1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2016 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <[email protected]>
8  */
9 
10 /*
11  * Since we're dealing with identity mappings, physical and virtual
12  * addresses are the same, so override these defines which are ultimately
13  * used by the headers in misc.h.
14  */
15 #define __pa(x)  ((unsigned long)(x))
16 #define __va(x)  ((void *)((unsigned long)(x)))
17 
18 /*
19  * Special hack: we have to be careful, because no indirections are
20  * allowed here, and paravirt_ops is a kind of one. As it will only run in
21  * baremetal anyway, we just keep it from happening. (This list needs to
22  * be extended when new paravirt and debugging variants are added.)
23  */
24 #undef CONFIG_PARAVIRT
25 #undef CONFIG_PARAVIRT_XXL
26 #undef CONFIG_PARAVIRT_SPINLOCKS
27 
28 /*
29  * This code runs before CPU feature bits are set. By default, the
30  * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if
31  * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5
32  * is provided to handle this situation and, instead, use a variable that
33  * has been set by the early boot code.
34  */
35 #define USE_EARLY_PGTABLE_L5
36 
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/mem_encrypt.h>
40 #include <linux/cc_platform.h>
41 
42 #include <asm/init.h>
43 #include <asm/setup.h>
44 #include <asm/sections.h>
45 #include <asm/coco.h>
46 #include <asm/sev.h>
47 
48 #include "mm_internal.h"
49 
50 #define PGD_FLAGS		_KERNPG_TABLE_NOENC
51 #define P4D_FLAGS		_KERNPG_TABLE_NOENC
52 #define PUD_FLAGS		_KERNPG_TABLE_NOENC
53 #define PMD_FLAGS		_KERNPG_TABLE_NOENC
54 
55 #define PMD_FLAGS_LARGE		(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
56 
57 #define PMD_FLAGS_DEC		PMD_FLAGS_LARGE
58 #define PMD_FLAGS_DEC_WP	((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
59 				 (_PAGE_PAT_LARGE | _PAGE_PWT))
60 
61 #define PMD_FLAGS_ENC		(PMD_FLAGS_LARGE | _PAGE_ENC)
62 
63 #define PTE_FLAGS		(__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
64 
65 #define PTE_FLAGS_DEC		PTE_FLAGS
66 #define PTE_FLAGS_DEC_WP	((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
67 				 (_PAGE_PAT | _PAGE_PWT))
68 
69 #define PTE_FLAGS_ENC		(PTE_FLAGS | _PAGE_ENC)
70 
71 struct sme_populate_pgd_data {
72 	void    *pgtable_area;
73 	pgd_t   *pgd;
74 
75 	pmdval_t pmd_flags;
76 	pteval_t pte_flags;
77 	unsigned long paddr;
78 
79 	unsigned long vaddr;
80 	unsigned long vaddr_end;
81 };
82 
83 /*
84  * This work area lives in the .init.scratch section, which lives outside of
85  * the kernel proper. It is sized to hold the intermediate copy buffer and
86  * more than enough pagetable pages.
87  *
88  * By using this section, the kernel can be encrypted in place and it
89  * avoids any possibility of boot parameters or initramfs images being
90  * placed such that the in-place encryption logic overwrites them.  This
91  * section is 2MB aligned to allow for simple pagetable setup using only
92  * PMD entries (see vmlinux.lds.S).
93  */
94 static char sme_workarea[2 * PMD_SIZE] __section(".init.scratch");
95 
sme_clear_pgd(struct sme_populate_pgd_data * ppd)96 static void __head sme_clear_pgd(struct sme_populate_pgd_data *ppd)
97 {
98 	unsigned long pgd_start, pgd_end, pgd_size;
99 	pgd_t *pgd_p;
100 
101 	pgd_start = ppd->vaddr & PGDIR_MASK;
102 	pgd_end = ppd->vaddr_end & PGDIR_MASK;
103 
104 	pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
105 
106 	pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
107 
108 	memset(pgd_p, 0, pgd_size);
109 }
110 
sme_prepare_pgd(struct sme_populate_pgd_data * ppd)111 static pud_t __head *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
112 {
113 	pgd_t *pgd;
114 	p4d_t *p4d;
115 	pud_t *pud;
116 	pmd_t *pmd;
117 
118 	pgd = ppd->pgd + pgd_index(ppd->vaddr);
119 	if (pgd_none(*pgd)) {
120 		p4d = ppd->pgtable_area;
121 		memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
122 		ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
123 		set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
124 	}
125 
126 	p4d = p4d_offset(pgd, ppd->vaddr);
127 	if (p4d_none(*p4d)) {
128 		pud = ppd->pgtable_area;
129 		memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
130 		ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
131 		set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
132 	}
133 
134 	pud = pud_offset(p4d, ppd->vaddr);
135 	if (pud_none(*pud)) {
136 		pmd = ppd->pgtable_area;
137 		memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
138 		ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
139 		set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
140 	}
141 
142 	if (pud_leaf(*pud))
143 		return NULL;
144 
145 	return pud;
146 }
147 
sme_populate_pgd_large(struct sme_populate_pgd_data * ppd)148 static void __head sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
149 {
150 	pud_t *pud;
151 	pmd_t *pmd;
152 
153 	pud = sme_prepare_pgd(ppd);
154 	if (!pud)
155 		return;
156 
157 	pmd = pmd_offset(pud, ppd->vaddr);
158 	if (pmd_leaf(*pmd))
159 		return;
160 
161 	set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
162 }
163 
sme_populate_pgd(struct sme_populate_pgd_data * ppd)164 static void __head sme_populate_pgd(struct sme_populate_pgd_data *ppd)
165 {
166 	pud_t *pud;
167 	pmd_t *pmd;
168 	pte_t *pte;
169 
170 	pud = sme_prepare_pgd(ppd);
171 	if (!pud)
172 		return;
173 
174 	pmd = pmd_offset(pud, ppd->vaddr);
175 	if (pmd_none(*pmd)) {
176 		pte = ppd->pgtable_area;
177 		memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
178 		ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
179 		set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
180 	}
181 
182 	if (pmd_leaf(*pmd))
183 		return;
184 
185 	pte = pte_offset_kernel(pmd, ppd->vaddr);
186 	if (pte_none(*pte))
187 		set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
188 }
189 
__sme_map_range_pmd(struct sme_populate_pgd_data * ppd)190 static void __head __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
191 {
192 	while (ppd->vaddr < ppd->vaddr_end) {
193 		sme_populate_pgd_large(ppd);
194 
195 		ppd->vaddr += PMD_SIZE;
196 		ppd->paddr += PMD_SIZE;
197 	}
198 }
199 
__sme_map_range_pte(struct sme_populate_pgd_data * ppd)200 static void __head __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
201 {
202 	while (ppd->vaddr < ppd->vaddr_end) {
203 		sme_populate_pgd(ppd);
204 
205 		ppd->vaddr += PAGE_SIZE;
206 		ppd->paddr += PAGE_SIZE;
207 	}
208 }
209 
__sme_map_range(struct sme_populate_pgd_data * ppd,pmdval_t pmd_flags,pteval_t pte_flags)210 static void __head __sme_map_range(struct sme_populate_pgd_data *ppd,
211 				   pmdval_t pmd_flags, pteval_t pte_flags)
212 {
213 	unsigned long vaddr_end;
214 
215 	ppd->pmd_flags = pmd_flags;
216 	ppd->pte_flags = pte_flags;
217 
218 	/* Save original end value since we modify the struct value */
219 	vaddr_end = ppd->vaddr_end;
220 
221 	/* If start is not 2MB aligned, create PTE entries */
222 	ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_SIZE);
223 	__sme_map_range_pte(ppd);
224 
225 	/* Create PMD entries */
226 	ppd->vaddr_end = vaddr_end & PMD_MASK;
227 	__sme_map_range_pmd(ppd);
228 
229 	/* If end is not 2MB aligned, create PTE entries */
230 	ppd->vaddr_end = vaddr_end;
231 	__sme_map_range_pte(ppd);
232 }
233 
sme_map_range_encrypted(struct sme_populate_pgd_data * ppd)234 static void __head sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
235 {
236 	__sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
237 }
238 
sme_map_range_decrypted(struct sme_populate_pgd_data * ppd)239 static void __head sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
240 {
241 	__sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
242 }
243 
sme_map_range_decrypted_wp(struct sme_populate_pgd_data * ppd)244 static void __head sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
245 {
246 	__sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
247 }
248 
sme_pgtable_calc(unsigned long len)249 static unsigned long __head sme_pgtable_calc(unsigned long len)
250 {
251 	unsigned long entries = 0, tables = 0;
252 
253 	/*
254 	 * Perform a relatively simplistic calculation of the pagetable
255 	 * entries that are needed. Those mappings will be covered mostly
256 	 * by 2MB PMD entries so we can conservatively calculate the required
257 	 * number of P4D, PUD and PMD structures needed to perform the
258 	 * mappings.  For mappings that are not 2MB aligned, PTE mappings
259 	 * would be needed for the start and end portion of the address range
260 	 * that fall outside of the 2MB alignment.  This results in, at most,
261 	 * two extra pages to hold PTE entries for each range that is mapped.
262 	 * Incrementing the count for each covers the case where the addresses
263 	 * cross entries.
264 	 */
265 
266 	/* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
267 	if (PTRS_PER_P4D > 1)
268 		entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
269 	entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
270 	entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
271 	entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
272 
273 	/*
274 	 * Now calculate the added pagetable structures needed to populate
275 	 * the new pagetables.
276 	 */
277 
278 	if (PTRS_PER_P4D > 1)
279 		tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
280 	tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
281 	tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
282 
283 	return entries + tables;
284 }
285 
sme_encrypt_kernel(struct boot_params * bp)286 void __head sme_encrypt_kernel(struct boot_params *bp)
287 {
288 	unsigned long workarea_start, workarea_end, workarea_len;
289 	unsigned long execute_start, execute_end, execute_len;
290 	unsigned long kernel_start, kernel_end, kernel_len;
291 	unsigned long initrd_start, initrd_end, initrd_len;
292 	struct sme_populate_pgd_data ppd;
293 	unsigned long pgtable_area_len;
294 	unsigned long decrypted_base;
295 
296 	/*
297 	 * This is early code, use an open coded check for SME instead of
298 	 * using cc_platform_has(). This eliminates worries about removing
299 	 * instrumentation or checking boot_cpu_data in the cc_platform_has()
300 	 * function.
301 	 */
302 	if (!sme_get_me_mask() ||
303 	    RIP_REL_REF(sev_status) & MSR_AMD64_SEV_ENABLED)
304 		return;
305 
306 	/*
307 	 * Prepare for encrypting the kernel and initrd by building new
308 	 * pagetables with the necessary attributes needed to encrypt the
309 	 * kernel in place.
310 	 *
311 	 *   One range of virtual addresses will map the memory occupied
312 	 *   by the kernel and initrd as encrypted.
313 	 *
314 	 *   Another range of virtual addresses will map the memory occupied
315 	 *   by the kernel and initrd as decrypted and write-protected.
316 	 *
317 	 *     The use of write-protect attribute will prevent any of the
318 	 *     memory from being cached.
319 	 */
320 
321 	kernel_start = (unsigned long)RIP_REL_REF(_text);
322 	kernel_end = ALIGN((unsigned long)RIP_REL_REF(_end), PMD_SIZE);
323 	kernel_len = kernel_end - kernel_start;
324 
325 	initrd_start = 0;
326 	initrd_end = 0;
327 	initrd_len = 0;
328 #ifdef CONFIG_BLK_DEV_INITRD
329 	initrd_len = (unsigned long)bp->hdr.ramdisk_size |
330 		     ((unsigned long)bp->ext_ramdisk_size << 32);
331 	if (initrd_len) {
332 		initrd_start = (unsigned long)bp->hdr.ramdisk_image |
333 			       ((unsigned long)bp->ext_ramdisk_image << 32);
334 		initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
335 		initrd_len = initrd_end - initrd_start;
336 	}
337 #endif
338 
339 	/*
340 	 * Calculate required number of workarea bytes needed:
341 	 *   executable encryption area size:
342 	 *     stack page (PAGE_SIZE)
343 	 *     encryption routine page (PAGE_SIZE)
344 	 *     intermediate copy buffer (PMD_SIZE)
345 	 *   pagetable structures for the encryption of the kernel
346 	 *   pagetable structures for workarea (in case not currently mapped)
347 	 */
348 	execute_start = workarea_start = (unsigned long)RIP_REL_REF(sme_workarea);
349 	execute_end = execute_start + (PAGE_SIZE * 2) + PMD_SIZE;
350 	execute_len = execute_end - execute_start;
351 
352 	/*
353 	 * One PGD for both encrypted and decrypted mappings and a set of
354 	 * PUDs and PMDs for each of the encrypted and decrypted mappings.
355 	 */
356 	pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
357 	pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
358 	if (initrd_len)
359 		pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
360 
361 	/* PUDs and PMDs needed in the current pagetables for the workarea */
362 	pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
363 
364 	/*
365 	 * The total workarea includes the executable encryption area and
366 	 * the pagetable area. The start of the workarea is already 2MB
367 	 * aligned, align the end of the workarea on a 2MB boundary so that
368 	 * we don't try to create/allocate PTE entries from the workarea
369 	 * before it is mapped.
370 	 */
371 	workarea_len = execute_len + pgtable_area_len;
372 	workarea_end = ALIGN(workarea_start + workarea_len, PMD_SIZE);
373 
374 	/*
375 	 * Set the address to the start of where newly created pagetable
376 	 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
377 	 * structures are created when the workarea is added to the current
378 	 * pagetables and when the new encrypted and decrypted kernel
379 	 * mappings are populated.
380 	 */
381 	ppd.pgtable_area = (void *)execute_end;
382 
383 	/*
384 	 * Make sure the current pagetable structure has entries for
385 	 * addressing the workarea.
386 	 */
387 	ppd.pgd = (pgd_t *)native_read_cr3_pa();
388 	ppd.paddr = workarea_start;
389 	ppd.vaddr = workarea_start;
390 	ppd.vaddr_end = workarea_end;
391 	sme_map_range_decrypted(&ppd);
392 
393 	/* Flush the TLB - no globals so cr3 is enough */
394 	native_write_cr3(__native_read_cr3());
395 
396 	/*
397 	 * A new pagetable structure is being built to allow for the kernel
398 	 * and initrd to be encrypted. It starts with an empty PGD that will
399 	 * then be populated with new PUDs and PMDs as the encrypted and
400 	 * decrypted kernel mappings are created.
401 	 */
402 	ppd.pgd = ppd.pgtable_area;
403 	memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
404 	ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
405 
406 	/*
407 	 * A different PGD index/entry must be used to get different
408 	 * pagetable entries for the decrypted mapping. Choose the next
409 	 * PGD index and convert it to a virtual address to be used as
410 	 * the base of the mapping.
411 	 */
412 	decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
413 	if (initrd_len) {
414 		unsigned long check_base;
415 
416 		check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
417 		decrypted_base = max(decrypted_base, check_base);
418 	}
419 	decrypted_base <<= PGDIR_SHIFT;
420 
421 	/* Add encrypted kernel (identity) mappings */
422 	ppd.paddr = kernel_start;
423 	ppd.vaddr = kernel_start;
424 	ppd.vaddr_end = kernel_end;
425 	sme_map_range_encrypted(&ppd);
426 
427 	/* Add decrypted, write-protected kernel (non-identity) mappings */
428 	ppd.paddr = kernel_start;
429 	ppd.vaddr = kernel_start + decrypted_base;
430 	ppd.vaddr_end = kernel_end + decrypted_base;
431 	sme_map_range_decrypted_wp(&ppd);
432 
433 	if (initrd_len) {
434 		/* Add encrypted initrd (identity) mappings */
435 		ppd.paddr = initrd_start;
436 		ppd.vaddr = initrd_start;
437 		ppd.vaddr_end = initrd_end;
438 		sme_map_range_encrypted(&ppd);
439 		/*
440 		 * Add decrypted, write-protected initrd (non-identity) mappings
441 		 */
442 		ppd.paddr = initrd_start;
443 		ppd.vaddr = initrd_start + decrypted_base;
444 		ppd.vaddr_end = initrd_end + decrypted_base;
445 		sme_map_range_decrypted_wp(&ppd);
446 	}
447 
448 	/* Add decrypted workarea mappings to both kernel mappings */
449 	ppd.paddr = workarea_start;
450 	ppd.vaddr = workarea_start;
451 	ppd.vaddr_end = workarea_end;
452 	sme_map_range_decrypted(&ppd);
453 
454 	ppd.paddr = workarea_start;
455 	ppd.vaddr = workarea_start + decrypted_base;
456 	ppd.vaddr_end = workarea_end + decrypted_base;
457 	sme_map_range_decrypted(&ppd);
458 
459 	/* Perform the encryption */
460 	sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
461 			    kernel_len, workarea_start, (unsigned long)ppd.pgd);
462 
463 	if (initrd_len)
464 		sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
465 				    initrd_len, workarea_start,
466 				    (unsigned long)ppd.pgd);
467 
468 	/*
469 	 * At this point we are running encrypted.  Remove the mappings for
470 	 * the decrypted areas - all that is needed for this is to remove
471 	 * the PGD entry/entries.
472 	 */
473 	ppd.vaddr = kernel_start + decrypted_base;
474 	ppd.vaddr_end = kernel_end + decrypted_base;
475 	sme_clear_pgd(&ppd);
476 
477 	if (initrd_len) {
478 		ppd.vaddr = initrd_start + decrypted_base;
479 		ppd.vaddr_end = initrd_end + decrypted_base;
480 		sme_clear_pgd(&ppd);
481 	}
482 
483 	ppd.vaddr = workarea_start + decrypted_base;
484 	ppd.vaddr_end = workarea_end + decrypted_base;
485 	sme_clear_pgd(&ppd);
486 
487 	/* Flush the TLB - no globals so cr3 is enough */
488 	native_write_cr3(__native_read_cr3());
489 }
490 
sme_enable(struct boot_params * bp)491 void __head sme_enable(struct boot_params *bp)
492 {
493 	unsigned int eax, ebx, ecx, edx;
494 	unsigned long feature_mask;
495 	unsigned long me_mask;
496 	bool snp_en;
497 	u64 msr;
498 
499 	snp_en = snp_init(bp);
500 
501 	/* Check for the SME/SEV support leaf */
502 	eax = 0x80000000;
503 	ecx = 0;
504 	native_cpuid(&eax, &ebx, &ecx, &edx);
505 	if (eax < 0x8000001f)
506 		return;
507 
508 #define AMD_SME_BIT	BIT(0)
509 #define AMD_SEV_BIT	BIT(1)
510 
511 	/*
512 	 * Check for the SME/SEV feature:
513 	 *   CPUID Fn8000_001F[EAX]
514 	 *   - Bit 0 - Secure Memory Encryption support
515 	 *   - Bit 1 - Secure Encrypted Virtualization support
516 	 *   CPUID Fn8000_001F[EBX]
517 	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
518 	 */
519 	eax = 0x8000001f;
520 	ecx = 0;
521 	native_cpuid(&eax, &ebx, &ecx, &edx);
522 	/* Check whether SEV or SME is supported */
523 	if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
524 		return;
525 
526 	me_mask = 1UL << (ebx & 0x3f);
527 
528 	/* Check the SEV MSR whether SEV or SME is enabled */
529 	RIP_REL_REF(sev_status) = msr = __rdmsr(MSR_AMD64_SEV);
530 	feature_mask = (msr & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;
531 
532 	/*
533 	 * Any discrepancies between the presence of a CC blob and SNP
534 	 * enablement abort the guest.
535 	 */
536 	if (snp_en ^ !!(msr & MSR_AMD64_SEV_SNP_ENABLED))
537 		snp_abort();
538 
539 	/* Check if memory encryption is enabled */
540 	if (feature_mask == AMD_SME_BIT) {
541 		if (!(bp->hdr.xloadflags & XLF_MEM_ENCRYPTION))
542 			return;
543 
544 		/*
545 		 * No SME if Hypervisor bit is set. This check is here to
546 		 * prevent a guest from trying to enable SME. For running as a
547 		 * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there
548 		 * might be other hypervisors which emulate that MSR as non-zero
549 		 * or even pass it through to the guest.
550 		 * A malicious hypervisor can still trick a guest into this
551 		 * path, but there is no way to protect against that.
552 		 */
553 		eax = 1;
554 		ecx = 0;
555 		native_cpuid(&eax, &ebx, &ecx, &edx);
556 		if (ecx & BIT(31))
557 			return;
558 
559 		/* For SME, check the SYSCFG MSR */
560 		msr = __rdmsr(MSR_AMD64_SYSCFG);
561 		if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
562 			return;
563 	}
564 
565 	RIP_REL_REF(sme_me_mask) = me_mask;
566 	RIP_REL_REF(physical_mask) &= ~me_mask;
567 	RIP_REL_REF(cc_vendor) = CC_VENDOR_AMD;
568 	cc_set_mask(me_mask);
569 }
570