1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Xen hypercall batching.
4  *
5  * Xen allows multiple hypercalls to be issued at once, using the
6  * multicall interface.  This allows the cost of trapping into the
7  * hypervisor to be amortized over several calls.
8  *
9  * This file implements a simple interface for multicalls.  There's a
10  * per-cpu buffer of outstanding multicalls.  When you want to queue a
11  * multicall for issuing, you can allocate a multicall slot for the
12  * call and its arguments, along with storage for space which is
13  * pointed to by the arguments (for passing pointers to structures,
14  * etc).  When the multicall is actually issued, all the space for the
15  * commands and allocated memory is freed for reuse.
16  *
17  * Multicalls are flushed whenever any of the buffers get full, or
18  * when explicitly requested.  There's no way to get per-multicall
19  * return results back.  It will BUG if any of the multicalls fail.
20  *
21  * Jeremy Fitzhardinge <[email protected]>, XenSource Inc, 2007
22  */
23 #include <linux/percpu.h>
24 #include <linux/hardirq.h>
25 #include <linux/debugfs.h>
26 #include <linux/jump_label.h>
27 #include <linux/printk.h>
28 
29 #include <asm/xen/hypercall.h>
30 
31 #include "xen-ops.h"
32 
33 #define MC_BATCH	32
34 
35 #define MC_ARGS		(MC_BATCH * 16)
36 
37 
38 struct mc_buffer {
39 	unsigned mcidx, argidx, cbidx;
40 	struct multicall_entry entries[MC_BATCH];
41 	unsigned char args[MC_ARGS];
42 	struct callback {
43 		void (*fn)(void *);
44 		void *data;
45 	} callbacks[MC_BATCH];
46 };
47 
48 struct mc_debug_data {
49 	struct multicall_entry entries[MC_BATCH];
50 	void *caller[MC_BATCH];
51 	size_t argsz[MC_BATCH];
52 	unsigned long *args[MC_BATCH];
53 };
54 
55 static DEFINE_PER_CPU(struct mc_buffer, mc_buffer);
56 static struct mc_debug_data mc_debug_data_early __initdata;
57 static struct mc_debug_data __percpu *mc_debug_data_ptr;
58 DEFINE_PER_CPU(unsigned long, xen_mc_irq_flags);
59 
60 static struct static_key mc_debug __ro_after_init;
61 static bool mc_debug_enabled __initdata;
62 
get_mc_debug(void)63 static struct mc_debug_data * __ref get_mc_debug(void)
64 {
65 	if (!mc_debug_data_ptr)
66 		return &mc_debug_data_early;
67 
68 	return this_cpu_ptr(mc_debug_data_ptr);
69 }
70 
xen_parse_mc_debug(char * arg)71 static int __init xen_parse_mc_debug(char *arg)
72 {
73 	mc_debug_enabled = true;
74 	static_key_slow_inc(&mc_debug);
75 
76 	return 0;
77 }
78 early_param("xen_mc_debug", xen_parse_mc_debug);
79 
mc_debug_enable(void)80 static int __init mc_debug_enable(void)
81 {
82 	unsigned long flags;
83 	struct mc_debug_data __percpu *mcdb;
84 
85 	if (!mc_debug_enabled)
86 		return 0;
87 
88 	mcdb = alloc_percpu(struct mc_debug_data);
89 	if (!mcdb) {
90 		pr_err("xen_mc_debug inactive\n");
91 		static_key_slow_dec(&mc_debug);
92 		return -ENOMEM;
93 	}
94 
95 	/* Be careful when switching to percpu debug data. */
96 	local_irq_save(flags);
97 	xen_mc_flush();
98 	mc_debug_data_ptr = mcdb;
99 	local_irq_restore(flags);
100 
101 	pr_info("xen_mc_debug active\n");
102 
103 	return 0;
104 }
105 early_initcall(mc_debug_enable);
106 
107 /* Number of parameters of hypercalls used via multicalls. */
108 static const uint8_t hpcpars[] = {
109 	[__HYPERVISOR_mmu_update] = 4,
110 	[__HYPERVISOR_stack_switch] = 2,
111 	[__HYPERVISOR_fpu_taskswitch] = 1,
112 	[__HYPERVISOR_update_descriptor] = 2,
113 	[__HYPERVISOR_update_va_mapping] = 3,
114 	[__HYPERVISOR_mmuext_op] = 4,
115 };
116 
print_debug_data(struct mc_buffer * b,struct mc_debug_data * mcdb,int idx)117 static void print_debug_data(struct mc_buffer *b, struct mc_debug_data *mcdb,
118 			     int idx)
119 {
120 	unsigned int arg;
121 	unsigned int opidx = mcdb->entries[idx].op & 0xff;
122 	unsigned int pars = 0;
123 
124 	pr_err("  call %2d: op=%lu result=%ld caller=%pS ", idx + 1,
125 	       mcdb->entries[idx].op, b->entries[idx].result,
126 	       mcdb->caller[idx]);
127 	if (opidx < ARRAY_SIZE(hpcpars))
128 		pars = hpcpars[opidx];
129 	if (pars) {
130 		pr_cont("pars=");
131 		for (arg = 0; arg < pars; arg++)
132 			pr_cont("%lx ", mcdb->entries[idx].args[arg]);
133 	}
134 	if (mcdb->argsz[idx]) {
135 		pr_cont("args=");
136 		for (arg = 0; arg < mcdb->argsz[idx] / 8; arg++)
137 			pr_cont("%lx ", mcdb->args[idx][arg]);
138 	}
139 	pr_cont("\n");
140 }
141 
xen_mc_flush(void)142 void xen_mc_flush(void)
143 {
144 	struct mc_buffer *b = this_cpu_ptr(&mc_buffer);
145 	struct multicall_entry *mc;
146 	struct mc_debug_data *mcdb = NULL;
147 	int ret = 0;
148 	unsigned long flags;
149 	int i;
150 
151 	BUG_ON(preemptible());
152 
153 	/* Disable interrupts in case someone comes in and queues
154 	   something in the middle */
155 	local_irq_save(flags);
156 
157 	trace_xen_mc_flush(b->mcidx, b->argidx, b->cbidx);
158 
159 	if (static_key_false(&mc_debug)) {
160 		mcdb = get_mc_debug();
161 		memcpy(mcdb->entries, b->entries,
162 		       b->mcidx * sizeof(struct multicall_entry));
163 	}
164 
165 	switch (b->mcidx) {
166 	case 0:
167 		/* no-op */
168 		BUG_ON(b->argidx != 0);
169 		break;
170 
171 	case 1:
172 		/* Singleton multicall - bypass multicall machinery
173 		   and just do the call directly. */
174 		mc = &b->entries[0];
175 
176 		mc->result = xen_single_call(mc->op, mc->args[0], mc->args[1],
177 					     mc->args[2], mc->args[3],
178 					     mc->args[4]);
179 		ret = mc->result < 0;
180 		break;
181 
182 	default:
183 		if (HYPERVISOR_multicall(b->entries, b->mcidx) != 0)
184 			BUG();
185 		for (i = 0; i < b->mcidx; i++)
186 			if (b->entries[i].result < 0)
187 				ret++;
188 	}
189 
190 	if (WARN_ON(ret)) {
191 		pr_err("%d of %d multicall(s) failed: cpu %d\n",
192 		       ret, b->mcidx, smp_processor_id());
193 		for (i = 0; i < b->mcidx; i++) {
194 			if (static_key_false(&mc_debug)) {
195 				print_debug_data(b, mcdb, i);
196 			} else if (b->entries[i].result < 0) {
197 				pr_err("  call %2d: op=%lu arg=[%lx] result=%ld\n",
198 				       i + 1,
199 				       b->entries[i].op,
200 				       b->entries[i].args[0],
201 				       b->entries[i].result);
202 			}
203 		}
204 	}
205 
206 	b->mcidx = 0;
207 	b->argidx = 0;
208 
209 	for (i = 0; i < b->cbidx; i++) {
210 		struct callback *cb = &b->callbacks[i];
211 
212 		(*cb->fn)(cb->data);
213 	}
214 	b->cbidx = 0;
215 
216 	local_irq_restore(flags);
217 }
218 
__xen_mc_entry(size_t args)219 struct multicall_space __xen_mc_entry(size_t args)
220 {
221 	struct mc_buffer *b = this_cpu_ptr(&mc_buffer);
222 	struct multicall_space ret;
223 	unsigned argidx = roundup(b->argidx, sizeof(u64));
224 
225 	trace_xen_mc_entry_alloc(args);
226 
227 	BUG_ON(preemptible());
228 	BUG_ON(b->argidx >= MC_ARGS);
229 
230 	if (unlikely(b->mcidx == MC_BATCH ||
231 		     (argidx + args) >= MC_ARGS)) {
232 		trace_xen_mc_flush_reason((b->mcidx == MC_BATCH) ?
233 					  XEN_MC_FL_BATCH : XEN_MC_FL_ARGS);
234 		xen_mc_flush();
235 		argidx = roundup(b->argidx, sizeof(u64));
236 	}
237 
238 	ret.mc = &b->entries[b->mcidx];
239 	if (static_key_false(&mc_debug)) {
240 		struct mc_debug_data *mcdb = get_mc_debug();
241 
242 		mcdb->caller[b->mcidx] = __builtin_return_address(0);
243 		mcdb->argsz[b->mcidx] = args;
244 		mcdb->args[b->mcidx] = (unsigned long *)(&b->args[argidx]);
245 	}
246 	b->mcidx++;
247 	ret.args = &b->args[argidx];
248 	b->argidx = argidx + args;
249 
250 	BUG_ON(b->argidx >= MC_ARGS);
251 	return ret;
252 }
253 
xen_mc_extend_args(unsigned long op,size_t size)254 struct multicall_space xen_mc_extend_args(unsigned long op, size_t size)
255 {
256 	struct mc_buffer *b = this_cpu_ptr(&mc_buffer);
257 	struct multicall_space ret = { NULL, NULL };
258 
259 	BUG_ON(preemptible());
260 	BUG_ON(b->argidx >= MC_ARGS);
261 
262 	if (unlikely(b->mcidx == 0 ||
263 		     b->entries[b->mcidx - 1].op != op)) {
264 		trace_xen_mc_extend_args(op, size, XEN_MC_XE_BAD_OP);
265 		goto out;
266 	}
267 
268 	if (unlikely((b->argidx + size) >= MC_ARGS)) {
269 		trace_xen_mc_extend_args(op, size, XEN_MC_XE_NO_SPACE);
270 		goto out;
271 	}
272 
273 	ret.mc = &b->entries[b->mcidx - 1];
274 	ret.args = &b->args[b->argidx];
275 	b->argidx += size;
276 
277 	BUG_ON(b->argidx >= MC_ARGS);
278 
279 	trace_xen_mc_extend_args(op, size, XEN_MC_XE_OK);
280 out:
281 	return ret;
282 }
283 
xen_mc_callback(void (* fn)(void *),void * data)284 void xen_mc_callback(void (*fn)(void *), void *data)
285 {
286 	struct mc_buffer *b = this_cpu_ptr(&mc_buffer);
287 	struct callback *cb;
288 
289 	if (b->cbidx == MC_BATCH) {
290 		trace_xen_mc_flush_reason(XEN_MC_FL_CALLBACK);
291 		xen_mc_flush();
292 	}
293 
294 	trace_xen_mc_callback(fn, data);
295 
296 	cb = &b->callbacks[b->cbidx++];
297 	cb->fn = fn;
298 	cb->data = data;
299 }
300