1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef INT_BLK_MQ_H
3 #define INT_BLK_MQ_H
4
5 #include <linux/blk-mq.h>
6 #include "blk-stat.h"
7
8 struct blk_mq_tag_set;
9
10 struct blk_mq_ctxs {
11 struct kobject kobj;
12 struct blk_mq_ctx __percpu *queue_ctx;
13 };
14
15 /**
16 * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
17 */
18 struct blk_mq_ctx {
19 struct {
20 spinlock_t lock;
21 struct list_head rq_lists[HCTX_MAX_TYPES];
22 } ____cacheline_aligned_in_smp;
23
24 unsigned int cpu;
25 unsigned short index_hw[HCTX_MAX_TYPES];
26 struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES];
27
28 struct request_queue *queue;
29 struct blk_mq_ctxs *ctxs;
30 struct kobject kobj;
31 } ____cacheline_aligned_in_smp;
32
33 enum {
34 BLK_MQ_NO_TAG = -1U,
35 BLK_MQ_TAG_MIN = 1,
36 BLK_MQ_TAG_MAX = BLK_MQ_NO_TAG - 1,
37 };
38
39 #define BLK_MQ_CPU_WORK_BATCH (8)
40
41 typedef unsigned int __bitwise blk_insert_t;
42 #define BLK_MQ_INSERT_AT_HEAD ((__force blk_insert_t)0x01)
43
44 void blk_mq_submit_bio(struct bio *bio);
45 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
46 unsigned int flags);
47 void blk_mq_exit_queue(struct request_queue *q);
48 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
49 void blk_mq_wake_waiters(struct request_queue *q);
50 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
51 unsigned int);
52 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
53 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
54 struct blk_mq_ctx *start);
55 void blk_mq_put_rq_ref(struct request *rq);
56
57 /*
58 * Internal helpers for allocating/freeing the request map
59 */
60 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
61 unsigned int hctx_idx);
62 void blk_mq_free_rq_map(struct blk_mq_tags *tags);
63 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
64 unsigned int hctx_idx, unsigned int depth);
65 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
66 struct blk_mq_tags *tags,
67 unsigned int hctx_idx);
68
69 /*
70 * CPU -> queue mappings
71 */
72 extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
73
74 /*
75 * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
76 * @q: request queue
77 * @type: the hctx type index
78 * @cpu: CPU
79 */
blk_mq_map_queue_type(struct request_queue * q,enum hctx_type type,unsigned int cpu)80 static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
81 enum hctx_type type,
82 unsigned int cpu)
83 {
84 return xa_load(&q->hctx_table, q->tag_set->map[type].mq_map[cpu]);
85 }
86
blk_mq_get_hctx_type(blk_opf_t opf)87 static inline enum hctx_type blk_mq_get_hctx_type(blk_opf_t opf)
88 {
89 enum hctx_type type = HCTX_TYPE_DEFAULT;
90
91 /*
92 * The caller ensure that if REQ_POLLED, poll must be enabled.
93 */
94 if (opf & REQ_POLLED)
95 type = HCTX_TYPE_POLL;
96 else if ((opf & REQ_OP_MASK) == REQ_OP_READ)
97 type = HCTX_TYPE_READ;
98 return type;
99 }
100
101 /*
102 * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
103 * @q: request queue
104 * @opf: operation type (REQ_OP_*) and flags (e.g. REQ_POLLED).
105 * @ctx: software queue cpu ctx
106 */
blk_mq_map_queue(struct request_queue * q,blk_opf_t opf,struct blk_mq_ctx * ctx)107 static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
108 blk_opf_t opf,
109 struct blk_mq_ctx *ctx)
110 {
111 return ctx->hctxs[blk_mq_get_hctx_type(opf)];
112 }
113
114 /*
115 * sysfs helpers
116 */
117 extern void blk_mq_sysfs_init(struct request_queue *q);
118 extern void blk_mq_sysfs_deinit(struct request_queue *q);
119 int blk_mq_sysfs_register(struct gendisk *disk);
120 void blk_mq_sysfs_unregister(struct gendisk *disk);
121 int blk_mq_sysfs_register_hctxs(struct request_queue *q);
122 void blk_mq_sysfs_unregister_hctxs(struct request_queue *q);
123 extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
124 void blk_mq_free_plug_rqs(struct blk_plug *plug);
125 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
126
127 void blk_mq_cancel_work_sync(struct request_queue *q);
128
129 void blk_mq_release(struct request_queue *q);
130
__blk_mq_get_ctx(struct request_queue * q,unsigned int cpu)131 static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
132 unsigned int cpu)
133 {
134 return per_cpu_ptr(q->queue_ctx, cpu);
135 }
136
137 /*
138 * This assumes per-cpu software queueing queues. They could be per-node
139 * as well, for instance. For now this is hardcoded as-is. Note that we don't
140 * care about preemption, since we know the ctx's are persistent. This does
141 * mean that we can't rely on ctx always matching the currently running CPU.
142 */
blk_mq_get_ctx(struct request_queue * q)143 static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
144 {
145 return __blk_mq_get_ctx(q, raw_smp_processor_id());
146 }
147
148 struct blk_mq_alloc_data {
149 /* input parameter */
150 struct request_queue *q;
151 blk_mq_req_flags_t flags;
152 unsigned int shallow_depth;
153 blk_opf_t cmd_flags;
154 req_flags_t rq_flags;
155
156 /* allocate multiple requests/tags in one go */
157 unsigned int nr_tags;
158 struct rq_list *cached_rqs;
159
160 /* input & output parameter */
161 struct blk_mq_ctx *ctx;
162 struct blk_mq_hw_ctx *hctx;
163 };
164
165 struct blk_mq_tags *blk_mq_init_tags(unsigned int nr_tags,
166 unsigned int reserved_tags, unsigned int flags, int node);
167 void blk_mq_free_tags(struct blk_mq_tags *tags);
168
169 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data);
170 unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags,
171 unsigned int *offset);
172 void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx,
173 unsigned int tag);
174 void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags);
175 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
176 struct blk_mq_tags **tags, unsigned int depth, bool can_grow);
177 void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set,
178 unsigned int size);
179 void blk_mq_tag_update_sched_shared_tags(struct request_queue *q);
180
181 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool);
182 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn,
183 void *priv);
184 void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
185 void *priv);
186
bt_wait_ptr(struct sbitmap_queue * bt,struct blk_mq_hw_ctx * hctx)187 static inline struct sbq_wait_state *bt_wait_ptr(struct sbitmap_queue *bt,
188 struct blk_mq_hw_ctx *hctx)
189 {
190 if (!hctx)
191 return &bt->ws[0];
192 return sbq_wait_ptr(bt, &hctx->wait_index);
193 }
194
195 void __blk_mq_tag_busy(struct blk_mq_hw_ctx *);
196 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *);
197
blk_mq_tag_busy(struct blk_mq_hw_ctx * hctx)198 static inline void blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
199 {
200 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
201 __blk_mq_tag_busy(hctx);
202 }
203
blk_mq_tag_idle(struct blk_mq_hw_ctx * hctx)204 static inline void blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
205 {
206 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
207 __blk_mq_tag_idle(hctx);
208 }
209
blk_mq_tag_is_reserved(struct blk_mq_tags * tags,unsigned int tag)210 static inline bool blk_mq_tag_is_reserved(struct blk_mq_tags *tags,
211 unsigned int tag)
212 {
213 return tag < tags->nr_reserved_tags;
214 }
215
blk_mq_is_shared_tags(unsigned int flags)216 static inline bool blk_mq_is_shared_tags(unsigned int flags)
217 {
218 return flags & BLK_MQ_F_TAG_HCTX_SHARED;
219 }
220
blk_mq_tags_from_data(struct blk_mq_alloc_data * data)221 static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
222 {
223 if (data->rq_flags & RQF_SCHED_TAGS)
224 return data->hctx->sched_tags;
225 return data->hctx->tags;
226 }
227
blk_mq_hctx_stopped(struct blk_mq_hw_ctx * hctx)228 static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
229 {
230 /* Fast path: hardware queue is not stopped most of the time. */
231 if (likely(!test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
232 return false;
233
234 /*
235 * This barrier is used to order adding of dispatch list before and
236 * the test of BLK_MQ_S_STOPPED below. Pairs with the memory barrier
237 * in blk_mq_start_stopped_hw_queue() so that dispatch code could
238 * either see BLK_MQ_S_STOPPED is cleared or dispatch list is not
239 * empty to avoid missing dispatching requests.
240 */
241 smp_mb();
242
243 return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
244 }
245
blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx * hctx)246 static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
247 {
248 return hctx->nr_ctx && hctx->tags;
249 }
250
251 unsigned int blk_mq_in_flight(struct request_queue *q,
252 struct block_device *part);
253 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
254 unsigned int inflight[2]);
255
blk_mq_put_dispatch_budget(struct request_queue * q,int budget_token)256 static inline void blk_mq_put_dispatch_budget(struct request_queue *q,
257 int budget_token)
258 {
259 if (q->mq_ops->put_budget)
260 q->mq_ops->put_budget(q, budget_token);
261 }
262
blk_mq_get_dispatch_budget(struct request_queue * q)263 static inline int blk_mq_get_dispatch_budget(struct request_queue *q)
264 {
265 if (q->mq_ops->get_budget)
266 return q->mq_ops->get_budget(q);
267 return 0;
268 }
269
blk_mq_set_rq_budget_token(struct request * rq,int token)270 static inline void blk_mq_set_rq_budget_token(struct request *rq, int token)
271 {
272 if (token < 0)
273 return;
274
275 if (rq->q->mq_ops->set_rq_budget_token)
276 rq->q->mq_ops->set_rq_budget_token(rq, token);
277 }
278
blk_mq_get_rq_budget_token(struct request * rq)279 static inline int blk_mq_get_rq_budget_token(struct request *rq)
280 {
281 if (rq->q->mq_ops->get_rq_budget_token)
282 return rq->q->mq_ops->get_rq_budget_token(rq);
283 return -1;
284 }
285
__blk_mq_add_active_requests(struct blk_mq_hw_ctx * hctx,int val)286 static inline void __blk_mq_add_active_requests(struct blk_mq_hw_ctx *hctx,
287 int val)
288 {
289 if (blk_mq_is_shared_tags(hctx->flags))
290 atomic_add(val, &hctx->queue->nr_active_requests_shared_tags);
291 else
292 atomic_add(val, &hctx->nr_active);
293 }
294
__blk_mq_inc_active_requests(struct blk_mq_hw_ctx * hctx)295 static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
296 {
297 __blk_mq_add_active_requests(hctx, 1);
298 }
299
__blk_mq_sub_active_requests(struct blk_mq_hw_ctx * hctx,int val)300 static inline void __blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx,
301 int val)
302 {
303 if (blk_mq_is_shared_tags(hctx->flags))
304 atomic_sub(val, &hctx->queue->nr_active_requests_shared_tags);
305 else
306 atomic_sub(val, &hctx->nr_active);
307 }
308
__blk_mq_dec_active_requests(struct blk_mq_hw_ctx * hctx)309 static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
310 {
311 __blk_mq_sub_active_requests(hctx, 1);
312 }
313
blk_mq_add_active_requests(struct blk_mq_hw_ctx * hctx,int val)314 static inline void blk_mq_add_active_requests(struct blk_mq_hw_ctx *hctx,
315 int val)
316 {
317 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
318 __blk_mq_add_active_requests(hctx, val);
319 }
320
blk_mq_inc_active_requests(struct blk_mq_hw_ctx * hctx)321 static inline void blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
322 {
323 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
324 __blk_mq_inc_active_requests(hctx);
325 }
326
blk_mq_sub_active_requests(struct blk_mq_hw_ctx * hctx,int val)327 static inline void blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx,
328 int val)
329 {
330 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
331 __blk_mq_sub_active_requests(hctx, val);
332 }
333
blk_mq_dec_active_requests(struct blk_mq_hw_ctx * hctx)334 static inline void blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
335 {
336 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
337 __blk_mq_dec_active_requests(hctx);
338 }
339
__blk_mq_active_requests(struct blk_mq_hw_ctx * hctx)340 static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx)
341 {
342 if (blk_mq_is_shared_tags(hctx->flags))
343 return atomic_read(&hctx->queue->nr_active_requests_shared_tags);
344 return atomic_read(&hctx->nr_active);
345 }
__blk_mq_put_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)346 static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
347 struct request *rq)
348 {
349 blk_mq_dec_active_requests(hctx);
350 blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
351 rq->tag = BLK_MQ_NO_TAG;
352 }
353
blk_mq_put_driver_tag(struct request * rq)354 static inline void blk_mq_put_driver_tag(struct request *rq)
355 {
356 if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
357 return;
358
359 __blk_mq_put_driver_tag(rq->mq_hctx, rq);
360 }
361
362 bool __blk_mq_alloc_driver_tag(struct request *rq);
363
blk_mq_get_driver_tag(struct request * rq)364 static inline bool blk_mq_get_driver_tag(struct request *rq)
365 {
366 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
367 return false;
368
369 return true;
370 }
371
blk_mq_clear_mq_map(struct blk_mq_queue_map * qmap)372 static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
373 {
374 int cpu;
375
376 for_each_possible_cpu(cpu)
377 qmap->mq_map[cpu] = 0;
378 }
379
380 /* Free all requests on the list */
blk_mq_free_requests(struct list_head * list)381 static inline void blk_mq_free_requests(struct list_head *list)
382 {
383 while (!list_empty(list)) {
384 struct request *rq = list_entry_rq(list->next);
385
386 list_del_init(&rq->queuelist);
387 blk_mq_free_request(rq);
388 }
389 }
390
391 /*
392 * For shared tag users, we track the number of currently active users
393 * and attempt to provide a fair share of the tag depth for each of them.
394 */
hctx_may_queue(struct blk_mq_hw_ctx * hctx,struct sbitmap_queue * bt)395 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
396 struct sbitmap_queue *bt)
397 {
398 unsigned int depth, users;
399
400 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED))
401 return true;
402
403 /*
404 * Don't try dividing an ant
405 */
406 if (bt->sb.depth == 1)
407 return true;
408
409 if (blk_mq_is_shared_tags(hctx->flags)) {
410 struct request_queue *q = hctx->queue;
411
412 if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
413 return true;
414 } else {
415 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
416 return true;
417 }
418
419 users = READ_ONCE(hctx->tags->active_queues);
420 if (!users)
421 return true;
422
423 /*
424 * Allow at least some tags
425 */
426 depth = max((bt->sb.depth + users - 1) / users, 4U);
427 return __blk_mq_active_requests(hctx) < depth;
428 }
429
430 /* run the code block in @dispatch_ops with rcu/srcu read lock held */
431 #define __blk_mq_run_dispatch_ops(q, check_sleep, dispatch_ops) \
432 do { \
433 if ((q)->tag_set->flags & BLK_MQ_F_BLOCKING) { \
434 struct blk_mq_tag_set *__tag_set = (q)->tag_set; \
435 int srcu_idx; \
436 \
437 might_sleep_if(check_sleep); \
438 srcu_idx = srcu_read_lock(__tag_set->srcu); \
439 (dispatch_ops); \
440 srcu_read_unlock(__tag_set->srcu, srcu_idx); \
441 } else { \
442 rcu_read_lock(); \
443 (dispatch_ops); \
444 rcu_read_unlock(); \
445 } \
446 } while (0)
447
448 #define blk_mq_run_dispatch_ops(q, dispatch_ops) \
449 __blk_mq_run_dispatch_ops(q, true, dispatch_ops) \
450
blk_mq_can_poll(struct request_queue * q)451 static inline bool blk_mq_can_poll(struct request_queue *q)
452 {
453 return (q->limits.features & BLK_FEAT_POLL) &&
454 q->tag_set->map[HCTX_TYPE_POLL].nr_queues;
455 }
456
457 #endif
458