigned long time_elapsed;
582 long long bytes_trim;
583 int io_trim;
584
585 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
586
587 /*
588 * If bps are unlimited (-1), then time slice don't get
589 * renewed. Don't try to trim the slice if slice is used. A new
590 * slice will start when appropriate.
591 */
592 if (throtl_slice_used(tg, rw))
593 return;
594
595 /*
596 * A bio has been dispatched. Also adjust slice_end. It might happen
597 * that initially cgroup limit was very low resulting in high
598 * slice_end, but later limit was bumped up and bio was dispatched
599 * sooner, then we need to reduce slice_end. A high bogus slice_end
600 * is bad because it does not allow new slice to start.
601 */
602 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
603
604 time_elapsed = rounddown(jiffies - tg->slice_start[rw],
605 tg->td->throtl_slice);
606 /* Don't trim slice until at least 2 slices are used */
607 if (time_elapsed < tg->td->throtl_slice * 2)
608 return;
609
610 /*
611 * The bio submission time may be a few jiffies more than the expected
612 * waiting time, due to 'extra_bytes' can't be divided in
613 * tg_within_bps_limit(), and also due to timer wakeup delay. In this
614 * case, adjust slice_start will discard the extra wait time, causing
615 * lower rate than expected. Therefore, other than the above rounddown,
616 * one extra slice is preserved for deviation.
617 */
618 time_elapsed -= tg->td->throtl_slice;
619 bytes_trim = calculate_bytes_allowed(tg_bps_limit(tg, rw),
620 time_elapsed) +
621 tg->carryover_bytes[rw];
622 io_trim = calculate_io_allowed(tg_iops_limit(tg, rw), time_elapsed) +
623 tg->carryover_ios[rw];
624 if (bytes_trim <= 0 && io_trim <= 0)
625 return;
626
627 tg->carryover_bytes[rw] = 0;
628 if ((long long)tg->bytes_disp[rw] >= bytes_trim)
629 tg->bytes_disp[rw] -= bytes_trim;
630 else
631 tg->bytes_disp[rw] = 0;
632
633 tg->carryover_ios[rw] = 0;
634 if ((int)tg->io_disp[rw] >= io_trim)
635 tg->io_disp[rw] -= io_trim;
636 else
637 tg->io_disp[rw] = 0;
638
639 tg->slice_start[rw] += time_elapsed;
640
641 throtl_log(&tg->service_queue,
642 "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu",
643 rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice,
644 bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw],
645 jiffies);
646 }
647
__tg_update_carryover(struct throtl_grp * tg,bool rw)648 static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
649 {
650 unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
651 u64 bps_limit = tg_bps_limit(tg, rw);
652 u32 iops_limit = tg_iops_limit(tg, rw);
653
654 /*
655 * If config is updated while bios are still throttled, calculate and
656 * accumulate how many bytes/ios are waited across changes. And
657 * carryover_bytes/ios will be used to calculate new wait time under new
658 * configuration.
659 */
660 if (bps_limit != U64_MAX)
661 tg->carryover_bytes[rw] +=
662 calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
663 tg->bytes_disp[rw];
664 if (iops_limit != UINT_MAX)
665 tg->carryover_ios[rw] +=
666 calculate_io_allowed(iops_limit, jiffy_elapsed) -
667 tg->io_disp[rw];
668 }
669
tg_update_carryover(struct throtl_grp * tg)670 static void tg_update_carryover(struct throtl_grp *tg)
671 {
672 if (tg->service_queue.nr_queued[READ])
673 __tg_update_carryover(tg, READ);
674 if (tg->service_queue.nr_queued[WRITE])
675 __tg_update_carryover(tg, WRITE);
676
677 /* see comments in struct throtl_grp for meaning of these fields. */
678 throtl_log(&tg->service_queue, "%s: %lld %lld %d %d\n", __func__,
679 tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
680 tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
681 }
682
tg_within_iops_limit(struct throtl_grp * tg,struct bio * bio,u32 iops_limit)683 static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
684 u32 iops_limit)
685 {
686 bool rw = bio_data_dir(bio);
687 int io_allowed;
688 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
689
690 if (iops_limit == UINT_MAX) {
691 return 0;
692 }
693
694 jiffy_elapsed = jiffies - tg->slice_start[rw];
695
696 /* Round up to the next throttle slice, wait time must be nonzero */
697 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
698 io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
699 tg->carryover_ios[rw];
700 if (io_allowed > 0 && tg->io_disp[rw] + 1 <= io_allowed)
701 return 0;
702
703 /* Calc approx time to dispatch */
704 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
705
706 /* make sure at least one io can be dispatched after waiting */
707 jiffy_wait = max(jiffy_wait, HZ / iops_limit + 1);
708 return jiffy_wait;
709 }
710
tg_within_bps_limit(struct throtl_grp * tg,struct bio * bio,u64 bps_limit)711 static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
712 u64 bps_limit)
713 {
714 bool rw = bio_data_dir(bio);
715 long long bytes_allowed;
716 u64 extra_bytes;
717 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
718 unsigned int bio_size = throtl_bio_data_size(bio);
719
720 /* no need to throttle if this bio's bytes have been accounted */
721 if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
722 return 0;
723 }
724
725 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
726
727 /* Slice has just started. Consider one slice interval */
728 if (!jiffy_elapsed)
729 jiffy_elapsed_rnd = tg->td->throtl_slice;
730
731 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
732 bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
733 tg->carryover_bytes[rw];
734 if (bytes_allowed > 0 && tg->bytes_disp[rw] + bio_size <= bytes_allowed)
735 return 0;
736
737 /* Calc approx time to dispatch */
738 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
739 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
740
741 if (!jiffy_wait)
742 jiffy_wait = 1;
743
744 /*
745 * This wait time is without taking into consideration the rounding
746 * up we did. Add that time also.
747 */
748 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
749 return jiffy_wait;
750 }
751
752 /*
753 * Returns whether one can dispatch a bio or not. Also returns approx number
754 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
755 */
tg_may_dispatch(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)756 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
757 unsigned long *wait)
758 {
759 bool rw = bio_data_dir(bio);
760 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
761 u64 bps_limit = tg_bps_limit(tg, rw);
762 u32 iops_limit = tg_iops_limit(tg, rw);
763
764 /*
765 * Currently whole state machine of group depends on first bio
766 * queued in the group bio list. So one should not be calling
767 * this function with a different bio if there are other bios
768 * queued.
769 */
770 BUG_ON(tg->service_queue.nr_queued[rw] &&
771 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
772
773 /* If tg->bps = -1, then BW is unlimited */
774 if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
775 tg->flags & THROTL_TG_CANCELING) {
776 if (wait)
777 *wait = 0;
778 return true;
779 }
780
781 /*
782 * If previous slice expired, start a new one otherwise renew/extend
783 * existing slice to make sure it is at least throtl_slice interval
784 * long since now. New slice is started only for empty throttle group.
785 * If there is queued bio, that means there should be an active
786 * slice and it should be extended instead.
787 */
788 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
789 throtl_start_new_slice(tg, rw, true);
790 else {
791 if (time_before(tg->slice_end[rw],
792 jiffies + tg->td->throtl_slice))
793 throtl_extend_slice(tg, rw,
794 jiffies + tg->td->throtl_slice);
795 }
796
797 bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
798 iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
799 if (bps_wait + iops_wait == 0) {
800 if (wait)
801 *wait = 0;
802 return true;
803 }
804
805 max_wait = max(bps_wait, iops_wait);
806
807 if (wait)
808 *wait = max_wait;
809
810 if (time_before(tg->slice_end[rw], jiffies + max_wait))
811 throtl_extend_slice(tg, rw, jiffies + max_wait);
812
813 return false;
814 }
815
throtl_charge_bio(struct throtl_grp * tg,struct bio * bio)816 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
817 {
818 bool rw = bio_data_dir(bio);
819 unsigned int bio_size = throtl_bio_data_size(bio);
820
821 /* Charge the bio to the group */
822 if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
823 tg->bytes_disp[rw] += bio_size;
824 tg->last_bytes_disp[rw] += bio_size;
825 }
826
827 tg->io_disp[rw]++;
828 tg->last_io_disp[rw]++;
829 }
830
831 /**
832 * throtl_add_bio_tg - add a bio to the specified throtl_grp
833 * @bio: bio to add
834 * @qn: qnode to use
835 * @tg: the target throtl_grp
836 *
837 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
838 * tg->qnode_on_self[] is used.
839 */
throtl_add_bio_tg(struct bio * bio,struct throtl_qnode * qn,struct throtl_grp * tg)840 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
841 struct throtl_grp *tg)
842 {
843 struct throtl_service_queue *sq = &tg->service_queue;
844 bool rw = bio_data_dir(bio);
845
846 if (!qn)
847 qn = &tg->qnode_on_self[rw];
848
849 /*
850 * If @tg doesn't currently have any bios queued in the same
851 * direction, queueing @bio can change when @tg should be
852 * dispatched. Mark that @tg was empty. This is automatically
853 * cleared on the next tg_update_disptime().
854 */
855 if (!sq->nr_queued[rw])
856 tg->flags |= THROTL_TG_WAS_EMPTY;
857
858 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
859
860 sq->nr_queued[rw]++;
861 throtl_enqueue_tg(tg);
862 }
863
tg_update_disptime(struct throtl_grp * tg)864 static void tg_update_disptime(struct throtl_grp *tg)
865 {
866 struct throtl_service_queue *sq = &tg->service_queue;
867 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
868 struct bio *bio;
869
870 bio = throtl_peek_queued(&sq->queued[READ]);
871 if (bio)
872 tg_may_dispatch(tg, bio, &read_wait);
873
874 bio = throtl_peek_queued(&sq->queued[WRITE]);
875 if (bio)
876 tg_may_dispatch(tg, bio, &write_wait);
877
878 min_wait = min(read_wait, write_wait);
879 disptime = jiffies + min_wait;
880
881 /* Update dispatch time */
882 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
883 tg->disptime = disptime;
884 tg_service_queue_add(tg);
885
886 /* see throtl_add_bio_tg() */
887 tg->flags &= ~THROTL_TG_WAS_EMPTY;
888 }
889
start_parent_slice_with_credit(struct throtl_grp * child_tg,struct throtl_grp * parent_tg,bool rw)890 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
891 struct throtl_grp *parent_tg, bool rw)
892 {
893 if (throtl_slice_used(parent_tg, rw)) {
894 throtl_start_new_slice_with_credit(parent_tg, rw,
895 child_tg->slice_start[rw]);
896 }
897
898 }
899
tg_dispatch_one_bio(struct throtl_grp * tg,bool rw)900 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
901 {
902 struct throtl_service_queue *sq = &tg->service_queue;
903 struct throtl_service_queue *parent_sq = sq->parent_sq;
904 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
905 struct throtl_grp *tg_to_put = NULL;
906 struct bio *bio;
907
908 /*
909 * @bio is being transferred from @tg to @parent_sq. Popping a bio
910 * from @tg may put its reference and @parent_sq might end up
911 * getting released prematurely. Remember the tg to put and put it
912 * after @bio is transferred to @parent_sq.
913 */
914 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
915 sq->nr_queued[rw]--;
916
917 throtl_charge_bio(tg, bio);
918
919 /*
920 * If our parent is another tg, we just need to transfer @bio to
921 * the parent using throtl_add_bio_tg(). If our parent is
922 * @td->service_queue, @bio is ready to be issued. Put it on its
923 * bio_lists[] and decrease total number queued. The caller is
924 * responsible for issuing these bios.
925 */
926 if (parent_tg) {
927 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
928 start_parent_slice_with_credit(tg, parent_tg, rw);
929 } else {
930 bio_set_flag(bio, BIO_BPS_THROTTLED);
931 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
932 &parent_sq->queued[rw]);
933 BUG_ON(tg->td->nr_queued[rw] <= 0);
934 tg->td->nr_queued[rw]--;
935 }
936
937 throtl_trim_slice(tg, rw);
938
939 if (tg_to_put)
940 blkg_put(tg_to_blkg(tg_to_put));
941 }
942
throtl_dispatch_tg(struct throtl_grp * tg)943 static int throtl_dispatch_tg(struct throtl_grp *tg)
944 {
945 struct throtl_service_queue *sq = &tg->service_queue;
946 unsigned int nr_reads = 0, nr_writes = 0;
947 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
948 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
949 struct bio *bio;
950
951 /* Try to dispatch 75% READS and 25% WRITES */
952
953 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
954 tg_may_dispatch(tg, bio, NULL)) {
955
956 tg_dispatch_one_bio(tg, READ);
957 nr_reads++;
958
959 if (nr_reads >= max_nr_reads)
960 break;
961 }
962
963 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
964 tg_may_dispatch(tg, bio, NULL)) {
965
966 tg_dispatch_one_bio(tg, WRITE);
967 nr_writes++;
968
969 if (nr_writes >= max_nr_writes)
970 break;
971 }
972
973 return nr_reads + nr_writes;
974 }
975
throtl_select_dispatch(struct throtl_service_queue * parent_sq)976 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
977 {
978 unsigned int nr_disp = 0;
979
980 while (1) {
981 struct throtl_grp *tg;
982 struct throtl_service_queue *sq;
983
984 if (!parent_sq->nr_pending)
985 break;
986
987 tg = throtl_rb_first(parent_sq);
988 if (!tg)
989 break;
990
991 if (time_before(jiffies, tg->disptime))
992 break;
993
994 nr_disp += throtl_dispatch_tg(tg);
995
996 sq = &tg->service_queue;
997 if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
998 tg_update_disptime(tg);
999 else
1000 throtl_dequeue_tg(tg);
1001
1002 if (nr_disp >= THROTL_QUANTUM)
1003 break;
1004 }
1005
1006 return nr_disp;
1007 }
1008
1009 /**
1010 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1011 * @t: the pending_timer member of the throtl_service_queue being serviced
1012 *
1013 * This timer is armed when a child throtl_grp with active bio's become
1014 * pending and queued on the service_queue's pending_tree and expires when
1015 * the first child throtl_grp should be dispatched. This function
1016 * dispatches bio's from the children throtl_grps to the parent
1017 * service_queue.
1018 *
1019 * If the parent's parent is another throtl_grp, dispatching is propagated
1020 * by either arming its pending_timer or repeating dispatch directly. If
1021 * the top-level service_tree is reached, throtl_data->dispatch_work is
1022 * kicked so that the ready bio's are issued.
1023 */
throtl_pending_timer_fn(struct timer_list * t)1024 static void throtl_pending_timer_fn(struct timer_list *t)
1025 {
1026 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1027 struct throtl_grp *tg = sq_to_tg(sq);
1028 struct throtl_data *td = sq_to_td(sq);
1029 struct throtl_service_queue *parent_sq;
1030 struct request_queue *q;
1031 bool dispatched;
1032 int ret;
1033
1034 /* throtl_data may be gone, so figure out request queue by blkg */
1035 if (tg)
1036 q = tg->pd.blkg->q;
1037 else
1038 q = td->queue;
1039
1040 spin_lock_irq(&q->queue_lock);
1041
1042 if (!q->root_blkg)
1043 goto out_unlock;
1044
1045 again:
1046 parent_sq = sq->parent_sq;
1047 dispatched = false;
1048
1049 while (true) {
1050 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1051 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1052 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1053
1054 ret = throtl_select_dispatch(sq);
1055 if (ret) {
1056 throtl_log(sq, "bios disp=%u", ret);
1057 dispatched = true;
1058 }
1059
1060 if (throtl_schedule_next_dispatch(sq, false))
1061 break;
1062
1063 /* this dispatch windows is still open, relax and repeat */
1064 spin_unlock_irq(&q->queue_lock);
1065 cpu_relax();
1066 spin_lock_irq(&q->queue_lock);
1067 }
1068
1069 if (!dispatched)
1070 goto out_unlock;
1071
1072 if (parent_sq) {
1073 /* @parent_sq is another throl_grp, propagate dispatch */
1074 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1075 tg_update_disptime(tg);
1076 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1077 /* window is already open, repeat dispatching */
1078 sq = parent_sq;
1079 tg = sq_to_tg(sq);
1080 goto again;
1081 }
1082 }
1083 } else {
1084 /* reached the top-level, queue issuing */
1085 queue_work(kthrotld_workqueue, &td->dispatch_work);
1086 }
1087 out_unlock:
1088 spin_unlock_irq(&q->queue_lock);
1089 }
1090
1091 /**
1092 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1093 * @work: work item being executed
1094 *
1095 * This function is queued for execution when bios reach the bio_lists[]
1096 * of throtl_data->service_queue. Those bios are ready and issued by this
1097 * function.
1098 */
blk_throtl_dispatch_work_fn(struct work_struct * work)1099 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1100 {
1101 struct throtl_data *td = container_of(work, struct throtl_data,
1102 dispatch_work);
1103 struct throtl_service_queue *td_sq = &td->service_queue;
1104 struct request_queue *q = td->queue;
1105 struct bio_list bio_list_on_stack;
1106 struct bio *bio;
1107 struct blk_plug plug;
1108 int rw;
1109
1110 bio_list_init(&bio_list_on_stack);
1111
1112 spin_lock_irq(&q->queue_lock);
1113 for (rw = READ; rw <= WRITE; rw++)
1114 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1115 bio_list_add(&bio_list_on_stack, bio);
1116 spin_unlock_irq(&q->queue_lock);
1117
1118 if (!bio_list_empty(&bio_list_on_stack)) {
1119 blk_start_plug(&plug);
1120 while ((bio = bio_list_pop(&bio_list_on_stack)))
1121 submit_bio_noacct_nocheck(bio);
1122 blk_finish_plug(&plug);
1123 }
1124 }
1125
tg_prfill_conf_u64(struct seq_file * sf,struct blkg_policy_data * pd,int off)1126 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1127 int off)
1128 {
1129 struct throtl_grp *tg = pd_to_tg(pd);
1130 u64 v = *(u64 *)((void *)tg + off);
1131
1132 if (v == U64_MAX)
1133 return 0;
1134 return __blkg_prfill_u64(sf, pd, v);
1135 }
1136
tg_prfill_conf_uint(struct seq_file * sf,struct blkg_policy_data * pd,int off)1137 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1138 int off)
1139 {
1140 struct throtl_grp *tg = pd_to_tg(pd);
1141 unsigned int v = *(unsigned int *)((void *)tg + off);
1142
1143 if (v == UINT_MAX)
1144 return 0;
1145 return __blkg_prfill_u64(sf, pd, v);
1146 }
1147
tg_print_conf_u64(struct seq_file * sf,void * v)1148 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1149 {
1150 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1151 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1152 return 0;
1153 }
1154
tg_print_conf_uint(struct seq_file * sf,void * v)1155 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1156 {
1157 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1158 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1159 return 0;
1160 }
1161
tg_conf_updated(struct throtl_grp * tg,bool global)1162 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1163 {
1164 struct throtl_service_queue *sq = &tg->service_queue;
1165 struct cgroup_subsys_state *pos_css;
1166 struct blkcg_gq *blkg;
1167
1168 throtl_log(&tg->service_queue,
1169 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1170 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1171 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1172
1173 rcu_read_lock();
1174 /*
1175 * Update has_rules[] flags for the updated tg's subtree. A tg is
1176 * considered to have rules if either the tg itself or any of its
1177 * ancestors has rules. This identifies groups without any
1178 * restrictions in the whole hierarchy and allows them to bypass
1179 * blk-throttle.
1180 */
1181 blkg_for_each_descendant_pre(blkg, pos_css,
1182 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1183 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1184
1185 tg_update_has_rules(this_tg);
1186 /* ignore root/second level */
1187 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1188 !blkg->parent->parent)
1189 continue;
1190 }
1191 rcu_read_unlock();
1192
1193 /*
1194 * We're already holding queue_lock and know @tg is valid. Let's
1195 * apply the new config directly.
1196 *
1197 * Restart the slices for both READ and WRITES. It might happen
1198 * that a group's limit are dropped suddenly and we don't want to
1199 * account recently dispatched IO with new low rate.
1200 */
1201 throtl_start_new_slice(tg, READ, false);
1202 throtl_start_new_slice(tg, WRITE, false);
1203
1204 if (tg->flags & THROTL_TG_PENDING) {
1205 tg_update_disptime(tg);
1206 throtl_schedule_next_dispatch(sq->parent_sq, true);
1207 }
1208 }
1209
blk_throtl_init(struct gendisk * disk)1210 static int blk_throtl_init(struct gendisk *disk)
1211 {
1212 struct request_queue *q = disk->queue;
1213 struct throtl_data *td;
1214 unsigned int memflags;
1215 int ret;
1216
1217 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1218 if (!td)
1219 return -ENOMEM;
1220
1221 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1222 throtl_service_queue_init(&td->service_queue);
1223
1224 /*
1225 * Freeze queue before activating policy, to synchronize with IO path,
1226 * which is protected by 'q_usage_counter'.
1227 */
1228 memflags = blk_mq_freeze_queue(disk->queue);
1229 blk_mq_quiesce_queue(disk->queue);
1230
1231 q->td = td;
1232 td->queue = q;
1233
1234 /* activate policy */
1235 ret = blkcg_activate_policy(disk, &blkcg_policy_throtl);
1236 if (ret) {
1237 q->td = NULL;
1238 kfree(td);
1239 goto out;
1240 }
1241
1242 if (blk_queue_nonrot(q))
1243 td->throtl_slice = DFL_THROTL_SLICE_SSD;
1244 else
1245 td->throtl_slice = DFL_THROTL_SLICE_HD;
1246 td->track_bio_latency = !queue_is_mq(q);
1247 if (!td->track_bio_latency)
1248 blk_stat_enable_accounting(q);
1249
1250 out:
1251 blk_mq_unquiesce_queue(disk->queue);
1252 blk_mq_unfreeze_queue(disk->queue, memflags);
1253
1254 return ret;
1255 }
1256
1257
tg_set_conf(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool is_u64)1258 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1259 char *buf, size_t nbytes, loff_t off, bool is_u64)
1260 {
1261 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1262 struct blkg_conf_ctx ctx;
1263 struct throtl_grp *tg;
1264 int ret;
1265 u64 v;
1266
1267 blkg_conf_init(&ctx, buf);
1268
1269 ret = blkg_conf_open_bdev(&ctx);
1270 if (ret)
1271 goto out_finish;
1272
1273 if (!blk_throtl_activated(ctx.bdev->bd_queue)) {
1274 ret = blk_throtl_init(ctx.bdev->bd_disk);
1275 if (ret)
1276 goto out_finish;
1277 }
1278
1279 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1280 if (ret)
1281 goto out_finish;
1282
1283 ret = -EINVAL;
1284 if (sscanf(ctx.body, "%llu", &v) != 1)
1285 goto out_finish;
1286 if (!v)
1287 v = U64_MAX;
1288
1289 tg = blkg_to_tg(ctx.blkg);
1290 tg_update_carryover(tg);
1291
1292 if (is_u64)
1293 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1294 else
1295 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1296
1297 tg_conf_updated(tg, false);
1298 ret = 0;
1299 out_finish:
1300 blkg_conf_exit(&ctx);
1301 return ret ?: nbytes;
1302 }
1303
tg_set_conf_u64(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1304 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1305 char *buf, size_t nbytes, loff_t off)
1306 {
1307 return tg_set_conf(of, buf, nbytes, off, true);
1308 }
1309
tg_set_conf_uint(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1310 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1311 char *buf, size_t nbytes, loff_t off)
1312 {
1313 return tg_set_conf(of, buf, nbytes, off, false);
1314 }
1315
tg_print_rwstat(struct seq_file * sf,void * v)1316 static int tg_print_rwstat(struct seq_file *sf, void *v)
1317 {
1318 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1319 blkg_prfill_rwstat, &blkcg_policy_throtl,
1320 seq_cft(sf)->private, true);
1321 return 0;
1322 }
1323
tg_prfill_rwstat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1324 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1325 struct blkg_policy_data *pd, int off)
1326 {
1327 struct blkg_rwstat_sample sum;
1328
1329 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1330 &sum);
1331 return __blkg_prfill_rwstat(sf, pd, &sum);
1332 }
1333
tg_print_rwstat_recursive(struct seq_file * sf,void * v)1334 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1335 {
1336 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1337 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1338 seq_cft(sf)->private, true);
1339 return 0;
1340 }
1341
1342 static struct cftype throtl_legacy_files[] = {
1343 {
1344 .name = "throttle.read_bps_device",
1345 .private = offsetof(struct throtl_grp, bps[READ]),
1346 .seq_show = tg_print_conf_u64,
1347 .write = tg_set_conf_u64,
1348 },
1349 {
1350 .name = "throttle.write_bps_device",
1351 .private = offsetof(struct throtl_grp, bps[WRITE]),
1352 .seq_show = tg_print_conf_u64,
1353 .write = tg_set_conf_u64,
1354 },
1355 {
1356 .name = "throttle.read_iops_device",
1357 .private = offsetof(struct throtl_grp, iops[READ]),
1358 .seq_show = tg_print_conf_uint,
1359 .write = tg_set_conf_uint,
1360 },
1361 {
1362 .name = "throttle.write_iops_device",
1363 .private = offsetof(struct throtl_grp, iops[WRITE]),
1364 .seq_show = tg_print_conf_uint,
1365 .write = tg_set_conf_uint,
1366 },
1367 {
1368 .name = "throttle.io_service_bytes",
1369 .private = offsetof(struct throtl_grp, stat_bytes),
1370 .seq_show = tg_print_rwstat,
1371 },
1372 {
1373 .name = "throttle.io_service_bytes_recursive",
1374 .private = offsetof(struct throtl_grp, stat_bytes),
1375 .seq_show = tg_print_rwstat_recursive,
1376 },
1377 {
1378 .name = "throttle.io_serviced",
1379 .private = offsetof(struct throtl_grp, stat_ios),
1380 .seq_show = tg_print_rwstat,
1381 },
1382 {
1383 .name = "throttle.io_serviced_recursive",
1384 .private = offsetof(struct throtl_grp, stat_ios),
1385 .seq_show = tg_print_rwstat_recursive,
1386 },
1387 { } /* terminate */
1388 };
1389
tg_prfill_limit(struct seq_file * sf,struct blkg_policy_data * pd,int off)1390 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1391 int off)
1392 {
1393 struct throtl_grp *tg = pd_to_tg(pd);
1394 const char *dname = blkg_dev_name(pd->blkg);
1395 u64 bps_dft;
1396 unsigned int iops_dft;
1397
1398 if (!dname)
1399 return 0;
1400
1401 bps_dft = U64_MAX;
1402 iops_dft = UINT_MAX;
1403
1404 if (tg->bps[READ] == bps_dft &&
1405 tg->bps[WRITE] == bps_dft &&
1406 tg->iops[READ] == iops_dft &&
1407 tg->iops[WRITE] == iops_dft)
1408 return 0;
1409
1410 seq_printf(sf, "%s", dname);
1411 if (tg->bps[READ] == U64_MAX)
1412 seq_printf(sf, " rbps=max");
1413 else
1414 seq_printf(sf, " rbps=%llu", tg->bps[READ]);
1415
1416 if (tg->bps[WRITE] == U64_MAX)
1417 seq_printf(sf, " wbps=max");
1418 else
1419 seq_printf(sf, " wbps=%llu", tg->bps[WRITE]);
1420
1421 if (tg->iops[READ] == UINT_MAX)
1422 seq_printf(sf, " riops=max");
1423 else
1424 seq_printf(sf, " riops=%u", tg->iops[READ]);
1425
1426 if (tg->iops[WRITE] == UINT_MAX)
1427 seq_printf(sf, " wiops=max");
1428 else
1429 seq_printf(sf, " wiops=%u", tg->iops[WRITE]);
1430
1431 seq_printf(sf, "\n");
1432 return 0;
1433 }
1434
tg_print_limit(struct seq_file * sf,void * v)1435 static int tg_print_limit(struct seq_file *sf, void *v)
1436 {
1437 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1438 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1439 return 0;
1440 }
1441
tg_set_limit(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1442 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1443 char *buf, size_t nbytes, loff_t off)
1444 {
1445 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1446 struct blkg_conf_ctx ctx;
1447 struct throtl_grp *tg;
1448 u64 v[4];
1449 int ret;
1450
1451 blkg_conf_init(&ctx, buf);
1452
1453 ret = blkg_conf_open_bdev(&ctx);
1454 if (ret)
1455 goto out_finish;
1456
1457 if (!blk_throtl_activated(ctx.bdev->bd_queue)) {
1458 ret = blk_throtl_init(ctx.bdev->bd_disk);
1459 if (ret)
1460 goto out_finish;
1461 }
1462
1463 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1464 if (ret)
1465 goto out_finish;
1466
1467 tg = blkg_to_tg(ctx.blkg);
1468 tg_update_carryover(tg);
1469
1470 v[0] = tg->bps[READ];
1471 v[1] = tg->bps[WRITE];
1472 v[2] = tg->iops[READ];
1473 v[3] = tg->iops[WRITE];
1474
1475 while (true) {
1476 char tok[27]; /* wiops=18446744073709551616 */
1477 char *p;
1478 u64 val = U64_MAX;
1479 int len;
1480
1481 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1482 break;
1483 if (tok[0] == '\0')
1484 break;
1485 ctx.body += len;
1486
1487 ret = -EINVAL;
1488 p = tok;
1489 strsep(&p, "=");
1490 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1491 goto out_finish;
1492
1493 ret = -ERANGE;
1494 if (!val)
1495 goto out_finish;
1496
1497 ret = -EINVAL;
1498 if (!strcmp(tok, "rbps"))
1499 v[0] = val;
1500 else if (!strcmp(tok, "wbps"))
1501 v[1] = val;
1502 else if (!strcmp(tok, "riops"))
1503 v[2] = min_t(u64, val, UINT_MAX);
1504 else if (!strcmp(tok, "wiops"))
1505 v[3] = min_t(u64, val, UINT_MAX);
1506 else
1507 goto out_finish;
1508 }
1509
1510 tg->bps[READ] = v[0];
1511 tg->bps[WRITE] = v[1];
1512 tg->iops[READ] = v[2];
1513 tg->iops[WRITE] = v[3];
1514
1515 tg_conf_updated(tg, false);
1516 ret = 0;
1517 out_finish:
1518 blkg_conf_exit(&ctx);
1519 return ret ?: nbytes;
1520 }
1521
1522 static struct cftype throtl_files[] = {
1523 {
1524 .name = "max",
1525 .flags = CFTYPE_NOT_ON_ROOT,
1526 .seq_show = tg_print_limit,
1527 .write = tg_set_limit,
1528 },
1529 { } /* terminate */
1530 };
1531
throtl_shutdown_wq(struct request_queue * q)1532 static void throtl_shutdown_wq(struct request_queue *q)
1533 {
1534 struct throtl_data *td = q->td;
1535
1536 cancel_work_sync(&td->dispatch_work);
1537 }
1538
tg_flush_bios(struct throtl_grp * tg)1539 static void tg_flush_bios(struct throtl_grp *tg)
1540 {
1541 struct throtl_service_queue *sq = &tg->service_queue;
1542
1543 if (tg->flags & THROTL_TG_CANCELING)
1544 return;
1545 /*
1546 * Set the flag to make sure throtl_pending_timer_fn() won't
1547 * stop until all throttled bios are dispatched.
1548 */
1549 tg->flags |= THROTL_TG_CANCELING;
1550
1551 /*
1552 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1553 * will be inserted to service queue without THROTL_TG_PENDING
1554 * set in tg_update_disptime below. Then IO dispatched from
1555 * child in tg_dispatch_one_bio will trigger double insertion
1556 * and corrupt the tree.
1557 */
1558 if (!(tg->flags & THROTL_TG_PENDING))
1559 return;
1560
1561 /*
1562 * Update disptime after setting the above flag to make sure
1563 * throtl_select_dispatch() won't exit without dispatching.
1564 */
1565 tg_update_disptime(tg);
1566
1567 throtl_schedule_pending_timer(sq, jiffies + 1);
1568 }
1569
throtl_pd_offline(struct blkg_policy_data * pd)1570 static void throtl_pd_offline(struct blkg_policy_data *pd)
1571 {
1572 tg_flush_bios(pd_to_tg(pd));
1573 }
1574
1575 struct blkcg_policy blkcg_policy_throtl = {
1576 .dfl_cftypes = throtl_files,
1577 .legacy_cftypes = throtl_legacy_files,
1578
1579 .pd_alloc_fn = throtl_pd_alloc,
1580 .pd_init_fn = throtl_pd_init,
1581 .pd_online_fn = throtl_pd_online,
1582 .pd_offline_fn = throtl_pd_offline,
1583 .pd_free_fn = throtl_pd_free,
1584 };
1585
blk_throtl_cancel_bios(struct gendisk * disk)1586 void blk_throtl_cancel_bios(struct gendisk *disk)
1587 {
1588 struct request_queue *q = disk->queue;
1589 struct cgroup_subsys_state *pos_css;
1590 struct blkcg_gq *blkg;
1591
1592 if (!blk_throtl_activated(q))
1593 return;
1594
1595 spin_lock_irq(&q->queue_lock);
1596 /*
1597 * queue_lock is held, rcu lock is not needed here technically.
1598 * However, rcu lock is still held to emphasize that following
1599 * path need RCU protection and to prevent warning from lockdep.
1600 */
1601 rcu_read_lock();
1602 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1603 /*
1604 * disk_release will call pd_offline_fn to cancel bios.
1605 * However, disk_release can't be called if someone get
1606 * the refcount of device and issued bios which are
1607 * inflight after del_gendisk.
1608 * Cancel bios here to ensure no bios are inflight after
1609 * del_gendisk.
1610 */
1611 tg_flush_bios(blkg_to_tg(blkg));
1612 }
1613 rcu_read_unlock();
1614 spin_unlock_irq(&q->queue_lock);
1615 }
1616
tg_within_limit(struct throtl_grp * tg,struct bio * bio,bool rw)1617 static bool tg_within_limit(struct throtl_grp *tg, struct bio *bio, bool rw)
1618 {
1619 /* throtl is FIFO - if bios are already queued, should queue */
1620 if (tg->service_queue.nr_queued[rw])
1621 return false;
1622
1623 return tg_may_dispatch(tg, bio, NULL);
1624 }
1625
tg_dispatch_in_debt(struct throtl_grp * tg,struct bio * bio,bool rw)1626 static void tg_dispatch_in_debt(struct throtl_grp *tg, struct bio *bio, bool rw)
1627 {
1628 if (!bio_flagged(bio, BIO_BPS_THROTTLED))
1629 tg->carryover_bytes[rw] -= throtl_bio_data_size(bio);
1630 tg->carryover_ios[rw]--;
1631 }
1632
__blk_throtl_bio(struct bio * bio)1633 bool __blk_throtl_bio(struct bio *bio)
1634 {
1635 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1636 struct blkcg_gq *blkg = bio->bi_blkg;
1637 struct throtl_qnode *qn = NULL;
1638 struct throtl_grp *tg = blkg_to_tg(blkg);
1639 struct throtl_service_queue *sq;
1640 bool rw = bio_data_dir(bio);
1641 bool throttled = false;
1642 struct throtl_data *td = tg->td;
1643
1644 rcu_read_lock();
1645 spin_lock_irq(&q->queue_lock);
1646 sq = &tg->service_queue;
1647
1648 while (true) {
1649 if (tg_within_limit(tg, bio, rw)) {
1650 /* within limits, let's charge and dispatch directly */
1651 throtl_charge_bio(tg, bio);
1652
1653 /*
1654 * We need to trim slice even when bios are not being
1655 * queued otherwise it might happen that a bio is not
1656 * queued for a long time and slice keeps on extending
1657 * and trim is not called for a long time. Now if limits
1658 * are reduced suddenly we take into account all the IO
1659 * dispatched so far at new low rate and * newly queued
1660 * IO gets a really long dispatch time.
1661 *
1662 * So keep on trimming slice even if bio is not queued.
1663 */
1664 throtl_trim_slice(tg, rw);
1665 } else if (bio_issue_as_root_blkg(bio)) {
1666 /*
1667 * IOs which may cause priority inversions are
1668 * dispatched directly, even if they're over limit.
1669 * Debts are handled by carryover_bytes/ios while
1670 * calculating wait time.
1671 */
1672 tg_dispatch_in_debt(tg, bio, rw);
1673 } else {
1674 /* if above limits, break to queue */
1675 break;
1676 }
1677
1678 /*
1679 * @bio passed through this layer without being throttled.
1680 * Climb up the ladder. If we're already at the top, it
1681 * can be executed directly.
1682 */
1683 qn = &tg->qnode_on_parent[rw];
1684 sq = sq->parent_sq;
1685 tg = sq_to_tg(sq);
1686 if (!tg) {
1687 bio_set_flag(bio, BIO_BPS_THROTTLED);
1688 goto out_unlock;
1689 }
1690 }
1691
1692 /* out-of-limit, queue to @tg */
1693 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1694 rw == READ ? 'R' : 'W',
1695 tg->bytes_disp[rw], bio->bi_iter.bi_size,
1696 tg_bps_limit(tg, rw),
1697 tg->io_disp[rw], tg_iops_limit(tg, rw),
1698 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1699
1700 td->nr_queued[rw]++;
1701 throtl_add_bio_tg(bio, qn, tg);
1702 throttled = true;
1703
1704 /*
1705 * Update @tg's dispatch time and force schedule dispatch if @tg
1706 * was empty before @bio. The forced scheduling isn't likely to
1707 * cause undue delay as @bio is likely to be dispatched directly if
1708 * its @tg's disptime is not in the future.
1709 */
1710 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1711 tg_update_disptime(tg);
1712 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1713 }
1714
1715 out_unlock:
1716 spin_unlock_irq(&q->queue_lock);
1717
1718 rcu_read_unlock();
1719 return throttled;
1720 }
1721
blk_throtl_exit(struct gendisk * disk)1722 void blk_throtl_exit(struct gendisk *disk)
1723 {
1724 struct request_queue *q = disk->queue;
1725
1726 if (!blk_throtl_activated(q))
1727 return;
1728
1729 del_timer_sync(&q->td->service_queue.pending_timer);
1730 throtl_shutdown_wq(q);
1731 blkcg_deactivate_policy(disk, &blkcg_policy_throtl);
1732 kfree(q->td);
1733 }
1734
throtl_init(void)1735 static int __init throtl_init(void)
1736 {
1737 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1738 if (!kthrotld_workqueue)
1739 panic("Failed to create kthrotld\n");
1740
1741 return blkcg_policy_register(&blkcg_policy_throtl);
1742 }
1743
1744 module_init(throtl_init);
1745